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Abstract

The flavor singlet axial charge has been a source of study in the last years due to its relation
to the so called Proton Spin Problem. The relevant flavor singlet axial current is anomalous,
i.e., its divergence contains a piece which is the celebrated UA(1) anomaly. This anomaly is
intimately associated with the η′ meson, which gets its mass from it. When the gauge degrees of
freedom of QCD are confined within a volume as is presently understood, the UA(1) anomaly is
known to induce color anomaly leading to “leakage” of the color out of the confined volume (or
bag). For consistency of the theory, this anomaly should be canceled by a boundary term. This
“color boundary term” inherits part or most of the dynamics of the volume (i.e., QCD). In this
paper, we exploit this mapping of the volume to the surafce via the color boundary condition to
perform a complete analysis of the flavor singlet axial charge in the chiral bag model using the
Cheshire Cat Principle. This enables us to obtain the hitherto missing piece in the axial charge
associated with the gluon Casimir energies. The result is that the flavor singlet axial charge is
small independent of the confinement (bag) size ranging from the skyrmion picture to the MIT
bag picture, thereby confirming the (albeit approximate) Cheshire Cat phenomenon. .
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1 Introduction

The possibility of formulating a physical theory by means of equivalent field theories defined in
terms of different field variables, leads to a construction principle for phenomenologically sen-
sible and conceptually powerful models, referred to as the Chesire Cat Principle (CCP)[1, 2].
In 1+1 dimensions fermionic theories are bosonizable [3] and the CCP can be made exact and
transparent. Furthermore in the supersymmetric world, the powerful nonrenormalizable theo-
rems allow a web of exactly equivalent theories to be established. In the real four-dimensional
nonsupersymmetric world, bosonization with a finite number of degrees of freedom is not exact.
However based on the unproven “theorem” of Weinberg [4], it seems possible to argue that the
CCP should hold also in four dimensions, albeit approximately. In view of recent developments
on establishing the network of dualities in what is believed to be a fundamental theory (i.e.,
string theory) where one might say that the exact CCP holds, the notion of a precise CCP in
the real world is no longer so preposterous. The aim of the present investigation is to show the
full consistency of the CCP in the hadronic world for the case of the Proton Spin, which was not
fully satisfactorily established in our previous efforts in this direction [5, 6, 7]1. We complete
the program in this paper.

Quantum Chromodynamics (QCD) is the theory of the hadronic phenomena [8]. At suffi-
ciently low energies or long distances and for a large number of colors NC , it can be described
accurately by an effective field theory in terms of meson fields [9]. In this regime, the color
fermionic description of the theory is extremely complex due to confinement. However the im-
plementation of the CCP in a two phase scenario called the Chiral Bag Model (CBM) has proven
surprisingly powerful [10].

What is the CBM? Let space-time be divided in two regions by a hypertube, that is, the
evolving bag. In the interior of the tube, the dynamics is defined in terms of the microscopic
QCD degrees of freedom, quarks and gluons. In the exterior, one assumes an equivalent dynamics
in terms of meson fields, i.e., one that respects the symmetries of the original theory and the
basic postulates of quantum field theory [4]. The two descriptions are matched by defining
the appropriate boundary conditions which implement the symmetries and confinement [1, 10].
What this does effectively is to delegate all or part of the principal elements of the dynamics
taking place inside (QCD) the bag to the boundary. We will see that this strategy works quite
efficiently in the problem at hand.

In this scenario the CCP states that the hadron physics should be approximately independent
of the spatial size of the confinement region or the bag [1]. This realization of the principle has
been tested in many instances in hadronic physics with fair success [2].

There is one case, however, where the realization of the CCP has not been as successful as in
the other cases, namely, the calculation of the flavor singlet axial charge (FSAC) of the nucleon.
Indeed in the previous efforts [5, 6, 7], the CCP was realized only partially as it seemed to fail
at certain points such as for zero bag radius. It is the leitmotiv of this work to remove this
apparent failure.

The observable FSAC has become very relevant in the nucleon structure in recent years,
because it is associated with the so called Proton Spin Problem [11]. The experimentally observed
small value for the FSAC implies a strong violation of the so-called Ellis-Jaffe sum rule [12] and

1Note that in these papers, we have shown that the CCP holds for non-zero bag radii but it failed when the
bag radius shrank to a point, implying that in the model studied, the pure skyrmion and the MIT bag did not
have the equivalent structure required by the CCP.
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therefore implies that the polarization of the proton is not carried exclusively by the valence
quarks. It is also very interesting from the formal point of view, because the flavor singlet axial
current – which is the origin of the observable – is anomalous, and its anomaly is related in a
non-trivial way with the gluonic structure of the theory [13].

