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Abstract

In this article we use the Schwinger-Dyson equations to compute the nonperturbative modifi-

cations caused to the infrared finite gluon propagator (in the Landau gauge) by the inclusion of

a small number of quark families. Our basic operating assumption is that the main bulk of the

effect stems from the “one-loop dressed” quark loop contributing to the full gluon self-energy. This

quark loop is then calculated, using as basic ingredients the full quark propagator and quark-gluon

vertex; for the quark propagator we use the solution obtained from the quark gap equation, while

for the vertex we employ suitable Ansätze, which guarantee the transversality of the answer. The

resulting effect is included as a correction to the quenched gluon propagator, obtained in recent

lattice simulations. Our main finding is that the unquenched propagator displays a considerable

suppression in the intermediate momentum region, which becomes more pronounced as we increase

the number of active quark families. The influence of the quarks on the saturation point of the

propagator cannot be reliably computed within the present scheme; the general tendency appears

to be to decrease it, suggesting a corresponding increase in the effective gluon mass. The renormal-

ization properties of our results, and the uncertainties induced by the unspecified transverse part

of the quark-gluon vertex, are discussed. Finally, the dressing function of the gluon propagator is

compared with the available unquenched lattice data, showing rather good agreement.
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I. INTRODUCTION

In recent years considerable progress has been made in our understanding of various

aspects of the nonperturbative dynamics of Yang-Mills theories, through the fruitful com-

bination of a variety of approaches and techniques [1–28]. Particularly successful in this

effort has been the continuous interplay between lattice simulations and Schwinger-Dyson

equations (SDEs) [29–34], which has led to a firmer grasp on the infrared (IR) behavior of

the fundamental Green’s functions of QCD, such as gluon, ghost, and quark propagators, as

well as some of the basic vertices of the theory, for special kinematic configurations [35–37].

A significant part of the existing SDE analysis has focused on the study of various aspect

of the aforementioned Green’s functions at the level of pure gauge Yang-Mills theories, i.e.,

without the inclusion of quarks [15, 21, 25]. This tendency has been mainly motivated by

the fact that the vast majority of lattice simulations work in the quenched limit, making no

reference to effects stemming from dynamical quarks [1, 7, 9].

The transition from pure SU(3) Yang-Mills Green’s functions to those of real world

QCD is, of course, highly nontrivial, and has been the focal point of relatively few lattice

investigations [5, 6]. At the level of the SDEs, to the best of or knowledge, this issue has

been studied in detail [38, 39] only in the context of the so-called “scaling solutions” [12],

but no analogous investigation has been carried out for the (IR finite) massive solutions [40],

found both in the lattice simulations and in several of the analytic studies cited above.

The purpose of the present article is to provide a self-consistent framework for addressing

this latter problem in the continuum, at the level of the corresponding SDEs. In particular,

we will present an approximate method for “unquenching” the (IR finite) gluon propagator

(in the Landau gauge), computing nonperturbatively the effects induced by a small number

of light quark families.

The method we present consists of two basic steps: (i ) computing the fully-dressed

quark-loop diagram [see graph (a11) in Fig. 1], using as input the nonperturbative quark

propagators obtained from the solution of the gap equation, together with an Ansatz for

the fully-dressed quark-gluon vertex that preserves gauge-invariance [31]; and (ii ) adding

the result computed in (i ) to the quenched gluon propagator obtained in the large-volume

lattice simulations mentioned above [7]. The key assumption of the method employed is that

the effects of a small number of quark families to the gluon propagator may be considered as
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a “perturbation” to the quenched case, and that the diagram (a11) constitutes the leading

correction. The subleading corrections stem from the (originally) pure Yang-Mills diagrams

[graphs (a1)–(a10) in Fig. 1], which now get modified from the quark loops nested inside them

(see Fig. 3); their proper inclusion, however, lies beyond our present calculation powers. So,

our operating assumption is that these latter effects are small compared to those originating

from graph (a11), and will be neglected at this level of approximation. It is interesting

to note that in the context of the “scaling” solutions this latter assumption appears to be

indeed reasonable [38, 39].

This assumption becomes relevant when implementing point (ii ), where the contributions

from graphs (a1)–(a10) will be taken to be exactly the same as those of the quenched case even

when dynamical quarks are present, thus identifying with the quenched lattice propagator

everything except graph (a11). Of course, as is typical in the SDE studies, the validity of

this central assumption may be tested only a-posteriori, either by means of additional, more

complicated computations, or, more pragmatically, through the levels of agreement achieved

with available lattice results. As we will see in the main body of the article [Section IV-D],

the general features emerging from our calculations are consistent with the lattice results

of [5, 6].

The general framework we will adopt is based on the synthesis of the the pinch technique

(PT) [16, 40–43] with the background field method (BFM) [44], known in the literature as

the PT-BFM scheme [13, 14, 45]. As has been explained in detail in various works, the

PT-BFM Green’s functions satisfy Abelian-like Ward identities (WIs), instead of the typical

Slavnov-Taylor identities (STIs), valid within the linear covariant (Rξ) gauges [16, 44]. The

main consequence of this property is that the resulting SDE for the gluon self-energy may

be suitably truncated, without compromising the transversality of the answer [13, 14, 45].

For the case at hand, the new ingredient is the nonperturbative quark loop, which is

transverse in the PT-BFM scheme as well as in the Rξ gauges; thus, at first sight, it would

seem that there is no real advantage in using the former scheme. However, the important

issue at this point is the exact way how this transversality is realized in both cases. In

particular, the fact that the fully dressed quark-gluon vertex of the PT-BFM (denoted by Γ̂µ)

satisfies a QED-like WI provides a definite advantage over the corresponding conventional

vertex (denoted by Γµ), which satisfies the STI that involves the quark-ghost scattering

kernel [46], a relatively unexplored quantity (see Eqs. (3.4) and (3.3), respectively) [31].
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The reason why this constitutes an advantage has to do with the fact that, according to

the common practice, one must eventually introduce a suitable nonperturbative Ansatz for

the full quark-gluon vertex, such that the corresponding WIs (or STIs) are automatically

satisfied. The fact that the PT-BFM vertex satisfies a WI instead of an STI simplifies the

problem considerably, because it allows one to employ the time-honored Abelian Ansätze

existing in the literature [47, 48].

The necessary transition from the PT-BFM to the conventional gluon propagator, which

is the one simulated on the lattice, is accomplished by means of a special Green’s func-

tion, usually denoted by G in the literature [14, 45]. In the Landau gauge, G is known

to coincide with the “Kugo-Ojima” function, and to be related to the ghost dressing func-

tion by means of a powerful identity enforced by the underlying Becchi-Rouet-Stora-Tyutin

(BRST) symmetry [49, 50]. Thus, the use of the PT-BFM scheme eliminates the need to

refer to quantities such as the quark-ghost kernel, at the very modest price of introducing

the aforementioned function, which, due to its STI, can be accurately reconstructed from

large-volume lattice data on the ghost dressing functions [50, 51], or possibly through direct

lattice simulations of the Kugo-Ojima function [52].

The main results of our study may be summarized as follows. The basic effect of the

quark loop(s) (one or two families with a constituent mass of the order of 300 MeV) is to

suppress considerably the gluon propagator in the IR and intermediate momenta regions,

while the ultraviolet (UV) tails increase, exactly as expected from the standard renormal-

ization group analysis. The final saturation point of the unquenched propagator cannot be

reliably calculated at present; the apparent tendency is that the inclusion of light quarks

makes the gluon propagator saturate at a lower point, which can be translated into having a

larger gluon mass. We emphasize that the way the quark loops affect the value of the gluon

mass is indirect: the contribution obtained from graph (a11) vanishes at q2 = 0, so it does

not change the gluon mass equation formally [53]; however, it does change its solutions, be-

cause of the modification that it induces in the intermediate region of the gluon propagator

(which enters in the gluon mass equation). A reliable estimate of this gluon mass difference

cannot be obtained without resorting to the full gluon mass equation, whose derivation is

currently underway. For the purposes of the present work, the IR “saturation point” of

the unquenched propagator will be estimated only approximately, through a processes of

“extrapolation” of the intermediate momenta region towards the deep IR. The dependence
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of the results on the renormalization point µ is also studied in detail, and appears to be

consistent with expectations based on general considerations.

In addition, we present a direct comparison between unquenched gluon “dressing func-

tions”, namely the one obtained using the method described above with that found on the

lattice [5, 6]. Note that, due to its very definition, the dressing function is rather insensitive

to the exact value of the final saturation point, moderating to some extent the effect of

the aforementioned uncertainty. The resulting comparison with the lattice data is rather

favorable, as may be seen in Fig. 17; in the momentum region of maximum discrepancy the

two curves differ by about 10%, being significantly closer everywhere else.

