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1. Introduction

A wealth of cosmological observations over the past years have provided a deep knowledge

on the thermal history of the Universe since its first nanoseconds, up to today. Supernova

candles show that the Universe is now accelerating as a consequence of an exotic particle or

more likely a cosmological constant with negative pressure. Measurements from the CMB

tell us that our Universe is flat, isotropic and (almost) homogeneous and its physics can

be accurately described by the Hot Big Bang Model and General Relativity.

One of the corner-stones of the Hot Big Bang model is Big Bang Nucleosynthesis,

the theory about the formation of light elements (namely deuterium, helium, and lithium)

that were produced in the first few minutes after the Bang. The abundances of these lights

elements depend on the density of protons and neutrons at the time of nucleosynthesis

(as these were the only baryons around at this time) and provide a strong evidence for a

necessity of a baryon asymmetry, an excess of nucleons over antinucleons. Furthermore,

the Universe seems to contain relatively few antibaryons. There is clear evidence that at

least the local cluster of galaxies is made of matter, and there is no plausible mechanism

to separate matter from antimatter on such large scales.

Then one of the most challenging aspects of the interplay between particle physics

and cosmology is to construct a compelling and consistent theory that can explain the

observed baryon asymmetry of the universe. The tiny difference between the number

density of baryons and antibaryons, of about 10−10 if normalized to the entropy density of

the Universe. In order to be able to generate such an asymmetry any theory must fulfil

certain conditions. These conditions, called the Sakharov’s conditions [1] establish the

necessary ingredients for the production of a net baryon asymmetry, which are

1. Non conservation of baryon number

2. Violation of C and CP symmetry
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3. Departure from thermal equilibrium

The need for the first two conditions is quite obvious. Regarding the third one the

Universe must have been out of thermal equilibrium in order to produce net bayon number,

since the number of baryons and antibaryons are equal in thermal equilibrium (if B violating

processes do exist). It is also important to notice that all known interactions are in thermal

equilibrium when the temperature of the Universe is between 100 GeV and 1012 GeV.

Many mechanisms for the production of the baryon asymmetry have been discussed for

different periods of the evolution of the early universe, which include GUT-baryogenesis,

leptogensis, etc. Among all the proposals, the generation of the baryon asymmetry at

electroweak scale is specially appealing since the electroweak scale is the last instance in

the evolution of the Universe in which the baryon asymmetry could have been produced

within minimal frameworks. The Standard Model satisfies every Shakharov condition and

thus was considered that solely within this framework baryogenesis could be explained.

Firstly, baryon number violation occurs in the Standard Model through anomalous

processes. Secondly, at low temperatures this anomalous baryon number violation only

proceeds via tunnelling which is exponentially suppressed. However, anomalous baryon

number violation is rapid at high temperatures and the weak phase transition, if first order

with supercooling, provides a natural way for the Universe to depart from equilibrium at

weak scale temperatures. Electroweak phase transition can be then seen as bubbles of the

broken phase which expand and end up filling the Universe. In this picture, local departure

takes place in the vicinity of these expanding bubble walls. Lastly, C and CP are known

to be violated by the electroweak interactions. So, in principle, all the required ingredients

are there.

However, the standard model fails in almost every aspect. The CKM phase, the only

source for CP violation in the standard model, is extremely small to explain the observed

baryon to entropy ratio. Another decisive check comes from the requirement that any

net baryon asymmetry produced during the transition should survive until today. For an

Universe whose expansion rate is slower than the anomalous baryon violating processes,

thermal equilibrium would be recovered after the electroweak phase transition. Therefore,

any asymmetry in baryon number created during the transition would be erased. In the

broken phase, the rate of baryon number violation is exponentially suppresed by a factor

O (φ/gT ), where φ is the value of the order parameter and g is the weak coupling constant.

Thus, when demanding the baryon violating width to be smaller than Hubble rate, one

finds
φ(Tew)

Tew
& 1 , (1.1)

where Tew stands for the temperature at which the electroweak phase transition is com-

pleted. Usually this temperature can be safely approximated to the critical temperature

Tc when both phases co-exist. The above condition constitutes the so called “sphaleron

bound”, and can give new information and constraints about the CP and Higgs sectors of

the Standard Model. In particular, it has been shown that Higgs masses larger than 40

GeV can be ruled out by imposing that the baryon asymmetry of the Universe be generated

during the weak transition[2, 3].
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Nonetheless, the sphaleron bound (eq. 1.1) presented above, assumes a particular

thermal history of the Universe, one where during the electroweak phase transition the

energy density of the universe was dominated by radiation. In section 2, we will show that,

under different thermal histories of the Universe or different cosmologies, a less stringent

condition can be obtained, permitting Higgs masses above the current experimental bounds.