In the CBM, the scenario of how the CCP is realized – which is the central issue of our problem
– is very intricate. As stated, the flavor singlet axial current is associated with the anomaly and
effectively with the η′ meson. Thus, besides the pion field of the conventional effective theories
which accounts for spontaneously broken chiral symmetry, the correct treatment of the FSAC
requires minimally the inclusion of a field describing the η′ meson. We shall label it for brevity
η(x) since no confusion will arise in what follows.

The intricacies of the hedgehog configuration and its relevance to the fractionation of baryon
charge and other observables have been extensively discussed [14] and fairly well understood
[15, 16]. They will be implemented in our calculation without much details. Moreover the
inclusion of the η′ meson carries subtleties of its own. The vacuum fluctuations inside the bag,
that induce the baryon number leakage into the skyrmion [14], also induce a color leakage if a
coupling to a pseudoscalar isoscalar field is allowed [17]. This leakage would break color gauge
invariance and confinement in the model unless it is canceled. As suggested in [17], this color
leakage can be prevented by introducing into the CBM Lagrangian a counter term of the form

LCT = i
g2

32π2

∮

Σ
dβKµnµ(TrlnU † − TrlnU) (1)

where NF is the number of flavors (here taken to be =3), β is a point on a surface Σ, nµ is the
outward normal to the bag surface, U is the U(NF ) matrix-valued field written as U = eiπ/feiη/f

and Kµ the properly regularized Chern-Simons current Kµ = ǫµναβ(Ga
νG

a
αβ − 2

3f
abcgGa

νG
b
αG

c
β)

given in terms of the color gauge field Ga
µ. Note that (1) manifestly breaks color gauge invariance

(both large and small, the latter due to the bag), so the action of the chiral bag model with this
term is not gauge invariant at the classical level but as shown in [17], when quantum fluctuations
are calculated, there appears an induced anomaly term on the surface which exactly cancels this
term. Thus gauge invariance is restored at the quantum level.

The equations of motion for the gluon and quark fields inside and the η′ field outside are the
same as in [5, 6]. However the boundary conditions on the surface with the inclusion of Eq.(1)
read [7]

n̂ · ~Ea = −NF g
2

8π2f
n̂ · ~Baη (2)

n̂× ~Ba =
NF g

2

8π2f
n̂× ~Eaη (3)

and
1

2
n̂ · (ψ̄~γγ5ψ) = fn̂ · ∂η +

NF g
2

16π2
n̂ ·K (4)

where ~Ea and ~Ba are, respectively, the color electric and color magnetic fields. Here ψ is the
QCD quark field.

A complete treatment calls for a full Casimir calculation of the gluon modes, which is highly
subtle due to the p-wave structure of the η-field. Such a calculation is in progress [18] and
will be reported in a later publication. Here we would like to side-step this technically difficult
procedure by first assuming the CCP in evaluating the Casimir contribution with the color
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boundary conditions (2), (3) and (4) taken into account and check a posteriori that there is
consistency between the assumption and the result.

The next section will define our formulation, recall our old results, and clarify the new
contributions. Section 3 will focus on the gluon Casimir contribution to the FSAC, the major
contribution of this presentation. Finally section 4 will contain the results, conclusions and the
future prospects of ongoing work.

2 The Chiral Bag Formalism

Our aim is to calculate the FSAC in the CBM scenario. In order to do so we need a spe-
cific formulation of the model through its equations of motion and boundary conditions. The
equations of motion have been shown repeatedly in our previous works [5, 6, 7] and the color
boundary conditions were recalled in the introduction. We refer the reader to those references
for a detailed discussion on their structure, their resolution and the implementation of gauge
invariance and confinement. Our calculation will be carried out in the static spherical cavity
approximation, that is, our bag will be a static sphere of radius R dividing two regions of space
in which the theory is implemented by QCD for r < R, and by an effective meson theory for
r > R.

2.1 The anomaly and proton spin

The anomalous suppression of the first moment, Γp
1, of the polarized proton structure function

gp
1 has been the focus of intense theoretical and experimental activity for nearly a decade. While

it is now generally accepted that the key to understanding this effect is the existence of the
chiral U(1) anomaly in the flavor singlet axial current there are several explanations reflecting
different theoretical approaches to proton structure.