Finally, it is quite interesting to mention that the use of the perturbative result for the

quark loop [see Appendix] gives rise to an effect that is numerically very close to that

obtained through the more sophisticated field-theoretic treatment described above, as can

be appreciated on the left panel of Fig. 15.

The article is organized as follows. In section II we give a detailed presentation of the

basic methodology, main ingredients, and central assumptions of the procedure employed

for adding quark loops to the gluon propagator. In section III we elaborate on the way how

the quark loop is computed nonperturbatively. The main points of this section include (i )

the particular form(s) of the full quark-gluon vertex employed, (ii ) the actual computation

of the loop and its behavior at q2 = 0, (iii ) the (subtractive) renormalization procedure,

and (iv ) the transition to the Euclidean space. Section IV contains the main results of the

present work. After introducing the lattice ingredients used as input in our basic formulas,

we present the unquenched gluon propagator for SU(3), together with the corresponding

dressing function, for a small number of light quark families. Further relevant points, such

as the dependence of the results on the renormalization point, as well as the effect of “de-

coupling” of the heavy quarks are also addressed. In addition, a comparison of the resulting

gluon dressing function with available lattice data [5, 6] is presented. Our main conclu-

sions and further open questions are summarized in section V. Finally, some useful formulas

related to the perturbative (one-loop) calculation of the quark loop are summarized in an

Appendix.
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(a3)(a2)

̂
Πµν(q) =

(a1) (a4)

+ + +

(a6)(a5)

+ +

(a11)

̂
Xµν(q) =

k + q

k

(a7) (a9)(a8) (a10)

+ + + +

FIG. 1: The full PT-BFM gluon self-energy. White (respectively black) blobs represents connected

(respectively 1-particle irreducible) Green’s functions; the small gray circles on the external legs

indicate background gluons.

II. ADDING QUARK LOOPS TO THE GLUON PROPAGATOR

To begin with, in the Landau gauge the gluon propagator (quenched or unquenched)

assumes the form

∆µν(q) = −i∆(q2)Pµν(q); Pµν(q) = gµν −
qµqν
q2

. (2.1)

Let us now denote by ∆Q(q
2) the full gluon propagator in the presence of quark loops, while

the corresponding quenched propagator, i.e., the full gluon propagator in the absence of

quark loops, will be denoted simply by ∆(q2).

In the PT-BFM scheme, ∆(q2) satisfies the following SDE [14–16],

∆−1(q2)P µν(q) =
q2P µν(q) + iΠ̂µν(q)

[1 +G(q2)]2
. (2.2)
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+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν

r

p

FIG. 2: Definitions and conventions of the auxiliary functions Λ and H. The color and gauge

coupling dependence for the field combination shown, ca(p)Ab
µ(r)A

∗c
ν (q), is gfacb. Gray blobs

denote one-particle irreducible (with respect to vertical cuts) Schwinger-Dyson kernels.

where

Π̂µν(q) =

10∑

i=1

(ai)
µν , (2.3)

and the relevant fully dressed diagrams (ai) are shown in Fig. 1. All these diagrams contain

only fields appearing in the pure gauge Yang-Mills Lagrangian, namely gluons and ghosts.

The function G appearing in (2.2) is particular to the PT-BFM formalism [14, 45]; specifi-

cally, it is the form factor associated with the metric tensor gµν in the Lorentz decomposition

of the auxiliary two-point function Λµν , given by [16]

Λµν(q) = −ig2CA

∫

k

∆σ
µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2). (2.4)

In the formula above, CA is the Casimir eigenvalue in the adjoint representation [CA = N for

SU(N)], and the d-dimensional integral (in dimensional regularization) is defined according

to ∫

k

≡
µǫ

(2π)d

∫
ddk, (2.5)

with d = 4 − ǫ and µ the ’t Hooft mass. The function Λµν(q), together with the auxiliary

function Hµν(q, p, r), are diagrammatically represented in Fig. 2.

Notice that Hµν is related to the (conventional) gluon-ghost Γc
µ vertex by the identity

pνHνµ(p, r, q) + Γc
µ(r, q, p) = 0, (2.6)

and that, in the (background) Landau gauge, the following all order relation holds [49, 50]

F−1(q2) = 1 +G(q2) + L(q2). (2.7)
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+ · · ·

+ · · ·

FIG. 3: The nonlinear propagation of the effect of unquenching the gluon propagator through

the addition of dynamical fermions, shown here for the one-loop dressed gluon diagram (a1).

Both the internal gluon propagator and the three-gluon vertex gets modified (shown here by two

representative graphs only); similar modifications occur for all other diagrams.

The unquenched propagator in the presence of a single quark loop will satisfy an appro-

priately modified version of (2.2), namely

∆−1
Q
(q2)P µν(q) =

q2P µν(q) + iΠ̂µν
Q (q) + iX̂µν(q)

[1 +GQ(q2)]
2 . (2.8)

The main difference between (2.2) and (2.8) is the explicit appearance of X̂µν(q) on the

rhs, originating entirely from diagram (a11) (see again Fig. 1). Notice, however, that there

will be a nonlinear propagation of the changes induced due to X̂µν(q), which will also affect

the original subset of purely Yang-Mills graphs, namely (a1) − (a10), given that now the

various Green’s functions appearing inside them will have been modified by X̂µν(q). For

example, at the “one-loop dressed” level, diagram (a1) receives quark-loop contributions,

such as those shown in Fig. 3, and the same happens with all other graphs belonging to the

set (a1) − (a10). This complicated nonlinear effect is indicated by introducing the suffix Q

in the associated self-energy, Π̂µν
Q (q). The quantity G(q) will be similarly affected by the

inclusion of the quark loop, as indicated in (2.8) through the substitution G(q) → GQ(q). In

the case of including various quark loops, corresponding to different quark flavors, Qi, the

term X̂µν(q) in (2.8) is replaced simply by the sum over all quark loops, i.e.,

X̂µν(q) →
∑

i

X̂i(q) . (2.9)

The tensorial structure in Eqs. (2.2) and (2.8) may be easily eliminated, by appealing to the
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transversality properties of the quantities involved on the rhs, namely

qµΠ̂
µν(q) = 0; qµX̂

µν(q) = 0; qµΠ̂
µν
Q
(q) = 0. (2.10)

Let us now define the scalar cofactors of these quantities as

Π̂µν(q) = P µν(q)Π̂(q2); X̂µν(q) = P µν(q)X̂(q2); Π̂µν
Q
(q) = P µν(q)Π̂Q(q

2). (2.11)

Then, equations (2.2) and (2.8) can be converted to their scalar versions, namely

∆−1(q2) =
q2 + iΠ̂(q2)

[1 +G(q2)]2
, (2.12)

and

∆−1
Q
(q2) =

q2 + iΠ̂Q(q
2) + iX̂(q2)

[1 +GQ(q2)]
2 . (2.13)

Eq. (2.13) can be then straightforwardly adjusted to include the case of various quark loops,

simply by replacing X̂(q) →
∑

i X̂Qi
(q).

To be sure, the total effect of including quark loops cannot be exactly computed at the

level of the SDE, because that would entail the full numerical treatment of the entire series,

a task that is beyond our present powers. The way we will proceed instead is the following.

We will use the quenched propagator as our reference, and we will estimate the modifications

introduced to it by the presence of the quark loop(s), under certain simplifying assumptions

that we will now explain.

To that end, let us cast the quenched gluon propagator ∆(q2) into the standard form

employed in the recent literature [53–55], which incorporates the crucial feature of IR finite-

ness, implemented by the presence of a dynamically generated gluon mass; specifically, we

set (in Minkowski space),

∆−1(q2) = q2J(q2)−m2(q2). (2.14)

The first term on the rhs of (2.14) corresponds to the “kinetic term”, or “wave function” con-

tribution, whereas the second is the momentum-dependent mass (which is positive-definite

in Euclidean space) [53–55]. As q2 → 0, we have that q2Jm(q
2) → 0; on the other hand,

m2(0) 6= 0, and as a result, the gluon propagator is IR finite, ∆−1(0) 6= 0. The exact deter-

mination of the components J(q2) and m2(q2) in terms of the quantities appearing on the

rhs of (2.2) and (2.8) is a complicated task, leading eventually to a set of intricate coupled

9



integral equations. This exercise has been carried out partially, within the one-loop trun-

cated version of the SDE, considering only the corresponding subset of gluonic contributions

[i.e., diagrams (a1) and (a2)] [53].

In what follows we will operate under the reasonable assumption that the IR finiteness

of the gluon propagator persists in the presence of a relatively small number of quark loops.

