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2European Centre for Theoretical Studies in Nuclear Physics

and Related Areas (ECT*) and Fondazione Bruno Kessler,

Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN) Italy

3Department of Theoretical Physics and IFIC, University of Valencia E-46100,

Valencia, Spain

Abstract

In this article we derive the integral equation that controls the momentum dependence of the ef-

fective gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation

of the corresponding “one-loop dressed” Schwinger-Dyson equation into two distinct contributions,

one associated with the mass and one with the standard kinetic part of the gluon. The entire

construction relies on the existence of a longitudinally coupled vertex of nonperturbative origin,

which enforces gauge invariance in the presence of a dynamical mass. The specific structure of the

resulting mass equation, supplemented by the additional requirement of a positive-definite gluon

mass, imposes a rather stringent constraint on the derivative of the gluonic dressing function, which

is comfortably satisfied by the large-volume lattice data for the gluon propagator, both for SU(2)

and SU(3). The numerical treatment of the mass equation, under some simplifying assumptions, is

presented for the aforementioned gauge groups, giving rise to a gluon mass that is a non-monotonic

function of the momentum. Various theoretical improvements and possible future directions are

briefly discussed.
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I. INTRODUCTION

A large body of recent high-quality lattice results indicate that the gluon propagator

and the ghost dressing function of pure Yang-Mills theories, computed in the conventional

Landau gauge, are infrared (IR) finite, both in SU(2) [1–5] and in SU(3) [6–9]. These

important results have sparked a renewed interest in the important issue of dynamical mass

generation in non-Abelian gauge theories, and especially in QCD [10–15]. Specifically, as has

been suggested in a series of works, the finiteness of these quantities may be interpreted as

a direct consequence of the generation of a non-perturbative (momentum-dependent) gluon

mass, which acts as an IR cutoff of the theory [16, 17]. In the picture put forth in these

articles, the fundamental Lagrangian of the Yang-Mills theory (or that of QCD) is never

altered; the generation of the gluon mass takes place dynamically, without violating any of

the underlying symmetries [12, 14, 16].

Given the non-perturbative nature of the mass generating mechanism, its study in the

continuum proceeds through the Schwinger-Dyson equations (SDEs) that govern the dynam-

ics of the various Green’s functions of the theory [11, 13, 18–20], and especially of the gluon

propagator, ∆(q2). The main conceptual and technical challenge in this context is to obtain

as a solution of these integral equations an IR-finite gluon propagator [i.e., ∆−1(0) = m2(0)],

without interfering with the gauge invariance (or the BRST symmetry) of the theory, en-

coded in the Ward identities (WIs) and Slavnov-Taylor identities (STIs) satisfied by the

Green’s functions under study [11–13]. A self-consistent framework for enforcing the crucial

property of gauge invariance at the level of the truncated SDEs is provided by the synthesis

of the pinch technique (PT) [14, 16, 21–23] with the background field method (BFM) [24].

In the presence of a dynamically generated mass, the (inverse) Euclidean gluon propagator

assumes the form ∆−1(q2) = q2J(q2) + m2(q2), where the first term corresponds to the

“kinetic term”, or “wave function” contribution, whereas the second is the (positive-definite)

momentum-dependent mass [15]. However, to date, practically all studies attempting to

determine the IR behavior of the gluon propagator from SDEs eventually boil down to the

solution of some integral equation involving the entire gluon propagator ∆(q2) [12, 14, 16],

rather than its two components, J(q2) and m2(q2). This is to be contrasted to what happens

in the analogous studies of chiral symmetry breaking, where one derives a system of two

coupled equations, one determining the “wave function” (“kinetic part”) of the quark self-
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energy, and one determining the dynamical (constituent) quark mass [25, 26]. Of course,

in the case of the quark self-energy the above separation of both sides of the corresponding

SDE (quark gap equation) is realized in a direct way, due to the distinct Dirac properties

of the two quantities appearing in it, while in the case of the gluon propagator no such

straightforward separation is possible. However, a well-defined procedure, first outlined

in [15], and explained here in more detail, allows for an analogous separation even in the

case of the gluon propagator. The purpose of the present article is to identify and isolate from

the SDE of the (Landau gauge) gluon propagator the dynamical equation that determines

the evolution of the gluon mass, study its main properties, and find approximate solutions

for m2(q2).

As has been emphasized in some of the literature cited above, a crucial condition for the

realization of the gluon mass generation scenario is the existence of a longitudinally coupled

vertex, to be denoted by V , which must be added to the conventional (fully-dressed) three-

gluon vertex, denoted by IΓ [15]. Specifically, the vertex IΓ′ = IΓ+V satisfies the same STIs

as IΓ, but now replacing the gluon propagators appearing on their rhs by a massive ones

(schematically, ∆ → ∆m). The dynamical reason for the emergence of this special vertex, as

well as its diagrammatic realization in terms of Feynman graphs, is intimately connected to

the well-known Schwinger mechanism [27, 28], which enables the non-perturbative generation

of a gauge-boson mass. In particular, one assumes that the strong QCD dynamics give rise

to longitudinally-coupled composite (bound-state) massless poles [29–35]. These poles act

like Nambu-Goldstone excitations, in the sense that they preserve the form of the STIs of

the theory in the presence of a mass, but they are not associated with the breaking of any

local or global symmetry.

It turns out that the way the vertex V generates the mass at the level of the SDE is

by introducing a “deviation” from the so-called “seagull identity” [given in Eq. (4.3)]. The

role of this identity is to enforce the masslessness of a gauge boson (gluon or photon) when

massive propagators appear inside its loops, assuming always that the WI and STI’s are

maintained, i.e., the transversality of the (gluon or photon) self-energy is preserved. For

example, as explained in [15], in scalar QED it is exactly this identity that enforces the

masslessness of the photon at the level of the “one-loop dressed” SDE; in this case the

massive propagator entering into the loop is that of the charged scalar field. The crucial

point is that if the “massive” STI were to be enforced by only modifying IΓ [i.e., by carrying
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out the replacement ∆ → ∆m in the closed expressions obtained for IΓ by solving the STIs

it satisfies, see Eq. (A3)], then the “seagull identity” would force the (would-be) gluon mass

to vanish, i.e., would lead to the invalidation of the entire mass generation mechanism.

The fact that the missing part for satisfying the “massive” STI is instead provided by the

longitudinally coupled V has the far-reaching consequence of finally furnishing a non-trivial

equation for the mass. Thus, the equation for the gluon mass is determined as the amount

by which the seagull cancellation is distorted due to the presence of the vertex V .

To be sure, one could in principle determine the closed form of V by resorting to a

procedure similar to that described in [36] for IΓ, namely write down the most general

structure allowed for a longitudinal vertex with three Lorentz indices, and then determine

the corresponding form factors from the WI and STI that this vertex must satisfy. It turns

out, however, that V enters into the SDE for the Landau gauge gluon propagator (in the

PT-BFM scheme) in a very particular way, which renders its closed form unnecessary; all

one needs for the derivation of the mass equation is to postulate the existence of V (i.e.,

assume that it is not identically zero) and that it satisfies the required WI and STIs.

In principle, the mass equation obtained in Eq. (5.23) must be accompanied by the

corresponding equation determining the kinetic term J(q2); the solution of the resulting

system of two coupled integral equations will then furnish the behavior of m2(q2) and J(q2),

and therefore that of ∆(q2). The technical limitation in realizing these procedure is the

dependence of the equation for J(q2) on the various form factors comprising the ghost-gluon

kernel; the latter enters into play through the form of the vertex IΓ [see Eqs. (A3)-(A4)] .

The way to circumvent this problem is to actually solve Eq. (5.23) for m2(q2) using as input

for the ∆ appearing in it the available lattice data, both for SU(2) [1] and SU(3) [6].

It turns out that the specific form of the mass equation in Eq. (5.23) introduces a

non-trivial constraint on the precise behavior that ∆ must display in the region between

(1-5) GeV2. Specifically, in order for the gluon mass to be positive definite, the first deriva-

tive of the quantity q2∆(q2) (the “gluon dressing function”) must furnish a sufficiently

negative contribution in the aforementioned range of momenta. Interestingly enough, the

∆ obtained from the lattice has indeed this particular property. This is to be contrasted

to what happens, for example, in the case of a simple massive propagator 1/(q2 + m2) or

with the Gribov-Zwanziger propagator q2/(q4 +m4) (with m constant) [37, 38]; the deriva-

tives of the corresponding dressing functions, q2/(q2 + m2) and q4/(q4 +m4), respectively,
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are positive in the entire range of (Euclidean) momenta, thus excluding the possibility of a

positive-definite gluon mass.

