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About a (standard model) universe dominated by the right matter
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We analyze the phenomenology of a prolonged early epoch of matter domination by an

unstable but very long-lived massive particle. This new matter domination era can help

to relax some of the requirements on the primordial inflation. Its main effect is the huge

entropy production produced by the decays of such particle that can dilute any possible

unwanted relic, as the gravitino in supersymmetric models, and thus relax the constraints

on the inflationary reheating temperature. A natural candidate for such heavy, long-lived

particle already present in the Standard Model of the electroweak interactions would be a

heavy right-handed neutrino. In this case, we show that its decays can also generate the

observed baryon asymmetry with right-handed neutrino masses well above the bound from

gravitino overproduction.

I. INTRODUCTION

Inflation was introduced in the 80s [1] as a solution to several problems of the big bang cosmol-

ogy. Perhaps the main problem was the large-scale smoothness problem. Why different patches

of the Universe, that were not in causal contact in the radiation last scattering era, have approxi-

mately the same temperature today [2]?. In inflationary models, an epoch of exponential expansion

inflates a small patch of the Universe in causal contact to contain all the observable Universe to-

day. Simultaneously if the temperature after inflation is low enough, inflation helps also to dilute

unwanted relics from higher scales and reduces the flatness problem.

It is usually assumed that some kind of inflation starts already at the Planck scale to avoid

the Universe collapse in a few Planck times if Ω > 1 or (for any Ω) to prevent the invasion of

the surrounding inhomogeneity to our homogeneous patch before inflation. On the other hand,

the scales observable today in the cosmic microwave background left the horizon at an energy

V 1/4 <∼ 6 × 1016 GeV [3], or 60 e-foldings before the end of inflation. So that, inflation must

end below this scale. After the end of inflation comes an era of reheating when the inflaton field

oscillates around its minimum and decays to ordinary particles. The final reheating temperature

where we recover ordinary big bang cosmology can take any value from V 1/4 above to scales as low

as 1 MeV. However, the required dilution of unwanted relics, as GUT monopoles or gravitinos in
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supersymmetric models, forces the reheating temperature to be well below the GUT scale or even

below TRH ≤ 108 GeV in SUSY models.

In this letter, we propose a simple and economic mechanism that helps solving some of these

problems and reduces the requirements on the primordial inflationary mechanism without further

additions to the particle spectrum of the Standard Model with right-handed neutrinos 1. After

an initial inflationary epoch (still necessary to reproduce the observed correlation on temperature

fluctuations at large scales) we assume our Universe is radiation dominated for a short period and

then enters a matter domination era due to the existence of a heavy long-lived unstable particle

that decays to radiation well-before nucleosynthesis, when we connect with usual cosmology. In

the Standard Model, as we will show, this role could be played by a heavy right-handed neutrino.

In the literature, it is well-known that late time entropy release can help to ameliorate some of the

problems of standard cosmology. However, so far most of these works have only considered moduli

fields in supersymmetric theories (see for instance [4, 5, 6, 7, 8]) and their real presence in nature

could be considered more speculative than the existence of right-handed neutrinos.

As we show below, this matter domination mechanism, naturally embedded in the SM, is able

to help primordial inflation in several aspects. A long period of matter domination can reduce

mildly the number of e-folds before the end of inflation at which observable perturbations were

generated, relaxing this way flatness conditions on the inflationary potential. Moreover, the large

entropy production in the decay of this particle completely dilutes any unwanted relics, eliminating

the constraint on the inflation reheating temperature. In this sense our matter domination epoch

has the same advantages as thermal inflation [9], without resorting to yet another scalar field and

/or scalar potential.

II. REWRITING THE HISTORY OF THE UNIVERSE

Let’s assume for a moment that at an early time a massive particle dominated the energy

balance of the Universe by many orders of magnitude. How does the observed Universe feel this

new epoch?. Are there any observable consequences of this?