In other words, we assume that the inclusion of two light quark flavors (up and down type

quarks, with constituent masses of about 300 MeV) will affect but not completely destabilize

the mechanism responsible for the generation of a dynamical gluon mass, and that their effect

may be considered as a “perturbation” to the quenched case. In the realistic case of QCD,

the inclusion of loops containing the remaining heavier quarks is expected to give rise to

numerically suppressed contributions (compared to those coming from the light quark loops),

consistent with the notion of decoupling; this expectation is in fact clearly confirmed in the

results presented in Section IV (see in particular Fig. 15). Instead, the theoretical possibility

of increasing the number of loops containing light flavors may lead to effects that cannot

be longer considered as a “perturbation” of the quenched case: ten families of light quarks,

for example, could alter severely the qualitative behavior of the theory, and as a result, the

quenched propagator may have little to do with the unquenched one (for a general discussion

on how the IR and UV properties of Yang-Mills theories may be distorted, depending on

the number of quark families, see, e.g., [56, 57], and references therein).

Thus, under the aforementioned assumptions, Eq. (2.14) will be extended to the case of

∆Q(q
2), namely

∆−1
Q
(q2) = q2JQ(q

2)−m2
Q
(q2), (2.15)

where the suffix Q in the dynamical gluon mass indicates the possible modifications tom2(q2)

induced by the quark loop(s), as alluded above. It is important to emphasize that m2(q2)

will change, despite the fact that the main additional ingredient that distinguishes (2.12)

and (2.13), namely X̂(q), does not contribute at q2 = 0, since X̂(0) = 0 [see Eq. (3.19)], and

therefore it does not affect directly the gluon mass equation [53]; instead, the modification

induced is indirect, due to the change in the overall shape of ∆(q2) throughout the entire

range of momenta. In order to gain a qualitative understanding of this last statement, let us

consider the IR limit of the approximate gluon mass equation obtained in [53], where only
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the one-loop dressed graphs (a1) and (a2) are considered; in Euclidean space,

m2(0) = −
3CA

8π
αsF (0)

∫
∞

0

dy m2(y)[Z2(y)]′ + . . . , (2.16)

where αs = g2/4π, the prime indicates differentiation with respect to y = k2, and Z(y) is

the “dressing function” of the gluon propagator, defines as

Z(q2) ≡ q2∆(q2). (2.17)

Evidently, Z(0) = 0. Finally, the ellipses on the rhs of Eq. (2.16) denote contributions from

“two-loop dressed” diagrams that have yet to be worked out.

Now, in the presence of quark loops, Eq. (2.16) maintains its functional form, since, as

mentioned above, X̂(0) = 0; however, the various quantities appearing on its rhs [most

notably Z(y)] will be modified, therefore acquiring a suffix “Q” [e.g., Z(y) → ZQ(y)]. As a

consequence, the resulting solution gets modified, and we have m2(q2) → m2
Q
(q2); in what

follows we will denote by

λ2 ≡ m2
Q
(0)−m2(0), (2.18)

the gluon mass difference at q2 = 0.

As already explained, a solid first-principle determination of λ2 is not possible at the

moment, mainly due to the fact that the available gluon mass equation (2.16) is incomplete,

since it has been derived from only one subset of the relevant graphs [53]. Therefore, in

the analysis presented we will restrict ourselves to extracting an approximate range for λ2,

through the extrapolation of the curves obtained from intermediate momenta towards the

deep IR.

In order to estimate the effect of the quark loop(s) on the gluon propagator, we will

assume that the main bulk of the correction to the “kinetic” part, q2JQ(q
2), is due to the

direct presence of the extra diagram (a11). Instead, the nonlinear effect due to the fact

that the graphs (a1)− (a10) develop an indirect quark dependence, i.e., Π̂(q2) → Π̂Q(q
2), is

predominantly responsible for the change in the gluon mass, as captured in (2.18), inducing

minor changes to the kinetic part q2JQ(q
2). Finally, we will approximate the function GQ(q

2)

appearing in the denominator of Eq. (2.13) by the quenched expression, i.e., GQ(q
2) → G(q2);

as can be seen from its defining equation Eq. (2.4) and Fig. 2, quark-loops enter only as

“higher order” effects, according to our general philosophy, and their effect should be small.
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Thus, within this approximation scheme, the quantity JQ(q
2) will be given by

q2JQ(q
2) = q2J(q2) +

i X̂(q2)

[1 +G(q2)]2
. (2.19)

If we now combine Eqs. (2.14), (2.15), (2.16) and (2.18), it is easy to arrive at the result

(Minkowski space)

∆Q(q
2) =

∆(q2)

1 +
{
i X̂(q2) [1 +G(q2)]−2 − λ2

}
∆(q2)

. (2.20)

In what follows we will identify the quenched propagator ∆(q2) appearing on the rhs of

(2.20) with the one obtained from the large volume lattice simulations [7], to be denoted by

∆L(q
2). So, effectively one assumes that ∆L(q

2) is a solution of the full SDE equation, with

no quarks, given in (2.12); thus, when using (2.20) we will be carrying out the replacement

∆(q2) → ∆L(q
2).

III. NONPERTURBATIVE QUARK LOOP IN THE PT-BFM SCHEME

In this section we present the actual nonperturbative calculation of the quark-loop di-

agram (a11), finally expressing the answer exclusively in terms of the functions A(p) and

B(p), appearing in the Dirac decomposition of the full quark propagator [see (3.7)]. The

calculation relies on the use of suitable Ansätze for the fully dressed quark-gluon vertex

appearing in (a11), presented and discussed in the corresponding subsection. The Euclidean

version of the (renormalized) master formula that we use in the next section in order to

estimate the effect of the quark loop on the gluon propagator is given in Eq. (3.33).

A. The quark-gluon vertex

The quantity responsible for the difference between the quark loop in the conventional

covariant gauges and the PT-BFM scheme is the fully-dressed quark-gluon vertex. Specifi-

cally, let us denote the fully dressed PT-BFM quark-gluon vertex by ÎΓ
a

µ, and factor out the

color structure, according to

ÎΓ
a

µ(p1, p2, p3) = g taΓ̂µ(p1, p2, p3), (3.1)
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a, µ

p2p1

p3

FIG. 4: The full PT-BFM quark-gluon vertex ÎΓ
a

µ. Note that p1 ↔ p2 with respect to the conven-

tions used in [31, 58].

where all momenta pi entering (see Fig. 4); at tree-level, Γ̂
(0)
µ = γµ. In the equation above,

ta represents the N2 − 1 hermitian and traceless generators of the SU(N) gauge group,

satisfying the algebra

[ta, tb] = ifabctc, (3.2)

with fabc the totally antisymmetric group structure constants. In the SU(3) case, with the

quarks in the fundamental representation, ta = λa/2, where λa are the Gell-Mann matrices.

In the conventional formulation within the linear covariant gauges, the quark-gluon ver-

tex, to be denoted by Γµ(p1, p2, p3), satisfies the well-known STI [46]

ipµ3Γµ(p1, p2, p3) = F (p3)[S
−1(p1)H(p2, p1, p3)−H(p1, p2, p3)S

−1(−p2)], (3.3)

where S−1(p) is the inverse of the full quark propagator, H(p2, p1, p3) is the quark-ghost

scattering kernel diagrammatically defined in Fig. 5, and H(p1, p2, p3) its “conjugate”.

In contrast, in the PT-BFM scheme, the vertex Γ̂µ satisfies the QED-like WI [16, 44]

ipµ3 Γ̂µ(p1, p2, p3) = S−1(p1)− S−1(−p2), (3.4)

with no reference whatsoever to the ghost sector. Then, the most general Ansatz for the

longitudinal part of Γ̂µ that satisfies (3.4) is given by [47]

Γ̂µ(p1, p2, p3) = L1(p1, p2)γµ + L2(p1, p2) (p1/− p2/ ) (p1 − p2)µ + L3(p1, p2) (p1 − p2)µ . (3.5)

The form factors Li appearing in the expression above are given by

L1(p1, p2) =
A(p1) + A(p2)

2
; L2(p1, p2) =

A(p1)−A(p2)

2 (p21 − p22)
; L3(p1, p2) = −

B(p1)− B(p2)

p21 − p22
.

(3.6)
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H(p2, p1, p3) = 1 +

p2

p1

p3

FIG. 5: Diagrammatic representation of the quark-ghost scattering kernel H(p1, p2, p3).

where the functions A(p) and B(p) are defined as

S−1(p) = −i [A(p)p/ −B(p)] = −iA(p) [p/−M(p)] , (3.7)

and the ratio M(p) = B(p)/A(p) is the dynamical quark mass function. For latter conve-

nience, we will denote the dynamical quark mass function at p2 = 0 by M(0) ≡ M . There-

fore, at tree level (A = 1, B = M) and one has L1 = 1 and L2 = L3 = 0. The resulting

vertex reads

Γ̂µ(p1, p2, p3) =
A(p1) + A(p2)

2
γµ

+
(p1 − p2)

µ

p21 − p22

{
[A(p1)−A(p2)]

/p1 − /p2
2

+ [B(p1)− B(p2)]

}
. (3.8)

and is known in the literature as the Ball-Chiu (BC) vertex [47].

