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9 Non-perturbative QCD effective charges
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Using gluon and ghost propagators obtained from Schwinger-Dyson equations (SDEs), we construct the non-
perturbative effective charge of QCD. We employ two different definitions, which, despite their distinct field-
theoretic origin, give rise to qualitative comparable results, by virtue of a crucial non-perturbative identity.
Most importantly, the QCD charge obtained with either definition freezes in the deep infrared, in agreement with
theoretical and phenomenological expectations. The various theoretical ingredients necessary for this construction
are reviewed in detail, and some conceptual subtleties are briefly discussed.

1. Introduction

One of the challenges of the QCD is the self-
consistent and physically meaningful definition
of an effective charge. This quantity provides
a continuous interpolation between two physi-
cally distinct regimes: the deep ultraviolet (UV),
where perturbation theory works well, and the
deep infrared (IR), where non-perturbative tech-
niques, such as lattice or SDEs, must be em-
ployed. The effective charge depends strongly on
the detailed dynamics of some of the most fun-
damental Green’s functions of QCD, such as the
gluon and ghost propagators [1].

In this talk we will focus on two characteris-
tic definitions of the effective charge, frequently
employed in the literature. Specifically we will
consider (i) the effective charge of the pinch tech-
nique (PT) [2,3] and (ii) the one obtained from
the ghost-gluon vertex [4].

2. Two non-perturbative effective charges

We first introduce the notation and the basic
quantities entering into our study. In the covari-
ant renormalizable (Rξ) gauges, the gluon prop-
agator ∆µν(q) has the form

∆µν(q) = −i

[
Pµν(q)∆(q2) + ξ

qµqν

q4

]
, (1)

where ξ denotes the gauge-fixing parame-
ter, Pµν(q) = gµν − qµqν/q2 is the usual trans-
verse projector, and ∆−1(q2) = q2 + iΠ(q2), with
Πµν(q) = Pµν(q)Π(q2) the gluon self-energy. In
addition, the full ghost propagator D(q2) and
its dressing function F (q2) are related by
iF (q2) = q2D(q2). The all-order ghost vertex will
be denoted by IΓµ(k, q), with k representing the
momentum of the gluon and q the one of the anti-

ghost; at tree-level IΓ
(0)
µ (k, q) = −qµ.

An important ingredient for what follows is the
two-point function Λµν(q) defined by [1,5]

iΛµν(q) = λ

∫

k

H(0)
µρ D(k + q)∆ρσ(k)Hσν(k, q),

= gµνG(q2) +
qµqν

q2
L(q2), (2)

where λ = g2CA, CA is the Casimir eigen-
value of the adjoint representation, and∫

k
≡ µ2ε(2π)−d

∫
ddk, with d the dimension of

space-time. Hµν(k, q) is represented in Fig. 1, and

its tree-level, H
(0)
µν = igµν . In addition, Hµν(k, q)

is related to IΓµ(k, q) by

qνHµν(k, q) = −iIΓµ(k, q) . (3)

2.1. The pinch technique effective charge

The PT definition of the effective charge relies
on the construction of an universal (i.e., process-
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Hσν(k, q) = H(0)
σν +

k, σ

k + q

q

ν

Figure 1. Diagrammatic representation of H .

independent) effective gluon propagator, which
captures the running of the QCD β function, ex-
actly as happens with the vacuum polarization in
the case of QED [2,6] (See Fig. 2). One impor-
tant point, explained in detail in the literature,
is the (all-order) correspondence between the PT
and the Feynman gauge of the BFM [2,7]. In fact,
one can generalize the PT construction [2] in such
a way as to reach diagrammatically any value of
the gauge fixing parameter of the BFM, and in
particular the Landau gauge. In what follows we
will implicitly assume the aforementioned gener-
alization of the PT, given that the main identity
we will use to relate the two effective charges is
valid only in the Landau gauge.

