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Abstract

The gauge invariant generation of an effective gluon mass proceeds through the well-known

Schwinger mechanism, whose key dynamical ingredient is the nonperturbative formation of lon-

gitudinally coupled massless bound-state excitations. These excitations introduce poles in the

vertices of the theory, in such a way as to maintain the Slavnov-Taylor identities intact in the pres-

ence of massive gluon propagators. In the present work we first focus on the modifications induced

to the nonperturbative three-gluon vertex by the inclusion of massless two-gluon bound-states into

the kernels appearing in its skeleton-expansion. Certain general relations between the basic build-

ing blocks of these bound-states and the gluon mass are then obtained from the Slavnov-Taylor

identities and the Schwinger-Dyson equation governing the gluon propagator. The homogeneous

Bethe-Salpeter equation determining the wave-function of the aforementioned bound state is then

derived, under certain simplifying assumptions. It is then shown, through a detailed analytical and

numerical study, that this equation admits non-trivial solutions, indicating that the QCD dynam-

ics support indeed the formation of such massless bound states. These solutions are subsequently

used, in conjunction with the aforementioned relations, to determine the momentum-dependence

of the dynamical gluon mass. Finally, further possibilities and open questions are briefly discussed.
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I. INTRODUCTION

The numerous large-volume lattice simulations carried out in recent years have firmly

established that, in the Landau gauge, the gluon propagator and the ghost dressing function

of pure Yang-Mills theories are infrared finite, both in SU(2) [1–5] and in SU(3) [6–9].

Perhaps the most physical way of explaining the observed finiteness of these quantities is

the generation of a non-perturbative, momentum-dependent gluon mass [10–15], which acts

as a natural infrared cutoff. In this picture the fundamental Lagrangian of the Yang-Mills

theory (or that of QCD) remains unaltered, and the generation of the gluon mass takes

place dynamically, through the well-known Schwinger mechanism [16–22] without violating

any of the underlying symmetries (for further studies and alternative approaches, see, e.g.,

[23–29]).

The way how the Schwinger mechanism generates a mass for the gauge boson (gluon)

can be seen most directly at the level of its inverse propagator, ∆−1(q2) = q2[1 + iΠ(q2)],

where Π(q) is the dimensionless vacuum polarization. According to Schwinger’s funda-

mental observation, if Π(q2) develops a pole at zero momentum transfer (q2 = 0), then

the vector meson acquires a mass, even if the gauge symmetry forbids a mass term at the

level of the fundamental Lagrangian. Indeed, if Π(q2) = m2/q2, then (in Euclidean space)

∆−1(q2) = q2 +m2, and so the vector meson becomes massive, ∆−1(0) = m2, even though

it is massless in the absence of interactions (g = 0, Π = 0) [18, 19].

The key assumption when invoking the Schwinger mechanism in Yang-Mills theories, such

as QCD, is that the required poles may be produced due to purely dynamical reasons; specif-

ically, one assumes that, for sufficiently strong binding, the mass of the appropriate bound

state may be reduced to zero [18–22]. In addition to triggering the Schwinger mechanism,

these massless composite excitations are crucial for preserving gauge invariance. Specifically,

the presence of massless poles in the off-shell interaction vertices guarantees that the Ward

identities (WIs) and Slavnov Taylor identities (STIs) of the theory maintain exactly the same

form before and after mass generation (i.e. when the the massless propagators appearing in

them are replaced by massive ones) [10, 15, 21, 22]. Thus, these excitations act like dynam-

ical Nambu-Goldstone scalars, displaying, in fact, all their typical characteristics, such as

masslessness, compositeness, and longitudinal coupling; note, however, that they differ from

Nambu-Goldstone bosons as far as their origin is concerned, since they are not associated
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with the spontaneous breaking of any global symmetry [10]. Finally, every such Goldstone-

like scalar, “absorbed” by a gluon in order to acquire a mass, is expected to actually cancel

out of the S-matrix against other massless poles or due to current conservation [18–22].

The main purpose of the present article is to scrutinize the central assumption of the

dynamical scenario outlined above, namely the possibility of actual formation of such mass-

less excitations. The question we want to address is whether the non-perturbative Yang

Mills dynamics are indeed compatible with the generation of such a special bound-state.

In particular, as has already been explained in previous works, the entire mechanism of

gluon mass generation hinges on the appearance of massless poles inside the nonperturba-

tive three-gluon vertex, which enters in the Schwinger Dyson equation (SDE) governing the

gluon propagator. These poles correspond to the propagator of the scalar massless excita-

tion, and interact with a pair of gluons through a very characteristic proper vertex, which, of

course, must be non vanishing, or else the entire construction collapses. The way to establish

the existence of this latter vertex is through the study of the homogeneous Bethe-Salpeter

equation (BSE) that it satisfies, and look for non-trivial solutions, subject to the numerous

stringent constraints imposed by gauge invariance.

This particular methodology has been adopted in various early contributions on this

subject; however, only asymptotic solutions to the corresponding equations have been con-

sidered. The detailed numerical study presented here demonstrates that, under certain

simplifying assumptions for the structure of its kernel, the aforementioned integral equation

has indeed non-trivial solutions, valid for the entire range of physical momenta. This result,

although approximate and not fully conclusive, furnishes additional support in favor of the

concrete mass generation mechanism described earlier.

The article is organized as follows. In Section II we set up the general theoretical frame-

work related to the gauge-invariant generation of a gluon mass; in particular, we outline how

the vertices of the theory must be modified, through the inclusion of longitudinally coupled

massless poles, in order to maintain the WIs and STIs of the theory intact. In Section III

we take a detailed look into the structure of the non-perturbative vertex that contains the

required massless poles, and study its main dynamical building blocks, and in particular

the transition amplitude between a gluon and a massless excitation and the proper vertex

function (bound-state wave function), controlling the interaction of the massless excitation

with two gluons. In addition, we derive an exact relation between these two quantities and
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the first derivative of the (momentum-dependent) gluon mass. Then, we derive a simple

formula that, at zero momentum transfer, relates the aforementioned transition amplitude

to the gluon mass. In the next two sections we turn to the central question of this work,

namely the dynamical realization of the massless excitation within the Yang-Mills theory.

Specifically, in Section IV we derive the BSE that the proper vertex function satisfies, and

implement a number of simplifying assumptions. Then, in Section V we demonstrate through

a detailed numerical study that the resulting homogeneous integral equation admits indeed

non-trivial solutions, thus corroborating the existence of the required bound-state excita-

tions. In Section VI we demonstrate with a specific example the general mechanism that

leads to the decoupling of all massless poles from the physical (on-shell) amplitude. Finally,

in Section VII we discuss our results and present our conclusions.

II. GENERAL CONSIDERATIONS

In this section, after establishing the necessary notation, we briefly review why the dy-

namical generation of a mass is inextricably connected to the presence of a special vertex,

which exactly compensates for the appearance of massive instead of massless propagators in

the corresponding WIs and STIs.

The full gluon propagator ∆ab
µν(q) = δab∆µν(q) in the Landau gauge is defined as

∆µν(q) = −iPµν(q)∆(q2) , (2.1)

where

Pµν(q) = gµν −
qµqν
q2

, (2.2)

is the usual transverse projector, and the scalar cofactor ∆(q2) is related to the (all-order)

gluon self-energy Πµν(q) = Pµν(q)Π(q
2) through

∆−1(q2) = q2 + iΠ(q2). (2.3)

One may define the dimensionless vacuum polarization Π(q2) by setting Π(q2) = q2Π(q2)

so that (2.3) becomes

∆−1(q2) = q2[1 + iΠ(q2)] . (2.4)

As explained in the Introduction, if Π(q2) develops at zero momentum transfer a pole with

positive residue m2, then ∆−1(0) = m2, and the gluon is endowed with an effective mass.

4



(a1) (a2)

µ ν

µ νk

k + q

q k

q

FIG. 1: The “one-loop dressed” gluon contribution to the PT-BFM gluon self-energy. White

(black) circles denote fully dressed propagators (vertices); a gray circle attached to the external

legs indicates that they are background gluons. Within the PT-BFM framework these two diagrams

constitute a transverse subset of the full gluon SDE.