In section 3, we will analyse a scenario with a non standard thermal history during the

electroweak phase transition which leads to a modified sphaleron bound condition, while

in section 4 we relax this bound by modifying the underlying cosmology. We will conclude

in section 5.

2. Sphaleron Bound reviewed

The evolution of any baryon asymmetry in comoving units during the electroweak phase

transition can be written as

nfreeze
n(tB)

= exp

[
−
∫

∞

tb

dt Γ̃sph(t)

]
, (2.1)

where nfreeze is the baryon asymmetry which survives to partake of nuclesynthesis, n(tB)

is the baryon asymmetry at the beginning of the phase transition and tb is the time at

which the bubble nucleation proceeds, starting up the phase transition.

The meaning of this equation is clear. The baryons created at the bubble walls are

subject to decay after they enter the broken phase, if the baryon number violating processes

are not sufficiently suppressed. We should require then this attenuation not to reduce the

created asymmetry to less than that required for nuclesynthesis i.e.
∫

∞

tb

dt Γ̃sph(t) = − log

(
nfreeze
n(tB)

)
≤ 1 . (2.2)

The sphaleron width is given by [4]

Γ̃sph(t) = αn6N
2
F C g

φ7

T 6
e−

Esph

T , (2.3)

where αn is a number of order one, whose precise value depends on the model and its

corresponding set of conserved charges and NF is the number of fermion families. C is a

temperature independent parameter accounting for the degrees of freedom of the sphaleron

and may be expressed in the following way

C =

(
ω−

2πgφ(T )
NtrNrotVrotKsph

)
. (2.4)

where ω− is the frequency of the negative mode of the sphaleron, Vrot = 8π2, NtrNrot ≃ 86−
5 ln(m2

H/8m2
W ) and Ksph = {7.54, 5.64, 4.57, 3.89, 3.74} for mH = {0.4, 0.5, 0.6, 0.8, 1}mW ,

and extrapolated for other values of mH .

As the dominant contribution to the integral (2.1) comes from temperatures very close

to TB , it can be approximated to its value at this temperature. Such approximation slightly

overestimates the dilution.
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As t ∼ H−1, this yields the condition

Γ̃sph(tb) ≤ H(tb) . (2.5)

This equation shows what we pointed out before, the sphaleron rate processes must be

slow enough, i.e out of thermal equilibrium, in order that any (B + L) asymmetry won’t

be erased. This bound is usually stated as a lower bound on the sphaleron energy, or as

a lower bound on the ratio of the vev to the temperature at the critical temperature and

can then be converted into a bound on the parameters in a specific model.

Usually the literature shows this bound in the conventional cosmological scenario, that

is, in a radiation dominated Universe. Within this scenario the expansion rate is given by

H2
rad =

4π3

45M2
P l

g∗T
4 . (2.6)

Inserting this expression in eq. 2.5, one finds that

φc

Tc
&

1

B

√
4π

αw

(
7 log

φc

Tc
+ logW (Tc)− logHrad

)
, (2.7)

where B = {1.52, 1.61, 1..83, 2.10} for m2
H/m2

W ∈ {0.008, 0.08, 0.8, 8} and quadratically

interpolated for intermediate values and W (T ) = 6αnN
2
f CgTc. Solving this equation nu-

merically gives

φc

Tc
& 1 . (2.8)

Alternatively this bound can be restated as a function/bound on different cosmological

scenarios for which the expansion rate takes a different value. In such scenarios[5]

φc

Tc
&

1

B

√
4π

αw

(
7 log

φc

Tc
+ logW (Tc)− logHrad

)
+ δφc

Tc

, (2.9)

where

δφc
Tc

=
1

B

√
4π

αw
log

H

Hrad
. (2.10)

This new term has the effect of relaxing the sphaleron bound. This effect can be

seen in figure 1, where the difference between the solutions given by eq. 2.7 and 2.9, i.e,

∆
(
φc

Tc

)
= φc

Tc

∣∣∣
Hrad

− φc

Tc

∣∣∣
H

is plotted for different values of H.