We emphasize that in the context of the PT-BFM the longitudinal part of the above vertex

is complete, as far as the WI it satisfies is concerned. Indeed, the expression in (3.8) satisfies

the exact WI that Γ̂µ is supposed to obey, namely (3.4). As is well-known, the BC vertex

has been employed extensively in the literature (especially in studies of chiral symmetry

breaking) [59] as an approximate (denominated “abelianized”) version of the conventional

Γµ defined in the covariant gauges. Indeed, the fully dressed quark-gluon vertex entering into

the quark gap equation is Γµ and not Γ̂µ, for the simple reason that the corresponding gluon

is quantum and not background; indeed, the gluon in the quark gap equation is internal

(i.e., it is irrigated by the virtual momenta), in contrast to the gluon of the quark loop,

which is external (carries physical momentum). Therefore, use of the expression given in

(3.8) into the quark gap equation constitutes only an approximation, since it fails to satisfy

the full STI (3.3) that Γµ should obey, unless the corresponding ghost sector is turned off.

Note that the BC vertex has been generalized accordingly in [31], in order to fulfill the

exact STI (3.3), thus justifying its use inside the quark gap equation. The corresponding Li
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are considerably more complicated than those given in (3.6), involving the ghost dressing

function F and the various form factors of the quark-ghost kernel H(p1, p2, p3) [31]. In

fact, an additional fourth form factor, L4, makes its appearance in the Lorentz expansion

corresponding to (3.5), multiplying σµν = i/2[γµ, γν ]; it is then easy to verify that this latter,

genuinely non-Abelian vertex of [31] reduces to that of (3.8) in the limit of a trivial ghost

sector, i.e., by setting F (p) = 1 and H = 1.

Finally, let us comment on an alternative form of the quark-gluon vertex Γ̂µ(p1, p2, p3),

known in the literature as the Curtis and Pennington (CP) vertex [48], to be denoted by

Γ̂CP

µ . This latter vertex satisfies also the WI of (3.4), and differs from the vertex of (3.8)

by a transverse (automatically conserved) contribution, which improves its properties under

multiplicative renormalizability. Specifically,

Γ̂CP

µ (p1, p2, p3) = Γ̂µ(p1, p2, p3) +
[
γµ(p

2
2 − p21) + (p2 − p1)µ/p3

]
Γ̂T(p1, p2, p3), (3.9)

where

Γ̂T(p1, p2, p3) =
[A(p2)−A(p1)] (p

2
1 + p22)

2
{
(p22 − p21)

2 + [M2(p2) +M2(p1)]
2
} . (3.10)

In the analysis that follows we will use both the BC and the CP vertices, and compare

the difference they induce to the various quantities of interest.

B. The quark loop

Let us now turn to the quark-loop diagram (a11) of the PT-BFM scheme. Factoring out

the trivial color structure δab, we obtain

X̂µν(q2) = −g2 df

∫

k

Tr
[
γµS(k)Γ̂ν(k + q,−k,−q)S(k + q)

]
, (3.11)

where df is the Dynkin index of the fundamental representation [df = 1/2 for SU(3)].

Since by virtue of the WI (3.4) the quark loop X̂µν(q2) is transverse1,

qµX̂
µν(q2) = 0, (3.12)

1 Note that the corresponding quark-loop in the covariant gauges, i.e., with Γ̂ν → Γν is also transverse, by

virtue of the STI (3.3).
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we have that X̂µν(q2) = X̂(q2)P µν(q); then, contracting with gµν , and setting df = 1/2, we

obtain

X̂(q2) = −
g2

2(d− 1)

∫

k

Tr
[
γµS(k)Γ̂µ(k + q,−k,−q)S(k + q)

]
. (3.13)

After inserting the full vertex (3.5) into (3.13) and taking the trace, we find one term for

each of the form factors Li. Specifically, we have that

X̂(q2) = −
2g2

d − 1

∫

k

1

AaAb(k2 −M2
a)[(k + q)2 −M2

b ]

3∑

i=1

Ti(k, k + q) , (3.14)

where the subindex “a” (respectively, “b”) indicates that the corresponding function is eval-

uated at momentum k (respectively, k + q), with

T1(k, k + q) = L1

{
(2− d)(k2 + k · q) + dMaMb

}
,

T2(k, k + q) = L2

{
2 [k · (2k + q)] [(k + q) · (2k + q)]− k · (k + q)(2k + q)2

+ (2k + q)2MaMb

}
,

T3(k, k + q) = L3

{
Mb [(2k + q) · k] + Ma [(2k + q) · (k + q)]

}
. (3.15)

Before studying in detail each term, let us consider X̂(q2) in the limit q → 0. Using the

expressions given in Eq. (3.6), and dropping the subindices (all quantities being evaluated

at k now), one finds

X̂(0) = −
2g2

d − 1

∫

k

1

A2(k2 −M2)2

{
A
[
(2− d)k2 + dM2

]
+ 2A′k2(k2 +M2)− 4k2B′M

}
.

(3.16)

The important point to recognize now is that the integral on the rhs of (3.16) vanishes by

virtue of an identity valid in dimensional regularization. This identity, referred to as the

“seagull identity” in the recent literature [54] constitutes the generalization of the simple

identity (A3) employed in the Appendix for the one-loop perturbative result.

Specifically, the seagull identity reads

∫

k

k2f ′(k2) +
d

2

∫

k

f(k2) = 0, (3.17)

where the “prime” denotes differentiation with respect to k2, i.e., f ′(k2) ≡ df(k2)
dk2

. Interest-

ingly enough, using inside Eq. (3.17) the function

f(k2) = [A(k2)(k2 −M2(k2))]−1, (3.18)
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namely the all order generalization of the one-loop (k2 −M2)−1 employed in Eq. (A3), one

obtains precisely the integral on the rhs of (3.16); therefore,

X̂(0) = 0 , (3.19)

as announced.

Let us now compute the quark self-energy X̂CP(q2) obtained by substituting into (3.11)

the vertex Γ̂µ
CP, given in (3.9)-(3.10). The answer will be expressed as a deviation from

X̂(q2), namely

X̂CP (q2) = X̂(q2) + δX̂(q2) , (3.20)

where

δX̂(q2) = 2g2
∫

k

[MaMb − (k2 + k · q)][(k + q)2 − k2]

AaAb(k2 −M2
a)[(k + q)2 −M2

b ]
Γ̂T(k + q,−k,−q) , (3.21)

It is easy to verify that the integral on the rhs of (3.21) vanishes in the limit q → 0, because,

as can be seen directly from (3.10), Γ̂T(p1,−p1, 0) = 0. Therefore, the property of (3.16)

persists, namely X̂CP(0) = 0.

C. Renormalization

Clearly X̂(q2) (and X̂CP(q2)) must be renormalized within the momentum subtraction

(MOM) scheme. This choice is dictated by the fact that our final results will be expressed as

deviations from the quenched gluon propagator obtained from the lattice, where the latter

scheme has been employed. The renormalized expression for X̂(q2) in the MOM scheme is

given by

X̂R(q
2) = X̂(q2)−

q2

µ2
X̂(µ2). (3.22)

As far as the propagator of (2.20) is concerned, its renormalization will proceed as fol-

lows. First of all, as happens almost exclusively at the level of SDEs, the renormalization

must be carried out subtractively instead of multiplicatively. The main reason for that is

the mishandling of overlapping divergences due to the ambiguity inherent in the gauge-

technique construction of the vertex, related with the unspecified transverse part [48]. The

(subtractive) renormalization must be carried out at the level of (2.13). Specifically,

∆−1
Q,R(q

2) =
ZAq

2 + i
[
Π̂Q(q

2) + X̂(q2)
]

[1 +GQ(q2)]
2 , (3.23)
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where the renormalization constant ZA is fixed in the MOM scheme through the condition

∆−1
Q,R(µ

2) = µ2. This condition, when applied at the level of Eq. (3.23), allows one to express

ZA as

ZA = [1 +GQ(µ
2)]2 −

i

µ2

[
Π̂Q(µ

2) + X̂(µ2)
]
. (3.24)

Now, as is well-known [50, 51], the validity of the BRST-driven relation (2.7) before and after

renormalization prevents G(µ2) from vanishing when, according to the MOM prescription,

F (µ2) = 1; instead, we must impose that G(µ2) = −L(µ2). However, given that L(x) is

considerably smaller thanG(x) in the entire range of momenta, we can use the approximation

1+G(µ2) ≈ F−1(µ2) = 1, without introducing an appreciable numerical error [50, 51]. Thus,

we obtain the following approximate equation for ZA

ZA = 1−
i

µ2

[
Π̂Q(µ

2) + X̂(µ2)
]
, (3.25)

Substituting Eq. (3.25) into Eq. (3.23), we obtain

∆−1
Q,R(q

2) =
q2 + i

[
Π̂Q,R(q

2) + X̂R(q
2)
]

[1 +GQ,R(q2)]
2 , (3.26)

where, as in (3.22), Π̂Q,R(q
2) = Π̂Q(q

2)− q2

µ2 Π̂Q(µ
2), while GQ,R(q

2) = GQ(q
2)−GQ(µ

2).