The starting point is the sum rule for the first moment, i.e.,

ΓP
1 (Q2) ≡

∫ 1

0
dxgp

1(x,Q2) =
1

12
CNS

1 (αs(Q
2))

(

a3 +
1

3
a8
)

+
1

9
CS

1 (αS(Q2))a0(Q2). (5)

Here C1(αs) are first moments of the Wilson coefficients of the the singlet (S) and nonsinglet
(NS) axial currents and αs the perturbatively running QCD coupling constant. Moreover a3,
a8 and a0(Q2) are the form factors in the forward proton matrix elements of the renormalized
axial current, i.e.,

〈p, s|A3
µ|p, s〉 = sµ

1

2
a3, 〈p, s|A8

µ|p, s〉 = sµ
1

2
√

3
a8,

and
〈p, s|A0

µ|p, s〉 = sµa
0,

where pµ and sµ are the momentum and the polarization vector of the proton. a3 and a8 can
be chosen Q2 independent and may be determined from the GA

GB
and F

D ratios. a0(Q2) evolves
due to the anomaly and its evolution can be described in the AB scheme [11] by

a0(Q2) = ∆Σ −NF
αS(Q2)

2π
∆g(Q2). (6)
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Naive models or the OZI approximation to QCD lead at low energies to

a0 ≈ a8 ≈ 0.69 ± 0.06. (7)

Experimentally[19]
a0(∞) = 0.10 +0.17

−0.10. (8)

The explanation for this unexpected small value has given rise to many interpretations related
to hadron structure, vacuum structure and evolution [20, 21, 22, 23].

2.2 The formalism

To obtain the FSAC, we need to calculate the matrix elements of the flavor singlet axial current.
Let us write the current in the CBM as a sum of two terms, one from the interior of the bag
and the other from the outside populated by the meson field η′ (we will ignore the Goldstone
pion fields for the moment; they will be taken into account for the baryon charge leakage)

Aµ = Aµ
BΘB +Aµ

MΘM . (9)

Since we will be dealing only with the flavor-singlet axial current, we will omit the flavor index
in the current. We shall use the short-hand notations ΘB = θ(R− r) and ΘM = θ(r −R) with
R being the radius of the bag. We demand that the UA(1) anomaly be given in this model by

∂µA
µ =

αsNF

2π

∑

a

~Ea · ~BaΘB + fm2
ηηΘM . (10)

Our task is to construct the FSAC in the chiral bag model that is gauge-invariant and consistent
with this anomaly equation. Our basic assumption is that in the nonperturbative sector outside
of the bag, the only relevant UA(1) degree of freedom is the massive η′ field. This assumption
allows us to write

Aµ
M = Aµ

η = f∂µη (11)

with the divergence
∂µA

µ
η = fm2

ηη. (12)

Now the question is: what is the gauge-invariant and regularized Aµ
B such that the anomaly (10)

is satisfied? To address this question, we rewrite the current (9) as

Aµ = Aµ
BQ

+Aµ
BG

+Aµ
η (13)

such that

∂µ(Aµ
BQ

+Aµ
η ) = fm2

ηηΘM , (14)

∂µA
µ
BG

=
αsNF

2π

∑

a

~Ea · ~BaΘB . (15)

The subindices Q and G imply that these currents are written in terms of quark and gluon fields
respectively. In writing (14), we have ignored the up and down quark masses. We should stress
that since we are dealing with an interacting theory, there is no unique way to separate the
different contributions from the gluon, quark and η components. In particular, the separation
we adopt, (14) and (15), is non-unique although the sum is without ambiguity . We found
however that this separation leads to a natural partition of the contributions in the framework
of the bag description for the confinement mechanism that we are using here.
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Figure 1: Various contributions to the flavor singlet axial current of the proton as a function of
bag radius : (a) quark contribution ABQ

; (b) η′ contribution Aη and (c) the sum.

2.2.1 The quark current Aµ
BQ

The quark current is given by
Aµ

BQ
= Ψ̄γµγ5Ψ (16)

where Ψ should be understood to be the bagged quark field. Therefore the quark current con-
tribution to the FSAC is given by

a0
BQ

= 〈p|
∫

B
d3rΨ̄γ3γ5Ψ|p〉. (17)

The calculation of this type of matrix elements in the CBM is nontrivial due to the baryon
charge leakage between the interior and the exterior through the Dirac sea. But we know how
to do this in an unambiguous way. A complete account of such calculations can be found in
[6, 16, 15]. The leakage produces an R dependence which would otherwise not be there in the
matrix element of Eq.(17), as shown in Fig. 1. It is significant that as seen in the figure there
is no contribution for zero radius, that is in the pure skyrmion scenario for the proton. The
contribution grows as a function of R towards the pure MIT result that would technically be
reached for infinite radius. The result of this calculation was first presented in refs. [5, 6]. No
new ingredient has been added.