In addition, it is clear that only drastic modifications, i.e. modifications where the

energy density (and therefore the expansion rate) is several orders of magnitude larger

than the one given in a radiation dominated scenario, can relax the bound in a sensible

way. We are interested in studying whether such a modification to the sphaleron bound

can be helpful to open up the allowed parameter space for electroweak baryogenesis. To

study this, let us review first how this bound is obtained in the Standard Model, and what

its implications are.
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Figure 1: Dependence of the relaxation of the sphaleron bound on the Hubble rate

In the Standard electroweak theory the effective potential at high temperatures reads

as [6]

V (φ, T ) ≈ M(T )2

2
− ETφ3 +

λT

4
φ4 , (2.11)

where M(T ), B and λT are the temperature dependent effective mass, cubic term and

quartic coupling respectively; given at the one-loop ring improved values

M(T ) =
√

A(T 2 − T 2
0 ) ,

A =
2m2

W +m2
Z + 2m2

t

4v2
+

1

2
λT ,

E =
2

3

(
1

2π

2m3
W +m3

Z

v3
+

1

4π

(
3 + 3

3
2

)
λ

3
2

T

)
,

λT =
m2

H

2v2
− 3

16π2v4

(
2m4

W ln
m2

W

aBT 2
+m4

Z ln
m2

Z

aBT 2
− 4m4

t ln
m2

t

aFT 2

)
,

T 2
0 =

m2
H + 8βv2

2A
, β =

3

64π2v4
(
4m4

t − 2m4
W −m4

Z

)
. (2.12)

where T0 is the temperature at which the phase transition ends, v = 246GeV is the

usual Higgs vacuum expectation value at zero temperature, aB = (4π)2e−2γE ≃ 50,

aF = (π)2e−2γE ≃ 3.1, and γE is Euler’s constant.

By minimizing the effective potential one finds that the ratio of the temperature de-

pendent Higgs vacuum expectation value to the temperature at a temperature at which a

new degenerate minimum appears (the critical temperature) is given by

φ

T
=

B +

√
B2 − 4λTA(1− T 2

0

T 2 )

2λT
. (2.13)

Using this result as a constraint on the model we can conclude that in order to have

a sufficiently strong phase transition within the Standard Model the higgs mass should be
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Figure 2: Dependence of the ratio φc/Tc which controls the preservation of the baryon assymetry

on the Higgs mass (treated here as a free parameter) for several models

smaller than 40 GeV, in clear contradiction with current observations. This is why the

Standard Model fails to accommodate a mechanism to generate the baryon asymmetry

during the electroweak phase transition. Nevertheless, we have already showed that the

sphaleron bound could be weakened by resorting to alternative thermal histories with

significantly different expansion rates at the electroweak phase transition. We have yet to

see whether the relaxation obtained can be large enough to allow current bounds on the

Higgs masses.

There are in the literature plenty of extensions to the standard scenario with an en-

larged matter sector where new effects appear and give rise to an enhancement of the

strength of the phase transition. One of the most interesting extensions is supersymmetry

and the so-called “light stop scenario”[7]. In such scenario, stops are light enough, com-

pared to the rest of superpartners, to affect the trilinear coupling to the higgs potential

(finite corrections from heavy particles are highly suppressed). This effect impacts the ratio

of the temperature dependent vev to the critical temperature in the following way

φc

Tc

∣∣∣∣
MSSM

=
φc

Tc

∣∣∣∣
SM

+
2m3

t

πvm2
h

(
1− Ã2

t

m2
Q

) 3
2

, (2.14)

with

Ãt = At − µ/ tan β

the effective stop mixing parameter and mQ the soft supersymmetry breaking mass term

for the stops. We can easily see that zero mixing makes the phase transition stronger so a

parameter space for this mixing close to zero is highly favoured. However, the mixing to

the stops has also an important effect on the one loop corrections to the Higgs mass (in

the decoupling limit, MA >> MZ , and a strong hierarchy in the stops spectrum)[8]
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Figure 3: Dependence of the Higgs Mass on the stop mixing. The stop mass mt̃l
is fixed and given

approximately by the soft supersymmetry breaking mass term mQ

m2
h = M2

Z | cos 2β|2 +
3m4

t

4π2v2

{
log

m2
t̃r
m2

t̃l

m4
t

+
A2

t

m2
t̃l

[
2

(
1 +

mt̃2r

mt̃2
l

)
− A2

t

m2
t̃l

(
1 + 4

mt̃2r

mt̃2
l

)]
log

mt̃2
l

mt̃2r

+ 2
A4

t

m4
t̃l

(
1 + 2

mt̃2r

mt̃2
l

)}
(2.15)

Therefore, while non zero /strong mixing enhances the Higgs mass, it does have the

opposite effect on the strength of the electroweak phase transition. We can see this be-

haviour in the figures 2 and 3. So even in extensions to the standard scenario, a relaxation

on the sphaleron bound would be welcome.

