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Resumen

En 1873, Ernst Abbe concluyó que debido a la difracción de la luz el límite de

resolución de un sistema óptico es aproximadamente la mitad de la longitud de

onda de trabajo [1]. Este límite, llamado el límite de difracción produce porque

las ondas evanescentes no contribuyen a la formación de la imagen. En cualquier

sistema óptico formado por materiales presentes en la naturaleza los detalles es-

paciales del objeto que sean más pequeños que el límite de resolución son trans-

portados por ondas evanescentes. Normalmente estas ondas se pierden debido a

la fuerte atenuación que experimentan viajando del objeto a la imagen.

En 1968, Veselago [2] mostró que un material con permitividad y permeabili-

dad negativa, es decir, con índice de refracción negativo (NIM), exhibe una serie

de fenómenos poco comunes, tales como el efecto Doppler inverso, radiación

de Čerenkov inversa y refracción negativa. Este último fenómeno permite a una

lámina de NIM actuar como si de una lente convergente se tratase, produciendo

una imagen real de objeto luminoso situado frente a la lámina. Tres décadas des-

pués, Pendry descubrió que las lentes formadas con NIMs pueden tener un límite

de resolución muy por debajo de la longitud de onda. Es decir, estas lentes pueden

producir imágenes perfectas en ausencia de pérdidas si la impedancia coincide con

la del medio en el que están sumergidas [3, 4]. Idealmente, las lentes formadas

por NIMs producen imágenes perfectas, propagando las ondas homogéneas y am-

plificando las evanescentes por medio de los polaritones excitados en la superficie

del NIM. Esta amplificación de las ondas evanescentes compensa su decaimiento
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fuera del metamaterial. Llamaremos superlentes a este tipo de lentes así como

cualquier otra capaz de generar imágenes cuyo límite de resolución sea menor

que el límite establecido por la difracción.

La capacidad superresolvente de las lentes de índice de refracción negativo des-

cubierta por Pendry fue cuestionada tanto teóricamente [5] como usando simula-

ciones numéricas [6]. La discusión versaba sobre la amplificación de los modos

evanescentes que hace matemáticamente no integrables a los campos electromag-

néticos en el plano imagen de la superlente. Si se tienen en cuenta las pérdidas

en el NIM el problema desaparece. De hecho, los NIMs realistas siempre tienen

pérdidas que no pueden ser ignoradas en los cálculos. En consecuencia, la am-

plificación de las ondas evanescentes en las interfases de un NIM viene siempre

acompañada de la disipación de estas dentro del mismo, impidiendo su completa

recuperación en el plano imagen.

Además de las pérdidas existen otros parámetros que determinan el ancho de

banda espacial transmitido y por consiguiente, el poder de resolución del sistema

óptico [7]. Por ejemplo, es posible aumentar la resolución con una lente plana de

inmersión eligiendo una configuración asimétrica con una constante dieléctrica

alta en el medio que incluye el plano imagen [8].

También se ha demostrado que cuando las permeabilidades y permitivides no son

exactamente iguales (salvo signo) se pueden producir resonancias que ayudan a

aumentar la resolución de la superlente [8]. También es posible aumentar la re-

solución mediante la reestructuración de la lente [9]. Sin embargo se cree que la

introducción de materiales con ganancia es el enfoque más eficiente [4, 10–18].

La primera demostración experimental de un NIM en el rango de las microondas

la realizaron Smith et al. [23, 24]. Su montaje experimental puede verse en la

Figura 1(a). Se observó el fenómeno de la refracción negativa utilizando un NIM

compuesto por una matriz de celdas unidad con un tamaño de una longitud de

onda. Cada celda unidad contenía un resonador anular abierto y un hilo metálico.