As it is well-known [10, 11], a massive particle X becomes non-relativistic when the temperature

of the thermal bath falls bellow its mass, MX , and its energy density freezes out when it drops

out of equilibrium. Then, X-relic abundance relative to photons (radiation) becomes constant

1 From now on, we call the Standard Model with right-handed neutrinos simply “Standard Model”
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and therefore, if X is completely stable, the energy density of the X particles will eventually

become larger than the radiation one, dominating the energy balance of the Universe. If, X is

not completely stable but rather sufficiently long-lived to dominate the energy density, later on X

will decay into relativistic particles that thermalize. The radiation content of the Universe will be

increased and it will enter again in a radiation dominated era. This will be the basic evolution of

the Universe in our model.

We start from a radiation dominated Universe at a scale larger than the mass of our X-particle,

MX , where this particle is in thermal equilibrium. We assume that this particle decouples from

the plasma at a temperature of the order of its mass. This particle is unstable, although very

long-lived, i.e. it has very weak interactions with radiation degrees of freedom. Then, its energy

density, ρX , starts diluting as matter, much slower than radiation. If its lifetime, ΓX , is long

enough, it will necessarily dominate the energy density of the Universe. Although our X particle

decays all the time through an exponential law [12], it is only when the age of the Universe is of

the order of 1/ΓX that the decay will sizeably reduce its abundance. Once it reaches this point,

it will fastly decay into radiation and our Universe will go back to a radiation dominated epoch

where it will connect with the usual cosmology. This “matching” with the standard scenario must

happen well before nucleosynthesis.

The evolution equations for the matter and radiation energy-densities are well-known:

ρ̇X = −3H(1 + wX)ρX − ΓXρX (1)

ρ̇old
r = −4Hρold

r (2)

ρ̇new
r = −4Hρnew

r + ΓXρX (3)

H2 =
ȧ

a
=

8π

3M2
P l

(

ρold
r + ρnew

r + ρX

)

(4)

where wX is the equation of state parameter of particle X, which drops from 1/3 to zero as X

becomes nonrelativistic, ρold
r is the energy density in radiation not related to X decays, ρnew

r is

the energy density in radiation produced by X decays and here we assume a flat Universe after

inflation consistent with observations [2].

From these equations we can see that, when X is nonrelativistic, the number of X’s per comoving

volume (NX = R3ρX/MX) follows a simple exponential decay law and the (formal) solution to

these equations is given by:

ρX = ρ0
X

[

a

a0

]−3

e−ΓX (t−t0) (5)
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FIG. 1: Evolution of the different components of the energy density of the Universe from T ∼ 1014 GeV

to T ∼ 1 MeV. Short-dashed (green) line corresponds to ρold
r versus time, long-dashed (blue) line to ρnew

r

and the solid (red) line to ρX . We start from ρX = ρold
r /200 at T ∼ 1015 GeV, with a ΓX = 10−20 GeV.

ρold
r = ρold

r

0
[

a

a0

]−4

(6)

ρnew
r = ρ0

X

[

a

a0

]−4 ∫ t

t0
dt′

[

a(t′)

a0

]

e−ΓX t′ΓX (7)

H2 =
ȧ

a
=

8π

3M2
P l

(

ρold
r + ρnew

r + ρX

)

(8)

where the superscript zero denotes the value of that quantity at the initial epoch.

In general, it is not possible to integrate analytically these equations, although useful approx-

imations exist [12, 13]. However it is always possible to solve them numerically as we have done

to generate Figures 1 and 2. These evolution equations, (1) to (4), were thoroughly analyzed by

M. Turner and collaborators in Refs. [12, 13] (for a more recent work see for example [14]) and we

agree completely with their analysis of the matter and radiation densities, entropy and tempera-

ture. However, we are specially interested in the particular limit of small ΓX and large MX . In

fact, as we will see below, we will focus on the limit of small ΓX keeping ΓX ≫ 1/tBBN so that no

trace of X is present at nucleosynthesis time, in agreement with observations.