The article is organized as follows. In Section II we introduce the necessary notation and

review briefly the aspects of the PT-BFM formalism relevant to this work. In Section III

we explain in detail the modifications that must be introduced to the three-gluon vertex of

the theory in order to treat the generation of a gluon mass in a gauge invariant way (i.e.,

preserving the STIs of the theory). In particular, the importance of the nonperturbative

vertex V and its special properties are emphasized, and the changes introduced to the

corresponding SDE during the transition from massless to massive solutions are discussed

in detail. In Section IV we outline the precise criteria that will lead to the separation of

the SDE for the gluon propagator into two equations, one for the kinetic part and one

for the mass. The central role of the “seagull-identity” in carrying out this separation is

stressed, and some explicit characteristic calculations are presented. Then, in Section V we

combine the ingredients introduced in the previous sections and derive the final form of the

dynamical equation for the gluon mass in the Landau gauge. In Section VI we first study the

implications of the gluon mass equation in the limit of vanishing physical momentum. Then

we solve an approximate form of this equation, using lattice data as input for the “unknown”

quantity ∆. The solution for the gluon mass so obtained is then appropriately “subtracted

out” from ∆, giving rise to an estimate for the quantity J(q2). These ingredients are then

combined to construct the renormalization-group (RG) invariant gluon mass, appearing

in the usual definition of the effective QCD charge within the PT-BFM framework. Our

conclusions and discussion of the results appear in Section VII. Finally, some technical

points are presented in the Appendix.

II. GENERAL FRAMEWORK

In this section, we set up the necessary notation and review some of the most salient

features of the PT-BFM framework, putting particular emphasis on the form of the SDE

for the gluon propagator, and the various field-theoretic ingredients appearing in it.

The (full) gluon propagator ∆ab
µν(q) = δab∆µν(q) in the renormalizable Rξ gauges is defined
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FIG. 1: The “one-loop dressed” gluon contribution to the PT-BFM gluon self-energy. White

(respectively, black) blobs represent connected (respectively, 1-PI) Green’s functions; a gray circle

on the external legs indicates background gluons. Notice that within the PT-BFM framework these

two diagrams alone constitute a transverse subset of the full gluon SDE.

as

i∆µν(q) = −i

[
Pµν(q)∆(q2) + ξ

qµqν
q4

]
, ∆−1

µν (q) = i
[
Pµν(q)∆

−1(q2) + (1/ξ)qµqν
]
, (2.1)

with

Pµν(q) = gµν −
qµqν
q2

, (2.2)

the dimensionless transverse projector, and ξ the gauge fixing parameter. The scalar cofactor

∆(q2) appearing above is related to the all-order gluon self-energy Πµν(q) = Pµν(q)Π(q
2)

through

∆−1(q2) = q2 + iΠ(q2). (2.3)

In addition, it is convenient to define the dimensionless function J(q2) as [39]

∆−1(q2) = q2J(q2). (2.4)

Evidently, J(q2) coincides with the inverse of the gluon dressing function, frequently con-

sidered in the literature.

The starting point of our dynamical analysis is the SDE governing the gluon propagator.

Within the PT-BFM framework that we employ [10–17, 21–24], one may safely truncate

the SDE series down to its “one-loop dressed version” containing gluonic contributions only,

given by the diagrams (a1) and (a2) shown in Fig. 1. Specifically, due to the special Feyn-

man rules of the PT-BFM, and in particular the QED-like Ward identities satisfied by

the fully-dressed vertices, gauge invariance remains exact, in the sense that the resulting

(approximate) gluon self-energy Πµν(q) is still transverse, i.e.,

qνΠµν(q) = 0. (2.5)
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FIG. 2: The BQQ three-gluon vertex.

The PT-BFM equation for the conventional propagator reads, in this case,

∆−1(q2)Pµν(q) =
q2Pµν(q) + i [(a1) + (a2)]µν

[1 +G(q2)]2
, (2.6)

where

(a1)µν =
1

2
g2CA

∫

k

Γ̃
(0)
µαβ(q, k,−k − q)∆αρ(k)∆βσ(k + q)Γ̃νρσ(q, k,−k − q)

(a2)µν = g2CA

[
gµν

∫

k

∆ρ
ρ(k) + (1/ξ − 1)

∫

k

∆µν(k)

]
, (2.7)

with CA being the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)],

and the d-dimensional integral measure (in dimensional regularization) is defined according

to ∫

k

≡ µǫ

(2π)d

∫
ddk. (2.8)

The vertex Γ̃ is the fully dressed version of the trilinear vertex involving one background and

two quantum gluons (BQQ vertex for short, see Fig. 2); at tree-level (all momenta entering)

Γ(0)
αµν(q, r, p) = Γ̃(0)

αµν(q, r, p) + (1/ξ)ΓP
αµν(q, r, p), (2.9)

with

Γ(0)
αµν(q, r, p) = gµν(r − p)α + gαν(p− q)µ + gαµ(q − r)ν ,

Γ̃(0)
αµν(q, r, p) = gµν(r − p)α + gαν(p− q + r/ξ)µ + gαµ(q − r − p/ξ)ν,

ΓP
αµν(q, r, p) = gαµpν − gανrµ. (2.10)

Finally, the function G(q2) appearing in (2.6) is of central importance in this entire

formalism. It is defined as the scalar co-factor of the gµν component of the special two-point
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+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν H̃νµ(q, p, r) = gµν +

µ

q
ν

r

p p

r

FIG. 3: Diagrammatic representation of the functions Λ, H and, for later convenience, H̃. Gray

blobs represent 1-PI kernels with respect to vertical cuts.

function Λµν(q), defined as (see also Fig. 3)

Λµν(q) = −ig2CA

∫

k

∆σ
µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2), (2.11)

where we have introduced the ghost propagator Dab(q2) = δabD(q2), which is related to the

ghost dressing function F (q2) through

D(q2) =
F (q2)

q2
. (2.12)

Notice that in the Landau gauge, an important exact (all-order) relation exists, linking

G(q2) and L(q2) to the ghost dressing function F (q2), namely [40–43]

F−1(q2) = 1 +G(q2) + L(q2). (2.13)

In addition, the function G(q2) participates in a set of BRST-driven identities, known

as Background-Quantum identities (BQIs) [44, 45], obtained within the Batalin-Vilkovisky

formalism [46, 47]. These powerful identities relate among each other the three types of gluon

propagators that appear naturally in the BFM formalism, namely: (i) the conventional gluon

propagator (two quantum gluons entering, QQ), denoted by ∆(q2); (ii) the background gluon

propagator (two background gluons entering, BB), denoted by ∆̂(q2); and (iii) the mixed

background-quantum gluon propagator (one background and one quantum gluons entering,

BQ), denoted by ∆̃(q2). The corresponding BQIs are

∆(q2) = [1 +G(q2)]2∆̂(q2),
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∆(q2) = [1 +G(q2)]∆̃(q2),

∆̃(q2) = [1 +G(q2)]∆̂(q2). (2.14)

Notice that it is the first of these identities that allows the rewriting of the conventional

SDE into the PT-BFM form (2.6) [11–13].

For the rest of the article we will study the gluon SDE in the Landau gauge, ξ = 0. The

limit of Eq. (2.6) as ξ → 0 is rather subtle, and has been presented in [12]. The final answer

is

Π̂µν(q) = [(a1) + (a2)]
µν
ξ=0

= g2CA

5∑

i=1

Aµν
i (q) , (2.15)

with

Aµν
1 (q) =

1

2

∫

k

Γ
(0)µ
αβ P αρ(k)P βσ(k + q)ĨΓ

ν

ρσ∆(k)∆(k + q),

Aµν
2 (q) =

∫

k

P αµ(k)
(k + q)βΓ

(0)ν
αβ

(k + q)2
∆(k),

Aµν
3 (q) =

∫

k

P αµ(k)
(k + q)β ĨΓ

ν

αβ

(k + q)2
∆(k),

Aµν
4 (q) = −(d− 1)2

d
gµν

∫

k

∆(k),

Aµν
5 (q) =

∫

k

kµ(k + q)ν

k2(k + q)2
. (2.16)

The vertex IΓ appearing above is the fully-dressed PT-BFM vertex studied in detail in [36],

and which is related to the full BQQ vertex Γ̃ appearing in the BFM through

ĨΓαµν(q, r, p) = Γ̃αµν(q, r, p) + (1/ξ)ΓP
αµν(q, r, p). (2.17)

Evidently, ĨΓαµν(q, r, p) and Γ̃αµν(q, r, p) differ only at tree level; specifically, one sees imme-

diately that

ĨΓ
(0)

αµν(q, r, p) = Γ(0)
αµν(q, r, p). (2.18)

In the rest of this paper, we will refer indifferently to both Γ̃ and ĨΓ as the BQQ vertex; in

addition, in order to simplify the notation, we will drop the “tilde” superscript.

The vertex IΓ satisfies a (ghost-free) WI when contracted with the momentum qα of the

background gluon, whereas it satisfies a STI when contracted with the momentum of the
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quantum gluons (rµ or pν). In particular,

qαIΓαµν(q, r, p) = p2J(p2)Pµν(p)− r2J(r2)Pµν(r),

rµIΓαµν(q, r, p) = F (r2)
[
q2J̃(q2)P µ

α (q)Hµν(q, r, p)− p2J(p2)P µ
ν (p)H̃µα(p, r, q)

]
,

pνIΓαµν(q, r, p) = F (p2)
[
r2J(r2)P ν

µ (r)H̃να(r, p, q)− q2J̃(q2)P ν
α(q)Hνµ(q, p, r)

]
, (2.19)

and the function J̃ is related to the conventional one defined in (2.4) precisely through the

second equation in (2.14), namely

J̃(q2) =
[
1 +G(q2)

]
J(q2). (2.20)

In addition, as shown in Fig. 3, the auxiliary ghost function H̃ is the same as H after

converting the external gluon leg into a background leg. An explicit form in terms of J ,

J̃ , H and H̃ of the (longitudinal) form factors characterizing this vertex has been obtained

in [36] and reported in Appendix A.