3. First order phase transition in a matter dominated universe

We have seen in the previous section that it is possible to make the electroweak phase

transition strong enough to avoid the erasement of the asymmetry by sphalerons if the

value of the expansion rate at that scale is orders of magnitude larger than the expansion

in the standard, radiation dominated, scenario. In the following, we will study a scenario

where this condition can be naturally achieved.

Because the Universe was extremely hot during its early stages, all kind of interesting

particles (some yet to be discovered, some which hasn’t even been postulated) were present

in significant amounts. For T ≫ m, the mass of the particles in question, their equilibrium

abundance is, to within numerical factors, equal to that of photons. When the temperature
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of the thermal bath drops below m, the equilibrium abundance of such particles is less than

that of photons and their contribution to the total energy density becomes suppressed by

a factor,

(m/T )5/2 exp−m/T , (3.1)

except if one (or more) of such particles, which in the following we will call X, drops out

of equilibrium and its abundance freezes out (we are assuming that X annihilation cross

section is very suppressed). In this case, the relic abundance of X relative to photons

remains approximately constant and the contribution to the energy density of X grows as

1/T as compared to that of photons. It is obvious then, that eventually the energy density

of X will dominate that of the Universe. If the X particle is unstable (but long lived

enough) and decays into relativistic particles which thermalise (releasing large amounts of

entropy) the Universe will re-enter a radiation dominated era. This will be the scenario we

will focus on.

If we assume a flat Universe (as given by observations) the evolution equations for the

different components of the Universe are given by

ρ̇X = −3HρX − ΓXρX (3.2)

ρ̇oldr = −4Hρoldr (3.3)

ρ̇newr = −4Hρnewr + ΓXρX (3.4)

H2 =
8π

3M2
P l

(
ρX + ρoldr + ρnewr

)
, (3.5)

where ρX is the energy density associated to the particle X, once it becomes nonrelativistic

and ΓX its decay width, ρoldr is the energy density in radiation not associated with X

decays, while ρnewr is the one coming from X decays 1.

Contrary to the standard picture, the temperature of this universe, will have two

sources

T (t) =

(
30

π2g∗

(
ρoldr (t) + ρnewr (t)

))1/4

(3.6)

and therefore its temperature profile, shown in figure 4, will be significatly different from

that of the standard case[10]. We will start at temperatures larger than the mass of our

particle X, MX , with a radiation dominated universe, where X is in thermal equilibrium.

During this time the temperature scales like t−1/2 (or 1/a, being a the scale factor). Once

the temperature drops to

Tstart =
4

3
rMX , (3.7)

with r = gX/2 if X is a boson and r = 3gX/8 if it is a fermion, being gX the total number

of spin degrees of freedom of X, we enter a matter dominated period. During the first

1Evolution equations with tracking, i.e. when the different components of the Universe chase each others

abundance, can also produce early periods of matter domination [9]
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Figure 4: Evolution of the Temperature in an Universe which goes through different epochs

part of this period, which comprises most of the matter dominated era, and although X is

decaying through an exponential law

ρX ≃ 2π2g∗
45

rMXT 3e−ΓX t , (3.8)

the exponential factor does not affect in a significant way X abundance, the radiation

released by X decays is negligible compared with that not coming from X decays, and the

temperature falls as in a pure matter dominated period, i.e. T ∝ t−2/3 ∝ 1/a.

As t approaches 1/ΓX , the new radiation starts to be comparable with the old one.