In this limit, our massive particle X dominates the energy density of the Universe by many orders

of magnitude during a sizeable fraction of the thermal history of the Universe (see Figure 1). As

shown in Refs. [12, 13], during the X decays the temperature of the Universe does not fall as t−1/2

(a−1), but rather as t−1/4 (a−3/8) due to the entropy release of the decays and the temperature

reaches an almost flat plateau from the point where the energy density in new radiation born
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FIG. 2: Temperature of the Universe (in GeVs) as a function of time. The four different epochs in the

evolution of the Universe, radiation domination, matter domination, decay and radiation domination again

can be seen in the different slopes of the curve. The time dependence of the temperature is explicitly

indicated for each epoch.

through X decays and the energy density in old radiation become comparable up to t ≃ Γ−1
X .

After this time, X rapidly decays and the temperature falls again as t−1/2 (a−1) (see Figure 2).

Once it has completely decayed away, our Universe is left with a temperature

Tpost-decay ≃ 1.0 · 109
(

g∗
200

)−1/4 ( Γ

1 GeV

)1/2

GeV (9)

where g∗ counts the effective number of relativistic degrees of freedom. Notice that the temperature

after X-decay depends only on the decay width Γ. The ratio of entropy per comoving volume before

and after X decay is given by

Spost-decay

Spre-decay
≃ 0.14 r

(

g∗
200

)−3/4 (1 GeV

Γ

)1/2 ( MX

1010 GeV

)

(10)

where r = gX/2 if X is a boson and r = 3 gX/8 if it is a fermion, with gX the total number of spin

degrees of freedom.

As mentioned before, an early period of matter domination, triggered by a long lived massive

particle that goes out of equilibrium and comes to dominate the energy density of the Universe

before decaying, reduces the number of e-foldings before the end of inflation at which our present

Hubble scale equaled the Hubble scale during inflation, i.e. the time of horizon crossing. The

reduction is given by

∆N =
1

12
ln

(

ρpost-matter-d

ρpre-matter-d

)

(11)
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FIG. 3: Comoving Hubble radius, log (1/aH), versus log a. This plot shows the different eras entering the

e-foldings calculation. Inflation is an epoch where log (1/aH) is decreasing. Exponential inflation gives

a line with a slope of -1. In all other cases the inflation line is shallower. During matter domination

(1/aH) ∝ a1/2, while during radiation domination (1/aH) ∝ a. The current dark energy domination

signals a new inflationary epoch. The horizontal (black) solid line indicates the present horizon scale. The

number of e-foldings before the end of inflation at which observable perturbations were born is the horizontal

distance between the time when (1/aH) first crosses that value and the end of inflation. The solid (red) line

represents a Universe with a period of matter domination before BBN. The dashed (blue) line represents

the standard cosmological history of the Universe with only one (recent) epoch of matter domination.

where ρpre-matter-d and ρpost-matter-d are the energy densities at the beginning and end of the mat-

ter dominated era, respectively. The reduction can also be expressed in terms of the X parameters

as

∆N ≃ −1

6
ln

(

90 g
−3/2
∗ r2 M2

X

ΓMP l

)

(12)

This reduction is illustrated in Figure 3, where it can be clearly seen that to determine the number

of e-foldings after horizon crossing of a given cosmological scale, as the present Hubble scale, the

complete thermal history of the Universe must be used. From nucleosynthesis onwards this history

is well in place. However earlier epochs are still very uncertain. The standard cosmological model

assumes that inflation gives way to a long period of radiation domination (we neglect here the

period of reheating that immediately follows inflation and assume sudden transitions between the

different regimes). The radiation dominated epoch lasts until a redshift of a couple of thousands

before entering an era of matter domination, which at redshift below one gives way to the current
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acceleration.

Changing the sequence of events after inflation can therefore have a strong impact on the the

number of e-foldings calculation. If our Universe goes through a long period of a regime where

log (1/aH) scales as an, i.e. H ∝ a−(n+1), it is straightforward to see that with n > 1 the total

number of e-foldings will be increased while for n < 1 this number will be reduced. A period of

matter domination belongs to the latter class, as in a matter dominated epoch (1/aH) ∝ a1/2

opening the door to a significant reduction on the number of e-foldings.