Alternatively, one may define the gluon dressing function J(q2) as

∆−1(q2) = q2J(q2) . (2.5)

In the presence of a dynamically generated mass, the natural form of ∆−1(q2) is given by

(Euclidean space)

∆−1(q2) = q2J(q2) +m2(q2) , (2.6)

where the first term corresponds to the “kinetic term”, or “wave function” contribution,

whereas the second is the (positive-definite) momentum-dependent mass. If one insist on

maintaining the form of (2.5) by explicitly factoring out a q2, then

∆−1(q2) = q2
[
J(q2) +

m2(q2)

q2

]
, (2.7)

and the presence of the pole, with residue given by m2(0), becomes manifest.

Of course, in order to obtain the full dynamics, such as, for example, the momentum-

dependence of the dynamical mass, one must turn eventually to the SDE that governs the

corresponding gauge-boson self-energy (see Fig. 1). In what follows we will work within the

specific framework provided by the synthesis of the pinch technique (PT) [10, 30–34] with

the background field method (BFM) [35]. One of the main advantages of the “PT-BFM”

formalism is that the crucial transversality property of the gluon self-energy Πµν(q), namely

qµΠµν(q) = 0 , is maintained at the level of the truncated SDEs [12, 36].

The Schwinger mechanism is integrated into the SDE of the gluon propagator through

the form of the three-gluon vertex. In particular, as has been emphasized in some of the
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literature cited above (e.g.,[15]), a crucial condition for the realization of the gluon mass

generation scenario is the existence of a special vertex, to be denoted by Vαµν(q, r, p) which

must be completely longitudinally coupled, i.e. must satisfy

P α′α(q)P µ′µ(r)P ν′ν(p)Vαµν(q, r, p) = 0 . (2.8)

We will refer to this special vertex as the “pole vertex” or simply “the vertex V ”.

The role of the vertex Vαµν(q, r, p) is indispensable for maintaining gauge invariance,

given that the massless poles that it must contain in order to trigger the Schwinger mecha-

nism, act, at the same time, as composite, longitudinally coupled Nambu-Goldstone bosons.

Specifically, in order to preserve the gauge-invariance of the theory in the presence of masses,

the vertex Vαµν(q, r, p) must be added to the conventional (fully-dressed) three-gluon vertex

IΓαµν(q, r, p), giving rise to the new full vertex, IΓ′
αµν(q, r, p), defined as

IΓ′
αµν(q, r, p) = IΓαµν(q, r, p) + Vαµν(q, r, p) . (2.9)

Gauge-invariance remains intact because IΓ′ satisfies the same STIs as IΓ before, but now

replacing the gluon propagators appearing on their rhs by a massive ones; schematically,

∆−1 → ∆−1
m , where the former denotes the propagator given in (2.5), while the latter that

of (2.6). In particular, in the PT-BFM framework that we employ, the vertex IΓ connects a

background gluon (B) with two quantum gluons (Q), and is often referred to as the “BQQ”

vertex. This vertex satisfies a (ghost-free) WI when contracted with the momentum qα of

the background gluon, whereas it satisfies a STI when contracted with the momentum rµ or

pν of the quantum gluons. In particular,

qαIΓαµν(q, r, p) = p2J(p2)Pµν(p)− r2J(r2)Pµν(r),

rµIΓαµν(q, r, p) = F (r2)
[
q2J̃(q2)P µ

α (q)Hµν(q, r, p)− p2J(p2)P µ
ν (p)H̃µα(p, r, q)

]
,

pνIΓαµν(q, r, p) = F (p2)
[
r2J(r2)P ν

µ (r)H̃να(r, p, q)− q2J̃(q2)P ν
α(q)Hνµ(q, p, r)

]
, (2.10)

where F (q2) is the “ghost dressing function”, defined as F (q2) = q2D(q2),Hνσ is the standard

gluon-ghost kernel, and H̃ is the same as H but with the external quantum gluon replaced

by a background gluon. Similarly, J̃ is the dressing function of the self-energy connecting a

background with a quantum gluon; J̃ is related to J(q2) through the identity [37, 38]

J̃(q2) =
[
1 +G(q2)

]
J(q2) . (2.11)
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The function G(q2) is the scalar co-factor of the gµν component of the special two-point

function Λµν(q), defined as

Λµν(q) = −ig2CA

∫

k

∆σ
µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2). (2.12)

Note finally that, in the Landau gauge, G(q2) and L(q2) are linked to F (q2) by the exact

(all-order) relation [39–42]

F−1(q2) = 1 +G(q2) + L(q2) , (2.13)

to be employed in Subsection D.

Returning to the nonperturbative vertex V , gauge invariance requires that it must satisfy

the WI and STI of (2.10), with the replacement k2J(k) → −m2(k), e.g.,

qαVαµν(q, r, p) = m2(r2)Pµν(r)−m2(p2)Pµν(p) ; (2.14)

exactly analogous expressions will hold for the STIs satisfied when contracting with the

momenta r or p. Indeed, under this assumption, the full vertex IΓ′ will satisfy the same

WI and STIs as the vertex IΓ before the introduction of any masses, but now with the

replacement q2J(q2) → q2J(q2) +m2(q2). Specifically, combining the first relation in (2.10)

with (2.14), one obtains for the WI of IΓ′,

qαIΓ′
αµν(q, r, p) = qα [IΓ(q, r, p) + V (q, r, p)]αµν

= [p2J(p2)−m2(p2)]Pµν(p)− [r2J(r2)−m2(r2)]Pµν(r)

= ∆−1
m (p2)Pµν(p)−∆−1

m (r2)Pµν(r) , (2.15)

which is indeed the first identity in Eq. (2.10), with the aforementioned replacement

∆−1 → ∆−1
m enforced. The remaining two STIs are realized in exactly the same fashion.

It must be clear at this point that the longitudinal nature of Vαµν , combined with the

WI and STIs that it must satisfy, lead inevitably to the appearance of a massless pole, as

required by the Schwinger mechanism. For example, focusing only on the q-channel, the

simplest toy Ansatz for the vertex is

Vαµν(q, r, p) =
qµ
q2
[m2(r2)Pµν(r)−m2(p2)Pµν(p)] , (2.16)

which has a pole in q2 and satisfies (2.14). Of course, poles associated to the other channels

(r and p) will also appear, given that Vαµν(q, r, p) must also satisfy the corresponding STIs

with respect to rµ and pν .
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III. THE POLE VERTEX: STRUCTURE AND PROPERTIES

In this section we have a detailed look at the structure of the special vertex V . In

particular, we identify the diagrammatic origin and field-theoretic nature of the various

quantities contributing to it, and specify the way it enters into the SDE of the full vertex

IΓ′, defined in Eq. (2.9). In addition, we will derive an exact relation between the most

important component of this vertex and the derivative of the momentum-dependent gluon

mass.

A. General structure of the vertex V

The main characteristic of the vertex V , which sharply differentiates it from ordinary

vertex contributions, is that it contains massless poles, originating from the contributions of

bound-state excitations. Specifically, all terms of the vertex V are proportional to 1/q2, 1/r2,

1/p2, and products thereof. Such dynamically generated poles are to be clearly distinguished

from poles related to ordinary massless propagators, associated with elementary fields in the

original Lagrangian.

IΓ′
αµν

(q, r, p) =

α

µ ν

q

pr

+ . . .
+ + + +

(a1) (a3) (a4) (a5)(a2)
.

FIG. 2: The SDE for the BQQ vertex which connects a background gluon (B) with two quantum

gluons (Q).

In general, when setting up the usual SDE for any vertex (see, for example, Fig. 2), a

particular field (leg) is singled out, and is connected to the various multiparticle kernels

through all elementary vertices of the theory involving this field (leg). The remaining legs

enter into the various diagrams through the aforementioned multiparticle kernels (black

circles in graphs a2–a5 in Fig. 2), or, in terms of the standard skeleton expansion, through

fully-dressed vertices (instead of tree-level ones). For the case of the BQQ vertex that we
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(b2) (c1) (c2)
.

νp

⊃ ⊃

rµ

i
p2IΓ′ IΓ′

(B)

(C)

6∈(A)

(a)

.

p νrµ p νrµ

= + i
q2

p
ν

r
µ

(b2) (b3)(b1)

FIG. 3: (A) A diagram that does not belong to the standard kernel. (B) The gray kernel (regular

part with respect to q, and the composite massless excitation in the q-channel. (C) The R part of

the vertex.

consider here [shown in Fig. 2], it is convenient (but not obligatory) to identify as the special

leg the background gluon, carrying momentum q. Now, with the Schwinger mechanism

turned off, the various multiparticle kernels appearing in the SDE for the BQQ vertex have

a complicated skeleton expansion (not shown here), but their common characteristic is that

they are one-particle-irreducible with respect to cuts in the direction of the momentum q;

thus, a diagram such as the (a) of Fig. 3 is explicitly excluded from the (gray) four-gluon

kernel, and the same is true for all other kernels.