On the other hand, the exact same procedure yields for the renormalized quenched prop-

agator (setting X̂ = 0 and dropping the subscript “Q”)

∆−1
R
(q2) =

q2 + iΠ̂R(q
2)

[1 +GR(q2)]
2 . (3.27)

Then, according to the key operating assumption explained in the previous section, the

unquenched quantities Π̂Q(q
2) and GQ(q

2) are to be approximated simply by their quenched

counterparts, Π̂(q2) and G(q2), respectively. Consequently, it is easy to verify that the

renormalized version of (2.20) is given by

∆Q,R(q
2) =

∆R(q
2)

1 +
{
i X̂R(q2) [1 +GR(q2)]

−2 − λ2
}
∆R(q2)

. (3.28)

In this context, the gluon mass related term λ2 merits some additional comments. As

has been emphasized amply in recent works, the seagull identity of (3.17), when applied

to the gluon mass equation, enforces the annihilation of all quadratic divergences [53, 54].

This is a point of central importance, because the disposal of such divergences (had they
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survived) would require the introduction in the original Yang-Mills Lagrangian of a counter-

term of the form m2
0A

2
µ, which is, however, forbidden by the local gauge invariance, which

must remain intact. Therefore, at least in principle, the renormalization of the gluon mass

equation proceeds as in the case of the homogeneous quark mass equation (obtained from

the corresponding gap equation without a current mass term), simply by renormalizing

(multiplicatively) the various quantities appearing on its rhs [53]. Note, however, that these

considerations, theoretically important as they may be, are of limited practical relevance for

the present work, because, as already mentioned, the quantity λ2 will be not determined

dynamically, but rather fitted from the (extrapolated) solutions obtained.

D. The transition to Euclidean space

The actual calculations will be carried out in the Euclidean space, and the various relevant

formulas, most notably (2.20) and (3.28), must be modified accordingly. In particular, the

integral measure is given by

∫

k

= i

∫

kE

=
i

(2π)d
π

d−1

2

Γ
(
d−1
2

)
∫ π

0

dθ sind−2 θ

∫
∞

0

dy y
d
2
−1, (3.29)

where y = k2. When d = 4 this reduces to

∫

k

=
i

(2π)3

∫ π

0

dθ sin2 θ

∫
∞

0

dy y =
i

(2π)3

∫

E

, (3.30)

which is the measure employed in our final results. In addition, we will use the standard for-

mulas that allow the transition of the various Green’s functions from the physical Minkowski

momentum q2 to the Euclidean q2
E
= −q2 > 0; specifically

∆E(q
2
E
) = −∆(−q2

E
); FE(q

2
E
) = F (−q2

E
); GE(q

2
E
) = G(−q2

E
). (3.31)

and

AE(q
2
E
) = A(−q2

E
) BE(q

2
E
) = B(−q2

E
) . (3.32)

The Euclidean version of X̂(q2) is defined as the result of the aforementioned operations at

the level of (3.14), but with the imaginary factor i that comes from the measure absorbed

by the factor of i multiplying X̂(q2) in Eqs. (2.20) or (3.28). Effectively, this amounts to

the substitution iX̂(q2) → −X̂E(q
2
E
) where the X̂E(q

2
E
) is obtained from (3.14) by replacing
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∫
k
→

∫
kE
, (no more i) euclidianizing the momenta (q2 → −q2

E
, k2 → −k2

E
), and using (3.32).

Then, the euclidian version of (2.20) becomes (we suppress the suffix “E” throughout)

∆Q(q
2) =

∆(q2)

1 +
{
X̂(q2) [1 +G(q2)]−2 + λ2

}
∆(q2)

. (3.33)

The conversion of (3.28) to Euclidean space proceeds following exactly analogous steps.

One may carry out two elementary checks of the expression given in (3.33). First, in the

IR limit, q2 = 0, after using (3.16), ∆−1(0) = m2(0), and the definition of λ2 in (2.18), we

obtain ∆−1
Q
(0) = m2

Q
(0), as we should.

In the opposite limit, where q2 acquires large values compared to all mass scales involved,

we substitute into Eq. (3.33) the perturbative one-loop results, keeping terms up to order

αs. The Euclidean version of (A11) is determined following the steps described above;

specifically, since

iX̂ [1](q2) = −
αs

6π
q2 ln(−q2/µ2) , (3.34)

then (restoring the “E” for this step only)

X̂
[1]
E (q2

E
) =

{αs

6π
q2 ln(−q2/µ2)

}
q2→−q2

E

(3.35)

= −
αs

6π
q2
E
ln(q2

E
/µ2) .

Combining this with the standard result

[∆−1(q2)][1] = q2
[
1 +

13CAαs

24π
ln(q2/µ2)

]
, (3.36)

we obtain from (3.33) [with nf quark flavors, and CA = 3]

[∆−1
Q
(q2)][1] = q2

[
1 +

αs

8π

{
13−

4

3
nf

}
ln(q2/µ2)

]
, (3.37)

which is the correct one-loop result (in the Landau gauge).

In the derivation given above, the perturbative expression for G, namely (CA = 3)

1 +G[1](q2) = 1 +
9αs

16π
ln(q2/µ2) , (3.38)

was not necessary, since, its inclusion in Eq. (3.33) gives contributions of O(g4); however,

(3.38) is needed for a final check. Specifically, as is well known, due to the QED-like WIs

characteristic of PT-BFM scheme, the PT-BFM propagator, usually denoted by ∆̂, captures
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the running of the gauge coupling (β function), for any value of the gauge-fixing parameter.

∆̂ and ∆ are related by the all-order relation [42, 60]

∆̂−1(q2) =
[
1 +G(q2)

]2
∆−1(q2) , (3.39)

whose perturbative expansion yields

[∆̂−1
Q
(q2)][1] = q2

[
1 +

αs

48π
{33− 2nf} ln(q

2/µ2)
]
, (3.40)

namely the correct one-loop result.

IV. NUMERICAL RESULTS

In this section we will first review the lattice data for the quenched gluon propagator

∆(q2) and ghost dressing function F (q2), and the nonperturbative expressions of the quark

functions A(p2) and B(p2), obtained in [31] from the solution of the quark gap equation.

With all necessary ingredients available, i.e., ∆(q2), F (q2), A(q2) and B(q2), we then evalu-

ate numerically the integrals that determine the contribution of the quark loop, X̂(q2) (BC

vertex), and X̂CP(q2) (CP vertex), given by Eqs. (3.14) and (3.20), respectively. Finally,

with the quark loop contribution at our disposal, we proceed to estimate through Eq. (3.33)

the effect of “unquenching”, namely how the overall shape of the quenched propagator ∆(q2)

is affected by the presence of the quark loops. Finally, we compare the resulting dressing

function with that obtained from unquenched lattice simulations. Given the amount of in-

formation presented in this section, we have organized the material in four subsections, and

have enumerated the main points of each subsection, to facilitate the perusal.

A. Ingredients

(i ) The starting point of our numerical analysis are the quenched SU(3) lattice results

for the gluon propagator ∆(q2) and ghost dressing function F (q2) [7]. These are shown,

respectively, on the left and right panels of Fig. 6, for three different renormalization points

(µ = 4.3, 3.0 and 2.3 GeV). On the same figure we also plot the corresponding fits for the

three different renormalization points; the explicit functional form used for these fits can be

found in various recent articles [30, 31, 53].
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FIG. 6: Lattice result for the SU(3) gluon propagator (left panel) and ghost dressing func-

tion (right panel) renormalized at three different points: µ = 4.3 GeV (solid red curve),

µ = 3.0 GeV (dash-dotted black curve), and µ = 2.5 GeV (dotted blue curve).

(ii ) Next, the computation of the quark contribution X̂(q2) and X̂CP(q2) [Eqs. (3.14)

and (3.20)] requires the knowledge of the nonperturbative behavior of the functions A(k2)

and B(k2) appearing in the definition of the full quark propagator (3.7). Both functions

can be determined by solving numerically the quark gap equation; however, one has to be

particular careful on how the non-Abelian quark-gluon vertex, which enters in the latter

equation, is approximated. Note in particular that, as discussed in detail in [31], the quark

gap equation is identical within both the conventional and the PT-BFM frameworks. As

a result, the quark-gluon vertex entering in it is Γµ (and not Γ̂µ), satisfying the STI given

in Eq. (3.3). This fact, in turn, introduces a numerically crucial dependence on the ghost

dressing function and the quark-ghost scattering amplitude. Once these effects are duly

taken into account, and the BC or CP vertices improved accordingly [31], one can solve the

resulting nonlinear system of integral equations for A(k2) and B(k2), supplemented by the

lattice gluon propagator and ghost dressing function mentioned above.