Thus, X quickly dissapears into (new) radiation and T ∝ t−1/4 ∝ 1/a3/8. Once the age of

Universe exceeds 1/ΓX , our matter dominated Universe turns into a radiation dominated

one and the temperature starts once more to track the scale factor T ∝ t−1/2 ∝ 1/a. At

this point

Tend = 0.78g
−1/4
∗

√
MP lΓX . (3.9)

The described stages the Universe goes through are depicted in figure 5, for a particular

choice of parameters. Since we want to recover the standard (radiation dominated) picture

before nucleosynthesis, we can derive a lower bound on ΓX by requesting that the Universe

must have left at the latest the matter dominated era shortly before BBN, which reads

ΓX ≥ 2.0 · 10−24

√
g∗
200

GeV . (3.10)

As stated in the previous section an essential condition for electroweak baryogenesis

is that the sphaleron transitions would be turned off after the phase transition so that no

washing out of the asymmetry produced during the transition occurs. This situation is

achieved when the transition rate of the sphaleron interactions is small as compared to the

Hubble rate i.e. , when these transitions are out of equilibrium. In a radiation dominated

universe, the Hubble parameter scales like H ∝ T 2, however in a matter dominated one,
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Figure 5: Evolution for the different components of the Universe. Purple, blue and brown line

correspond to ρX , ρoldr , ρnewr respectively. In this case, the decay width is ΓX = 10−19 GeV−1

during its first period, when the decays does not significantly reduce the abundance of the

X particle

H2
MD =

16π3g∗r

135

(
MXT

3

M2
P l

)
. (3.11)

It is then straightforward to notice that large MX masses can substantially change the

value of the Hubble rate at electroweak scale and consequently affect the strength of the

phase transition.

In order to quantify this variation, we must distinguish between two cases:

(i) The electroweak phase transition temperature is reached when the temperature is

essentially given by radiation not coming from X decays, i.e.

ρoldr |EW ≫ ρnewr |EW , (3.12)

where in terms of the model parameters

ρnewr ≃ 0.221 ΓX MP l

√
g∗T 3

EWMX (3.13)

implies that in this scenario we require

ΓX ≪ 2.46 × 10−13

√
r

√
(GeV)

MX
. (3.14)

In this case, the extra contribution to the sphaleron bound is given by

δφc
Tc

=
1

2B

√
4π

αw
log

4r

3

MX

TEW
(3.15)

so that it gets modified as

∆

(
φc

Tc

)
≈ −

log 4r
3

MX

Tc

1
B

√
4π
αw

− 7 1
(

φc
Tc

)

. (3.16)
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(ii) The temperature at the phase transition is set by the radiation coming from X decays,

i.e.

ρnewr |EW ≫ ρoldr |EW (3.17)

so that

ρX
ρnewr

≃ g∗
1.9× 1033

(
TEW

ΓX

)2

(3.18)

and the relaxation on the sphaleron bound reads

∆

(
φc

Tc

)
≈ −

log g∗
1.9×1033

(
TEW

ΓX

)2

1
B

√
4π
αw

− 7 1
(

φc
Tc

)

. (3.19)

From these equations it is clear that although both schemes can significantly relax the

sphaleron bound, they give rise to different phenomenological scenarios. We will come back

to this point again later.

But this is not the end of the story regarding the consequences of an early period of

matter domination. As it is well known, an early period of matter domination, triggered by

a super heavy unstable but longlived particle which goes out of equilibrium at early times

and comes to dominate the energy density of the Universe, leads to a reduction of the

required number of e-folds before the end of inflation at which the scales of interest today

left the horizon. This reduction, which relaxes the flatness condition for the inflationary

potential, is due to the fact that the comoving horizon scale grows as a1/2 during a matter

dominated epoch in contrast to the radiation dominated one where the comoving horizon

grows as a. As a consequence, the longer the period of matter domination, the smaller the

growth of the universe from the end of inflation up today and therefore the smaller the

number of efolds required. This reduction is given by [11]

∆N =
1

4
log

(
aend
astart

)
, (3.20)

where aend and astart are the scale factor at the beginning and end of the matter dominated

era respectively. In terms of the parameters which define our model, i.e. the mass and

decay width of X, this ratio between the scale factors reads

aend
astart

=

(
Hstart

Hend

)2/3

≈ 3.9

(
g∗

ΓXMP l
(rMX)

4

)1/3

. (3.21)

For values of the decay width close to its lower bound and masses of the order of 1015 GeV,

this reduction turns out to be over 10 e-foldings.