To fix the ideas, the PT one-loop gluon self-
energy reads

∆̂−1(q2) = q2

[
1 + bg2 ln

(
q2

µ2

)]
, (4)

where b = 11CA/48π2 is the first coefficient of the
QCD β-function. Due to the Abelian WIs sat-
isfied by the PT effective Green’s functions, the
new propagator-like quantity ∆̂−1(q2) absorbs all
the RG-logs, exactly as happens in QED with
the photon self-energy. Then, the renormaliza-
tion constants of the gauge-coupling and of the
PT gluon self-energy, defined as

g(µ2) = Z−1
g (µ2)g0,

∆̂(q2, µ2) = Ẑ−1
A (µ2)∆̂0(q

2), (5)

where the “0” subscript indicates bare quantities,

satisfy the QED-like relation Zg = Ẑ
−1/2
A . There-

fore, the product

d̂0(q
2) = g2

0∆̂0(q
2) = g2(µ2)∆̂(q2, µ2) = d̂(q2), (6)

forms a RG-invariant (µ-independent) quan-
tity [2]. For asymptotically large momenta one

̂∆ ̂∆ ̂∆

(a) (b) (c)

g gg
g2g2

g

Figure 2. The universal PT coupling.

may extract from d̂(q2) a dimensionless quantity
by writing,

d̂(q2) =
g2(q2)

q2
, (7)

where g2(q2) is the RG-invariant effective charge
of QCD; at one-loop

g2(q2) =
g2

1 + bg2 ln (q2/µ2)
=

1

b ln
(
q2/Λ2

QCD

) . (8)

where ΛQCD denotes an RG-invariant mass scale
of a few hundred MeV.

Eq. (6) is a non-perturbative relation; there-
fore it can serve unaltered as the starting point
for extracting a non-perturbative effective charge,
provided that one has information on the IR be-
havior of the PT-BFM gluon propagator ∆̂(q2).
Interestingly enough, non-perturbative informa-
tion on the conventional gluon propagator ∆(q2)
may also be used, by virtue of a general rela-
tion connecting ∆(q2) and ∆̂(q2). Specifically, a
formal all-order relation known as “background-
quantum” identity [8] states that

∆(q2) =
[
1 + G(q2)

]2
∆̂(q2). (9)

Note that, due to its BRST origin, the above re-
lation must be preserved after renormalization.
Specifically, denoting by ZΛ the renormalization
constant relating the bare and renormalized func-
tions, Λµν

0 and Λµν , through

gµν + Λµν(q, µ2) = ZΛ(µ2)[gµν + Λµν
0 (q)], (10)

then from (9) and Zg = Ẑ
−1/2
A follows the addi-

tional relation

Z−1
g = Z

1/2
A ZΛ, (11)

which is useful for the comparison with the cou-
pling discussed in the following subsection.

It is now easy to verify, at lowest order, that
the 1 + G(q2) obtained from Eq. (2) restores the
β function coefficient in front of UV logarithm.
In that limit [5]

1 + G(q2) = 1 +
9

4

CAg2

48π2
ln

(
q2

µ2

)
,

∆−1(q2) = q2

[
1 +

13

2

CAg2

48π2
ln

(
q2

µ2

)]
. (12)
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Using Eq. (9) we therefore recover the ∆̂−1(q2) of
Eq. (4), as we should.

Then, non-perturbatively, one substitutes into
Eq. (9) the 1 + G(q2) and ∆(q2) obtained from

either the lattice or SD analysis, to obtain ∆̂(q2).
This latter quantity is the non-perturbative gen-
eralization of Eq. (4); for the same reasons ex-
plained above, the combination

d̂(q2) =
g2∆(q2)

[1 + G(q2)]2
, (13)

is an RG-invariant quantity.

2.2. The ghost-gluon vertex charge

In principle, a definition for the QCD effective
charge can be obtained starting from the vari-
ous QCD vertices; however, in general, such a
construction involves more than one momentum
scales, and further assumptions about their values
need be introduced, in order to express the charge
as a function of a single variable. The ghost-gluon
vertex has been particularly popular in this con-
text, especially in conjunction with Taylor’s non-
renormalization theorem and the corresponding
kinematics [4].

We next define the following renormalization
constants

∆(q2) = Z−1
A ∆0(q

2), F (q2) = Z−1
c F0(q

2),

IΓν(k, q) = Z1IΓ
ν
0(k, q), g′ = Z−1

g′ g0 . (14)

Notice that a priori Zg′ defined as

Zg′ = Z1Z
−1/2
A Z−1

c , does not have to coincide
with the Zg introduced in (5); however, as we
will see shortly, they do coincide by virtue of the
basic identity we will derive in next section.