One may finally use Eq. (2.4) to re-express the relations (2.19) in terms of the (inverse)

scalar functions ∆, i.e.,

qαIΓαµν(q, r, p) = ∆−1(p2)Pµν(p)−∆−1(r2)Pµν(r), (2.21)

with analogous expressions holding for the remaining two STIs of (2.19). At this level this

appears as a simple rewriting, but this form of writing will facilitate the clarification of

certain conceptual issues that become relevant when dynamical mass generation is turned

on (see next section).

III. VERTICES IN THE PRESENCE OF A DYNAMICAL MASS

In order to generate a dynamical mass without interfering with gauge invariance and the

BRST symmetry, one must resort to the Schwinger mechanism [27, 28]. The general idea

is to assume that a longitudinally coupled bound-state pole has been formed dynamically,

which will modify the structure of the full vertices of the theory [29–35]. This modification,

in turn, will be responsible for obtaining massive type of solutions from the SDE of the gluon

where this new vertices will be inserted [12]. It is important to be very precise regarding

the nature and role of the various ingredients that enter in the ensuing analysis. We will

10



IΓ′ = + + · · · ++ +

pole1
q2

︸ ︷︷ ︸

IΓm

︸ ︷︷ ︸

V

FIG. 4: The IΓ′ three-gluon vertex. Thick (red online) internal gluon lines indicates massive

propagators ∆m, as explained in the text.

therefore devote this section to the development and elaboration of the various key concepts

needed.

From the kinematic point of view we will describe the transition from a massless to a

massive gluon propagator by carrying out the replacement (in Minkowski space)

∆−1(q2) = q2J(q2) −→ ∆−1
m (q2) = q2Jm(q

2)−m2(q2). (3.1)

The symbol Jm indicates that effectively one has now a mass inside the corresponding

expressions: for example, whereas perturbatively J(q2) ∼ ln q2, after dynamical gluon mass

generation has taken place, one has Jm(q
2) ∼ ln(q2 +m2). As a consequence, since Jm will

be the main component in the definition of the QCD effective charge [15], the presence of

the mass term in the argument of its logarithm will tame the perturbative Landau pole

[16, 41, 43]. Of course, as q2 → 0, q2Jm(q
2) → 0; therefore, if we are to ensure that this

procedure will give rise to a non vanishing IR value for the gluon propagator, i.e., ∆−1
m (0) 6= 0,

we must have that m2(0) 6= 0.

From the dynamical point of view, it is clear that the full three-gluon vertex must be also

appropriately modified [29–31]. Specifically, we will consider a new vertex, to be denoted

by IΓ′, and carry out the replacement

IΓ −→ IΓ′ = IΓm + V. (3.2)

The new vertex IΓm is given by the same (fully dressed) graphs that make up the SDE of the

BQQ vertex IΓ (Fig. 4); however, now all internal (virtual) fully-dressed gluon propagators

are massive i.e., in the non-pole part of the vertex SDE we have ∆ → ∆m. In addition (or

11



as a result thereof), IΓm satisfies exactly the set of WI and STIs given in (2.19), but with

the replacement J → Jm throughout. So, the WI becomes

qαIΓ
αµν
m (q, r, p) = p2Jm(p

2)P µν(p)− r2Jm(r
2)P µν(r), (3.3)

and exactly analogous expressions for the remaining STIs satisfied when IΓm is contracted

by either r or p. Note that all other Green’s functions, such as H and H̃, must be replaced

by the corresponding Hm and H̃m, in the same sense as before (but we will suppress their

‘m’ subindex throughout); thus, the diagrams defining these two ghost functions, shown in

Fig. 3, will now contain massive internal gluon propagators.

On the other hand, the vertex V represents the pole part of IΓ′; it is totally longitudinally

coupled, i.e., it vanishes identically when contracted by the three transverse projectors

P α′α(q)P µ′µ(r)P ν′ν(p)Vαµν(q, r, p) = 0, (3.4)

and must satisfy the WI and STI of (2.19), with the replacement k2J(k) → −m2(k), e.g.,

qαVαµν(q, r, p) = −m2(p2)Pµν(p) +m2(r2)Pµν(r). (3.5)

Exactly analogous expressions will hold for the STIs satisfied when contracting with the

momenta r or p.

An explicit example of such a vertex (which, however, we will not use here), has been

given in [48], namely

V αµν(q, r, p) =
qαrµ(q − r)ρ

2q2r2
P ρν(p)m2(p2)− pν

p2
[
m2(r2)−m2(q2)

]
P α
ρ (q)P

ρµ(r)

+
rµpν(r − p)ρ

2r2p2
P ρα(q)m2(q2)− qα

q2
[
m2(p2)−m2(r2)

]
P µ
ρ (r)P

ρν(p)

+
pνqα(p− q)ρ

2q2p2
P ρµ(r)m2(r2)− rµ

r2
[
m2(q2)−m2(p2)

]
P ν
ρ (p)P

ρα(q). (3.6)

The totally longitudinal nature of this vertex is manifest1.

At this point it is clear that the full vertex IΓ′ will satisfy the same WI and STIs (2.19)

satisfied by the IΓ vertex before the introduction of any masses, but now with the replacement

1 Note that this vertex is totally Bose symmetric, satisfying (3.5) with respect to all its legs; instead, the

vertex considered here satisfies an STI with respect to the quantum legs (r and p).
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∆ → ∆m. Therefore, using Eqs. (3.2), (3.3), and (3.5), one gets for IΓ′ the WI

qαIΓ
′αµν(q, r, p) = qα [IΓ

αµν
m (q, r, p) + V αµν(q, r, p)]

= [p2Jm(p
2)−m2(p2)]P µν(p)− [r2Jm(r

2)−m2(r2)]P µν(r)

= ∆−1
m (p2)P µν(p)−∆−1

m (r2)P µν(r). (3.7)

Similarly

rµIΓ
′αµν(q, r, p) = F (r2)

[
∆−1

m (q2)P µ
α (q)Hµν(q, r, p)−∆−1

m (p2)P µ
ν (p)H̃µα(p, r, q)

]
, (3.8)

pνIΓ
′αµν(q, r, p) = F (p2)

[
∆−1

m (r2)P ν
µ (r)H̃να(r, p, q)−∆−1

m (q2)P ν
α(q)Hνµ(q, p, r)

]
. (3.9)

It is very important to emphasize that, even though the new (massive) WI is obtained

from the old (massless) one through the replacement ∆ → ∆m, the new vertex IΓ′ is not

obtained from the old one, IΓ, by means of the same replacement only. Indeed, turning to

the explicit expression for IΓ given in the Appendix A, it would certainly be wrong to use

there the replacement ∆ → ∆m (or J(q2) → ∆m(q
2)/q2). Instead, the correct procedure is

that outlined above: the vertex IΓm is indeed obtained from the expressions in the Appendix,

by replacing J → Jm (but with no explicit mass terms); all explicit mass terms are next

added through the totally longitudinally coupled non-perturbative vertex V .

Actually, it is interesting to ponder about what would happen if one were to introduce

the gluon mass through the (wrong) procedure of identifying the vertex IΓ′ by the simple

replacement ∆ → ∆m carried out inside IΓ. In such a case one would conclude (after

some steps) that the self-consistency of the theory would force m2(q2) to vanish identically.

The precise way how this “self-correction” takes place is intimately related to the so-called

“seagull identity” [15], and will be discussed at the end of the Section V.

IV. GENERAL FEATURES OF THE GLUON MASS EQUATION

Let us now consider the gluon SDE of Eq. (2.6) under the light of the analysis presented

in the previous section. After dynamical gluon mass generation has taken place, one needs

to consider the modified SDE, which is obtained from (2.6) after (i) replacing the ∆−1

appearing on the lhs with the ∆−1
m of Eq. (3.1), and (ii) replacing ∆ → ∆m and IΓ → IΓ′

inside the integrals of the rhs (see also Fig. 5).
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FIG. 5: Diagrammatic representation of the gluon one-loop dressed diagrams before and after

dynamical gluon mass generation has taken place: the propagators and vertices on the rhs have

now become massive.

From this new SDE one can obtain two separate equations, the first one governing the be-

havior of Jm(q
2) [to be later involved in the definition of the effective charge, see Eq. (6.17)]

and the second one describing the dynamical mass m2(q2). The general idea is the following:

the terms appearing on the rhs of the SDE may be separated systematically into two con-

tributions, one that vanishes as q → 0 and one that does not; the latter contribution must

be set equal to the corresponding non-vanishing term on the lhs, namely −m2(q), while the

former will be set equal to the vanishing term of the lhs, namely q2Jm(q
2), the so-called

“kinetic term”.