When the Schwinger mechanism is turned on, the structure of the kernels is modified by

the presence of composite massless excitation, described by a propagator of the type i/q2,

as shown in Fig. 3. The sum of such dynamical terms, coming from all multiparticle kernels,

shown in Fig. 4 constitutes a characteristic part of the vertex V , to be denoted by U in

Eq. (3.4), namely the part that contains at least a massless propagator i/q2. The remaining

parts of the vertex V , to be denoted by R in Eq. (3.5), contain massless excitations in the

other two channels, namely 1/r2 and 1/p2 (but no 1/q2), and originate from graphs such

as (c2) of Fig. 3. Indeed, note that the kernel (b2) is composed by an infinite number of
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diagrams, such as (c1), containing the full vertex IΓ′; these graphs, in turn, will furnish terms

proportional to 1/r2 and 1/p2 [e.g., graph (c2)].

In order to study further the structure and properties of the vertex V , let us first define

the full vertex Vamn
αµν (q, r, p), given by

Vamn
αµν (q, r, p) = gfamnVαµν(q, r, p) , (3.1)

with Vαµν(q, r, p) satisfying Eq. (2.8). Using a general Lorentz basis, we have the following

expansion for Vαµν(q, r, p) in terms of scalar form factors,

Vαµν(q, r, p) = V1qαgµν + V2qαqµqν + V3qαpµpν + V4qαrµqν + V5qαrµpν

+ V6rµgαν + V7rαrµrν + V8rαrµpν + V9pνgαµ + V10pαpµpν . (3.2)

According to the arguments presented above, Vαµν(q, r, p) may be decomposed into

Vαµν(q, r, p) = Uαµν(q, r, p) +Rαµν(q, r, p) , (3.3)

with

Uαµν(q, r, p) = qα

(
V1gµν + V2qµqν + V3pµpν + V4rµqν + V5rµpν

)
. (3.4)

and

Rαµν(q, r, p) =

(
V6gαν + V7rαrν +

V8

2
rαpν

)
rµ +

(
V8

2
rαrµ + V9gαµ + V10pαpµ

)
pν . (3.5)

All form-factors of U (namely V1–V5) must contain a pole 1/q2, while some of them may

contain, in addition, 1/r2 and 1/p2 poles. On the other hand, none of the form-factors of R

(namely V6–V10) contains 1/q
2 poles, but only 1/r2 and 1/p2 poles.

In what follows we will focus on Uαµν(q, r, p), which contains the explicit q-channel mass-

less excitation, since this is the relevant channel in the SDE of the gluon propagator, where

Vαµν(q, r, p) will be eventually inserted [graph (a1) in Fig. 1]. In fact, with the two internal

gluons of diagram (a1) in the Landau gauge, we have that

P µ′µ(r)P ν′ν(p)Vαµν(q, r, p) = P µ′µ(r)P ν′ν(p)Uαµν(q, r, p)

= P µ′µ(r)P ν′ν(p)qα[V1(q, r, p)gµν + V2(q, r, p)qµqν ] , (3.6)

so that the only relevant form factors are V1 and V2.
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(A)

(B)

.

;
a b

q

= i
q2δ

ab
a

m, µ

n, ν

q

p

r

= f amnBµν(q, r, p)

.

q

α
i
q2

Uαµν = +

Īα(q)
.

+

(d1) (d2) (d3)

Iα(q)
.

p

r

ν

µ

+ . . .

(C)

;

(a1) (a2) (a3)

= B ; = Bµνρ ; = Bµ

FIG. 4: (A) The vertex U is composed of three main ingredients: the transition amplitude,

Iα, which mixes the gluon with a massless excitation, the propagator of the massless excitation,

and the (massless excitation)–(gluon)–(gluon) vertex. (B) The Feynman rules (with color factors

included) for (i) the propagator of the massless excitation and (ii) the “proper vertex function”,

or, “bound-state wave function”, Bµν . (C) The various B{... } appearing in Eq. (3.14).

At this point we can make the nonperturbative pole manifest, and cast Uαµν(q, r, p) in

the form of Fig. 4, by setting

Uαµν(q, r, p) = Iα(q)

(
i

q2

)
Bµν(q, r, p) , (3.7)

where the nonperturbative quantity

Bµν(q, r, p) = B1gµν +B2qµqν +B3pµpν +B4rµqν +B5rµpν , (3.8)

is the effective vertex (or “proper vertex function” [19]) describing the interaction between

the massless excitation and two gluons. In the standard language used in bound-state

physics, Bµν(q, r, p) represents the “bound-state wave function” (or “BS wave function”) of

the two-gluon bound-state shown in (b3) of Fig. 3; as we will see in Section IV, Bµν satisfies

a (homogeneous) BSE. In addition, i/q2 is the propagator of the scalar massless excitation.

Finally, Iα(q) is the (nonperturbative) transition amplitude introduced in Fig. 4, allowing
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the mixing between a gluon and the massless excitation. Note that this latter function is

universal, in the sense that it enters not only in the pole part V associated with the three-

gluon vertex, but rather in all possible such pole parts associated with all other vertices,

such as the four-gluon vertex, the gluon-ghost-ghost vertex, etc (see panel C in Fig. (4)).

Evidently, by Lorentz invariance,

Iα(q) = qαI(q) , (3.9)

and the scalar cofactor, to be referred to as the “transition function”, is simply given by

I(q) =
qαIα(q)

q2
, (3.10)

so that

Vj(q, r, p) = I(q)

(
i

q2

)
Bj(q, r, p) ; j = 1, . . . , 5 . (3.11)

Note that, due to Bose symmetry (already at the level of V ) with respect to the inter-

change µ ↔ ν and p ↔ r, we must have

B1,2(q, r, p) = −B1,2(q, p, r) , (3.12)

which implies that

B1,2(0,−p, p) = 0 . (3.13)

Finally, in principle, all other elementary vertices of the theory may also develop pole

parts, which will play a role completely analogous to that of Vαµν in maintaining the cor-

responding STIs in the presence of a gluon mass. Specifically, in the absence of quarks,

the remaining vertices are the gluon-ghost-ghost vertex, IΓα, the four-gluon vertex IΓαµνρ,

and the gluon-gluon-ghost-ghost vertex IΓαµ, which is particular to the PT-BFM formula-

tion. The parts of their pole vertices containing the 1/q2, denoted by Uα, Uαµνρ, and Uαµ,

respectively, will all assume the common form

Uα{... } = Iα

(
i

q2

)
B{... } , (3.14)

where the various B{... } are shown in panel C of Fig. 4.

B. An exact relation

The WI of Eq (2.14) furnishes an exact relation between the dynamical gluon mass,

the transition amplitude at zero momentum transfer, and the form factor B1. Specifically,
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contracting both sides of the WI with two transverse projectors, one obtains,

P µ′µ(r)P ν′ν(p)qαVαµν(q, r, p) = [m2(r)−m2(p)]P µ′

σ (r)P σν′(p) . (3.15)

On the other hand, contracting the full expansion of the vertex (3.2) by these transverse

projectors and then contracting the result with the momentum of the background leg, we

get

qαP µ′µ(r)P ν′ν(p)Vαµν(q, r, p) = iI(q)[B1gµν +B2qµqν ]P
µ′µ(r)P ν′ν(p) , (3.16)

where the relation of Eq (3.11) has been used. Thus, equating both results, one arrives at

iI(q)B1(q, r, p) = m2(r)−m2(p) , B2(q, r, p) = 0. (3.17)

The above relations, together with those of Eq. (3.11), determine exactly the form factors

V1 and V2 of the vertex Vαµν , namely

V1(q, r, p) =
m2(r)−m2(p)

q2
, V2(q, r, p) = 0. (3.18)

We will now carry out the Taylor expansion of both sides of Eq (3.17) in the limit q → 0.