Likewise, the end of a matter dominated Universe driven by the decay of a long lived

massive particle leads to an important entropy production

Send
Sstart

=

(
Tendaend
Tstartastart

)3

=




aend
astart

∣∣∣
MD

aend
astart

∣∣∣
RD




3

≃ 12.2

(
g∗

Γ2
XM

2
P l

) 1
4

(rMX) . (3.22)
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As it is well known, supersymmetry as well as most of the theories beyond the Standard

Model are riddled with new particles associated to new (and higher) energy scales which

produce undesirable relics whose abundances, or they mere presence at certain times, do

not agree with the current experimental observations of our universe, e.g. moduli and

gravitinos. So a large release of entropy might help to dilute them, softening (or com-

pletely erasing) the constraints on their masses. Consequently, this scenario provides the

same services as thermal inflation (regarding the unwanted relics) but without introducing

another scalar particle into the theory[12].

On the other hand, it is also important to note that the entropy production that can

so nicely solve the unwanted relic problem, can also erase the baryon asymmetry produced

at the electroweak scale. Such erasement is given by

η = ηEW

(
Send

SEW

)
, (3.23)

where ηEW ≈ nB/s is the baryon to photon ratio produced at the electroweak scale and

the entropy is given by S = g∗a
3T 3.

As mentioned before, at late times into the matter dominated period a ∝ 1/T 8/3 and

then

η = ηEW

(
TEW

Tend

)5

, (3.24)

which in terms of the model reads

η = ηEW
1.5× 1042

g
5/4
∗

(
ΓX

TEW

)5/2

. (3.25)

It is thus clear that we need to generate a large baryon to photon ratio, a ratio of order one

or even larger. This needs that the mechanism for baryogenesis to be orders of magnitude

more efficient that the standard case, something clearly difficult but not impossible.

One can also see that the entropy production is directly proportional to the decay

width, the larger the decay width, the less restrictive the erasement becomes, one would

be tempted then to push into the large ΓX regime. However, large decay widths lead us

to scenario (ii) where the temperature is essentially given by the radiation coming from X

decays, a scenario where the relaxation of the sphaleron bound is inversely proportional

to the decay width. So any gain in the relaxation of the sphaleron bound means a loss in

the asymmetry produced. This tension between both scenarios may be seen explicitly in

the tables of figure 6. Consequently it is clear that the “optimal” case, where we maximize

the relaxation of the sphaleron bound and at the same time minimize the dilution of the

asymmetry occurs when

ρoldr |EW ≈ ρnewr |EW . (3.26)

In this case, the sphaleron bound, for a broad range of MX values, weakens to

φc

Tc
& [0.64 − 0.69] , (3.27)
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MX = 1012 GeV

ρewX (GeV) ρewr,old (GeV) ρewr,new (GeV) Td (GeV) ∆ (φc/Tc)

ΓX (GeV)

10−15 3.47 · 1013 1.61 9.94 · 109 17.10 0.10

10−17 3.48 · 1017 3.48 · 105 9.94 · 109 1.71 0.23

10−19 5.29 · 1020 6.08 · 109 3.88 · 109 0.17 0.33

10−20 7.37 · 1020 9.46 · 109 4.58 · 108 0.05 0.34

10−21 7.61 · 1020 9.87 · 109 4.65 · 107 0.01 0.34

10−22 7.64 · 1020 9.93 · 109 4.66 · 106 5.41 · 10−3 0.34

10−23 7.64 · 1020 9.93 · 109 4.66 · 105 1.71 · 10−3 0.34

10−24 7.65 · 1020 9.93 · 109 4.66 · 104 5.41 · 10−4 0.34

MX = 1015 GeV

ρewX (GeV) ρewr,old (GeV) ρewr,new (GeV) Td (GeV) ∆ (φc/Tc)

ΓX (GeV)

10−15 3.48 · 1013 1.61 · 10−4 9.94 · 109 17.11 0.11

10−17 3.48 · 1017 34.76 9.94 · 109 1.71 0.23

10−19 3.48 · 1021 7.49 · 106 9.94 · 109 0.17 0.36

10−20 2.25 · 1023 1.94 · 109 7.99 · 109 0.05 0.42

10−21 6.81 · 1023 8.52 · 109 1.39 · 109 0.02 0.44

10−22 7.58 · 1023 9.82 · 109 1.47 · 108 5.41 · 10−3 0.44

10−23 7.65 · 1023 9.93 · 109 1.47 · 107 1.71 · 10−3 0.44

10−24 7.65 · 1023 9.93 · 109 1.47 · 106 5.41 · 10−4 0.44

Figure 6: Value of the important parameters taking special role in our particular scenario dom-

inated by a heavy particle with mass MX = 1012 and 1015 GeV and for a set of different decay

widths ΓX . Td stands for the recovery point of the common radiation dominated era. We have

assumed that the thermal history of the Universe begun at about T ∼ 1017 GeV.