If we put all this information together we can see what are the required features of our particle

X, its mass MX and its lifetime Γ, if it is to dominate over the energy density of the Universe for

a long period.

Although we do want a prolonged period of matter domination, we want it to come to an

end at the latest shortly before nucleosynthesis, as the Universe must have attained thermalized

radiation domination by that time. Using Eq. (9), this condition sets a lower bound on Γ,

Γ ≥ 2.0 · 10−24
(

g∗
200

)1/2

GeV . (13)

We can also get un upper bound on Γ, by requesting the reheating temperature Tpost-decay to be

at most 108 GeV, so that no unwanted relics will be produced after X decay in supersymmetric

models. Such a condition reads

Γ ≤ 0.7

(

g∗
200

)1/2

GeV . (14)

However, for lifetimes this long, we can see from Eq. (10) that only large X-masses are capable of

effectively diluting the unwanted relics. In the case of the gravitino this even more difficult as the

gravitino abundance is also proportional to the temperature, T ≥ MX .

Of course detailed bounds can be set only after specifying the basic physics behind X, its

production mechanism, its decays, or in short, its interactions. Nevertheless, we can say that

requiring at least five orders of magnitude of dilution by entropy production for MX ≤ 1010 GeV

would need

2.0 · 10−6
(

g∗
200

)1/2

GeV ≥ Γ ≥ 2.0 · 10−24
(

g∗
200

)1/2

GeV . (15)

In this case the five orders of magnitude of increase in the entropy should be enough to get rid

of unwanted relic which could have been produced at earlier times for Tpost-decay <∼ 108 GeVs.

Larger lifetimes are also possible if we do not need such a large entropy production.
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With regards to the reduction in the number of e-foldings, only a very prolonged period of

matter domination, i.e. large MX and Γ in the lower part of the allowed range, is required to give

a significant reduction. In most cases, however, this number is expected to be below 10.

III. MATTER DOMINATION IN THE STANDARD MODEL

Now, we must check whether this early matter domination epoch could exist in the context of

the Standard Model of the strong and electroweak interactions or any of its extensions. Clearly to

obtain such an early matter domination era we need a massive particle, X, in thermal equilibrium

at temperatures above its mass with a very long lifetime. The simplest candidate for our X-particle

would be a right-handed neutrino. Right-handed neutrinos are one of the minimal additions to

the Standard Model to reproduce the observed neutrino masses through the seesaw mechanism

[15]. These right-handed neutrinos, Ri, have super-heavy masses, that can be as high as the Grand

Unification scale, and are singlets under the SM gauge group. The only renormalizable couplings

of Ri with the SM particles are, possibly small, Yukawa couplings. Therefore, if these couplings

are sufficiently small, it seems possible that the right-handed neutrinos play the role of X-particle

with a long lifetime.

More precisely, the right-handed neutrino masses and Yukawa couplings have to reproduce the

measured neutrino masses and mixings though the seesaw mechanism, mνL
= v2

2 Yν · (MR)−1 ·Y T
ν ,

with v2 the vacuum expectation value of the up-type Higgs. From here it is straightforward to

obtain the required right-handed Majorana matrix from the seesaw formula itself:

MR = v2
2 Y T

ν · (mνL
)−1 · Yν (16)

From the light neutrino mass matrix, mνL
, we know the mixings and the two mass differences. The

mixing matrix U is close to the so-called tribimaximal mixing,

U =









2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2









. (17)

Then, mνL
= U∗ · Diag (m1,m2,m3) · U †, and the inverse of this matrix is m−1

νL
= U ·

Diag
(

1
m1

, 1
m2

, 1
m3

)

· UT . Therefore,

m−1
νL

= 1
m3









0 0 0

0 1
2 −1

2

0 −1
2

1
2









+ 1
m2









1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3









+ 1
m1









2
3 −1

3 −1
3

−1
3

1
6

1
6

−1
3

1
6

1
6









. (18)
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Experimentally we have that m3 = matm ≃ 0.05 eV, m2 = msol ≃ 0.008 eV and m1 ≪ m2 in

the normal hierarchy situation and m2 = matm ≃ 0.05 eV, m1 = matm − msol/2 ≃ 0.046 eV and

m3 ≪ m2 in the inverse hierarchy case [16].