(iii ) The results obtained following the outlined procedure are shown in Fig. 7 (for the

specific value µ = 4.3 GeV in this case). In particular, on the left panel we plot the inverse of

the quark wave function A−1(k2) for the improved BC vertex (dotted black curve), and the

“improved” CP vertex (dashed blue curve); on the right panel we show the corresponding

solutions for the B(k2) function. At this point the momentum dependence of the dynamical

quark mass M(k2) can be straightforwardly obtained, since M(k2) = B(k2)/A(k2), and
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FIG. 7: Solution of the quark gap equation: A−1(k2) (left panel) and B(k2) (right panel) renor-

malized at µ = 4.3 GeV. Dotted black curves correspond to the improved BC vertex, while dashed

blue curves to the improved CP vertex.
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FIG. 8: The momentum dependence of the dynamical quark mass M(k2) = B(k2)/A(k2), using

the same conventions as in the previous plot.

is plotted in Fig. 8, for the two forms of the quark gluon vertex considered. Clearly the

two results coincide in the UV, whereas in the IR we notice that the CP vertex produces

the slightly higher value M(0) = M = 307 MeV when compared with the BC vertex result

M = 292 MeV. Note, finally, that the results presented have been obtained in the chiral

limit, where no “current” mass has been used when solving the gap equation.
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FIG. 9: Individual contributions of the terms proportional to T1 (dashed red curve), T2 (dotted

blue line), T3 (dash-dotted green) and δX̂(q2) (dashed with two dots orange curve), to X̂(q2) (left

panel) and X̂CP(q2) (right panel) respectively. The sum of all contributions produce in both cases

the continuous (black with white circles) curve, which represent the full quark loop contribution

to the gluon propagator.

B. The quark loop

We can now proceed to the numerical evaluation of the full quark loop, namely X̂(q2)

(BC vertex) and X̂CP(q2) (CP vertex), as given by Eqs. (3.14) and (3.20) respectively.

(i ) On the left panel of Fig. 9 we show the results obtained for each individual contri-

bution of X̂(q2), as expressed in Eqs. (3.14) and (3.15). As can be easily seen, the leading

contribution comes from the T1 term, which, as shown in the Appendix, is also the term

responsible for the appearance of the perturbative logarithm; the T2 and T3 contributions

are instead subdominant.

(ii ) On the right panel of Fig. 9, we show the same quantities for the X̂CP(q2) term. In

this case, one has the additional contribution δX̂(q2), given in Eq. (3.21), coming from the

inclusion of the transverse part of the quark-gluon vertex. The net numerical effect is that

the latter term will almost completely cancel the subdominant terms T2 and T3, so that the

T1 term practically coincides with the full answer.

(iii ) The results for the quark loop X̂(q2) and X̂CP(q2) are finally compared in Fig. 10

for the nf = 2 case. It is important to notice that, indeed, X̂(0) = X̂CP(0) = 0, as we had

previously announced.
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FIG. 10: Comparison between the contributions of the quark loop X̂(q2) (dotted black curve) and

X̂CP(q2) (dashed blue curve) to the gluon self-energy with nf = 2.

C. Effect on the gluon propagator

(i ) The next step is to compute the unquenched gluon propagator given in Eq. (3.33).

The first thing we should notice is the presence of the auxiliary function 1 + G(q2) in the

denominator of Eq. (3.33). Using the fact that, in the Landau gauge, L(q2) is numerically

suppressed [50, 51], it follows immediately from Eq. (2.7) that 1 +G(q2) ≈ F−1(q2).

(ii ) Substituting into Eq. (3.33) the results for ∆(q2) and F (q2), renormalized at

µ = 4.3 GeV and presented in Fig. 6, together with either X̂(q2) (BC vertex) or X̂CP(q2)

(CP vertex) of Fig. 10, we obtain the results shown on the left panel of Fig. 11. As before,

the dotted black curve represents the result for the case where we employ the BC vertex,

while the dashed blue curve is for the CP vertex. We clearly see that the unquenched gluon

propagator suffers a sizable suppression in the intermediate momenta region compared to the

quenched case (solid red curve). Notice that, in this particular case (left panel of Fig. 11) we

have set λ2 = 0, and therefore, the three curves coincides at q2 = 0 since X̂(0) = X̂CP(0) = 0.

(iii ) As mentioned before, due to our present limitation in determining the precise value

of λ2, we will restrict ourselves to extracting an approximate range for λ2, through the

extrapolation of the curves in the region delimited by the shaded area showed on the left

panel of Fig. 11.

Specifically, we perform a one-dimensional extrapolation in the deep IR region using as

input the result obtained for the quenched gluon propagator in the middle IR and interme-

diate regions. The first step is to select the momentum from which ∆Q(q) is extrapolated.
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FIG. 11: The unquenched gluon propagator ∆Q(q
2) when no extrapolation is used, i.e. λ2 = 0

in Eq. (3.33) (left panel). The dotted black curve represents the unquenched propagator obtained

with the BC vertex whereas the dashed blue curve represents the result for the CP vertex. The

result for ∆Q(q
2) when the extrapolation is performed in the shade area i.e. from q2 = 0.05GeV2

towards the deep IR (right panel).

We choose three different points, namely (i ) 0.02GeV2, (ii ) 0.05GeV2 and (iii ) 0.07GeV2,

and implement the extrapolation starting for each of these points. In all three cases, we

extrapolate the data up to q2 = 10−3GeV2 using the cubic B-spline method. We basically

split each of these ranges into a 150 pieces, and fit each segment with a cubic Bezier spline.

The goal is to get a fit segment that is smooth in the first derivative, and continuous in

the second derivative, both within an interval and at its boundaries. When these boundary

conditions are met, the entire function is constructed in a piece-wise manner.

On the right panel of Fig. 11, we show ∆Q(q
2) when the extrapolation is done for val-

ues of momenta smaller than q2 = 0.05GeV2. As we can clearly see, the tendency of the

unquenched gluon propagator is always to be below the quenched one (solid red curve), no

matter if we use the BC vertex (dotted black curve) or the CP vertex (dashed blue curve).

Now, we are in position to determine the order of magnitude of m2
Q
(0) and λ2. Combining

Eqs. (2.15) and (2.18) and the data presented on the right panel of Fig. 11, we found the

values of m2
Q
(0) = 0.156GeV2, m2(0) = 0.142GeV2 and λ2 = 0.014GeV2 for the BC vertex,

whereas for the CP we have m2
Q
(0) = 0.151GeV2 and λ2 = 0.009GeV2. These results

suggest that the effective gluon mass increases when we include the quark loops in the gluon

self-energy.
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FIG. 12: Comparison between the quenched ∆(q2) and the unquenched ∆Q(q
2) gluon propagators.

The yellow striped band shows the possible values that ∆Q(0) can assume at zero momentum.

The two curves delimiting the band represent the extrapolation towards the IR either starting

from 0.02GeV2 (dash-dotted green line) or 0.07GeV2 (dashed orange line). The dashed with

two dots magenta curve corresponds to an extrapolation of the numerical result starting from the

intermediate value 0.05GeV2.

In addition, notice that the results obtained with the BC and CP vertices differ only

by approximately 3%. Since this difference is rather small and does not cause significant

changes in what follows, for the rest of our analysis we will focus on the BC vertex only.

(iv ) It is important to verify whether the IR suppression, shown in the unquenched

propagator of the right panel of Fig. 11, persists when we start the curve extrapolation from

different values. This is shown in Fig. 12, where we compare the results obtained when

we extrapolate ∆Q(q
2) (with the BC vertex) from momenta below q2 = 0.02GeV2 (dash-

dotted green line), q2 = 0.05GeV2 (dashed with two dots magenta line), and q2 = 0.07GeV2

(dashed orange line).

Indeed, we can see that the general trend, for all cases, is that the unquenched prop-

agator ∆Q(q
2) displays suppressed intermediate and IR regions, when compared to the

quenched case. In particular, for the extrapolation starting at q2 = 0.02GeV2 we can

see that m2
Q
(0) = 0.147GeV2 and λ2 = 0.005GeV2; whereas when we extrapolate from

q2 = 0.07GeV2 we obtain m2
Q
(0) = 0.163GeV2 and λ2 = 0.021GeV2. Therefore, the ex-

trapolations mentioned above produce a range of possible values for ∆Q(0) or, equivalently,
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FIG. 13: The quenched (solid red curve) and unquenched (dotted black curve) gluon propagators

(left panel) and dressing functions (right panel). The unquenched case corresponds to the case

where the extrapolation starts at q2 = 0.05GeV2.

m2
Q
(0) indicated by the yellow striped band on Fig. 12, where the difference between the

upper and the lower value is approximately 10%. Thus, the general conclusions we can

draw with respect to the properties of the unquenched propagator are quite insensitive to

the extrapolation point used (and therefore, ultimately, to the value of λ). In what follows

we will further explore the properties of ∆Q(q
2) extrapolated towards the IR starting from

q2 = 0.05GeV2 .