2.2.2 The meson current Aµ
η

Since we shall not add anything new to our previous result obtained in [5, 6], we will just quote
the result. Due to the coupling of the quark and η fields at the surface, we can simply write the
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η contribution in terms of the quark contribution,

a0
η =

1 + yη

2(1 + yη) + y2
η

〈p|
∫

B
d3rΨ̄γ3γ5Ψ|p〉. (18)

where yη = mηR. In Fig. 1 we show the radial dependence of this contribution, which arises
from the charge leakage mechanism, and follows the quark distribution. Since the η field has
no topological structure, its contribution also vanishes in the skyrmion limit. This illustrates
how the dynamics of the exterior can be mapped to that of the interior by boundary conditions.
We may summarize the analysis of these two contributions by stating that no trace of the CCP
is apparent in Fig. 1. Thus if the CCP were to emerge, the only possibility would be that the
gluons do the miracle!

2.2.3 The gluon current Aµ
BG

Understanding the FSAC and its implications in the present framework involves crucially the
role of the gluon contribution, in particular its static properties and vacuum fluctuations, i.e.,
the Casimir effects. The calculation of the Casimir effects constitutes the principal aim of this
work.

We begin by dividing the gluon current into two pieces

Aµ
BG

= Aµ
G,stat +Aµ

G,vac. (19)

The first term arises from the quark and η sources, while the latter is associated with the
properties of the vacuum of the model. One might worry that this contribution could not be
split in these two terms without double counting. That there is no cause for worry can be seen
in several different ways. Technically, it is easy to check it by noticing that the former acts on
the quark Fock space and the latter on the gluon vacuum. Thus, one can interprete the former
as a one gluon exchane correction to the quanity. One can also show this intuitively by making
the analogy to the condensate expansion in QCD [25], where the perturbative terms and the
vacuum condensates enter additively to the lowest order.

Let us first describe the static term. We assume initially for simplicity that there is no η
coupling. Then the boundary conditions for the gluon field would correspond to the original
MIT ones [26]. The quark current is the source term that remains in the equations of motion
after performing a perturbative expansion in the QCD coupling constant, i.e., the quark color
current

gΨ̄0γµλ
aΨ0 (20)

where the Ψ0 fields represent the lowest cavity modes. In this lowest mode approximation, the
color electric and magnetic fields are given by

~Ea = gs
λa

4π

r̂

r2
ρ(r) (21)

~Ba = gs
λa

4π

(

µ(r)

r3
(3r̂~σ · r̂ − ~σ) + (

µ(R)

R3
+ 2M(r))~σ

)

(22)

where ρ is related to the quark density ρ′ as2

ρ(r,Γ) =

∫ r

Γ
dsρ′(s) (23)

2Note that the quark density that figures here is associated with the color charge, not with the quark number
(or rather the baryon charge) that leaks due to the hedgehog pion.
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and µ,M to the vector current density

µ(r) =

∫ r

0
dsµ′(s),

M(r) =

∫ R

r
ds
µ′(s)

s3
.

The lower limit Γ is taken to be zero in the MIT bag model – in which case the boundary
condition is satisfied only globally, that is, after averaging – and Γ = R in the so called monopole
solution [6, 7] – in which case, the boundary condition is satisfied locally.

After having clarified the procedure by recalling our old calculation and pointing out the
main difference of the present with respect to that one, we proceed to introduce the η field.
We perform the same calculation with however the color boundary conditions Eqs.(2) and (3)
taken into account. In the approximation of keeping the lowest non-trivial term, the boundary
conditions become

r̂ · ~Ea
stat = −NF g

2

8π2f
r̂ · ~Ba

gη(R) (24)

r̂ × ~Ba
stat =

NF g
2

8π2f
r̂ × ~Ea

gη(R). (25)

Here ~Ea
g and ~Ba

g are the lowest order fields [6, 7] given by (21) and (22) and η(R) is the meson
field at the boundary. The η field is given by

η(~r) = −gNNη

4πM
~S · r̂1 +mηr

r2
e−mηr (26)

where the coupling constant is determined from the surface conditions [6, 7].
Note that the magnetic field is not affected by the new boundary conditions, since ~Ea

g points
into the radial direction. The effect on the electric field is just a change in the charge, i.e.,