It turns out that for the so-called Taylor kine-
matics (vanishing incoming ghost momentum,
kµ → −qµ), one may impose the additional con-
dition

Z1 = Zg′Z
1/2
A Zc = 1 ⇒ Z−1

g′ = Z
1/2
A Zc . (15)

Thus, the combination

r̂(q2) = g′
2
∆(q2)F 2(q2) , (16)

is a RG-invariant (µ-independent) quantity.
Therefore, for asymptotically large q2, in anal-

( )−1 = ( )−1 +

k

q q q k + q

Figure 3. The SDE for the ghost propagator.

ogy to Eq. (7) one can define an alternative QCD
running coupling as

r̂(q2) =
g2
gh(q2)

q2
. (17)

It is easy to verify that g2
gh(q2) and g2(q2) displays

the same one-loop behavior, since, perturbatively,
the function 1 + G(q2) is the inverse of the ghost
dressing function F (q2) (this is due to the general
identity of Eq. 20).

3. An important identity

In this section, we discuss a non-trivial identity,
valid only in the Landau gauge, relating the F (q2)
with the G(q2) and L(q2) of (2).

The derivation proceeds as follows. First, con-
sider the standard SD equation for the ghost
propagator, represented in Fig. 3, and written as

iD−1(q2) = q2+iλ

∫

k

Γµ∆µν(k)IΓν(k, q)D(p), (18)

where p = k + q. Then, contract both sides of the
defining equation (2) by the combination qµqν to
get

[G(q2)+L(q2)]q2=λ

∫

k

qρ∆
ρσ(k) qνHσν(k, q)D(p).(19)

Using the Eq. (3) and the transversality of the
full gluon propagator, we can see that the rhs of
Eq. (19) is precisely the integral appearing in the
ghost SDE (18). Therefore, in terms of the ghost
dressing function F (q2),

1 + G(q2) + L(q2) = F−1(q2). (20)

Eq. (20), derived here from the SDEs, has been
first obtained in [9], as a direct consequence of
the BRST symmetry.

Let us study the functions G(q2) and L(q2)
more closely. From Eq. (2) we have that (in d
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dimensions)

G(q2) =
1

(d − 1)q2

(
q2Λµ

µ − qµqνΛµν

)
,

L(q2) =
1

(d − 1)q2

(
dqµqνΛµν − q2Λµ

µ

)
. (21)

In order to study the relevant equations fur-
ther, we will approximate the two vertices, Hµν

and IΓµ, by their tree-level values, Then, setting
f(k, q) ≡ (k · q)2/k2q2, one may show that [1]

F−1(q2)= 1 + λ

∫

k

[1−f(k, q)]∆(k)D(k + q),

(d − 1)G(q2)= λ

∫

k

[(d − 2)+f(k, q)]∆(k)D(q + k),

(d − 1)L(q2)= λ

∫

k

[1−d f(k, q)]∆(k)D(q + k) ,(22)

It turns out that if F and ∆ are both IR finite,
Eq. (22) yields the important result L(0) = 0 [1].

Of course, all quantities appearing in Eq. (22)
are unrenormalized. It is easy to recognize, for
example, by substituting in the corresponding in-
tegrals tree-level expressions, that F−1(q2) and
G(q2) have exactly the same logarithmic depen-
dence on the UV cutoff, while L(q2) is finite at
leading order.

Since the origin of (20) is the BRST symme-
try, it should not be deformed after renormaliza-
tion. To that end, using the definition of (10), in
order to preserve the relation (20) we must im-
pose that ZΛ = Zc. In addition, by virtue of (3),
and for the same reason, we have that, in the
Landau gauge, IΓν(k, q) and Hσν(k, q) must be
renormalized by the same renormalization con-
stant, namely Z1 [viz. Eq. (14)]; for the Taylor
kinematics, we have that Z1 = 1 [see Eq. (15)]
(for some additional subtleties see [1]).

Returning to the effective charges, first of all,
comparing Eq. (6) and Eq. (16), it is clear that
g(µ) = g′(µ), by virtue of ZΛ = Zc. Therefore,
using Eq. (9), one can get a relation between

the two RG-invariant quantities, r̂(q2) and d̂(q2),
namely

r̂(q2) = [1 + G(q2)]2F 2(q2)d̂(q2). (23)

From this last equality follows that αPT(q2) and
αgh(q2) are related by

αgh(q2) = [1 + G(q2)]2F 2(q2)αPT(q2) . (24)
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Figure 4. Numerical solutions for the gluon prop-
agator.

After using Eq. (20), we have that

αPT(q2) = αgh(q2)

[
1 +

L(q2)

1 + G(q2)

]2

. (25)

Evidently, the two couplings can only coincide at
two points: (i) at q2 = 0, where, due to the fact
that L(0) = 0, we have that αgh(0) = αPT(0),
and (ii) in the deep UV, where L(q2) approaches
a constant.