Specifically (taking the trace of both sides of (2.6) to eliminate the Lorentz indices), the

rhs may be schematically cast in the form

q2Jm(q
2)−m2(q2) = q2

[
1 +K1(q

2, m2,∆m)
]
+K2(q

2, m2,∆m), (4.1)

such that q2K1(q
2, m2,∆m) → 0, as q2 → 0, whereas K2(q

2, m2,∆m) 6= 0 in the same limit.

Thus, for example, a term of the form q2
∫
k
∆m(k)∆m(k + q) contributes to K1, whereas

a term of the form m2(q2)
∫
k
∆m(k)∆m(k + q) should be assigned to K2. Then, the two

equations determining Jm(q
2) and m2(q2) will read (still Minkowski space)

Jm(q
2) = 1 +K1(q

2, m2,∆m),

m2(q2) = −K2(q
2, m2,∆m). (4.2)

Of course, there is an obvious subtlety that must be addressed at this point. Specifi-

cally, one may easily envisage the possibility of a term that approaches zero as (q2)a, with

0 < a < 1. In this case, given that we must factor out a q2 in order to obtain the equation

for Jm(q
2), such a term would furnish an IR divergent contribution to Jm(q

2). This would

be an undesirable feature, given that the Jm(q
2) is intimately related to the effective charge
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of QCD, which is believed to be finite. The way to treat such a possibility is to state that,

should such a term appear, it ought to be directly allotted (in its entirety, without factoring

out a q2) to the equation for m2(q2). The presence of such a term in the mass equation will

not affect the value of the mass at q2 = 0, but will in general affect the shape of the result-

ing curve. Keeping this mathematical possibility in mind, let us point out that the terms

emerging in the analysis of Section V have a very characteristic structure [see Eq. (4.15)

and the related discussion], and, at least for them, the scenario contemplated above [ (q2)a,

with 0 < a < 1] is not realized.

There is an additional point related to the mass equation, which is instrumental for the

self-consistency of the entire approach. Specifically, a crucial condition for the mechanism

of dynamical gluon mass generation, developed in a series of articles [10–13, 16], is the

cancellation of all seagull-type of divergences, i.e., divergences produced by integrals of the

type
∫
k
∆(k2), or variations thereof [15]. The precise cancellation of such terms proceeds by

means of the identity [15] ∫

k

k2∆′
m(k) +

d

2

∫

k

∆m(k) = 0, (4.3)

where the “prime” denotes differentiation with respect to k2, i.e., ∆′
m(k) ≡ ∂∆m(k

2)/∂k2.

Thus, all the ingredients entering into the SDE (most importantly, the vertex) must be

such that, after taking the limit of the SDE as q2 → 0, all seagull-type contributions must

conspire to appear exactly in the combination given on the lhs of Eq. (4.3).

The relevance and function of the identity (4.3) becomes evident when we consider the

term I(q), given by

− iI(q) =

∫

k

k2∆m(k)∆m(k + q)
(k + q)2Jm(k + q)− k2Jm(k)

(k + q)2 − k2
+ c

∫

k

∆m(k), (4.4)

with c (for the moment) an arbitrary real number. This term appears naturally in the PT-

BFM framework, and in fact we will find it in the case of the Landau gauge studied in the

next section.

Using Eq. (3.1) one may then rewrite I(q) as

I(q) = I1(q) + I2(q), (4.5)

with

− iI1(q) = −
∫

k

k2∆m(k + q)−∆m(k)

(k + q)2 − k2
+ c

∫

k

∆m(k)

15



= −
[∫

k

k2∆m(k + q)−∆m(k)

(k + q)2 − k2
+

d

2

∫

k

∆m(k)

]
+

(
c+

d

2

)∫

k

∆m(k), (4.6)

and

− iI2(q) =

∫

k

k2∆m(k)∆m(k + q)
m2(k + q)−m2(k)

(k + q)2 − k2
. (4.7)

In order to establish how the above terms must be assigned among the K1 and K2 introduced

above, let us now take their limit as q2 → 0. Carrying out the appropriate Taylor expansions

[see Eq. (4.14)], one finds

− iI1(0) = −
[∫

k

k2∆′
m(k) +

d

2

∫

k

∆m(k)

]
+

(
c+

d

2

)∫

k

∆m(k)

=

(
c+

d

2

)∫

k

∆m(k), (4.8)

where in the second step we have employed Eq. (4.3), and

− iI2(0) =

∫

k

k2∆2
m(k)[m

2(k)]′. (4.9)

Thus, according to the rules introduced above, the contribution of I(q) to the kinetic term

is

iIkt(q) =

∫

k

k2∆m(k + q)−∆m(k)

(k + q)2 − k2
+

d

2

∫

k

∆m(k), (4.10)

given that Ikt(0) = 0, while the contribution of I(q) to the mass equation is

− iIm2(q) =

∫

k

k2∆m(k)∆m(k + q)
m2(k + q)−m2(k)

(k + q)2 − k2
+

(
c +

d

2

)∫

k

∆m(k). (4.11)

It is clear now that the second term on the rhs of (4.11) is quadratically divergent (and of

the seagull type). The only way to avoid this divergence is if the coefficient multiplying
∫
k
∆m(k) vanishes, i.e., if c = −d/2. It turns out that, by virtue of the PT-BFM Feynman

rules, and the fact that gauge invariance is preserved at every level of this approximation,

the coefficient c comes out precisely equal to −d/2; we emphasize that this result can be

realized only within the PT-BFM framework. Thus, after the seagull cancellation, one is

left with the first term only, which is perfectly convergent, provided that the mass decreases

in the deep ultraviolet. As we will see in the next section, in the Landau gauge this term

accounts for the bulk of the gluon mass equation.

Even though the term Ikt(q) of Eq. (4.10) does not appear in the rest of our analysis, it

is important to gain some further intuition on its structure and its behavior for small values

of q2, especially in the light of the discussion following Eq. (4.2).
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To this end, let us introduce spherical coordinates through the definitions q2 = x,

k2 = y, (k + q)2 = z; we then have that z = y + x+ 2
√
xy cos θ, and we define

w ≡ (k + q)2 − k2 = z − y = x+ 2
√
xy cos θ. The d-dimensional integral measure will read

in this case ∫

k

=
1

(2π)d
π

d−1

2

Γ
(
d−1
2

)
∫ π

0

dθ sind−2 θ

∫ ∞

0

dy y
d

2
−1, (4.12)

and we finally recall the elementary integral

∫ π

0

dθ sinm θ cosn θ =





Γ(m+1

2 )Γ(n+1

2 )
Γ(m+n+2

2 )
, n even

0, n odd
(4.13)

It turns out that the Ikt(q) of Eq. (4.10) may be expanded systematically as a power

series in q2. To see this in detail, we consider the Taylor expansion of an arbitrary finite

function f(z) around w = 0, given by

f(z)− f(y)

w
= f ′(y) +

w

2!
f ′′(y) +

w2

3!
f ′′′(y) + ... (4.14)

where the primes denote differentiations with respect to y (evidently we are assuming finite

derivatives in the origin). Then, under the integral sign on the rhs of Eq. (4.10) one must

collect pieces of a given order in q2 from the various powers of w, using (4.13).

It is clear that when the term f ′(y) on the rhs of (4.14) is inserted into the integral, it

generates the seagull identity (4.3); all the remaining terms will be proportional to positive

powers of w, and thus, Ikt(0) = 0. For example, the q2 term in this expansion is obtained by

appropriately combining contributions proportional to f ′′(y) and f ′′′(y). Using again (4.13),

after a sequence of partial integrations, we find

iIkt(q) =
q2

6

(
d− 4

d

)∫

k

k2∆′′
m(k) +O(q4). (4.15)

In order to check the validity of Eq. (4.15) let us compute Ikt(q) for the simple case of a

massive propagator with a “hard” (momentum-independent) mass

∆m(q) =
1

q2 −m2
. (4.16)

The integrand in the first integral on the rhs of Eq. (4.11) simplifies to

k2 ∆m(k + q)−∆m(k)

(k + q)2 − k2
= − k2

(k2 −m2)[(k + q)2 −m2]
. (4.17)
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Then, using the dimensional regularization identity

2m2

∫

k

1

(k2 −m2)2
= (d− 2)

∫

k

1

k2 −m2
, (4.18)

it is relatively straightforward to demonstrate that

Ikt(q) =
m2

16π2

∫ 1

0

dx ln

(
1 +

q2x(x− 1)

m2

)
. (4.19)

Evidently, Ikt(0) = 0, as expected, while the expansion of the logarithm furnishes immedi-

ately the result

Ikt(q) = − 1

16π2

q2

6
+O(q4). (4.20)

On the other hand, substitution into the general formula (4.15) of the propagator in

(4.16) yields

Ikt(q) = −i
q2

6

(
d− 4

d

)
2

∫

k

k2

(k2 −m2)3
+O(q4). (4.21)

In dimensional regularization, around d = 4, we have that d = 4− ǫ, and therefore, only the

divergent part of the integral contributes, i.e.,

Ikt(q) = −i
q2

6

(
−ǫ

d

)
2

[
1

16π2

(
id

4

)(
2

ǫ

)]
+O(q4)

= − 1

16π2

q2

6
+O(q4), (4.22)

which indeed coincides with (4.20).