To that end, let consider the Taylor expansion of a function f(q, r, p) around q = 0 (and

r = −p). In general we have

f(q,−p− q, p) = f(−p, p) + [2(q · p) + q2]f ′(−p, p) + 2(q · p)2f ′′(−p, p) +O(q3) , (3.19)

where the prime denotes differentiation with respect to (p+ q)2 and subsequently taking the

limit q → 0, i.e.

f ′(−p, p) ≡ lim
q→0

{
∂f(q,−p− q, p)

∂ (p+ q)2

}
. (3.20)

Now, if the function is antisymmetric under p ↔ r, as happens with the form factors B1,2,

then f(−p, p) = 0; thus, for the case of the form factors in question, the Taylor expansion

is (i = 1, 2)

Bi(q,−p− q, p) = [2(q · p) + q2]B′
i(−p, p) + 2(q · p)2B′′

i (−p, p) +O(q3) . (3.21)

Using Eq (3.21), and the corresponding expansion for the rhs,

m2(r)−m2(p) = m2(q + p)−m2(p) = 2(q · p)[m2(p)]′ +O(q2) , (3.22)

assuming that the I(0) is finite, and equating the coefficients in front of (q · p), we arrive at

(Minkowski space)

[m2(p)]′ = iI(0)B′
1(p) . (3.23)

13



We emphasize that this is an exact relation, whose derivation relies only on the WI and Bose-

symmetry that Vαµν(q, r, p) satisfies, as captured by Eq. (2.14) and Eq. (3.13), respectively.

The Euclidean version of Eq. (3.23) is given in Eq. (5.1).

C. “One-loop dressed” approximation for the transition function

We will next approximate the transition amplitude Iα(q), connecting the gluon with the

massless excitation, by considering only diagram (d1) in Fig. 4, corresponding to the gluonic

“one-loop dressed” approximation; we will denote the resulting expression by Īα(q).

In the Landau gauge, Īα(q) is given by

Īα(q) =
1

2
CA

∫

k

∆(k)∆(k + q)ΓαβλP
λµ(k)P βν(k + q)Bµν(−q,−k, k + q) , (3.24)

where the origin of the factor 1/2 is combinatoric, and Γαβλ is the standard three-gluon

vertex at tree-level,

Γαµν(q, r, p) = gµν(r − p)α + gαν(p− q)µ + gαµ(q − r)ν . (3.25)

To determine the corresponding transition function from Eq. (3.10), use that

qαΓαβλ(q,−k − q, k) = [k2 − (k + q)2]gβλ + [(k + q)β(k + q)λ − kβkλ] , (3.26)

to write

Ī(q) = −CA

2q2

∫

k

[k2 − (k + q)2]∆(k)∆(q + k)P µ
β (k)P

βν(k + q)Bνµ(−q, k + q,−k) . (3.27)

In the last step we have used the property of Eq. (3.12) in order to interchange the arguments

of Bνµ, so that the Taylor expansion of Eq. (3.21) may be applied directly; this accounts for

the additional minus sign. Then, after the shift k + q → k, and further use of Eq. (3.12),

Ī(q) becomes

Ī(q) = −CA

q2

∫

k

k2∆(k)∆(k + q)P µ
β (k)P

βν(k + q) [B1gµν +B2qµqν ] . (3.28)

To obtain the limit of Ī(q) as q2 → 0, we will employ Eq. (3.21) for B1 and B2, as well as

∆(k + q) = ∆(k) + [2(q · k) + q2]∆′(k) + 2(q · k)2∆′′(k) +O(q3) . (3.29)
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Observe that only the zeroth order term of Pµν(k + q), namely Pµν(k), contributes in this

expansion. Then, using spherical coordinates to write (q · k)2 = q2k2 cos2 θ, and the integral
∫

k

f(k) cos2 θ =
1

d

∫

k

f(k) , (3.30)

the Ī(q) in Eq. (3.28) becomes in the limit q2 → 0 (in d = 4)

Ī(0) = −3CA

{∫

k

k2∆2(k)B′
1(k) +

1

2

∫

k

k4 ∂

∂k2
[∆2(k)B′

1(k)]

}
. (3.31)

Then, partial integration yields
∫

k

k4 ∂

∂k2
[∆2(k)B′

1(k)] = −3

∫

k

k2∆2(k)B′
1(k) , (3.32)

and finally one arrives at (Minkowski space)

Ī(0) =
3

2
CA

∫

k

k2∆2(k)B′
1(k) . (3.33)

The Euclidean version of this equation, Eq. (5.3), will be used in Section V.

We end this subsection with a comment on the dimensionality of the various form factors.

The vertex Vαµν has dimension [m], and so V1, V2 and V3 are dimensionless, while the

remaining form factors have dimension [m]−2. The integral Ī(q) has the same dimension as

B1, and as a result, in order to keep V1 dimensionless, B1 must have dimensions of [m].

D. Relating the gluon mass to the transition function

In this subsection we show how the vertex V gives rise to a gluon mass when inserted

into the corresponding SDE. We will restrict ourselves to the two diagrams shown in Fig. 1,

and will finally express m2(0) exclusively in terms of Ī(0), which, in turn, depends on the

existence of Bµν through Eq. (3.33).

In the PT-BFM scheme, the SDE of the gluon propagator in the Landau gauge assumes

the form

∆−1(q2)Pµν(q) =
q2Pµν(q) + iΠµν(q)

[1 +G(q2)]2
. (3.34)

The most straightforward way to relate the gluon mass to the transition function Ī is to

identify, on both sides of (3.34), the co-factors of the tensorial structure qµqν/q
2 which survive

the limit q2 → 0, and then set them equal to each other. Making the usual identification (in

Minkowski space) ∆−1(0) = −m2(0), it is clear that lhs of (3.34) furnishes simply

lhs| qµqν

q2
= m2(0) . (3.35)
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µ ν

q

︸ ︷︷ ︸

Iµ(q)
︸ ︷︷ ︸

Iν(q)
i
q2

.

FIG. 5: The “squared” diagram.

It is relatively straightforward to recognize that the analogous contribution from the rhs

comes from the standard “squared” diagram, shown in Fig. 5. Specifically, the starting

expression is

Πµν(q) =
1

2
g2CA

∫

k

Γµ
αβP

αρ(k)P βσ(k + q)[IΓ + V ]νρσ∆(k)∆(k + q) + · · · , (3.36)

where, as explained earlier, the (all order) vertex IΓ has been replaced by IΓ + V , and the

ellipses denote terms that, in the kinematic limit considered, do not contribute to the specific

structure of interest.

The relevant contribution originates from the part containing the vertex V , to be denoted

by Πµν(q)|V ; it is represented by the diagram in Fig. 5. In particular, by virtue of Eq. (3.6),

we have

Πµν(q)|V =
1

2
g2CA

∫

k

∆(q + k)∆(k)Γµ
αβP

αρ(k)P βσ(k + q)Uν
ρσ

= g2
{
1

2
CA

∫

k

∆(q + k)∆(k)Γµ
αβP

αρ(k)P βσ(k + q)Bρσ

}(
i

q2

)
Īν(q)

= i
qµqν

q2
g2Ī2(q) , (3.37)

where in the second line we have used Eq. (3.7) [ with Iν(q) → Īν(q)], and Eq. (3.24) in the

third line.

Thus, using the fact that, since L(0) = 0 [42], from the identity of Eq. (2.13) we have

that 1 +G(0) = F−1(0), then the rhs of (3.34) becomes

rhs| qµqν

q2
= −g2F 2(0)Ī2(0) . (3.38)

We next go to Euclidean space, following the usual rules, and noticing that, due to the change
∫
k
= i

∫
kE

we have Ī2(0) → −Ī2
E
(0); so, equating (3.35) and (3.38) we obtain (suppressing

the index “E”)

m2(0) = g2F 2(0)Ī2(0) . (3.39)
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Note that the m2(0) so obtained is positive-definite. We emphasize that the relation of

Eq. (3.39) constitutes the (gluonic) “one-loop dressed” approximation of the complete rela-

tion; indeed, both the SDE used as starting point as well as the expression for Ī are precisely

the corresponding “one-loop dressed” contributions, containing gluons (but not ghosts).