ρstat(r) = ρ(r,Γ) + ρη(R) (27)

where

ρη(R) =
NF g

2

64π3M

gNNη

f
(1 + yη)e

−yη . (28)

The contribution to the FSAC arising from these fields is determined from the expectation
value of the anomaly

a0
G,stat = 〈p| − NFαs

π

∫

B
d3rx3

~Ea
stat · ~Ba

stat|p〉. (29)

The result of this contribution is shown in Fig. 2, where we show the MIT solution, the monopole
one and the correction associated to both due to the color coupling3. One sees that including
the η contribution in ρstat(r) brings a non-negligible modification to the FSAC but does not
modify the result qualitatively. What is most striking is the drastic difference between the
effect of the MIT-like electric field and that of the monopole-like electric field: The former
is totally incompatible with the Cheshire Cat property whereas the latter remains consistent
independently of whether or not the η contribution is included in ρstat.

3We have also investigated electric fields of the form ( A

r2
+ Br)r̂, but the results do not change much with

respect to the ones shown since the B term tends to be small.
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Figure 2: Dependence of a0
G,stat on the choice of Γ and the boundary conditions as a function

of bag radius : (a) with an MIT-like electric field without η coupling, (b) with a monopole-like
electric field without η coupling, (c) with an MIT-like electric field with η coupling, and (d) with
a monopole-like electric field with η coupling.
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Finally the AG,vac term arises from the so called Casimir effect of the anomaly term. The
vacuum in the cavity and the perturbative vacuum are different due to the geometry of the
cavity. This effect has been considered for many other observables and also for the quarks in
this calculation [16, 15, 6], but never for the gluons. We proceed in the next section to describe
this calculation.

3 The Gluon Casimir Calculation

The quantity that we wish to calculate is the gluon vacuum contribution to the flavor singlet
axial current of the proton. It can be done by evaluating the expectation value

〈0B | −
NFαs

π

∫

V
d3rx3( ~E

a · ~Ba)|0B〉 (30)

where |0B〉 denotes the vacuum in the bag. The standard way to evaluate this expectation
value would be to expand the field operators in terms of the classical eigenmodes that satisfy
the equations of motion and the boundary conditions. Although well-defined, this approach is
technically involved. We have not yet obtained any quantitative results to report. In this paper,
we shall proceed in the opposite direction. Instead of arriving at the CCP as in the standard
approach, we shall assume the CCP and evaluate the Casimir contribution with the expression
that follows from the assumption. The idea goes as follows.

The CCP states that at low energy, hadronic phenomena do not discriminate between QCD
degrees of freedom (quarks and gluons) on the one hand and meson degrees of freedom (pions,
etas,...) on the other, provided that all necessary quantum effects (e.g., quantum anomalies) are
properly taken into account. If we consider the limit where the η excitation is a long wavelength
oscillation of zero frequency, the CCP asserts that it does not matter whether we choose to
describe the η, in the interior of the infinitesimal bag, in terms of quarks and gluons or in terms
of mesonic degrees of freedom. This statement, together with the color boundary conditions,
leads to an extremely simple and useful local formula [27],

~Ea · ~Ba ≈ −NF g
2

8π2

η

f

1

2
G2, (31)

where only the term up to the first order in η is retained in the right-hand side. Here we adapt
this formula to the CBM. This means that the couplings are to be understood as the average
bag couplings and the gluon fields are to be expressed in the cavity vacuum through a mode
expansion. In fact, by comparing the expression for the η′ mass derived in [27] using Eq.(31)
with that obtained by Novikov et al [28] in QCD sum-rule method, we note that the matrix
element of the G2 in (31) should be evaluated in the absence of light quarks. This means, in
the bag model, the cavity vacuum. That the surface boundary condition can be interpreted
as a local operator is a rather strong CCP assumption which while justifiable for small bag
radius, can only be validated a posteriori by the consistency of the result. This procedure is the
substitute to the condensates in the conventional discussion.