Notice finally that the main contribution to the kinetic term does not originate from

Ikt(q), but rather from a term of the form

q2
∫

k

∆m(k + q)−∆m(k)

(k + q)2 − k2
, (4.23)

which, for the simple massive propagators of (4.16) may be easily calculated, giving rise to

the standard logarithmic correction associated with the RG, with the additional feature of

being IR safe due to the presence of the mass in the argument of the logarithm.

V. THE GLUON MASS EQUATION IN THE LANDAU GAUGE

We now proceed to the actual derivation of the explicit form of the mass equation in the

Landau gauge. Specifically, in this gauge the rhs of Eq. (2.6) will be given by the terms Ai

listed in Eq. (2.16), where now we must carry out the replacements ∆ → ∆m and IΓ → IΓ′.
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Following the rules explained in the previous section, and defining

Ai(q) = Tr [Aµν
i (q)], (5.1)

the mass equation is given by

m2(q2) = −i
g2CA

d− 1

[∑5
i=1Ai(q)

]
m2

[1 +G(q2)]2
, (5.2)

and therefore, one should determine the closed form of the quantities [Ai(q)]m2 .

There is a simple observation, particular to this gauge, which simplifies the entire pro-

cedure considerably. Specifically, in the Landau gauge, the derivation of the gluon mass

equation does not require the knowledge of the closed form of the vertex V , which captures

the effects of the massless bound-state poles.

To see why this is so, let us first note that the vertex V appears only in the terms Aµν
1 (q)

and Aµν
3 (q), the only place where the replacement IΓ → IΓ′ may be carried out. Given that

the vertex IΓ′
ναβ appearing in the term Aµν

3 (q) is contracted by (k + q)β, the result of this

operation is the STI satisfied by IΓ′, namely

pνIΓ′
αµν = F (p2)

[
∆−1

m (r2)P ν
µ (r)H̃να(r, p, q)− ∆̃−1

m (q2)P ν
α(q)Hνµ(q, p, r)

]
. (5.3)

whose validity assumes the existence of V but does not depend on the details of its closed

form.

As for the term Aµν
1 (q) one starts by noticing that (i) the V is already contracted by

two projection operators P αρ(k)P βσ(k + q) and (ii) since in the PT-BFM formulation the

truncated Π̂µν(q) (defined in terms of A1 − A5) is transverse, one may contract both sides

of Eq. (2.15) by the projection operator P ν
ν′(q) for free, i.e., write

Π̂µν(q) = Π̂µν′(q)P ν
ν′(q)

= g2CA

5∑

i=1

Aµν′

i (q)P ν
ν′(q). (5.4)

The main effect of this operation, as far as the term Aµν
1 (q) is concerned, is to trigger

Eq. (3.4), and so, all explicit reference to V vanishes.

In order to forestall any possible confusion, we hasten to emphasize that one should not

conclude from the above argument that the existence of the vertex V is irrelevant for the

entire construction. On the contrary, the vertex V is crucial for the implementation of this
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particular approach. In particular, if the V did not exist (i.e., if it were vanishing identically)

the WI of (3.5) would be invalidated, and, as a result, Π̂µν(q) would fail to be transverse, in

which case, evidently, one could no longer contract both sides of Eq. (2.15) by the projection

operator P ν
ν′(q) for free.

We can now proceed with the actual calculation. It is clear that the term Aµν
5 (q) cannot

possibly contribute to the mass equation, since Aµν
5 (0) = 0. Furthermore, with the exception

of Aµν
3 (q), which will yield a direct contribution, the remaining three terms Aµν

1 (q), Aµν
2 (q),

and Aµν
4 (q) contribute to the mass equations an amount that arises as the deviation from

the seagull cancellation, i.e., they furnish a term analogous to the I2 of Eq. (4.7).

To see this, let us first retain the contributions of these three terms that survive individ-

ually the q2 → 0 limit. The term A1 reads

A1(q) =
1

2

∫

k

Γ
(0)
µαβP

α
ρ (k)P

β
σ (k + q)IΓν′ρσ

m P µ
ν′(q)∆m(k)∆m(k + q). (5.5)

Now, using for the vertex IΓm the tensor decomposition (A2) with (α, µ, ν) → (ν ′, ρ, σ) and

r → k, p → −k− q, it is straightforward to establish that the tensorial structures ℓ2, ℓ5 and

ℓ8 will be annihilated by the transverse projectors appearing in (5.5), while, ignoring terms

that will again vanish due to the transverse projectors, ℓ1, ℓ3, ℓ7, and ℓ9 are at least of order

q. Finally, since ℓ10 = 0, we find the result

IΓν′ρσ
m (q, k,−k − q) = 2kν′gρσ

[
X4(q, k,−k − q) + k2X6(q, k,−k − q)

]
+O(q)

= 2kν′gρσ
(k + q)2Jm(k + q)− k2Jm(k)

(k + q)2 − k2
+O(q). (5.6)

In addition, since

Γ
(0)
µαβ(q, k,−k − q)kν′P µ

ν′(q) = 2gαβ

[
k2 − (k · q)2

q2

]
+O(q), (5.7)

we finally obtain

A1(q) = 2(d− 1)

∫

k

[
k2 − (k · q)2

q2

]
(k + q)2Jm(k + q)− k2Jm(k)

(k + q)2 − k2
∆m(k)∆m(k + q) +O(q).

(5.8)

Similarly, from Aµν
2 (q) we obtain

A2(q) = −
∫

k

[
d− 2 +

(k · q)2
k2q2

]
k2∆m(k)

(k + q)2
, (5.9)

while Aµν
4 (q) contributes simply

A4(q) = −(d− 1)3

d

∫

k

∆m(k). (5.10)
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The terms in Eqs. (5.8), (5.9) and (5.10) are individually non-vanishing as q2 → 0, but

their final contribution to the mass equation is controlled by the seagull identity, which forces

a large part of their sum to vanish, thus reassigning them to the kinetic term. Specifically,

if we use Eq. (3.1) to substitute the terms containing Jm in the numerator of the integral

on the rhs of Eq. (5.8), [i.e., k2J(k) = ∆−1
m (k) +m2(k)] the sum of these three terms gives

[A1 + A2 + A4](q) = [A1 + A2 + A4]kt(q) + [A1 + A2 + A4]m2(q), (5.11)

where

[A1 + A2 + A4]kt(q) = −2(d− 1)

∫

k

[
k2 − (k · q)2

q2

]
∆m(k + q)−∆m(k)

(k + q)2 − k2

−
∫

k

[
d− 2 +

(k · q)2
k2q2

]
k2∆m(k)

(k + q)2
− (d− 1)3

d

∫

k

∆m(k), (5.12)

and leaves as residual contribution

[A1+A2+A4)]m2(q) = 2(d−1)

∫

k

[
k2 − (k · q)2

q2

]
m2(k + q)−m2(k)

(k + q)2 − k2
∆m(k)∆m(k+q). (5.13)

It is now easy to verify that, by virtue of the seagull identity, the rhs of (5.12) vanishes

as q2 → 0. Indeed

[A1 + A2 + A4]kt(0) = −2(d− 1)

∫

k

sin2 θ k2∆′
m(k)−

∫

k

[
(d− 1)− sin2 θ +

(d− 1)3

d

]
∆m(k),

(5.14)

and using that [see also Eqs. (4.12) and (4.13) above]

∫

k

sin2 θ f(k) =
d− 1

d

∫

k

f(k), (5.15)

it is elementary to demonstrate that the rhs is exactly proportional to the expression on the

rhs of Eq. (4.3), and therefore vanishes.

We next consider the term A3. After taking the trace we find

A3(q) =

∫

k

P αµ(k)
(k + q)βIΓ′

ν′αβ

(k + q)2
P ν′

µ (q)∆m(k). (5.16)

When inserted into the expression for A3(q), the first term on the rhs of (3.9) will give the

result ∫

k

F (k + q)

(k + q)2
ã(q,−k − q, k) +O(q), (5.17)
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which contributes to the kinetic term, since in the q → 0 limit vanishes due to the second

identity in (A5), which in this limit gives [36]

ã(0,−k, k) = F−1(k). (5.18)

The second term on the rhs of (3.9) yields instead a surprisingly simple contribution to the

mass equation. Specifically, using the definition (2.11) we obtain

[A3]m2(q) = m̃2(q2)

∫

k

F (k + q)

(k + q)2
∆ρ

µ(k)Hσρ(q,−k − q, k)P σµ(q)

= m̃2(q2)
iΛσµ(q)

g2CA

P σµ(q)

= i
d− 1

g2CA

m̃2(q2)G(q2). (5.19)

On the other hand, the second of the background quantum identities (2.14) implies (see also

Appendix B for an alternative derivation of this result)

m̃2(q2) = [1 +G(q2)]m2(q2), (5.20)

so that one finally finds the contribution

[A3]m2(q) = i
d− 1

g2CA

G(q2)[1 +G(q2)]m2(q2). (5.21)

The next step is to substitute the above results on the rhs of the mass equation of

Eq. (5.2). In doing so, we move to the Euclidean space, by setting
∫
k
= i

∫
kE

and q2
E
= −q2,

and using

∆E(q
2
E
) = −∆(−q2

E
); m2

E
(q2

E
) = m2(−q2

E
); GE(q

2
E
) = G(−q2

E
). (5.22)

Then, from Eq. (5.13) and (5.21), we arrive at the final form of the mass equation, namely

m2(q2) =
2g2CA

1 +G(q2)

∫

k

[
k2 − (k · q)2

q2

]
m2(k + q)−m2(k)

(k + q)2 − k2
∆m(k)∆m(k + q) , (5.23)

where we have suppressed the suffix “E”.