As seen in Eq. (16) the masses of the right-handed neutrinos reproducing the observed light-

neutrino masses and mixings are determined by the Yukawa matrix, Yν . Choosing the basis of

diagonal Y †
ν Yν and diagonal charged lepton Yukawa matrix, we have Yν = VL · Diag (y1, y2, y3).

Obviously the physics depends strongly on the form of Yν , both on the eigenvalues, yi, and the

VL matrix. Let us first analyze the role of VL. We have two limiting situations: a) VL has large

mixings and is the source of the observed PMNS matrix in neutrino mixings, VL ≃ U∗ and b) the

mixings in VL are small, similarly to the situation observed in the CKM mixing matrix, VL ≃ 1l.

Case a) is very simple, the seesaw mechanism plays no role in the generation of the neutrino

mixings. The observed large neutrino mixings are already present in the Yukawa couplings before

the seesaw mechanism. This corresponds to the situation where, the light neutrino Majorana mass

matrix and the neutrino Yukawa couplings, or equivalently, the right-handed neutrino Majorana

matrix and the Yukawa combination Y †Y , can be simultaneously diagonalized. So, we have MR =

v2
2 Diag

(

y2
1/m1, y

2
2/m2, y

2
3/m3

)

. The decay widths of the right-handed neutrinos will be given by

Γi = 1
8πMi

(

Y †Y
)

ii
and we must compare it with the Hubble rate, H(T = Mi) in order to know

if/when our massive neutrino will go out of equilibrium. Equivalently, we can compare the effective

mass m̃i =
(

Y †Y
)

ii
v2/Mi (i.e. Γ = m̃i

8π
M̃2

i

v2

2

) with the critical mass m∗ = 1 × 10−3 eV [17, 18]. A

right-handed neutrino would dominate the energy density if m̃i < m∗/g∗ where g∗ is the number of

radiation degrees of freedom at T = Mi. The presence of g∗ is due to the fact that in a time H−1

we can see from Eq. (5) that the ratio of matter and radiation densities grows as a. But matter

has to overcome g∗ radiation degrees of freedom and hence to dominate the energy density it needs

a lifetime g∗ times longer2. Altogether, in case a), it is clear m̃3 = m3, m̃2 = m2 and m̃1 = m1.

Therefore, in the normal hierarchy case, taking m1 ≤ 10−10 eV, R1 would dominate the energy

density of the Universe with a mass of,

MR1
=

(

y1

10−6

)2
(

1 × 10−10eV

m1

)

6 × 1011 GeV. (19)

This case is therefore a perfect example of how a right-handed neutrino can dominate the energy

density of the Universe after inflation. In terms of m̃i we can write Eq. (10) as

Spost-decay

Spre-decay
≃ 0.4 r

(

g∗
200

)−3/4
(

1 × 10−6 eV

m̃i

)1/2

(20)

2 However, as we see below, this large effective mass, m̃i ≃ 10−5 eV, does not generate sufficient entropy.
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Therefore, if we want two orders of magnitude of entropy production, we would need m1 = 10−10

eV (corresponding to Γ = 4.6× 10−2 GeV) and Tpost-decay ≃ 2× 108 GeV. Here, as the gravitino

abundance is approximately linear with the reheating temperature [19], two orders of magnitude

of dilution by the entropy production would correspondingly relax the bound on the reheating

temperature by two orders of magnitude. Naturally, this can be easily improved by choosing

smaller m1 and y1 in Eqs. (19) and (20).

However this simple model has several phenomenological problems. First, given that m̃1 ≪ m∗,

this right-handed neutrino would not be produced thermally through its Yukawa interactions. In

fact this will be a common problem of any massive particle dominating the energy density of

the universe as necessarily its decay/production rate will be much slower than the Hubble rate.