which may be sufficient to open the window to electroweak baryogenesis in many exten-

sions of the SM and particularly in the MSSM. Figure 7 shows the ratio of the temperature

dependent vev at the critical temperature to the critical temperature for different Higgs

masses as a function of the stop mass (each pair Higgs-stop mass determines the corre-

sponding mixing). The shadowed region signals the reduction that can be obtained for a

range of masses and decay widths characterizing the longlived but unstable particle X from

the usual φc/Tc > 1 bound for preservation of the asymmetry in the standard cosmological

scenario. From there it can be clearly seen that a Higgs on the 125-135 GeV range could

be made compatible with electroweak baryogenesis, if the thermal history of our universe

includes a prolongued period of matter domination.

At this point, we must discuss if a particle exists with the characteristics described

above. We are looking for a super heavy particle, with an extremely long lifetime in thermal

equilibrium at temperatures above its mass. The only particle that appears in (almost) all

the extensions of the Standard Model that fulfils these requirements is beyond any doubt

the right handed neutrino. Right handed neutrinos through the see-saw mechanism are

– 13 –



Figure 7: Dependence on ratio of the temperature dependent vev to the temperature at Tc on

the stop mass (∼ mQ) for a fixed Higgs mass. The shadowed region shows the relaxation on the

sphaleron bound that can be obtained by an erly period of matter domination triggered by a long

lived but unstable heavy particle

the fine-tuning-free minimal extension of the Standard Model able to reproduce the only

evidence we have observed so far beyond the Standard Model, the light neutrino masses

(if their Yukawa couplings are small enough).

Of course there are not one but three right handed neutrinos, and their mass matrices

and Yukawa couplings are strictly model dependent. However, in a fairly model indepen-

dent way the mass and lifetime of our X particle, if a right handed neutrino, satisfies

Γ ∝ miM
2
i

v2
(3.28)

being m the observed light neutrino mass of flavour i, which implies a hierarchycal scenario

with an negligible small lightest mass (indistinguishable from zero from an experimental

point of view).

4. First order phase transition in braneword cosmologies

Alternatively to the previous scenario, a relaxation to the sphaleron bound can be obtained

by modifying the underlying cosmology. In order to do so, we will introduce ourselves

into the braneworld language where we live in a brane embedded in a higher dimensional

Universe. Within this scenario, one can consider different forms of the Stress-Energy

momentum on the Bulk, which lead to the non standard behaviour of the Universe on the

brane we are looking for, by suitable choices of boundary conditions.

Regarding braneworlds, Randall-Sundrum argued that an ADS bulk and a brane with

negative tension can provide a simple solution to the hierarchy problem [13]. Moreover,

the Hubble rate on the brane under this scenario shows a non standard form

H2 =
8π

3M2
P l

ρ
(
1 +

ρ

2σ

)
+

C
a4

. (4.1)
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On the other hand, Chung and Freese [14] showed that, in the context of braneworlds,

it is possible to find any function of the FRW equation if one changes the stress energy

tensor composition in the bulk. Therefore, in general, one can parametrize the expansion

rate in the following form

H2 = κρ+ µρn (4.2)

where κ = 8π
3M2

Pl

and µ ∼ O(GeV−(4n−2)). Notice that the geometry of such a Universe

is flat and it is trivial to see that each value of n will lead to a different class of FRW

equations.

For n < 2/3, we find the so-called “Cardassian models” [15], where one can explain the

acceleration of a flat Universe at late times. In this work, however, we are interested in the

opposite regime for n. We will show that, any n, with n > 1 can play an important role

reopening the window for electroweak baryogensis without enlarging the particle content.

In [16], a study was done for a Randall-Sundrumm like Universe, which in the particular

case of n = 2. We will generalize this analysis for a generic modified expansion rate,

showing that the Randall-Sundrum is only one particular choice among all the possible

cases.

For simplicity, we will consider a radiation dominated Universe. There the expansion

rate can be written as

H2 = κρr

(
1 +

ρn−1
r

M4(n−1)

)
, (4.3)

where ρr is the radiation energy density and M is the scale at which the transition to the

usual FRW equation takes place. As explained before, contrary to the Cardassian models,

we are seeking for departures of the standard expansion rate at early times and therefore,

we need to explore n > 1. Remember that n < 1, provides late time accelerated expansion

and while it gives a nice explanation for a flat, expanding matter dominated universe, it

cannot play any role during the electroweak phase transition (n = 1 recovers the usual

FRW).