Finally, let us consider the exact relation [15]

m̂2(q2) = [1 +G(q2)]2m2(q2), (3.40)

expressing the dynamical mass m(q2) of the standard gluon propagator ∆(q2) in terms of the

corresponding mass, m̂(q2), of the PT-BFM gluon propagator [usually denoted by ∆̂(q2)]

in the same gauge [in this case, in the Landau gauge]. At q2 = 0 this relation reduces to

m2(0) = m̂2(0)F 2(0), so that Eq. (3.39) may be alternatively written as

m̂2(0) = g2Ī2(0) . (3.41)

Interestingly enough, when written in this form, the mass formula derived from our SDE

analysis coincides with the one obtained for the photon mass in the Abelian model of Jackiw

and Johnson (Eq. (2.12) in [18]). In addition, this last form facilitates the demonstration of

the decoupling of the massless excitation from the on-shell four-gluon amplitude (see Section

VI).

In principle, the analysis presented above may be extended to include the rest of the

graphs contributing to the gluon SDE, invoking the corresponding pole parts of the remaining

vertices; however, this lies beyond the scope of the present work.

IV. BS EQUATION FOR THE BOUND-STATE WAVE FUNCTION

As has become clear in the previous section, the gauge boson (gluon) mass is inextricably

connected to the existence of the quantity B′
1. Indeed, if B

′
1 were to vanish, then, by virtue of

(3.33) so would Ī(0), and therefore, through (3.39) we would obtain a vanishingm2(0). Thus,

the existence of B′
1 is of paramount importance for the mass generation mechanism envisaged

here; essentially, the question boils down to whether or not the dynamical formation of a

massless bound-state excitation of the type postulated above is possible. As is well-known,

in order to establish the existence of such a bound state one must (i) derive the appropriate

BSE for the corresponding bound-state wave function, Bµν , (or, in this case, its derivative),

and (ii) find non-trivial solutions for this integral equation.
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= + +

+ +

K

(a) (b)

(c) (d)

FIG. 6: The complete BSE for the full three gluon vertex IΓ′
αµν(q, r, p).

To be sure, this dynamical equation will be derived under certain simplifying assumptions,

which will be further refined in order to obtain numerical solutions. We emphasize, therefore,

that the analysis presented here is meant to provide preliminary quantitative evidence for the

realization of the dynamical scenario considered, but cannot be considered as a conclusive

demonstration.

The starting point is the BSE for the vertex IΓ′
αµν(q, r, p), shown in Fig. 6. Note that,

unlike the corresponding SDE of Fig. 2, the vertices where the background gluon is enter-

ing (carrying momentum q) are now fully dressed. As a consequence, the corresponding

multiparticle kernels appearing in Fig. 6 are different from those of the SDE, as shown in

Fig. 7.

= BS BS

· · ·

· · ·

SD BS

6∈ BS

(A)

(B)

FIG. 7: (A) Schematic relation between the SDE and BSE kernels. (B) Example of a diagram

not contained in the corresponding BSE kernel, in order to avoid over counting.
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p

p + q

k + q

K

= R +(A)

(B)

FIG. 8: (A) The separation of the vertex in regular and pole parts. (B) The BSE for the bound-

state wave function Bµν .

The general methodology of how to isolate from the BSE shown in Fig. 6 the correspond-

ing dynamical equation for the quantity Bµν has been explained in [19, 22]. Specifically,

one separates on both sides of the BSE equation each vertex (black circle) into two parts, a

“regular” part and another containing a pole 1/q2; this separation is shown schematically in

Fig. 8. Then, the BSE for Bµν(q, r, p) is obtained simply by equating the pole parts on both

sides. Of course, for the case we consider the full implementation of this general procedure

would lead to a very complicated structure, because, in principle, all fully dressed vertices

appearing on the rhs of Fig. 6 may contain pole parts [i.e., not just the three-gluon vertex

of (a) but also those in (b), (c), and (d)]. Thus, one would be led to an equation, whose lhs

would consist of Bµν , but whose rhs would contain the Bµν together with all other similar

vertices, denoted by B{... } in Eq. (3.14). Therefore, this equation must be supplemented by

a set of analogous equations, obtained from the BSEs of all other vertices appearing on the

rhs of Fig. 6 [i.e., those in (b), (c), (d) ]. So, if all vertices involved contain a pole part, one

would arrive at a system of several coupled integral equations, containing complicated com-

binations of the numerous form factors composing these vertices (see, for example, Fig. 11

in [22]).

It is clear that for practical purposes the above procedure must be simplified to something

more manageable. To that end, we will only consider graph (a) on the rhs of Fig. 6, thus

reducing the problem to the treatment of a single integral equation.
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n, ν
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p

p + q

k

k + q

s, σ

r, ρ

K + +

(a1) (a2) (a3)

FIG. 9: The Feynman diagrams considered for the BS kernel. The interaction vertices are approx-

imated by their tree level values, while the internal gluon propagators are fully dressed.

Specifically, the BSE for Bµν is given by [see Fig. 6]

Bamn
µν =

∫

k

Babc
αβ ∆

αρ
br (k + q)∆βσ

cs (k)Ksnmr
σνµρ . (4.1)

In addition, we will approximate the four-gluon BS kernel K by the lowest-order set of

diagrams shown in Fig. 9, where the vertices are bare, while the internal gluon propagators

are fully dressed.

To proceed further, observe that the diagram (a1) does not contribute to the BSE, because

the color structure of the tree-level four-gluon vertex vanishes when contracted with the

color factor fabc of the Bαβ. Diagrams (a2) and (a3) are equal, and are multiplied by a Bose

symmetry factor of 1/2. So, in this approximation, the BS kernel is given by

Ksnmr
σνµρ (−k, p,−p− q, k + q) = −ig2f snef emrΓ(0)

σγν∆
γλ(k − p)Γ

(0)
µλρ , (4.2)

where Γ(0) is the tree-level value of the three gluon vertex. So, using this kernel and setting

the gluon propagators in the Landau gauge, the BSE becomes

Bµν = −2πiαsCA

∫

k

Bαβ∆(k+ q)∆(k)∆(k− p)P αρ(k+ q)P βσ(k)P γλ(k− p)Γ(0)
σγνΓ

(0)
µλρ , (4.3)

where we have cancelled out a color factor fabc from both sides.

Let us focus on the lhs of Eq. (4.3). Using the Taylor expansion in Eq. (3.21), the fact

that B2 = 0 [see Eq. (3.17)], and multiplying by a transverse projector we obtain,

P µν(p)Bµν = 6(q · p)B′
1(p) +O(q2) . (4.4)

Next, let us denote by [rhs]µν the rhs of Eq. (4.3). Inserting the bare value for the three

gluon vertices, multiplying by the transverse projector, and using the Taylor expansions in

Eq. (3.21) and (3.29), after standard manipulations one obtains the result

P µν(p) [rhs]µν = −4πiαsCA(q · p)
∫

k

B′
1(k)∆

2(k)∆(k − p)N (p, k) +O(q2) , (4.5)
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where we have defined the kernel

N (p, k) =
4(p · k)[p2k2 − (p · k)2]

p4k2(k − p)2
[8p2k2 − 6(pk)(p2 + k2) + 3(p4 + k4) + (pk)2] . (4.6)

Thus, equating the lhs with the rhs, we derive the following BSE for the derivative of the

form factor that appears in the mass relation Eq. (3.23),

B′
1(p) = −2πi

3
αsCA

∫

k

B′
1(k)∆

2(k)∆(k − p)N (p, k) . (4.7)

Going to Euclidean space, we define

x ≡ p2 ; y ≡ k2 ; z ≡ (p+ k)2 , (4.8)

and write the Euclidean integration measure in spherical coordinates,
∫

d4kE
(2π)4

=
1

(2π)3

∫ ∞

0

dyy

∫ π

0

dθ sin2 θ , (4.9)

so that the BSE becomes

B′
1(x) = −αsCA

12π2

∫ ∞

0

dyyB′
1(y)∆

2(y)

√
y

x

∫ π

0

dθ sin4 θ cos θ

[
z + 10(x+ y) +

1

z
(x2 + y2 + 10xy)

]
∆(z) . (4.10)

In spherical coordinates we have that z = x+ y + 2
√
xy cos θ. So, around x = 0,

1

z
=

1

x+ y

[
1− 2

√
xy

x+ y
cos θ

]
, (4.11)

and using the Taylor expansion for the gluon propagator ∆(z), the limit x → 0 can be taken

in the BSE, giving the value

B′
1(0) = lim

x→0
B′

1(x) = −αsCA

8π

∫ ∞

0

dyy3B′
1(y)∆

2(y)∆′(y) . (4.12)