Therefore we will always need another active interaction to produce our right-handed neutrino

in the thermal plasma after inflation. This role could be played, for instance, by a gauged B–

L interaction. Many Grand Unified models based on SO(10) or groups containing it have an

intermediate scale of the order of 1013 GeVs with a intermediate gauge group containing U(1)B−L,

as SU(2)L × SU(2)R × SU(3)c × U(1)B−L for example[20, 21, 22]. In these grand unified models

the B–L coupling unifies with the other gauge couplings at MGUT and therefore it is always strong

enough to keep the right-handed neutrinos in thermal equilibrium in the unbroken phase. However,

the B–L gauge interaction can never mediate the neutrino decay as it couples only diagonally in

flavour. The neutrino decay would require a Yukawa interaction to lighter states that, as shown

above, in this case is very small. A second problem, more specific of this particular case is that

the decay of this right-handed neutrino erases completely any previously existing baryon or lepton

asymmetry and therefore, we need some mechanism to generate the observed baryon asymmetry.

The baryon asymmetry generated by this completely out-of-equilibrium decay of the right-handed

neutrino is given by [23]

ηB =
8

23
ε ≃ 1

16π

∑

j 6=1

Im

[

(

Y †Y
)2

1j

]

(

Y †Y
)

11

M1

Mj
, (21)

but, as Y †Y is completely diagonal in the basis of diagonal right-handed neutrino masses, no new

lepton asymmetry is generated by R1 decays.

However, this situation is very unstable and a slight departure from the perfect alignment of

the Majorana and Yukawa matrices changes the situation. If we call R the rotation diagonalizing

the neutrino Yukawas in the basis of diagonal left-handed neutrino Majorana masses, we have
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Yν = U∗ · R · Diag (y1, y2, y3) and,

(MR)ij = v2
2 yiyj

(

1

m1
R1iR1j +

1

m2
R2iR2j +

1

m3
R3iR3j

)

. (22)

If the Yukawa couplings are sufficiently hierarchical, y3 ≫ y2 ≫ y1, the heaviest eigenvalue will be

given by the element (MR)33,

(MR)33 ≃ v2
2 y2

3

(

1

m1
(sin θ13)

2 +
1

m2
(sin θ23)

2 +
1

m3
(cos θ13 cos θ23)

2
)

, (23)

where we used the standard PDG parametrization for the matrix R [24]. From here, we can see that

the contribution from m1 << m2,m3, will dominate (MR)33, and hence the heaviest right-handed

neutrino eigenvalue, if (sin θ13)
2 > m1/m3. For m1 = 1 × 10−10 eV, a sin θ13 > 4.4 × 10−5 will be

enough and such a small departure from perfect alignment will completely change the situation.

To understand this, it is enough to analyze a simpler situation with θ12 = θ23 = 0 and θ13 6= 0. Let

us take y3 ≃ 1, y1 ≃ 10−6 (similar to the up-quark hierarchy), m3 ≃ 0.05 eV and m1 ≃ 10−10 eV.

In this case, the two right-handed neutrino eigenvalues (the other one is unchanged) are given by,

MR3
≃ v2

2y
2
3

(

cos2 θ13

m3
+

sin2 θ13

m1

)

,

MR1
≃ v2

2y
2
1

1

m1 cos2 θ13 + m3 sin2 θ13
.

(24)

If sin θ13 ≫ m1/m3 then both M3 and m̃3 are fixed by m1, while M1 and m̃1 are fixed by m3. So,

we have, for m1 in the interesting range:

MR3
=

(

y3

1

)2
(

1 × 10−10eV

m1

)

(

sin θ13

0.005

)2

1.5 × 1019 GeV,

m̃3 = m1/ sin2 θ13 (25)

And this is the only neutrino that can dominate the energy density of the Universe. Clearly, this

situation is not interesting phenomenologically as it is not possible to produce it after inflation and

(probably) it does not produce a large amount of entropy.