On the left panel of Fig. 13 we superimpose the quenched lattice result of [7] (solid red

curve) and the unquenched result obtained from our calculation (dotted black curve), while

on the right panel we show a comparison of the corresponding dressing functions. In the

latter case notice that, as expected, both the quenched and unquenched curves vanish at

zero momentum transfer, and their differences in the deep IR region is completely washed

out. A direct comparison between the unquenched dressing function computed here and that

obtained in the unquenched lattice simulation of [6] is postponed for the next subsection.

(v ) The dependence of the unquenched solution on the number of the flavors nf is next

shown in Fig. 14. As in previous plots, we show the quenched lattice data (solid red curve)

as a benchmark, while different dashed and/or dotted curves correspond to different values

of flavors: nf = 1 (dash-dotted green curve), nf = 2 (dotted black curve), and, finally,

nf = 3 (dashed blue curve). Evidently, increasing the number of flavors results in a more

suppressed gluon propagator. As can be seen clearly in Fig. 14, in the IR and intermediate
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FIG. 14: The unquenched gluon propagator for different number of flavors: nf = 1 (dash-dotted

green curve), nf = 2 (dotted black curve) and nf = 3 (dashed blue curve).

regions the curves with more active quarks lie below the ones with fewer. This fact does not

contradict the one-loop perturbative behavior, given by Eq. (3.37), stating that, in the UV,

∆Q(q
2) increases for a higher number of quark families. Indeed, we have checked that the

perturbative behavior of ∆Q(q
2) is recovered, due to a crossing that takes place around the

renormalization point µ, which makes the curve for nf = 3 (dashed blue curve) go above all

the others in the perturbative regime.

(vi ) In Fig. 15 we show another interesting property of ∆Q(q
2). The dotted black

curve represents ∆Q(q
2) obtained with the nonperturbative expression for X̂(q2) given by

Eqs. (3.14) and (3.15); the dash-dotted blue curve refers instead to the result of a simple

one-loop calculation with a constant quark mass (see Eq. (A5) in the Appendix). Notice that

the latter result can be obtained by substituting Aa = Ab = 1 and Ba = Bb = 292 MeV into

Eqs. (3.14) and (3.15). The difference between the two curves is at the few percent level, in

agreement with the observation made before that the terms T2 and T3 are numerically sub-

dominant (at the one-loop level these terms vanish, since L2 = L3 = 0). These observations

suggest that the nonperturbative quark loop diagram (a11) appears to be rather insensitive

to the running of the dynamical quark mass.
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FIG. 15: Left panel: The unquenched gluon propagator ∆Q(q
2) for nf = 2 (dotted black curve)

compared to the one-loop dressed result with a constant quark mass M = 292 MeV (dash-dotted

blue curve). Right panel: The unquenched gluon propagator ∆Q(q
2) for nf = 2 with different values

of constant quark masses: M = 1 GeV(dashed green curve) and M = 292 MeV (dash-dotted blue

curve).

(vii ) To check the decoupling of the heavier flavors, we also compare in the right panel

of the same figure the result of the one-loop calculation with M = 292 MeV (dash-dotted

blue curve) and M = 1 GeV (dashed green curve). As we see clearly, the effect of the

dynamical fermions on the gluon propagator becomes progressively suppressed as the quark

mass increases.

(viii ) Up to now, we have computed the unquenched gluon propagator ∆Q(q
2) for a

particular fixed value of the renormalization point µ, namely µ = 4.3 GeV. It is well-known

that, both quenched and unquenched gluon propagators are µ-dependent quantities, and

therefore, different choices of µ will lead to different results.

In order to address quantitatively this effect, on the left panel of Fig. 16 we show ∆Q(q
2)

with nf = 2 for three different values of µ: (i) µ = 2.5 GeV and αs = 0.461 (dotted blue

curve); (ii) µ = 3.0 GeV and αs = 0.395 (dash-dotted black curve), and (iii) µ = 4.3 GeV

and αs = 0.295 (solid red curve). Details on how the values of αs corresponding to each

renormalization point were determined can be found in [32, 51]. From Fig. 16 one can then

clearly see that higher values of µ correspond to larger values of ∆Q(0), which is basically

the same pattern observed for the quenched case.

(ix ) Finally, one important property that relates the gluon propagators renormalized at
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FIG. 16: Left panel: The nf = 2 unquenched gluon propagator renormalized at different values of

µ and αs: µ = 4.3 GeV and αs = 0.295 (solid red curve), µ = 3.0 GeV and αs = 0.395 (dash-dotted

black curve), µ = 2.5 GeV and αs = 0.461 (dotted blue curve). Right panel: All curves showed on

the left panel renormalized at the same point µ = 2.5 GeV using the Eq. (4.1).

different values of µ is the multiplicative renormalizability, which allows one to connect a set

of data renormalized at µ with a corresponding set renormalized at ν, through the relation

∆Q(q
2, µ2) =

∆Q(q
2, ν2)

µ2∆Q(µ2, ν2)
. (4.1)

On the right panel of Fig. 16 we check how ∆Q(q
2) behaves under changes of µ using

Eq. (4.1). Evidently, multiplicative renormalizability would require that the three curves lie

on top of each other; however we see that there is a minor difference between them (at the

4% level), whose origin might be related to the fact that, as discussed in the previous section,

in our computation the renormalization procedure was carried out subtractively instead of

multiplicatively.

D. Comparison with the lattice data

In this final subsection we carry our a comparison between the results we found for

the gluon dressing function, ZQ(q
2), and the data obtained from the unquenched lattice

simulation of Ref. [6]. We remind the reader that, according to the convention introduced

below Eq. (3.7), we will denote by M (with the appropriate flavor index) the value of the

corresponding running quark mass M(p2) at p2 = 0.

On the left panel of Fig. 17, we show the 2 + 1 flavor QCD lattice data renormalized at

µ = 4.3 GeV(gray open circles), together with the results obtained applying our calculational
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FIG. 17: Left panel: The unquenched gluon dressing function ZQ(q
2) obtained in the Ref. [6]

(open gray circles) together with the one-loop result for two light quarks with Mu/d = 292 MeV,

and one heavier with Ms = 500 MeV (continuous red curve) and the case where Mu/d = 360 MeV

and Ms = 560 MeV (dotted blue curve). Right panel: The one-loop ZQ(q
2) for nf = 2 + 1 fla-

vors. The light quarks have constant masses of Mu/d = 292 MeV while for the heavier quark:

Mh = 292 GeV(dashed blue curve), Mh = 500 MeV (solid red curve), Mh = 1.0 GeV (dotted green

curve) and Mh = 1.5 GeV (dashed with two dots magenta curve).

procedure, with two light quarks of massMu/d = 292 MeV and one heavier ofMh = 500 MeV

(solid red curve). It is important to mention that the above ranges of quark masses are

consistent with the values generally employed in phenomenological calculations [61, 62].

We clearly see that the overall shape of the calculated curves display a nice agreement

with the data in a sizable range of momenta. The region where the difference between the

curves is more pronounced is around q = 1.25 GeV, exactly where the peak of ZQ(q
2) is

located. However, observe that, even in this least favorable region, the difference between

these curves is no greater than 10%.

In addition, notice that on the same plot we display also the case where Mu/d = 360 MeV

and Mh = 560 MeV (dashed blue curve). The way this latter set of mass values (and corre-

sponding quark propagators) are obtained is by solving the quark gap equation using suitable

values for the current masses. More specifically, for the light quarks (up/down) we use a

current mass of 14 MeV, while for the heavier one (strange) we use 68 MeV, in agreement

with the values quoted in Ref. [6]. Observe that the dotted blue curve indicates that the

increase of masses produces a slight change in the peak of the dressing function.
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It would be instructive to analyze how different choices for Mh modify the form ZQ(q
2)

shown on the left panel of Fig. 17. As we have already shown on the right panel of Fig. 15,

the gluon propagator becomes progressively suppressed as the quark mass increases. It is

therefore natural to expect that the gluon dressing function will be also affected by different

choices of masses.

On the right panel of the Fig. 17, we show how ZQ(q
2) varies with Mh. In all curves the

light quarks have constant masses of Mu/d = 292 MeV, whereas for the heavier quark we

use: Mh = 292 GeV (dashed blue curve), Mh = 500 MeV (solid red curve), Mh = 1.0 GeV

(dotted green curve) and Mh = 1.5 GeV (dashed with two dots magenta curve).