Let us finally implement an additional simplification to Eq. (4.10), which will allow us

to carry out the angular integration exactly, thus reducing the problem to the solution of a

one-dimensional integral equation. Specifically, the simplification consists in approximating

the gluon propagator ∆(z) appearing in the BSE of (4.10) [but not the ∆2(y)] by its tree

level value, that is, ∆(z) = 1/z. Then, with the aid of the angular integrals,
√

y

x

∫ π

0

dθ
sin4 θ cos θ

z
=

π

16x

[
y

x2
(y − 2x)Θ(x− y) +

x

y2
(x− 2y)Θ(y − x)

]
,

√
y

x

∫ π

0

dθ
sin4 θ cos θ

z2
= − π

4x

[
y

x2
Θ(x− y) +

x

y2
Θ(y − x)

]
, (4.13)
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one brings Eq. (4.10) into the form

B′
1(x) =

αsCA

24π

{∫ x

0

dyB′
1(y)∆

2(y)
y2

x

(
3 +

25

4

y

x
− 3

4

y2

x2

)
+

+

∫ ∞

x

dyB′
1(y)∆

2(y)y

(
3 +

25

4

x

y
− 3

4

x2

y2

)}
. (4.14)

The limit x → 0 of this equation is given by (the change of variable y = tx may be found

useful),

B′
1(0) =

αsCA

8π

∫ ∞

0

dyyB′
1(y)∆

2(y) . (4.15)

Note that this result coincides, as it should, with that obtained from Eq. (4.12) after setting

∆′(y) = −1/y2, namely the derivative of the tree-level propagator.

V. NUMERICAL SOLUTIONS AND EXISTENCE OF A BOUND-STATE

In this section we will carry out a detailed numerical analysis of the integral equation

obtained in the previous section, namely Eq. (4.14).

First of all, let us point out that, despite appearances, the integral equation (4.14) is

not linear in the unknown function B′
1(x). The non-linearity enters through the propagator

∆(y), which depends on the dynamical mass m2(y) through Eq. (2.6); as a result, and by

virtue of Eq. (3.23), which, in Euclidean space reads

[m2(y)]′ = −I(0)B′
1(y) , (5.1)

it is clear that ∆(y) depends on B′
1(x) in a complicated way. Specifically, from the two

aforementioned equations we have

∆−1(y) = yJ(y) +m2(y) ,

m2(y) = m2(0)− I(0)

∫ y

0

dzB′
1(z) . (5.2)

where I(0) may be approximated by its “one-loop dressed” version Ī(0) given in (3.33),

which in Euclidean space becomes

Ī(0) =
3CA

32π2

∫ ∞

0

dy y2∆2(y)B′
1(y) . (5.3)

Then, Eq. (4.14) must be solved together with the two additional relations given in

Eq. (5.2), as a non-linear system. In addition, one may use Eq. (3.39), in order to obtain an
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(approximate) constraint for I(0). Note also that Eq. (4.14), again due to Eq. (5.1), may be

recast entirely in terms of m2(y) and its derivative.

For the purposes of the present work we will simplify somewhat the procedure described

above. Specifically, we will present two different approaches, each one particularly suited for

probing distinct features of Eq. (4.14) and the accompanying Eqs. (5.2). In particular, we will

first study Eq. (4.14) in isolation, using simple Ansätze for ∆(y). The purpose of this study is

to establish the existence of non-trivial solutions for B′
1, study their dependence on the value

of the strong coupling αs, and verify the asymptotic behavior predicted by Eq. (5.4). Of

course, since ∆(y) at this level is treated as an “external” object, the homogeneous Eq. (4.14)

becomes linear in B′
1; as a result, given one solution we obtain a family of such solutions,

through multiplication by any real constant. Then, as a second step, we will use the available

lattice data for the gluon propagator ∆(y), in order to obtain the corresponding solution for

B′
1. Now, the linearity induced by treating ∆(y) as an external input will be resolved by

resorting to Eq. (5.2) and Eq. (3.39); thus, out of the infinite family of solutions only one

will be dynamically selected. These two approaches will be presented in subsections VB

and VC, while subsection VA deals with the asymptotic behavior of the solutions.

A. Asymptotic behavior

Before turning to the numerical treatment of Eq. (4.14), it is useful to study the behavior

of the solutions for asymptotically large values of x. Setting ∆(y) = 1/y, it is relatively

straightforward to establish that the equation admits a power-law solution of the form

B′
1(x) = Axb. Specifically, substituting this Ansatz into the first integral of Eq. (4.14),

which is the dominant part for large x, and carrying out the integrations, one arrives at the

following algebraic equation for b,

24π

αsCA

=
3

b+ 1
+

25

4(b+ 2)
− 3

4(b+ 3)
, (5.4)

together with the restriction b > −1, imposed in order to assure convergence in the lower

(y = 0) limit of integration. Setting λ ≡ 24π/αsCA, one arrives at the third-order equation

4λb3 − (34− 24λ)b2 − (151− 44λ)b− 141 + 24λ = 0 , (5.5)

that may be easily solved; the solution that satisfies b > −1 is shown in Fig. 10 as a function

of αs.
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FIG. 10: The physically relevant solution of Eq. (5.5).

B. The linearized case: solutions for various gluon propagators

Next we discuss the numerical solutions for Eq. (4.14) for arbitrary values of x. Evidently,

the main ingredient entering into its kernel is the nonperturbative gluon propagator, ∆(q).

In order to explore the sensitivity of the solutions on the details of ∆(q), we will employ

three infrared-finite forms, to be denoted by ∆1(q), ∆2(q), and ∆3(q), focusing on their

differences in the intermediate and asymptotic regions of momenta.

Let us start with the simplest such propagator, namely a tree-level massive propagator

of the form

∆−1
1 (q2) = q2 +m2

0 , (5.6)

where m2
0 is a hard mass, that will be treated as a free parameter. On the left panel of

Fig. 11, the (blue) dotted curve represents ∆1(q
2) for m0 = 376MeV.

The second model is an improved version of the first, where we introduce the

renormalization-group logarithm next to the momentum q2, more specifically

∆−1
2 (q2) = q2

[
1 +

13CAg
2

96π2
ln

(
q2 + ρm2

0

µ2

)]
+m2

0 . (5.7)

where ρ is an adjustable parameter varying in the range of ρ ∈ [2, 10]. Notice that the hard

mass m2
0 appearing in the argument of the perturbative logarithm acts as an infrared cutoff;

so, instead of the logarithm diverging at the Landau pole, it saturates at a finite value. The

(black) dashed line represents the Eq. (5.7) when ρ = 16, m0 = 376MeV, and µ = 4.3 GeV.

The third model is simply a physically motivated fit for the gluon propagator determined
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FIG. 11: Left panel: The three models for the gluon propagator as function of the momentum

q2. The (red) continuous line is the fit for the lattice gluon propagator given by Eq. (5.8) when

m = 520 MeV, g21 = 5.68, ρ1 = 8.55, ρ2 = 1.91, and µ = 4.3 GeV; the (black) dashed line is the

model of Eq. (5.7) with ρ = 16, αs = 0.667 and m0 = 376MeV, while the (blue) dotted line rep-

resents the massive propagator of Eq. (5.6) when m0 = 376MeV. Right panel: The corresponding

solutions of Eq. (4.14) obtained with the gluon propagators shown on the left panel. The solutions

for B′
1(q) are obtained when we fix the value of αs = 1.48, αs = 0.667, and αs = 0.492 for ∆1(q),

∆2(q), and ∆3(q), respectively.

by the large-volume lattice simulations of Ref. [6], and shown on the left panel of Fig. 11.

The lattice data presented there correspond to a SU(3) quenched lattice simulation, where

∆(q) is renormalized at µ = 4.3 GeV. This gluon propagator can be accurately fitted by the

expression (e.g.,[15])

∆−1
3 (q2) = m2

g(q
2) + q2

[
1 +

13CAg
2
1

96π2
ln

(
q2 + ρ1 m

2
g(q

2)

µ2

)]
, (5.8)

where m2
g(q

2) is a running mass given by

m2
g(q

2) =
m4

q2 + ρ2m2
, (5.9)

and the values of the fitting parameters are m = 520MeV, g21 = 5.68, ρ1 = 8.55 and,

ρ2 = 1.91. On the left panel of Fig. 11, the (red) continuous line represents the fit for

the lattice gluon propagator given by Eq. (5.8). Notice that, in all three cases, we have fixed

the value of ∆−1(0) = m2
0 ≈ 0.14.
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FIG. 12: The (black) continuous curve represents the solution obtained from Eq. (4.14) using the

propagator ∆1(q) of Eq. (5.6), with αs = 1.48 and m0 = 376MeV. The (red) dotted line is the

best fit obtained for the asymptotic behavior of B′
1(x) given by B′

1(q) = Aq2b with A1 = 14.80 and

b = −0.756. Notice that this value is in excellent agreement with the power found by the analytical

determination, shown in Fig. 10.