The most interesting situation corresponds to sin θ13 < m1/m3. In this case from Eq. (24)

we have MR3
≃ v2

2 y2
3/m3

(

1 + sin2 θ13 m3/m1

)

and MR1
≃ v2

2 y2
1/
(

m1

(

1 + sin2 θ13 m3/m1

))

.

Now, the rotation that diagonalizes the right-handed mass matrix is given by sinφ ≃

sin θ13 (y1m3)/(y3m1). Therefore in the basis of diagonal right-handed neutrino masses we have,

Y †Y =









y2
1

(

1 + sin2 θ13

(

m3
m1

)2
)

0 −y1y3
m3
m1

sin θ13

0 y2
2 0

−y1y3
m3
m1

sin θ13 0 y2
3









, (26)
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and for sin θ13 < m1/m3 we have m̃1 ≃ m1 and m̃3 ≃ m3. This means the lightest right-handed

neutrino, with a mass approximately given by Eq. (19), can still dominate the energy density. In

such a situation, we can see from Eq. (21), that the generated baryon asymmetry is given by

ηB ≃ 1

16π

Im

[

(

y1y3
m3

m1
sin θ13

)2
]

(

y2
1

)

y2
1 m3

y2
3 m1

≃ 1

16π
y2
1 sin2 θ13

m3
3

m3
1

. (27)

Taking y1 ≃ 10−7, m3 ≃ 0.05 eV, m1 ≃ 10−12 eV and sin θ13 = 0.1 × m1/m3, we would obtain

ηB ≃ 10−7 sinϕ with ϕ the CP violating phase of (Y †Y )213. Therefore, in this case, it would be

possible to generate the observed baryon asymmetry and simultaneously dilute the relic density

and in particular the gravitino density by three orders of magnitude. This means that the bound

on the inflationary reheating temperature would be relaxed by three orders of magnitude. Clearly,

using smaller values for m1 and y1 the situation can be improved arbitrarily.

The second example of Yukawa mixing matrix was case b) where VL ≃ 1l so that we can neglect

this rotation on mνL
as a small rotation will not modify the contribution of the different neutrino

eigenvalues to the matrix elements. Then, we have:

MR = v2









y2
1

m−1

2
+2m−1

1

3 y1y2
m−1

2
−m−1

1

3 y1y3
m−1

2
−m−1

1

3

y1y2
m−1

2
−m−1

1

3 y2
2

m−1

1
+2m−1

2
+3m−1

3

6 y2y3
m−1

1
+2m−1

2
−3m−1

3

6

y1y3
m−1

2
−m−1

1

3 y2y3
m−1

1
+2m−1

2
−3m−1

3

6 y2
3

m−1

1
+2m−1

2
+3m−1

3

6









. (28)

We must diagonalize this matrix to obtain the right-handed neutrino eigenvalues and the Yukawa

matrix in the basis of diagonal MR. In analogy with the charged lepton and quark Yukawas we

can expect y3 ≫ y2 ≫ y1. Then we obtain, in the normal hierarchy case,

MR3
≃ v2 y3

3
m−1

1

6
, MR2

≃ v2 y3
2 2m−1

3 and MR1
≃ v2 y3

1 3m−1
2 . (29)

Then, we have, m̃3 ≃ 6 m1, m̃2 ≃ m3 and m̃1 ≃ 2
3 m2. This means that once again the right-

handed neutrino that could dominate the energy density of the Universe is the heaviest one and its

mass would be given by Eq. (25) with sin θ13 ∼ 1/
√

6, i.e. a mass close or even above the Planck

scale, unless y3 is much smaller than 1.