As we clearly see, the peak of ZQ(q
2) becomes more pronounced as we increase the value

of Mh. Notice that the case where Mh = 1.5 GeV (dashed with two dots magenta curve) is

much closer to the lattice data (open gray circles). In addition, if we keep increasing the

heavy quark mass gradually, the observed trend of the results is to move progressively closer

to the case where only two quarks are active (dash-dotted black curve), thus confirming the

notion of decoupling of heavy flavors. To avoid any possible confusion caused by the striking

proximity of the nf = 2 curve to the lattice data, we reiterate that the real comparison

between the (2+1) data and the corresponding (2+1) SDE result is given on the left panel.

Evidently, the analogous comparison of the nf = 2 curve would require a corresponding set

of lattice data, not available to us at present.

V. CONCLUSIONS

In this article we have presented a general method for estimating the effects that the

“unquenching” induces on the (IR finite) gluon propagator, in the Landau gauge. The basic

assumption of the method followed has been that the main bulk of the effect originates from

the “one-loop dressed” quark diagram, while the rest of the contributions is considered to

be subleading. We have restricted the applicability of this approach to a small number of

quark families (n = 1, 2, 3), where we assume the presence of the quarks does not alter

qualitatively the behavior of the quenched propagator. In particular, we expect that the

crucial property of IR finiteness will persist, i.e., the gluon mass generating mechanism will

not be distorted by the inclusion of a few quark families. In fact, throughout our analysis

we use the quenched gluon propagator obtained in SU(3) lattice simulations as our point of
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reference, and estimate the deviations induced to it by the quarks.

The nonperturbative calculation of the quark loop proceeds by means of two suitable

Ansätze for the fully dressed quark-gluon vertex Γ̂µ, enforcing the exact transversality of

the resulting contribution. The use of the PT-BFM formalism simplifies the form of these

Ansätze considerably, due to the “abelianization” that it induces, given that the corre-

sponding Green’s functions, when contracted with respect to the momentum carried by the

background leg, satisfy linear ghost free WIs instead of the usual nonlinear STIs. This

fact, in turn, avoids the explicit reference to the quark-ghost kernel, which appears in the

standard STI satisfied by the conventional quark-gluon vertex Γµ [the H auxiliary function

of Eq. (3.3)]. Of course, one cannot completely eliminate any dependence on H , for the

simple reason that it affects the quark gap equation that determines the quantities A(p) and

B(p), namely the nonperturbative Dirac components of the quark propagator; this happens

because, as explained in [31], the quark-gluon vertex entering in the gap equation is Γµ and

not Γ̂µ. Given that the structure of the quark-ghost kernel is largely unexplored (for an SD

estimate of one of its form-factors, see [31]), reducing the dependence of the answer on it is

clearly advantageous.

The main results of our study is that the inclusion of the quark loop(s) induces a sup-

pression in the intermediate and IR momentum regions, with respect to the quenched case.

As emphasized in the main text, the actual saturation point of the unquenched propagator,

i.e., the value ∆Q(0), normally associated with the IR value of the dynamical gluon mass,

m2(0), is not possible to determine at present, despite the fact that the quark-loop contri-

bution to the corresponding gluon self-energy vanishes at q2 = 0, by virtue of a powerful

identity. The reason is that the momentum evolution of the gluon mass depends (in a yet

not fully determined way) on the structure of the gluon propagator through the entire range

of physical momenta; thus, the suppression of the propagator due to the inclusion of the

quarks is expected to modify the value of m2(0). In this work we have adopted a simple

hand-waving approach for estimating ∆Q(0). Specifically, given that the unquenched prop-

agator in the IR and intermediate regions is consistently below the corresponding quenched

curve, we have simply extrapolated towards the point q2 = 0. In practice, the outcome of

this simple procedure depends to some extent on the extrapolation details (in particular,

what one considers as the last “faithful” point), and therefore one can only determine a

certain range of “reasonable” values for ∆Q(0).
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The uncertainty associated with the determination of the saturation point is practically

eradicated if one considers instead of the gluon propagator its corresponding dressing func-

tion. This latter quantity, when compared to the corresponding dressing function of the

quenched lattice propagator, clearly demonstrates the aforementioned suppression in the IR

and intermediate regions induced by the inclusion of the quarks. The unquenched dressing

function obtained through our procedure appears to be in rather good agreement with the

lattice results available in the literature.

There are certain theoretical improvements, which, if successfully implemented, would

put the proposed approach on a more solid ground. To begin with, it is clear that the full

SDE treatment of the problem at hand would entail the simultaneous treatment of a com-

plicated set of coupled integral equations, in the spirit presented in [38, 39], in the context

of the scaling solutions. This type of global treatment appears to be beyond our present cal-

culational powers, mainly due to the plethora of additional technical complications intrinsic

to the massive solutions. Instead, we have adopted a step-by-step procedure; for exam-

ple, the quark-gap equation has been solved “in isolation”, and the obtained solutions have

been fed into the equations determining the quark-loop, and so on. To be sure, this latter

procedure might interfere with the nonlinear propagation of certain effects, leading to the

corresponding amplification or suppression of various features, and may require additional

refinements.

The renormalization properties of the relevant integral equations constitute a commonly

known source of theoretical uncertainty, due to the mishandling of the overlapping diver-

gences induced by the well-known intrinsic ambiguity of the gauge-technique, related to

the unspecified transverse (automatically conserved) part of the vertices. In particular, the

BC and CP expressions employed here for the quark-gluon vertex do not fully respect the

property of multiplicative renormalizability, which, in turn, leads to dependences on the

renormalization point that are not always in accordance with those dictated by the renor-

malization group. The propagation of such discrepancies to our predictions has been studied

numerically, and appears to be relatively suppressed. However, more work is clearly needed

in order to eliminate the spurious µ-dependences. In this vain, it would be interesting, albeit

logistically cumbersome, to explore the effects that other forms of the quark-gluon vertex

might have on our predictions, such as those reported in [63, 64].

Finally, the reliable calculation of the saturation point ∆Q(0) mentioned above hinges

35



explicitly on the derivation of a fully self-consistent integral equation, that would determine

the momentum evolution of the dynamical gluon mass, both in the quenched case and in

the presence of quarks. The derivation of such a complete equation is conceptually and

technically rather non-trivial, and is the subject of an ongoing investigation, whose results

will be hopefully presented soon.
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Appendix A: The perturbative One-loop case

The text-book perturbative calculation of diagram a11 yields (with df = 1/2)

X̂ [1](q2) = −
2g2

d − 1

∫

k

dM2 − (d− 2)(k2 + k · q)

(k2 −M2)[(k + q)2 −M2]
. (A1)

where M denotes a constant (momentum-independent) mass. Note that the “hat” in this

case is redundant, because, at one loop, the conventional and BFM results coincide. The

result of Eq. (A1) may be directly recovered from the general case presented in section III,

by setting M(p) = M , A(p) = 1, L1 = 1, L2 = L3 = 0 in Eqs.(3.14) and (3.15).

It is elementary to establish that

X̂ [1](0) = 0 , (A2)

by virtue of the basic identity

∫

k

k2

(k2 −M2)2
=

d

2

∫

k

1

k2 −M2
, (A3)

or, equivalently,

2M2

∫

k

1

(k2 −M2)2
= (d− 2)

∫

k

1

k2 −M2
, (A4)

whose validity may be easily verified following the integration rules of dimensional regu-

larization. These exact same identities appear in the standard one-loop calculation of the
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photon vacuum polarization, both in normal QED and in scalar QED, and enforces the

masslessness of the photon [54].

The property of (A2) becomes manifest through the use of (A4), which allows one to cast

(A1) into the form

X̂ [1](q2) = −
g2

d− 1

{
(d− 2)q2I(q2) + 4M2

[
I(q2)− I(0)

]}
, (A5)

where

I(q2) =

∫

k

1

(k2 −M2)[(k + q)2 −M2]
, (A6)

or, equivalently, defining

u2(q2) ≡ q2x(x− 1) +M2, (A7)

we have

X̂ [1](q2) = −
g2

d− 1

{
(d− 2)q2I(q2)− i

M2

4π2

∫ 1

0

dx ln
u2(q2)

M2

}
. (A8)

Finally, the renormalized expression for X̂(1)(q2) in the MOM scheme is given by

X̂
[1]
R (q2) = X̂ [1](q2)−

q2

µ2
X̂ [1](µ2) . (A9)

giving as a result

X̂
[1]
R (q2) =

iαs

6π

{
q2

∫ 1

0

dx ln
u2(q2)

u2(µ2)
+ 2M2

[∫ 1

0

dx ln
u2(q2)

M2
−

q2

µ2

∫ 1

0

dx ln
u2(µ2)

M2

]}
.

(A10)

Evidently, for q2 and µ2 much larger than M2, one obtains the standard logarithmic correc-

tion

X̂
[1]
R (q2) =

iαs

6π
q2 ln(−q2/µ2). (A11)
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