Posteriormente se ha mejorado este montaje usando una versión refinada de los
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(d)(c)(a)

(b)

OBJECT

IMAGE

FIGURE 1: (a) Primera realización experimental de un NIM. Una estructura
basada en resonadores anulares abiertos e hilos metálicos grabados en una placa
(extraído de [19]). (b) Imagen SEM de una estructura fishnet con 21 capas
(extraído de [20]). (c) Esquema y medidas experimentales de superesolución
en una lámina de metal. La ilustración muestra una superlente óptica con una
capa de plata actuando como lente (extraído de [21]). (d) Esquema de una
hiperlente y simulación numérica de la formación de imágenes con resolución

sub-λ (extraído de [22]).

anillos resonadores [25, 26]. Este tipo de medio sólo es eficaz para la fabricación

de superlentes en el rango de microondas e infrarrojo debido a la fuerte absorción

que experimenta a frecuencias más altas. Además, no poseen un µ negativo para

frecuencias más allá del infrarrojo [27]. Para frecuencias mayores una estructura

tipo ’fishnet’ como la que se muestra en la Figura 1(b) puede sustituir a la matriz

de anillos resonadores [20, 28, 29].

Todos los NIMs que se han desarrollado hasta hoy se obtienen juntando dos mate-

riales estructurados de los cuales uno muestra permitividad negativa y el otro per-

meabilidad negativa. La mayoría de los estudios de metamateriales se ha centrado

en conseguir un índice de refracción negativo en una banda estrecha de frecuen-

cias, aunque también hay estudios en bandas dobles [30, 31], en multibanda [32] e

incluso metamateriales sintonizables [33]. También se ha observado la refracción

negativa para un amplio espectro angular en dos dimensiones a través de montajes

con segmentos en forma de prisma [34, 35].
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En campo cercano, es decir para frecuencias espaciales muy altas, las respuestas

eléctrica y magnética de los materiales están desacopladas. Por tanto, para ondas

con polarización transversal magnética (TM), sólo se necesita una permitividad

negativa para formar imágenes sub-λ [3]. Los metales nobles, tales como la plata,

satisfacen esta nueva condición y por tanto son candidatos naturales para el diseño

de superlentes en el rango óptico. A frecuencias ópticas la permitividad de estos

metales, en módulo, puede ser comparable a la permitividad del dieléctrico que lo

rodee, lo que permite la excitación de plasmones polaritones de superficie (SPPs)

en la interfase entre el metal y el dieléctrico. Los detalles sub-λ de la fuente se

transmiten a través del sistema acoplándose a los SPPs [3, 8]. Se puede ver una

realización experimental de este tipo de superlente en el montaje experimental de

Fang et al. que se muestra en la Figura 1(c).

En particular, se han realizados experimentos que prueban la amplificación de

ondas evanescentes a través de una lámina de plata [36, 37]. Los experimentos

mostraron que estas ondas se amplifican hasta un espesor de las láminas que de-

pende de la longitud de onda. Para espesores mayores la absorción tiene mayor

peso y las ondas evanescentes se atenúan en lugar de amplificarse dentro del ma-

terial. Sin embargo, es posible reducir los efectos de la absorción introduciendo

materiales activos [11] o exfoliando la lámina original en películas más finas y

distribuyéndolas entre los planos objeto e imagen como si de una matriz de su-

perlentes elementales se tratase. Las ondas evanescentes incidentes excitan reso-

nancias plasmónicas que a su vez transfieren esta ondas inhomogéneas por efecto

túnel resonante [38–41], también llamado efecto túnel plasmónico [42]. Al am-

plificarse en menor medida las ondas evanescentes en cada capa se reduce la ab-

sorción en los metales, y por tanto, cuando estas estructuras se usan en formación

de imágenes, este efecto contribuye a mejorar el poder de resolución del sistema

[4, 43, 44].

Las superlentes compuestas por películas idénticas de metal dispuestas entre sepa-

radores dieléctricos son medios 1D metal-dieléctrico periódicos (PLMs). En estos
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medios encontramos fenómenos de naturaleza plasmónica tales como la refrac-

ción negativa [45] y la formación de imágenes superresolventes [46–48]. Además,

la refracción negativa y la amplificación de las ondas evanescentes no son requi-

sitos necesarios para formar imágenes sub-λ en estos dispositivos. Los PLMs

pueden diseñarse para mostrar unas curvas de isofrecuencia planas. En este caso

la superlente se comporta como una guía de ondas [4]. Este régimen, llamado

canalización, ha sido investigado por numerosos autores [49–52].