The above expression may be rewritten in a straightforward manner as

H2 = κρr(T )

(
1 +

T 4(n−1)

T
4(n−1)
m

)

= κρr(T )

[
1 +

(
T

Tm

)4(n−1)
]

, (4.4)

where ρr(T ) = π2

30 g∗T
4 and Tm is the matching temperature, the temperature at which

we evolve from a Universe with a modified FRW constraint to the usual one.

As we can see, at earlier epochs the second term dominates over the former one. Thus,

using the value of the Hubble rate needed to make the phase transition strongly first

order, one can find a correlation between the matching temperature and the power of the

cardassian model

H(T ) = H0(T )

(
T

Tm

)2(n−1)

, (4.5)
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Figure 8: Relative change on the sphaleron bound as a function of n for different matching

temperatures to the usual FRW scenario Tm

where H0(T ) = 1.66g
1/2
∗

T 2

MPl
.

Using this expression for the Hubble rate at the electroweak scale, the sphaleron bound

can change significantly for different values of Tm and n. This is plotted in figure 8.

5. Conclusions

In this work we have shown that despite the fact that the available region in parameter

space for the SM and most of its extensions (most notably the MSSM) for electroweak

baryogenesis is highly constrained by experimental results, it can be increased in some

alternative scenarios, without enlarging its particle content.

In particular we have discussed a scenario with an early period of matter domination

triggered by a long lived massive particle. In such a case, the expansion rate can be orders

of magnitude larger than the standard, radiation dominated one and substantially relax

the sphaleron bound. The decay of this massive particle generates a huge entropy produc-

tion that can dilute away any unwanted relic, turning the constraints on the inflationary

reheating temperature unnecessary. In this respect we have shown that an early period of

matter domination mimics the nice effects of thermal inflation with no additional particle

content. However this entropy production also imposses strong constaints on the efficiency

of the mechanism for baryogenesis at the electroweak scale.

On the other hand, when analyzing thermal histories suffering very prolonged periods

of matter domination preceding the usual one, one wonders whether there is any signature

of their existence left that can be tested today. An obvious place to look is of course,

structure formation.

The total perturbation amplitude growth during the first matter-dominated phase will

just be aend/astart. Then, if the primordial perturbation amplitude (say, from inflation)
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is larger than 10−14, this just means that the structure becomes strongly non- linear for

very prolonged periods of matter domination.

However we should keep in mind that the perturbation growth only occurs for per-

turbations inside the Hubble radius, with the maximum growth occurring for those scales

that came inside the Hubble radius at the beginning of the matter dominated epoch, i.e.

the smallest scales. Scales that entered the horizon later than a time ti will grow by only

aend/ai, where ai is the scale factor at which they entered the horizon. Those will still be

small physical scales today. Scales that never crossed inside the horizon during the early

matter dominated epoch would not have this enhancement. So the prediction of this model

for the perturbation power spectrum would be the ordinary LCDM + inflation spectrum

on large scales with an enhancement of power that grows as a power of wavenumberk on

small scales. The enhancement would set in gradually fork > ke, where ke = (aH)end,

the comoving wavenumber above which the power spectrum is enhanced. Roughly, in the

usual CDM model, the mass power spectrum P ∝ kn−4 on small scales, where n = 0.96

is the primordial spectral index from inflation. In this model with massive particle decay

and an early matter dominated epoch, the power spectrum on scales k > ke will instead

go as P ∝ (k/ke)
n , i.e. the power grows on small scales and becomes non-linear on scales

k > 102.5ke.

However, the massive particle decays. And as we need the universe to become radiation

dominated before BBN, the decay products should be relativistic. Relativistic particles will

free-stream out of the mini-halos even if they are strongly non-linear in density contrast

(their gravitational potentials are still weak). So the structures formed will eventually

evaporate, leaving no trace of their existence behind. Of course in scenarios more sophis-

ticated than this simple one, there will be traces of this first period of matter domination

left. We will carry out this study elsewhere.

We have also shown that a modification of the FRW equation can lead to expansion

rates at early times large enough to relax the sphaleron bound to level consistent with

current experimental bounds. In such scenarios the transition to the standard cosmology

takes place after the electroweak phase transition and before BBN, not affecting then either

structure formation or the age of the universe.
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