Substituting Eq.(31) into Eq.(30) we obtain

〈0B | −
NFαs

π

∫

V
d3rx3(~E

a · ~Ba)|0B〉
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≈
(

−NFαs

π

)

(

−NF g
2

8π2

)

y(R)

f0
〈p|S3|p〉〈0B |

∫

V
d3r

1

2
G2x3x̂3|0B〉

≈
(

−NFαs

π

)

(

−NF g
2

8π2

)

y(R)

f0
〈p|S3|p〉(N2

c − 1)

∑

n

∫

V
d3r( ~B∗

n · ~Bn − ~E∗
n · ~En)x3x̂3, (32)

where we have used that η has a structure of (~S · r̂)y(R). Since we are interested only in the
first order perturbation, the field operator can be expanded by using MIT bag eigenmodes (the
zeroth order solution). Thus, the summation runs over all the classical MIT bag eigenmodes.
The factor (N2

c − 1) comes from the sum over the abelianized gluons.
The next steps are the numerical calculations to evaluate the mode sum appearing in Eq.(32):

(i) introduction of the heat kernel regularization factor to classify the divergences appearing in
the sum and (ii) subtraction of the ultraviolet divergences.

3.1 Normalization of the eigenmodes

The classical eigenmode of the (abelianized) gluons confined in the MIT bag can be classified
by the total spin quantum numbers (J,M) given by the vector sum of the orbital angular
momentum ~L and the spin ~S,

~J ≡ ~L+ ~S, (33)

and the radial quantum number n. There are two kinds of classical eigenmodes according to the
relations between the parity and the total spin; (i) M-mode with the parity π = −(−1)J and
(ii) E-mode with the parity π = −(−1)J+1. Here, the extra minus sign is due to the negative
intrinsic parity of gluon.

We will work with the vector fields with the gauge choice,

G0 = 0, and ~∇ · ~G = 0. (34)

Then the electric field and the magnetic field are obtained through the relations

~E = −∂
~G

∂t
, (35)

~B = ~∇× ~G. (36)

Explicitly, the solutions are obtained as

(i) M-modes :

~G
(M)
(n,J,M)(~r) = NM jJ(ωnr)~YJ,J,M(r̂), (37)

(ii) E-modes :

~G
(E)
(n,J,M)(~r) = NE



−
√

J

2J + 1
jJ+1(ωnr)~YJ,J+1,M(r̂) (38)

+

√

J + 1

2J + 1
jJ−1(ωnr)~YJ,J−1,M(r̂)



 , (39)
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where ~YJ,ℓ,M is the vector spherical harmonics of the total spin J composed of the angular
momentum ℓ and jℓ(x) is the spherical Bessel functions. The energy eigenvalues are determined
to satisfy the MIT boundary conditions as

(i) M-modes :

Xnj
′
J(Xn) + jJ(Xn) = 0, (40)

(ii) E-modes :

jJ (Xn) = 0 (41)

where we have defined Xn = ωnR. The normalization constants NM,E will be specified below.

The field operator ~G(~r, t) is expanded in terms of the classical eigenmodes as

~G(~r, t) =
∑

{ν}

(

a{ν} ~G{ν}(~r)e
−iωnt + a†{ν}

~G∗
{ν}(~r)e

+iωnt
)

, (42)

where {ν} denotes the quantum number set (n, J,M, λ =E or M).
We determine the normalization constants NM,E in such a way that the free gluon Hamilto-

nian operator

H =
1

2

∫

B
d3r( ~E · ~E + ~B · ~B) (43)

becomes
H =

∑

{ν}

ω{ν}a
†
{ν}a{ν} (44)

when Eq.(42) is substituted into Eq. (43). It leads to a normalization condition for the classical
eigenmodes as

∫

B
d3r ~G∗

{ν} · ~G{µ} =
1

2ω{ν}
δ{ν}{µ}. (45)

Then the normalization constants are determined explicitly as

NM =
[

XnR
2
(

j2J (Xn) − jJ−1(Xn)jJ+1(Xn)
)]−1/2

, (46)

NE =
[

XnR
2j2J−1(Xn)

]−1/2
. (47)

3.2 Matrix elements

The first step is to calculate the matrix elements

Q{ν} ≡
∫

B
d3r( ~B∗

{ν} · ~B{ν} − ~E∗
{ν} · ~E{ν})x3x̂3. (48)

¿From Eq.(37), we obtain

~E{ν}(~r) = (+iωn)NM jJ (ωnr)~YJ,J,M(r̂), (49)

~B{ν}(~r) = (+iωn)NM



−
√

J

2J + 1
jJ+1(ωnr)~YJ,J+1,M(r̂) (50)

+

√

J + 1

2J + 1
jJ−1(ωnr)~YJ,J−1,M(r̂)



 , (51)
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Figure 3: jJ(x) and I(x) as a function of x.