Our main findings may be summarized as follows.

(i) In Fig. 11, right panel, we show the solutions of Eq. (4.14) obtained using as input the

three propagators shown on the left panel. For the simple massive propagator of Eq. (5.6), a

solution for B′
1(q) is found for αs = 1.48; in the case of ∆2(q) given by Eq. (5.7), a solution

is obtained when αs = 0.667, while for the lattice propagator ∆3(q) of Eq. (5.8) a non-trivial

solution is found when αs = 0.492.

(ii) Note that, due to the fact that Eq. (4.14) is homogeneous and (effectively) linear,

if B′
1(q) is a solution then the function cB′

1(q) is also a solution, for any real constant c.

Therefore, the solutions shown on the right panel of Fig. 11 corresponds to a representative

case of a family of possible solutions, where the constant c was chosen such that B′
1(0) = 1.

(iii) Another interesting feature of the solutions of Eq. (4.14) is the dependence of the

observed peak on the support of the gluon propagator in the intermediate region of momenta.

Specifically, an increase of the support of the gluon propagator in the approximate range

(0.3-1) GeV results in a more pronounced peak in B′
1(q).

(iv) In addition, observe that due to the presence of the perturbative logarithm in the

expression for ∆2(q) and ∆3(q), the corresponding solutions B′
1(q) fall off in the ultraviolet

region much faster than those obtained using the simple ∆1(q) of Eq. (5.6). In order to
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FIG. 13: Left panel: The behavior of the gluon propagator ∆1(q), given by Eq. (5.6), for various

values of m0 in the range of 300 − 800MeV. Right panel: The corresponding solutions for B′
1(q),

obtained using the gluon propagators shown on the left panel. For each value of m0, we found that

the solution for B′
1(q) is obtained for a particular value of αs.

check whether the power-law asymptotic behavior, B′
1(q) = Aq2b, determined in our previous

analysis, is in agreement with our numerical solution, we isolate in Fig. 12 the solution of

B′
1(q) obtained with ∆1(q) and αs = 1.48 (black continuous curve) and compare it with the

best fit obtained for large values of q2 (red dotted curve). Indeed, the asymptotic tail of

B′
1(q) falls off as power law of the type B′

1(q) = Aq2b with A = 14.80 and b = −0.756. Notice

that the value of b obtained from the fit is in perfect agreement with values obtained from

Eq. (5.5), shown in Fig. 10.

(v) On the left panel of Fig. 13 we plot ∆1(q), given by Eq. (5.6), for different values of

m0 in the range of 300− 800MeV. In order to determine how the solutions are modified

when one varies the value of m0, we show on the right panel of Fig. 13 the various B′
1(q), all

of them normalized at B′
1(0) = 1. As we can see, the solutions display the same qualitative

behavior; however, for each m0, the non-trivial solution is obtained for a different value of

αs. In fact, as the values of m0 increase, so do the values of αs needed for obtaining a

solution; the exact dependence of αs on m2
0 is shown in Fig. 14.

(vi) Next, we study how size variations in the intermediate region of the gluon propagator

change the values of αs needed in order to obtain non-trivial solutions from Eq. (4.14). To

address this point systematically, we employ the gluon propagator ∆2(q) of Eq. (5.7), varying

the parameter ρ in the range of ρ ∈ [2, 16], keeping fixed m0 = 367MeV, as shown on the left
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FIG. 14: The values of αs furnishing non-trivial solutions to Eq. (4.14) as we vary m0 in the ∆1(q)

of Eq. (5.6).

panel of Fig. 15; the corresponding B′
1(q) for each value of ρ are plotted on the right panel.

Evidently, decreasing ρ increases the support of the gluon propagator in the intermediate

region, and, as a result, one needs smaller value of αs in order to obtain solutions for B′
1(q).

This last property is better seen in Fig. 16, where we present the values of αs needed to

solve Eq. (4.14) as one varies ρ in ∆2(q).
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FIG. 15: Left panel: The behavior of the gluon propagator, ∆2(q), given by Eq. (5.7), when the

value of m0 = 367MeV is fixed, and ρ varies in the range 2-16. Right panel: The corresponding

solutions for B′
1(q) obtained with the gluon propagators shown on the left panel. To each value of

ρ corresponds a specific value of αs that yields a solution B′
1(q).
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FIG. 16: The values of αs for which we obtain non-trivial solutions to Eq. (4.14) as we vary ρ in

∆2(q) of Eq. (5.7).

C. Non-linear treatment: uniqueness of B′
1(x) and m2(x)

In the previous subsection we have practically solved Eq. (4.14) in isolation, in the sense

that we have not used the supplementary conditions of Eq. (5.2), and have treated ∆(q) as

an external independent quantity. As a result, the homogeneous Eq. (4.14) was effectively

linearized, giving rise to families of solutions cB′
1(x), parametrized by the value of c. In this

subsection we will restore the non-linearity of Eq. (4.14); as a result, the arbitrariness in

the value of c is completely eliminated, and one obtains a single expression for B′
1(x) and

m2(x), for a unique value of αs.

The way a unique solution for B′
1(x) is singled out [i.e., a value for c is dynamically

chosen] is by combining Eq. (3.39) and Eq. (5.3); specifically, we will require that the value

for Ī(0) obtained from the former equation coincides with that obtained from the latter,

namely that
√

∆−1(0)/4παsF 2(0) =
3CA

32π2

∫ ∞

0

dy y2∆2(y)B′
1(y) , (5.10)

Now, the lhs of (5.10) is fixed, because, as mentioned in the previous subsection, we must

have αs = 0.492 in order for Eq. (4.14) to have solutions for this particular (lattice) prop-

agator as input, while ∆−1(0) and F (0) are fixed from the lattice. Specifically, the SU(3)

large-volume lattice simulations of Ref. [6] yield ∆−1 ≈ 0.141 (see Fig. 11) and F (0) ≈ 2.76

(see Fig. 17). Then, the integral on the rhs (5.10) must match the value of the lhs, and this

can only happen for one particular member of the family cB′
1(x).

In Fig. 18, we show the solution for B′
1(x), which satisfies the constraints imposed on the

29



1E-3 0.01 0.1 1 10 100 1000

0.8

1.2

1.6

2.0

2.4

2.8

 

 

F(
q)

q2[GeV2]

Ghost dressing function F(q)
 = 4.3 GeV

Lattice  = 5.7
 L=64
 L=80
 Fit 

FIG. 17: Lattice results [6] for the ghost dressing function, F (q), renormalized at µ = 4.3 GeV.

Notice that F (0) ≈ 2.76.

value of I(0), obtained when αs = 0.492 and B′
1(0) = 0.086.
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FIG. 18: The numerical solution B′
1(q) obtained from Eq. (4.14), under the constraints imposed

by Eqs. (3.39) and (3.33), and with αs = 0.492.

Once the unique solution B′
1(q) has been determined, one may use Eq. (5.2) to determine

the behavior of the squared gluon mass m2(x). Integrating numerically B′
1(q) and fixing

m(0) = 0.14, we obtain the result shown in Fig. 19.

Evidently, the function m2(q2) displays a plateau in the deep infrared, and then decreases

sufficiently fast in the ultraviolet region, as expected on general grounds [10, 14, 15].

30



1E-3 0.01 0.1 1 10 100 1000 10000

0.08

0.10

0.12

0.14

 

 

m
2 (q

2 ) [
G

eV
2 ]

q2[GeV2]

 Dynamical gluon mass

FIG. 19: The square of the dynamical gluon mass, obtained from Eq. (3.23), after plugging into it

the B′
1(x) shown in Fig. 18.

VI. DECOUPLING OF THE MASSLESS EXCITATION: AN EXAMPLE

In this section we give an explicit example of how the massless excitation decouple from

an on-shell amplitude. Specifically, we will show how this is indeed what happens in the

case of the four-gluon amplitude. To be sure, a complete proof of the decoupling of the

massless excitation from all Yang-Mills amplitudes requires the treatment of kernels with

an arbitrary number of incoming gluons, which is beyond our powers at present. However,

the example considered here captures the essence of the underlying decoupling mechanism.