Desde que los PLMs fueron propuestos como candidatos para crear superlentes

ha habido un gran interés en extender su rango de funcionamiento al espectro

vi-sible. Este reto ha sido abordado en varias publicaciones [39, 53–63]. La prin-

cipal dificultad en el diseño de estos dispositivos son las grandes pérdidas por

absorción y dispersión. Para lidiar con este problema se han realizado algunas

propuestas que incluyen nuevas geometrías aperiódicas. Por ejemplo, considerar

una serie de guías de onda metálicas con diferentes tamaños del orden de los

nanómetros y que estén fuertemente acopladas [46]. La atenuación en esta estruc-

tura es considerablemente menor que en un PLM tanto para ondas propagantes

como evanescentes.

En 2006 se propuso [64] y posteriormente se demostró experimentalmente [65,

66] un nuevo tipo de superlentes denominadas superlentes de campo lejano. És-

tas lentes se basan en introducir una red de difracción en la superficie de sal-

ida de una superlente metal-dieléctrico. A diferencia de las superlentes conven-

cionales, además de amplificar las ondas evanescentes las convierten en ondas

propagantes en la superficie de salida. Al diseñar este tipo de lentes es crucial

dotarlas de una función de transferencia que permita numéricamente reconstruir

sin ambigüedades las imagenes sub-λ . Se requiere de un diseño de la función de

transferencia complejo y una intensa computación numérica para reconstruir la

imagen ya que en estas lentes no se puede recuperar la imagen directamente con

una red de difracción. Además, estas superlentes no pueden magnificar la imagen.
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Por esta razón su aplicación en los sistemas ópticos convencionales se ve limitada,

ya que la imagen ha de tener las mismas dimensiones que el objeto.

En estas mismas fechas también se propuso un nuevo tipo de superlentes que

pueden aumentar el tamaño de la imagen: las hiperlentes [67, 68]. Están for-

madas por capas de lentes cilíndricas metal-dieléctrico y son capaces de producir

imágenes sub-λ magnificadas en el campo lejano mediante la conversión de las

ondas evanescentes en propagantes [69, 70]. Específicamente, las hiperlentes dis-

persan radialmente la luz permitiendo transportar casi punto a punto una imagen

hasta la superficie de salida. A las primeras propuestas de hiperlentes les siguie-

ron desarrollos experimentales en el rango óptico [22, 71]. Algunos de éstos se

muestran en la Figura 1(d). Desde entonces se han propuesto hiperlentes en las

que se sustituye la geometría cilíndrica por la esférica [72], matrices cónicas de

hilos metalicos [73–76] y otros diseños singulares [77–80].

Más adelante se desarrolló otro nuevo tipo de superlentes basadas en metama-

teriales, conocidas como metalentes [81–84]. Una metalente se crea mediante

la combinación de un metamaterial multicapa y un mecanismo de compensación

de fase que enfoca una onda plana en un punto. Una limitación importante de

las metalentes que comparten con las hiperlentes es el efecto de las pérdidas que

limita la resolución de la lente así como la transmisión de la señal. Es posi-

ble corregir el efecto de las pérdidas de varias formas: añadiendo ganancia a los

dieléctricos que conforman la superlente [15], diseñando la estructura de bandas

con mejores materiales plasmónicos, dopando los ya existentes, o mediante alea-

ciones [85, 86]. Además, el objeto tiene que estar colocado en el campo cercano

de la lente para que las superlentes sean capaces de interaccionar con las ondas

evanescentes . A todo esto hay que sumarle que los diseños actuales para hiper-

lentes y metalentes tienen un campo de visión muy limitado debido al tamaño de

sistema óptico. Por todo ello el diseño de este tipo de lentes es un campo de estu-

dio donde aún se pueden proponer nuevos diseños que mejoren sus características

optogeométricas.
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Las superlentes son dispositivos muy prometedores en aplicaciones tales como la

microscopía o la litografía óptica a escala nanométrica. Esta última es clave a la

hora de reducir el tamaño de los circuitos integrados. El almacenamiento óptico

y magnético y los biosensores [87] también pueden beneficiarse de la capacidad

de estas lentes, permitiendo escribir o leer información dentro de volúmenes cada

vez más pequeños y por tanto aumentando la densidad de almacenamiento y la

resolución de las medidas.