for the M-modes and the similar equations with ~E and ~B being interchanged for the E-modes.
We encounter in the calculation the following angular integrals

∫

dΩ~Y ∗
J,ℓ,M · ~YJ,ℓ,M x̂

2
3. (52)

By using that x̂2
3 = (4/3)

√

π/5Y20 + 1/3 and the Wigner-Eckart theorem, we obtain

∫

dΩ~Y ∗
J,ℓ,M · ~YJ,ℓ,M x̂

2
3 = cJ,ℓ(J(J + 1) − 3M2) +

1

3
, (53)

where cJ,ℓ is a constant that depends only on J and ℓ. We have to perform the summation over
M , which runs from −J to J , which cancels the contribution of the first term, therefore we can
take effectively 1/3 as the result of the integral.

Finally, we obtain the matrix elements for the M-modes as

Q(M)
n =

1

3

∫Xn

0 x3dx
[

j2J(x) − J
2J+1j

2
J+1(x) − J+1

2J+1j
2
J−1(x)

]

X3
n

[

j2J (Xn) − jJ−1(Xn)jJ+1(Xn)
] . (54)

In the case of the E-mode, we obtain exactly the same formula except the minus sign in front
of it. (Note that the formulas for the electric field and the magnetic field are interchanged.)

We have found that the matrix elements for the E-mode vanish up to our numerical accuracy
as shown in Fig. 3. Here, the solid line is the spherical Bessel function jJ (x) and the dashed line
is the integral

I(x) ≡
∫ x

0
y3dy

[

j2J (y) − J

2J + 1
j2J+1(y) −

J + 1

2J + 1
j2J−1(y)

]

(55)

We see that the zeroes of I(x) and j(x) coincide, thus showing that Q
(E)
n (Xn) = 0. We have

been unable however to prove this result analytically, except the trivial case of J = 0.

3.3 The mode sum

In order to regularize the mode sum, we introduce a heat kernel factor exp(−τXn);

S(τ) ≡
∑

n,J

(2J + 1)Q
(M)
n,J e

−τXn , (56)
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Figure 4: Diverging properties of S(τ) as a function of the heat kernel regularization parameter
τ . All the magnetic modes up to ωnR(≡ Xn)=100(solid circle), 150(solid square), 200(solid
diamond) and 250(solid triangle) are included in the sum.

where we have carried out the trivial sum over M and the vanishing E-mode contribution is
excluded.

Fig. 4 shows the numerical results of the sum up to Xmax=100, 150, 200, 250 for the 40 values
of τ from 0.0025 to 0.1 with the step 0.0025. We can see that below τ < 0.06 the convergence is
poor. However, it is enough to see the presence of an 1/τ2 divergence. If we fit the data above
τ > 0.06, we obtain

S(τ) =
0.1061

τ2
− 0.0816

τ
+ 0.0478 − 0.0285τ. (57)

Apart from a possible logarithmic divergence, there are quadratic and linear divergences as we
set τ equal to zero . We shall remove these divergences following a procedure commonly used in
Casimir problems [29]. Caveat on this procedure will be highlighted in the discussion section.
Now if we neglect logarithmic divergences that might be present , the best way to get rid of the
quadratic and linear divergences is to evaluate

S(τ) + 2τS′(τ) +
1

2
τ2S′′(τ) =

∑

n,J

(2J + 1)Qn,J (1 − 2τXn + 0.5τ2X2
n)e−τXn . (58)

Fig. 5 show the results on this quantity for 80 values of τ ranging from 0.0025 to 1. We
see that no serious divergences appear anymore. By fitting the convergent data with the above
expressions for τ , we obtain for the finite part of the sum 0.0478, from the cubic function fit,
and 0.0456, from the quadratic one. These results are comparable to the finite term of the above
naive fitting procedure (57), which yielded 0.0478.

Once we have the numerical value on the mode sum, the gluon vacuum contribution to FSAC

13
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2S′′(τ) as a function of τ . The finite term of S(τ) is extracted by
fitting these quantities to a cubic and quadratic curves.

can be evaluated simply as

a0
G,vac = −(2.10)2

2
× 8

2
× y(R)

122MeV
× (0.0478), (59)

where y(R) is related to a0
BQ

as

y(R) = − 3m2
η

8πfη

(1 +mηR)

[2(1 +mηR) + (mηR)2](mηR)2
a0

BQ
. (60)

We have used NF = Nc = 3, αs = 2.2, f0 =
√

NF/2fη′ ∼ 122MeV and mη = 958 MeV.