Finally, we are now in position to address the question posed at the end of Section III,

namely what would happen if we were to introduce the gluon mass by the simple replacement

q2J(q2) → ∆−1
m (q2) carried out inside IΓ, i.e., without resorting explicitly to the vertex V

(with the crucial properties assigned to it). The basic observation is that the main bulk of

the mass equation, namely the rhs of Eq. (5.13), emerges as a residual contribution that
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survives the seagull cancellation. However, within this hypothetical scenario, the term A1(q)

in Eq. (5.8) would be instead given by

A1(q) = 2(d− 1)

∫

k

[
k2 − (k · q)2

q2

]
∆−1

m (k + q)−∆−1
m (k)

(k + q)2 − k2
∆m(k)∆m(k + q)

= −2(d− 1)

∫

k

[
k2 − (k · q)2

q2

]
∆m(k + q)−∆m(k)

(k + q)2 − k2
, (5.24)

thus, participating in the cancelation of Eq. (5.14), as before, but leaving no residual con-

tribution, i.e., [A1 +A2 +A4]m2(q) = 0. Then, the only contribution to the rhs of the mass

equation would be that of [A3]m2(q) in Eq. (5.21); this contribution would be still there,

because within this alternative scenario the full vertex IΓ′ is still assumed to satisfy the full

STIs of Eq. (3.9) [but with no reference to V ]. Therefore, the resulting mass equation [the

equivalent of Eq. (5.23)] would read

m2(q2)

[1 +G(q2)]
= 0, (5.25)

which would simply imply m2(q2) = 0, i.e., no dynamical mass generation.

VI. NUMERICAL ANALYSIS

In this section, we will first derive an approximate version of the mass equation (5.23),

which will facilitate the numerical treatment while retaining the main features of the full

equation. Then, using as input for the functions ∆(q2) and F (q2) [appearing in (5.23)] the

available lattice data, we solve the equation numerically for the gauge groups SU(2) and

SU(3), thus obtaining the (approximate) form of m2(q2). Then, using Eq. (3.1), together

with the ∆(q2) of the lattice and the m2(q2) obtained from the mass equation, we will

extract the (approximate) form of Jm(q
2). As a basic application, these ingredients will be

subsequently combined to form the gluon mass entering in the RG-invariant combination

associated with the definition of a non-Abelian effective charge.

A. Approximate version of the mass equation

We now proceed to the analysis of the mass equation (5.23). The difficulty in dealing

with this equation in its full version resides in the fact that the unknown function m2

appearing on the rhs depends on both the angular and the radial coordinates (θ and y,
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respectively). To circumvent this problem we will employ certain standard approximations,

in order to eliminate the angular integration. However, before embarking into the derivation

of the approximate version of (5.23), we can extract useful of information about the global

behavior of m2 from its q2 → 0 limit.

Specifically, let us employ the notation introduced in (4.12), and consider the limit of

Eq. (5.23) as q2 → 0. Since it is known that L(0) = 0 in four dimensions [41], Eq. (2.13)

implies that 1 +G(0) = F−1(0), so that we get

m2(0) =
3

2
g2CAF (0)

∫

k

k2[m2(k)]′∆2(k)

= −3g2CAF (0)

∫

k

m2(k)∆(k)
[
k2∆(k)

]′
. (6.1)

Obviously, in the kernel of above equation there is no dependence on θ, so that the angular

integral can be done exactly, and one is left with the final equation

m2(0) = −3CA

8π
αsF (0)

∫ ∞

0

dy m2(y)[y2∆2(y)]′, (6.2)

where αs = g2/4π and, as usual, y = k2 (the prime indicates now derivatives with respect

to y).

Equations (6.1) and (6.2) furnish a rather interesting constraint on the structure of the

full gluon propagator. Indeed, it is clear that due to the positive sign in front of the first

line of Eq. (6.1), solutions of (5.23) leading to a positive m2(0) cannot be monotonically

decreasing; or, seeing it from the point of view of Eq. (6.2), the kernel [y2∆2(y)]′ must

reverse sign and display a “sufficiently deep” negative region at intermediate momenta, in

order to obtain m2(0) > 0. This is a highly non-trivial requirement, because, to the best

of our knowledge, there is no a priori fundamental reason why the full gluon propagator

propagator should show this particular behavior.

We now proceed to the derivation of an approximate version of (5.23) that will reproduce

in the q2 → 0 limit Eq. (6.1), and therefore implement the important constraint that this

equation entails.

Let us then denote by R(q) the integral appearing on the rhs of (5.23); using the simple

identity

(k · q)2 = 1

4

{
[(k + q)2 − k2]2 − 2q2[(k + q)2 − k2] + (q2)2

}
, (6.3)

we see that the second term above, when inserted back into R(q), vanishes upon integration,
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and therefore one is left with

R(q) = R1(q) +R2(q), (6.4)

where

R1(q) =

∫

k

(
k2 − q2

4

)
m2(k + q)−m2(k)

(k + q)2 − k2
∆m(k)∆m(k + q),

R2(q) = − 1

2q2

∫

k

m2(k)[(k + q)2 − k2]∆m(k)∆m(k + q). (6.5)

To cast R1(q) and R2(q) into a form suitable for solving the corresponding dynamical

equation, we first introduce the by now familiar spherical coordinates and then split the

radial integration into two intervals
∫ ∞

0

dy =

∫ x

0

dy +

∫ ∞

x

dy, (6.6)

so that in the second integral since y > x always, we can expand the integrand according

to (4.14). Proceeding in this way, and observing that partial integration gives
∫ ∞

x

dy y2[m2(y)]′∆2(y) = −m2(x)x2∆2(x)−
∫ ∞

x

dy m2(y)[y2∆2(y)]′ (6.7)

we obtain

16π2R1(x) ≈ ∆(x)

∫ x

0

dy y
(
y − x

4

) m2(x)−m2(y)

x− y
∆(y)−m2(x)x2∆2(x)

−
∫ ∞

x

dy m2(y)[y2∆2(y)]′,

16π2R2(x) ≈ 1

2

∫ x

0

dy y m2(y)
(
1− y

x

)
∆2(y) +

1

4

∫ ∞

x

dy m2(y)[y2∆2(y)]′. (6.8)

Finally, since as shown in [41, 42], L(x) is considerably smaller than G(x) in the entire

range of (Euclidean) momenta, we can use the approximation 1 +G(x) ≈ F−1(x); thus, we

obtain the approximate equation

m2(x) = m2(0)
F (x)

F (0)
+

αsCA

2π
F (x)R(x), (6.9)

with

R(x) =
1

2

∫ x

0

dy ym2(y)
(
1− y

x

)
∆2(y) + ∆(x)

∫ x

0

dy y
(
y − x

4

) m2(x)−m2(y)

x− y
∆(y)

− m2(x) x2∆2(x) +
3

4

∫ x

0

dym2(y)[y2∆2(y)]′, (6.10)

and m2(0) given in Eq. (6.2). Evidently,R(0) = 0.
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FIG. 6: Lattice results for the SU(3) (left) and SU(2) (right) gluon propagator, renormalized at

µ = 4.3 GeV and µ = 2.2 GeV respectively. The continuous lines represents our best fits to the

data obtained from Eq. (6.11).

B. Lattice ingredients: Gluon propagator and ghost dressing function

The two main ingredients of the mass equation (6.9) are the gluon propagator ∆(q2)

and the ghost dressing function F (q2). Of course, ∆(q2) is composed by J(q2) and m2(q2),

as dictated by Eq. (3.1), but, as mentioned in the Introduction, the derivation of the cor-

responding equation for J(q2) is beyond our powers at this point, mainly due to lack of

knowledge of certain of its ingredients. Similarly, F (q2) satisfies its own SDE (see, e.g.,

[41]), which would furnish yet another equation in a complicated coupled system. For the

purposes of the present work, which is the preliminary scrutiny of the mass equation (6.9)

appearing for the first time in the literature, we will instead resort to the high quality lattice

data available, and use them as inputs inside (6.9).

In order to do that, we start by showing on the left panel of Fig. 6 the lattice data for

∆(q2) obtained in [6], corresponding to a SU(3) quenched lattice simulation, renormalized

at µ = 4.3 GeV; on the right panel of the same figure, we show the quenched SU(2) lattice

data obtained in [1], renormalized at µ = 2.2 GeV.