4. The nonperturbative analysis

We next turn to the dynamical information re-
quired for the various ingredients entering into
the effective charges defined above. To that end,
we solve numerically the system of SDEs for
∆(q2) F (q2), G(q2) and L(q2) obtained in [5]

In Figs. (4) and (5) we show the results
for ∆(q2) and F (q2) renormalized at three
different points, µ = {4.3, 10, 22} GeV with
α(µ2) = {0.21, 0.16, 0.13} respectively. On the
right panel we plot the corresponding F (q2)
renormalized at the same points. Notice that the
solutions obtained are in qualitative agreement
with recent results from large-volume lattices [10]
where the both quantities, ∆(q2) and Fq2), reach
finite (non-vanishing) values in the deep IR.

The results for 1 + G(q2) and L(q2), renor-
malized at the same points, are presented in
Fig. 6. As we can see, the function 1 + G(q2)
is also IR finite exhibiting a plateau for values
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Figure 5. Numerical solutions for the ghost dress-
ing function.

of q2 < 0.1GeV2. In the UV region, we instead
recover the perturbative behavior (12). On the
other hand, L(q2), Fig. 7, shows a maximum in
the intermediate momentum region, while, as ex-
pected, L(0) = 0.

With all ingredients defined, the first thing one
can check is that indeed Eq. (13) gives rise to a
RG-invariant combination. Using the latter def-
inition, we can combine the different data sets
for ∆(q2) and [1 + G(q2)]2 at different renormal-
ization points, to arrive at the curves shown in
Fig. 8. Indeed, we see that all curves, for differ-
ent values of µ, merge one into the other proving
that the combination d̂(q2) is independent of the
renormalization point chosen.
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Figure 6. 1 + G(q2) determined from Eq. (22).

1E-4 1E-3 0,01 0,1 1 10 100 1000 10000
0,000

0,005

0,010

0,015

0,020

0,025

0,030

L(q2)
 ( 2) = 0.21 and  = 4.3 GeV 
 ( 2) = 0.16 and  = 10  GeV 
 ( 2) = 0.13 and  = 22  GeV 

 

 

L(
q2 )

q2[GeV2]

Figure 7. L(q2) determined from Eq. (22)
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Figure 8. The d̂(q2) obtained by combining ∆(q2)
and [1 + G(q2)]2according to (13).

From the dimensionful d̂(q2) we must now ex-
tract a dimensionless factor, g2(q2), correspond-
ing to the running coupling (effective charge).
Given that ∆(q2) is IR finite (no more “scal-
ing”!), the physically meaningful procedure is

to factor out from d̂(q2) a massive propagator
[q2 + m2(q2)]−1,

d̂(q2) =
g2(q2)

q2 + m2(q2)
, (26)

where for the mass we will assume “power-law”
running [11], m2(q2) = m4

0/(q2 + m2
0).

Thus, it follows from Eq. (26), that the effective
charge αPT = g2(q2)/4π is identified as being

4παPT(q2) = [q2 + m2(q2)]d̂(q2), (27)



6

1E-3 0,01 0,1 1 10 100 1000
0,1

0,2

0,3

0,4

0,5

0,6

 

 

q2[GeV]

 PT(q
2)

 gh(q
2)

Figure 9. αgh(q2) vs αPT(q2), for m0 = 500 MeV.

Finally we compare numerically the two effec-
tive charges, αPT(q2) and αgh(q2) in Fig. 9. First,
we determine αPT(q2) obtained using (27), then
we obtain αgh(q2) with help of (25) and the re-
sults for 1 + G(q2) and L(q2), Fig. 6 and Fig. 7.

As we can clearly see, both couplings freeze at
the same finite value, exhibiting a plateau for val-
ues of q2 < 0.02 GeV2, while in the UV both show
the expected perturbative behavior. They differ
only slightly in the intermediate region where the
values of L(q2) are appreciable.

5. Conclusions

In this talk we have presented a comparison
between two QCD effective charge, αPT(q2) and
αgh(q2), obtained from the PT and the ghost-
gluon vertex, respectively.

Despite their distinct theoretical origin, due to
a fundamental identity relating the various ingre-
dients entering into their definitions, the two ef-
fective charges are almost identical in the entire
range of physical momenta. In fact, the coincide
exactly in the deep infrared, where they freeze at
a common finite value, signaling the appearance
of IR fixed point in QCD [12], also required from
a variety of phenomenological studies [13].
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