4 Results and Conclusions

Our numerical results are given in Fig.6. Standard MIT bag parameters were used for the
calculation. The quarkish component of the FSAC is given by the sum of the quark and η
contributions, a0

BQ
+a0

η and the gluonic component by a0
G,stat+a

0
G,vac. Both increase individually

as the confinement size R is increased but the sum remains small, 0 < a0
total < 0.3 for the whole

range of radii, consistent with the experiment, aexp = a0(∞) = 0.10+0.17
−0.10. It is remarkable that

a(R = 0) ≃ a(R ≈ 1.5 fm) while each component can differ widely for the two extreme radii.
We have shown that the principal agent for the observed small FSAC in the proton in the

framework of the chiral bag model is the Cheshire Cat phenomenon (CCP). It is the CCP that
assures the cancellation between two contributions, one from the quarkish component and the
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other from the gluonic component in the particular way the separation is made. For a small bag
radius, both components are small, so the net FSAC being small is immediate. This is consistent
with the observation that in the limit that R → 0, we recover the skyrmion description which
gives a vanishing FSAC at the leading order, modified by matter fields at the next order. At
large bag radius which leads to the MIT bag model, both the quarkish contribution and the
gluonic contribution are large but they cancel. Our assertion is that this cancellation is caused
by the CCP. We should however recall that the separation between the quarkish component
and the gluonic component we adopted in (14) and (15) is entirely arbitrary although the sum
is unique. Whether the separate component by itself is large or small has no physical meaning.
Only the total does. Different separations would lead to different scenarios leading to the same
small value. It is plausible that in some limit – unknown to us – the FSAC would be exactly
zero with the finite nonzero value indicating a departure from this limit. Understanding this
limit would allow a unique separation of the components.

One of the principal results of this paper is that it is possible to have a nonzero value for the
FSAC at R = 0 and is of the same size as at large R4. While the effect of the surface color
anomaly term is generally small for all radii, the finite nonzero value of FSAC for R = 0 is
assured by the surface boundary term. Thus the violation of the CCP observed in the previous
calculations at R = 0 [6, 7] is neatly eliminated by the color anomaly boundary condition. More
importantly, the monopole structure of the color electric field previously proposed is found to be
required for the sign that comes with the important static gluonic contribution from the quark

4The reason for this nonzero value is intimately connected with the CCP, since it is the finite part of the gluon
mode sum which normalizes the value of this contribution at the origin. Moreover the color boundary condition
provides us with a decreasing η field contribution which changes softly as a function of R.
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source. We believe that this cancellation is a manifestation in the bag scenario of the recently
discovered one for QCD [21]. The MIT configuration would strongly violate the CCP. We are
thus led to the conclusion that the CCP requires the monopole configuration for the color electric
field. Whether or not this configuration leaves undisturbed other – successful – phenomenology
was discussed in [6].

In calculating the gluonic Casimir effect, we made the ab initio assumption that the CCP
holds, an assumption which is expected to be valid for small bag radius. We then extend it,
in accordance with the CCP, to all bag radii. We can justify this only a posteriori by showing
that the CCP assumption is consistent with what one gets out. Note however that the gluonic
Casimir effect is most significant for small R where it is needed for the CCP and plays little
role for large R. Thus our assumption is validated. It would of course be more satisfying if one
could obtain the CCP as an output of the formalism, not put in as an input. Such a calculation
is in progress.

We should mention a caveat left unspecified in the text in regularizing this Casimir contri-
bution. Since a0

G,vac vanishes when the η field is removed, the so-called “vacuum contribution”
is duly subtracted in what we have computed. However we have also explicitly subtracted
quadratic and linear divergences appearing from the mode sum by resorting to a procedure used
in the past in most of Casimir-type calculations [29] which as far as we know, is physically rea-
sonable but has not yet been rigorously justified from first principles. The same caveat applies
to our calculation as it does to others. The finite term we have obtained might therefore be
subject to additional finite corrections. In this paper we have invoked the Cheshire Cat Principle
to ignore such corrections in a0

G,vac. We hope that the calculation in progress [18] will eliminate
this ambiguity.

Given the caveat mentioned above and the approximations used, our result can at best be
qualitative. A better treatment (such as a more realistic gauge coupling constant running with
the bag size, a more accurate calculation of a0

G,vac etc.) might modify the result quantitatively.

Even so, we believe it to be quite robust that the overall FSAC is small,
<∼ 0.3 and that it is

more or less independent of the confinement size.
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