As has been discussed in detail in the literature [10, 12, 16], both sets of lattice data can

be accurately fitted in terms of a IR finite gluon propagator of the form [43]

∆−1(q2) = M2(q2) + q2
[
1 +

13CAg
2
1

96π2
ln

(
q2 + ρ1 M

2(q2)

µ2

)]
, (6.11)
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FIG. 7: Lattice results for the SU(3) (left) and SU(2) (right) ghost dressing function, renormalized

at µ = 4.3 GeV and µ = 2.2 GeV respectively. The continuous lines represent our best fits to the

data obtained from Eq. (6.13).

where [49]

M2(q2) =
m4

0

q2 + ρ2m2
0

. (6.12)

The function M2(q2) controls the value of ∆−1(q2) at the origin; evidently,

∆−1(0) = M2(0) = m2
0/ρ2. The best fits (shown by the continuous lines in Fig. 6) corre-

spond to the following values of the fitting parameters:

• SU(3) case: m0 = 520 MeV, g21 = 5.68, ρ1 = 8.55, ρ2 = 1.91;

• SU(2) case: m0 = 867 MeV, g21 = 10.80, ρ1 = 1.96, ρ2 = 2.68.

Turning next to the ghost dressing function, on the left panel of Fig. 7, we show the

SU(3) lattice results of [6], renormalized as before at µ = 4.3 GeV; on the right panel we

plot instead the results for the SU(2) case [1], renormalized at µ = 2.2 GeV. As can be

clearly seen, both functions saturate in the deep IR at the constant value [12, 50, 51], and

can therefore be fitted in terms of the expression

F−1(q2) = 1 +
9

4

CAg
2
2

48π2
ln

(
q2 + ρ3M

2(q2)

µ2

)
, (6.13)

with M2(q2) given by Eq. (6.12), but changing the parameter ρ2 → ρ4.

The best values for the fitting parameters are:

• SU(3) case: g22 = 8.57, m = 520 MeV, ρ3 = 0.25, ρ4 = 0.68;

• SU(2) case: g22 = 15.03, m = 523 MeV, ρ3 = 0.21, ρ4 = 0.78.
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FIG. 8: The kernel [q4∆2(q2)]′ appearing in Eq. (6.2) obtained from the SU(3) (left) and SU(2)

(right) lattice data. In both cases one clearly sees the behavior expected for getting a positive

value for m2(0). The zero crossing happens at q20 ≈ 0.85 and q20 ≈ 1.1 respectively.

C. Solutions of the mass equation and extraction of Jm(q2)

After presenting the precise form of ∆(q2) and F (q2), the next task is to find solutions

of the approximate mass equation (6.9).

To begin with, we compute (for both gauge groups considered) the derivative of the

gluon dressing squared, [y2∆2(y)]′, entering into the condition (6.2). As mentioned earlier,

the behavior of this quantity provides a rather direct criterion for the existence or not of

positive-definite mass solutions, and in particular m2(0) > 0. Specifically, the absence of a

negative region from this derivative immediately excludes such solutions, while a relatively

shallow “well” makes their existence unlikely.

In the results shown in Fig. 8 we clearly see that both derivatives change their sign

in the intermediate momenta region, which, as previously explained, constitutes precisely

the required behavior. This behavior is to be contrasted with that of simple propagators,

such as 1/(q2 +m2), or the Gribov-Zwanziger propagator q2/(q4 +m4) [37, 38], which fail

to provide the necessary negative region (in fact the derivative is positive everywhere). It

should be noted that, instead, the “refined” version of the Gribov-Zwanziger propagator [52]

is expected to furnish a considerable negative region, given that it is known to provide a

good fit to the lattice data.

Of course, the aforementioned criterion can only serve as a necessary but not sufficient
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FIG. 9: The solution for m2(q2) obtained through the approximate mass equation (6.9) for SU(3)

(left) and SU(2) (right).

condition: to get a positive definite value for m2(0) one still needs to demonstrate that the

negative region q2 > q20 (with q20 the value where the curve is zero) furnishes more support

to the integral of Eq. (6.2) than its positive region.

To proceed with the actual determination of m2(x) from Eq. (6.9), we substitute the

quantities ∆(y), F (y) and CA for the SU(3) and SU(2) gauge groups and solve for the

unknown function. In both cases the value of m2(0) is a boundary condition, fixed through

the value of the corresponding lattice gluon propagator at the origin, i.e., m2(0) = ∆−1(0).

Specifically, for SU(3) we have that ∆−1(0) ≈ 0.14 while for SU(2) ∆−1(0) ≈ 0.28

The solutions obtained are shown in Fig. 9; the values for αs needed to satisfy the

boundary condition are αs = 0.59 and αs = 3.2 for SU(3) and SU(2) respectively. Notice

that the masses corresponding to both gauge groups display the same qualitative behavior,

and, as expected, are clearly non-monotonic functions of the momentum.

From the solutions for m2(q2) obtained above, and the lattice results for ∆(q2), we may

now extract the approximate form of the “kinetic term”, Jm(q
2). Specifically, Jm(q

2) can be

determined (in Euclidean space) through Eq. (3.1), namely

Jm(q
2) =

∆−1(q2)−m2(q2)

q2
, (6.14)

Notice that special care must be taken in the q2 → 0 limit of Eq. (6.14). In the region

of small momenta, Eq. (6.14) has a delicate cancellation between the denominator and the

numerator, which also tends to zero in this limit, since ∆−1(q2) → m2(0). In order to avoid

29



1E-3 0.01 0.1 1 10 100 1000
0.0

0.4

0.8

1.2

1.6

2.0

 

 
J m

(q
2 )

q2[GeV2]

SU(3)
 Jm(q2)
 extrapolation

1E-3 0.01 0.1 1 10 100 1000

0.4

0.8

1.2

1.6

2.0

2.4

2.8

 

 

J m
(q

2 )

q2[GeV2]

SU(2)
 Jm(q2)
 extrapolation

FIG. 10: Values of Jm(q2) obtained from Eq. (6.14) (white circles) using the SU(3) gluon propa-

gator and the corresponding extrapolation towards the q2 → 0 limit (continuous line). As usual

we show both the SU(3) (left) and the SU(2) cases.

spurious distortion in the IR behavior of Jm(q
2), we will extract Jm(q

2) until certain (small)

value of q2 past which we will do an extrapolation towards q2 → 0. The results of this

procedure are shown in Fig. 10, where, for both the SU(3) (left) and the SU(2) (right)

cases, we display the points obtained directly from Eq. (6.14) as well as our extrapolation

curves.

Knowledge of m2(q2) and Jm(q
2) allows one to determine the approximate form of the

(formally) RG-invariant gluon mass that appears naturally in the definition of the QCD

effective charge [16, 21, 22, 53]. Let us recall that, due to the Abelian WIs satisfied by the

PT-BFM Green’s functions, the propagator ∆̂(q2) absorbs all the RG logarithms, exactly

as happens in QED with the photon self-energy. As a result, the product

d 0(q
2) ≡ g20∆̂0(q

2) = g2∆̂(q2) ≡d (q2), (6.15)

forms a RG-invariant (µ-independent) quantity. As has been explained in the recent litera-

ture [15],d (q2) may be cast in the form

d (q2) =
g2(q2)

q2 +m2(q2)
, (6.16)

with

g2(q2) = g2Ĵ−1
m (q2),

m2(q2) = m̂2(q2)Ĵ−1
m (q2). (6.17)
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FIG. 11: The RG-invariant mass, m2(q2), defined in Eq. (6.20) for the SU(3) (left) and SU(2)

(right) cases.

The two factors defined above are individually RG-invariant; the dimensionful quantity

corresponds to a massive propagator with a momentum dependent mass, while the dimen-

sionless factor g2(q2)/4π defines the effective charge.

Next, using the BQIs (2.14) to relate the components of ∆̂(q2) to the corresponding ones

of ∆(q2), we get

Ĵm(q
2) = [1 +G(q2)]2Jm(q

2),

m̂2(q2) = [1 +G(q2)]2m2(q2), (6.18)

and therefore

m̂2(q2)Ĵ−1
m (q2) = m2(q2)J−1

m (q2), (6.19)

which finally furnishes the relation

m2(q2) = m2(q2)J−1
m (q2). (6.20)

We are now in the position to determine the mass m2(q2) by simply forming the ratio

of the plots presented in Fig. 9 and 10. The result is shown in Fig. 11; as can be seen,

in the SU(3) case m2(q2) corresponds roughly to a monotonically decreasing function (see

also [54]), with m(0) ≈ 580MeV. Finally, for the SU(2) case we obtain m(0) ≈ 480MeV.
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VII. DISCUSSION AND CONCLUSIONS

In the present work we have derived the dynamical equation that determines the evolution

of the gluon mass in the Landau gauge, using as our starting point the “one-loop dressed”

SDE for the gluon propagator in the PT-BFM scheme. The entire construction hinges on the

crucial assumption that a special vertex, denoted by V , is dynamically generated, according

to the philosophy and formalism associated with the Schwinger mechanism. The role of

this vertex is to maintain gauge invariance (as expressed through the STIs satisfied by the

Green’s functions of the theory) in the presence of a dynamical mass. Interestingly enough,

the derivation of the mass equation does not depend on the specific closed form of that

vertex.

The equation for the gluon mass derived here, given in (5.23), and in particular its limit

in the deep IR, imposes a rather strong constraint on the form of the full gluon propagator in

the region of intermediate momenta of about (1-5) GeV2. In this specific range of momenta

the shape of the gluon propagator must be such that the derivative of the square of the

gluon dressing function [q4∆2(q2)]′ becomes sufficiently negative, thus ensuring eventually

the positivity of the gluon mass.