Thus we see that with hierarchical Yukawa eigenvalues, similar to the up-quark eigenvalues, it

is possible to have right-handed neutrino dominance of the energy density with consistent phe-

nomenology, although only in rather fine-tuned situations where VL is very close to the PNMS

mixing matrix but not exactly equal. If we move to an extension of the minimal Standard Model

with right-handed neutrinos (or Minimal Supersymmetric Standard Model) the same results can

be obtained without such a tight fine-tuning.
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From Eq. (16), we can see that besides the Yukawa mixing VL we can still use different Yukawa

eigenvalues. In a Grand Unified Theory (GUT) with an underlying Pati-Salam symmetry, we

would expect the neutrino Yukawa couplings to be related to the up quark Yukawas, and in fact

we would expect one of the neutrino eigenvalues of the order of the top Yukawa coupling [25].

However the two light Yukawa eigenvalues are less restricted. The masses of the right-handed

neutrinos will depend on the Yukawa eigenvalues and we can make them as small as we wish.

However, if y3 is large, we will normally be in the same situation as before and the only neutrino

with a sufficiently large lifetime will still be νR3
, which will be far too heavy. An interesting limit

is when one of the Yukawa eigenvalues is exactly zero, y1 = 0, and therefore, one of the light left-

handed neutrino masses is zero. Again the simplest situation is when the right-handed Majorana

matrix and the Yukawas, Y †
ν Yν are simultaneously diagonalizable. In this case, it is clear that only

two right-handed neutrinos will play a role in the seesaw mechanism and the third one will be

completely decoupled from the seesaw. In fact this third neutrino does not couple to the doublets

through Higgs Yukawa couplings. Given that right-handed neutrinos are singlets under the SM

group, apparently these neutrinos do not decay at all. However, if we have a GUT symmetry, as

for instance SO(10) or a group containing SU(2)R, at a high scale, the right-handed neutrino will

decay with a lifetime,

ΓνR
≃ α2

GUT

M5
Ri

M4
GUT

≃ 1 × 10−18 (25 αGUT )2
(

MRi

1010 GeV

)5
(

2 × 1016 GeV

MGUT

)4

GeV. (30)

So, indeed we can see that this right-handed neutrino can dominate the energy density of the

Universe if it is produced through another interaction, as a gauged B–L. In this case the production

of the baryon asymmetry is not possible through gauge interactions. However, it is possible that

this right-handed neutrino has non-vanishing complex Yukawa couplings when it unifies with the

quarks at the GUT scale3. In this case the neutrino decay through GUT Higgses could violate CP

and generate the observed baryon asymmetry.

Finally we would like to point out another possibility where we introduce more SM singlets

mixed with the three “standard” right-handed neutrinos. An example of this situation is provided

by the so-called “double seesaw” [27] mechanism. In this case, the right-handed Majorana masses

are generated through a second seesaw with these additional singlets. The singlets would decay

only through its mixings with the three right-handed neutrinos and, as we are introducing another

free parameter, we can easily make any of these new singlets to dominate the energy density of the

3 For instance, we could think of a Georgi-Jarlskog vev distinguishing up-quark and neutrino Yukawas and being
zero for the neutrinos [26].
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universe. Similarly, these singlets would easily generate the observed baryon asymmetry through

the usual neutrino Yukawa couplings. The problem of how to generate a thermal abundance of

these singlets could be solved again if they are charged under a gauged B–L symmetry.

IV. CONCLUSIONS

In this work, we have shown that an early epoch of matter domination by a long-lived massive

particle can help to solve some of the problems of primordial inflation. We have seen that the large

entropy production generated by the decays of such particle can dilute unwanted relics from higher

temperatures, relaxing the constraints on the inflationary reheating temperature. In supersym-

metric theories this mechanism can help to solve the gravitino problem. Moreover, a long period

of matter domination reduces the number of e-foldings before the end of inflation at which the

observable cosmological perturbations were generated. In the Standard Model a natural candidate

for such heavy, long-lived particle is a heavy right-handed neutrino. For low enough mass of the

lightest left-handed neutrino and neutrino Yukawa mixings sufficiently close to the PNMS mixing

matrix, the right-handed neutrino dominates the energy density of the universe for a long time and

generates a large amount of entropy in its decay. In this case, we show that its decays can also

generate the observed baryon asymmetry for right-handed neutrino masses well above the bound

from gravitino overproduction.
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