The demonstration followed here is similar to that given in [19] for the case of an Abelian

model. One starts by considering the complete four-gluon amplitude, [graph (a) in Fig. 20],

which consists of three distinct pieces: (i) the amplitude represented by the diagram (b),

= +

q

(a)

(b) (c) (d)

= + +

q q

.

FIG. 20: The complete four-gluon amplitude and the various terms composing it.
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which is regular as q2 → 0, (ii) the graph (c), which contains the massless excitation,

coupled to the external gluons through the proper vertex function B, and (iii) the one-

particle reducible term, denoted by (d), which is excluded from the SDE kernel in the usual

skeleton expansion. Of course, the above amplitudes are none other than (b2), (b3), and

(a) in Fig. 3, respectively. Since the amplitude (b) is regular by construction, one must

only demonstrate that, as q2 → 0, the divergent part of (c), whose origin is the massless

excitation, cancels exactly against an analogous contribution contained in (d), leaving finally

a regular result.

We start by considering the term (d). Within the PT-BFM framework that we use,

the off-shell gluon (carrying momentum q) is effectively converted into a background gluon;

thus, the gluon propagator appearing inside (d) is given by ∆̂(q), while the two three-gluon

vertices are the IΓ′ defined in Eq. (2.9). So,

(d) = −ig2 IΓ′
αµν(q, p1, p2)P

αβ(q)∆̂(q)IΓ′
βρσ(q, p3, p4)

= −ig2 IΓ′
αµν(q, p1, p2)∆̂(q)IΓ′α

ρσ(q, p3, p4) , (6.1)

where the factor (−i) comes from the definition of the gluon propagator, Eq. (2.1). In

the second line we have eliminated the longitudinal term qαqβ/q2 inside P αβ(q) using the

“on-shellness” condition

qαIΓ′
αµν(q, r, p)|o.s. = [∆−1(p2)Pµν(p)−∆−1(r2)Pµν(r)]o.s.

= 0 , (6.2)

valid for both three-gluon vertices. We emphasize that the full IΓ′ is needed (with the V

included) for the on-shellness condition of Eq. (6.2) to be fulfilled. Note also that, if one

had chosen a non vanishing gauge-fixing parameter ξ for the gluon propagator (instead of

the ξ = 0 of the Landau gauge), then the condition of Eq. (6.2) is instrumental for the

cancellation of the unphysical parameter ξ from the physical amplitude.

Next, it is clear that from the vertex V contained in IΓ′ only the part U survives, [see

Eq. (3.3)], because all longitudinal momenta contained in R are annihilated on shell, i.e.

when contracted with the appropriate polarization vectors eµ(p), due to the validity of the

relation pµeµ(p) = 0. Then, we have that (suppressing indices)

IΓ′∆̂IΓ′ = (IΓ + U)∆̂(IΓ + U)

= IΓ∆̂IΓ + IΓ′∆̂U + U∆̂IΓ′ − U∆̂U . (6.3)
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Given that the first term in (6.3) is regular, while the second and third term vanish on shell

by virtue of (6.2) [which is triggered because Uαµν is proportional to qα, see Eq. (3.4)], we

are led to the following expression for the pole part of (d)

(d)pole = ig2Uαµν∆̂(q)Uα
ρσ . (6.4)

Then, using Eqs. (3.7) and (3.9), we obtain

(d)pole = −
{
B

(
i

q2

)
B

}
[g2I2(q)∆̂(q)] . (6.5)

Now, in the limit q2 → 0, the quantity in square brackets goes to 1, precisely by virtue of

Eq. (3.41) [remember, ∆̂−1(0) = m̂2(0)]. Therefore,

lim
q2→0

(d)pole = − lim
q2→0

{
B

(
i

q2

)
B

}
, (6.6)

which is precisely the contribution of the term (c) in the same kinematic limit, but with the

opposite sign. Therefore, the on-shell four-gluon amplitude is free from poles at q2 = 0, as

announced.

Finally, note that, as an alternative, one might opt for eliminating completely any refer-

ence to V in the amplitude (d) from the very beginning, namely the first step in Eq. (6.1);

this is of course possible, given that some parts of the fully longitudinal vertex V vanish on

shell, while the rest vanishes when contracted with the transverse projector Pαβ(q). In such

a case, however, one may not dispose of the longitudinal part of Pαβ(q) any longer, because

now the on-shellness condition of Eq. (6.2) is distorted, precisely due to the absence of V . It

is a straightforward exercise to demonstrate that if one were to take the produced mismatch

into account, one would recover exactly the same result found above.

VII. DISCUSSION AND CONCLUSIONS

The gauge-invariant generation of a gluon mass relies on the existence of massless bound-

state excitations, which trigger the Schwinger mechanism. The presence of these excitations

in the skeleton expansion of the full three-gluon vertex IΓ′
αµν induces longitudinally coupled

pole structures, giving rise to a purely nonperturbative component, the pole vertex Vαµν .

In this article we have studied in detail the dynamical ingredients associated with the

vertex V ; in particular, the poles in V are identified with the propagator of the massless
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scalar excitation, while the tensorial structure is determined by two basic purely nonpertur-

bative quantities: the transition amplitude, denoted by Iα, which at the diagrammatic level

connects the gluon propagator with the massless scalar propagator, and the effective vertex,

denoted by Bµν , connecting the massless excitation to two outgoing gluons.

The powerful requirement of maintaining the gauge invariance of the theory intact re-

stricts the form of the various form factors composing Bµν , and establishes a non-trivial con-

nection between the transition function and the first derivative of the momentum-dependent

gluon mass. The insertion of the vertex Vαµν (or, effectively, its surviving component Uαµν)

into the SDE of the gluon propagator (in the Landau gauge) allows one to express, at zero

momentum transfer, the gluon mass in terms of the transition function, by means of a rather

simple formula. In fact, it turns out that, the relevant dynamical quantity is the derivative

of the form factor B1, denoted by B′
1.

As we have demonstrated, in the aforementioned kinematic limit, the homogeneous BSE

obeyed by the Bµν reduces in a natural way to an analogous integral equation for B′
1. The

detailed numerical study of an approximate version of this latter equation reveals the exis-

tence of non-trivial solutions for B′
1, which, when inserted into the corresponding formulas,

furnish the momentum dependence of the gluon mass. The existence of these solutions adds

weight to the hypothesis that the nonperturbative Yang-Mills dynamics lead indeed to the

formation of the required massless bound-states.

It is clear that some of the dynamical aspects of this problem merit a further detailed

study, due to their relevance in the ongoing scrutiny of the infrared properties of the Yang-

Mills Green’s functions. Particularly important is to consider the effects of bound-state poles

in the SD kernels of not only the three-gluon vertex, as we did in this article, but of all other

fundamental vertices of the theory. Such an investigation would involve some or all of the

vertices appearing in Eq. (3.14), which would form a coupled system of homogeneous integral

equations. Given the recent lattice results on the ghost propagator, especially interesting in

this context is the dynamical information that one might be able to obtain about the quantity

B, corresponding to the wave-function of the ghost-ghost channel [(vertex a1 in Fig. (4)].

Specifically, while the ghost dressing function F is found to be finite in the infrared, a fact

that can be explained by the presence of the gluon mass that saturates the corresponding

perturbative logarithm, there is no dynamical mass associated with the ghost field. One

would expect, therefore, that the solution of the corresponding system should give rise to a
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non-vanishing B′
1, as before, but to a vanishing ghost-ghost wave function B.

As has been explained in detail in Section II, the incorporation the massless excitations

modify the three-gluon vertex IΓ, giving rise to the new vertex IΓ′, defined in Eq. (2.9). It

would certainly be particularly interesting to compare the characteristic features of IΓ′ with

results obtained on the lattice for the three-gluon vertex [43]. In particular, one might in

principle be able to relate the presence of the massless poles to possible divergences of some

of the form factors, in the appropriate kinematic limit. To that end, one must first determine

the closed expression for the entire vertex V from Eq. (2.8) and the WI and STIs it satisfies.

Then the answer should be written in a standard basis, such that of Ball and Chiu [44, 45],

and the final result projected on the particular kinematic configurations usually employed

in the lattice calculations. We hope to be able to carry out this project in the near future.
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