We emphasize that the central result of this article, Eq. (5.23), does not exhaust all pos-

sible contributions to the gluon mass equation. Specifically, Eq. (5.23) captures only the

part of the equation originating from the “one-loop dressed” gluon SDE. In order to deter-

mine the corresponding contribution coming from the “two-loop dressed” gluon SDE one

must identify the seagull cancellation mechanism (and the corresponding “seagull-identity”)

that operates at the “two-loop dressed” level. The identification of the “two-loop dressed”

analogue of Eq. (4.3) requires (among other things) some very specific information on the

structure of the four-gluon vertex, at least in the special kinematic limit of vanishing external

momentum. Calculations in this direction are already in progress.

It is important to warn the reader about some additional limitations afflicting the present

work, related to the renormalization properties of the mass equation, and the dependence of

the various quantities, most importantly of the gluon mass, on the renormalization point µ.

When dealing with the mass equation of Eq. (5.23) we have tacitly assumed that the mul-

tiplicative renormalization has been carried out, thus rendering all quantities finite (but µ-

dependent). In carrying out the SDE renormalization one usually resorts to the momentum-
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subtraction (MOM) scheme; in our case this choice is further motivated by the additional

fact that this is the scheme employed for the renormalization of the lattice data that are

used as input into Eq. (5.23). Of course, given the gluon mass in the Landau gauge is not a

RG-invariant quantity, there is a residual dependence on µ, which, in principle, should cancel

out against analogous contributions when a RG-invariant combination is formed (this type

of powerful cancellation has been presented in [41] for the QCD effective charge). However,

the approximations employed in the process of the renormalization may distort the exact

dependence on µ. Specifically, the renormalized version of Eq. (5.23) displays a dependence

on some of the renormalization constants Z involved, as happens typically in the treatment

of SDEs. This fact in itself is normal, but makes the further treatment ambiguous, because

the correct cancellation of the residual dependence on the UV cutoff (induced by the pres-

ence of the Z) requires the knowledge (among other things) of the transverse (automatically

conserved) part of the full vertex IΓ [36]. Therefore, the next step has been to set Z = 1,

a fact which, in general, is known to alter the dependence of the solution (in this case of

m2 ) on µ. In fact, the situation appears to be very similar to what happens typically in

the studies of chiral symmetry breaking through the standard gap equation. In this latter

context, the various approximations associated with renormalization introduce characteristic

artifacts; for example, the value of the anomalous dimension of the dynamical quark mass

is distorted, a problem that is usually compensated by modifying accordingly (by hand) the

kernel of the gap equation. Needless to say, it would be very important to improve on any

of the above points, but at present this appears to be technically rather difficult.

Given that the existence of a non-trivial vertex V is of central importance, it would

be absolutely essential to establish its existence. This can be done following two distinct

but complementary approaches. First, one may write down the most general longitudinal

structure allowed by Lorentz symmetry and then use the WI and STIs that the V is supposed

to satisfy [e.g., (3.5)] to actually determine the form of the various form factors, in the spirit

of [36]. Second, one may address the dynamical question of whether such a nonperturbative

vertex may be actually produced by the strongly coupled Yang-Mills theory. In fact, the

main characteristic of the vertex V , which sharply differentiates it from ordinary vertex

contribution, is that it contains massless bound-state poles. In principle, the dynamical

formation of such poles must be studied by means of a homogeneous Bethe-Salpeter equation,

following the methodology developed in [31–33]. We hope to be able to pursue some of these
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points in the near future.
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Appendix A: Explicit form of the vertex IΓ and IΓm

The longitudinal part of the vertex IΓ (and therefore also that of IΓm) has been con-

structed in [36] by simultaneously solving the Ward and Slavnov-Taylor identities presented

in Eq. (2.19); for the kinematics, see Fig. 2. Specifically, the longitudinal part is written as

IΓαµν(q, r, p) =
10∑

i=1

Xi(q, r, p)ℓ
αµν
i (q, r, p), (A1)

in the standard basis ℓi of [39]

ℓαµν1 = (q − r)νgαµ ℓαµν2 = −pνgαµ ℓαµν3 = (q − r)ν[qµrα − (q · r)gαµ]
ℓαµν4 = (r − p)αgµν ℓαµν5 = −qαgµν ℓαµν6 = (r − p)α[rνpµ − (r · p)gµν ]
ℓαµν7 = (p− q)µgαν ℓαµν8 = −rµgαν ℓαµν9 = (p− q)µ[pαqν − (p · q)gαν ]
ℓαµν10 = qνrαpµ + qµrνpα.

(A2)

and the Xi are given by

X1(q, r, p) =
1

4
J̃(q2)

{
−p2bprqF (r2) + [2arpq + p2brpq + 2(q · r)drpq]F (p2)

}

+
1

4
J(r2)

[
2 + (r2 − q2)̃bqprF (p2)

]
+

1

4
J(p2) p2 b̃qrpF (r2)

X2(q, r, p) =
1

4
J̃(q2)

{
(q2 − r2)bprqF (r2) + [2arpq + (r2 − q2)brpq + 2(q · r)drpq]F (p2)

}

+
1

4
J(r2)

[
−2 + p2b̃qprF (p2)

]
+

1

4
J(p2) (r2 − q2) b̃qrpF (r2)

X3(q, r, p) =
F (p2)

q2 − r2

{
J̃(q2) [arpq − (q · p)drpq]− J(r2)

[
ãqpr − (r · p)d̃qpr

]}

X4(q, r, p) =
1

4
J̃(q2)q2

[
bprqF (r2) + brpqF (p2)

]
+

1

4
J(r2)

[
2− q2b̃qprF (p2)

]

+
1

4
J(p2)

[
2− q2b̃qrpF (r2)

]
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X5(q, r, p) =
1

4
J̃(q2)(p2 − r2)

[
bprqF (r2) + brpqF (p2)

]
+

1

4
J(r2)

[
2 + (r2 − p2)̃bqprF (p2)

]

− 1

4
J(p2)

[
2 + (p2 − r2)̃bqrpF (r2)

]

X6(q, r, p) =
J(r2)− J(p2)

r2 − p2

X7(q, r, p) = X1(q, p, r)

X8(q, r, p) = −X2(q, p, r)

X9(q, r, p) = X3(q, p, r)

X10(q, r, p) =
1

2

{
J̃(q2)

[
bprqF (r2)− brpqF (p)

]
+ J(r2)F (p2)̃bqpr − J(p2)F (r2)̃bqrp

}
. (A3)

The functions aqrp ≡ a(q, r, p), etc are the form factors appearing in the tensorial decompo-

sition of the ghost-gluon kernels Hνµ(p, r, q) and H̃νµ(p, r, q), namely

Hνµ(p, r, q) = gµνaqrp − rµqνbqrp + qµpνcqrp + qνpµdqrp + pµpνeqrp, (A4)

and similarly for H̃. They satisfy the non-trivial all-order constraints

F (r2)[aprq − (r · p)bprq + (q · p)dprq] = F (p2)[arpq − (r · p)brpq + (q · r)drpq],

F (r2)[ãqrp − (q · r)̃bqrp + (q · p)d̃qrp] = 1. (A5)

Appendix B: On the relation between m̃2(q2) and m2(q2)

In Section V we have assumed that the relation (5.20) between the masses m̃(q) and

m(q) holds. This is tantamount to claiming that the BQIs (2.14) hold after dynamical mass

generation has taken place.

To further substantiate this claim, let us consider the SDE for the QB gluon self-energy

Π̃. If we keep dressed the background side of the equation, we can still truncate meaningfully

the SDE retaining only the one-loop dressed gluon contributions, which now read

(b1)µν =
1

2
g2CA

∫

k

Γ
(0)
µαβ(q, k,−k − q)∆αρ(k)∆βσ(k + q)Γ̃νρσ(q, k,−k − q),

(b2)µν = g2CA

[
gµν

∫

k

∆ρ
ρ(k)−

∫

k

∆µν(k)

]
. (B1)

The projection to the Landau gauge gives rise to three terms only, which coincide with A1,

A2 and A4 of Eq. (2.16). Then writing

∆̃−1(q2) ≡ q2J̃(q2)− m̃2(q2) = q2 + iΠ̃(q2), (B2)
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it is relatively straightforward to establish that the rhs of the equation for m̃ is determined

by the the mass term of A1 only. Specifically, using the result (5.13) one has (Euclidean

space)

m̃2(q2) = 2g2CA

∫

k

[
k2 − (k · q)2

q2

]
m2(k + q)−m2(k)

(k + q)2 − k2
∆m(k)∆m(k + q)

=
g2CA

d− 1
[A1 + A2 + A4]m2 , (B3)

where in the last step we have used Eq. (5.13).

Substituting the above result, together with (5.19), into Eq. (5.2), we find

m2(q2) =
m̃2(q2)

[1 +G(q2)]2
+

m̃2(q2)G(q2)

[1 +G(q2)]2

=
m̃2(q2)

1 +G(q2)
, (B4)

namely the relation of Eq. (5.20).
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