Objetivos

Esta tesis se centra en la formacion de imagenes superresolventes utilizando NIMs

y PLMs. Para ello, en primer lugar se derivará una respuesta impulsional (PSF)

3D con el fin de definir sin ambigüedades el campo difractado por una lente plana

en el volumen imagen. Por medio de la transformada de Fourier 3D, se introducirá

la función de transferencia generalizada con el fin de entender mejor el poder de

resolución de los elementos ópticos de una superlente. Estas herramientas junto

con la respuesta dipolar eléctrica se aplicarán para evaluar la resolución de los

NIMs con absorción moderada al mismo tiempo que se analiza su capacidad para

discriminar objetos con profundidad.

También se explorará la posibilidad de mejorar la resolución en el campo lejano

solapando a una lente plana de NIM un material con un índice de refracción alto.

Se analizarán desde el punto de vista de la óptica geométrica las aberraciones

producidas en este tipo de lentes asimétricas. Estas aberraciones pueden dañar la

imagen y reducir el poder de resolución de la superlente. A través de un análisis de

aberraciones estándar se optimizará la configuración asimétrica de las superlentes

basadas en NIMs.

Gran parte de esta tesis se centra en los PLMs. Se pretende señalar las limitaciones

existentes en la formación de imágenes 3D con lentes planas basadas en NIMs

además de investigar la reducción significativa en el límite de resolución mediante
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la división de las superlentes planas en películas ultrafinas. Así mismo se estudiará

cómo afecta esta redistribución de las lentes a la profundidad de campo.

También se explorará un diseño de superlente resultante de unir dos PLMs que

difractan la luz de manera opuesta y complementaria. En este dispositivo tanto las

ondas propagantes como un ancho de banda significativo de ondas evanescentes

se transforman en ondas de Bloch propagantes dentro de cada PLM. La difracción

producida en una parte del dispositivo es corregida por la difracción negativa de

la otra parte.

Las propiedades ópticas de los PLMs serán también analizadas para el régimen

de permitividades efectivas próximas a zero (ENZ), siendo este regimen un con-

cepto derivado de la aproximación de medio efectivo. En este régimen los PLMs

pueden canalizar sin difractar la luz emitida por emisores puntuales o producir la

doble refracción de la luz para una única polarización. Para este segundo caso se

propondrá una variación de la aproximación de medio efectivo y con ella una ley

de la refracción generalizada que describa las dos refracciones simultaneamente.

También se pretende analizar la distribución de flujo energético en las señales

refractadas y la reflejada.

Por otro lado se propondrá un método para deducir la PSF tanto en intensidad

como en fase de una superlente formada por un PLM. Para ello se considerará el

patrón de intensidad producido por una máscara de metal con aberturas calibradas

colocada a la entrada de la superlente y se procesará el patrón de intensidad me-

dido a la salida con una variación del algoritmo de deconvolución ciega.

Aunque las superlentes basadas en PLMs están generalmente diseñadas para con-

trolar la difracción de haces convencionales, su uso no está restringido a éstos. Se

pretende demostrar la existencia haces Bessel sub-λ en estructuras multicapa y

medios con hilos metálicos. En ambos casos, se estudiará el fenómeno de super-

resolución producido por la interacción plasmónica entre la materia y la luz. Los

patrones de intensidad producidos en estas nanoestructuras también se analizarán

para su uso potencial en la formación de imágenes.
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Los haces Airy son también candidatos para trasportar información sub-λ a través

de nanoestructuras. Para concluir presentaremos un breve tratamiento teórico de

este tipo de haces incluyendo el importante papel que desempeña en ellos la fase

Gouy.

Metodología

En el Capítulo 2 se han caracterizado las ondas de superficie tanto en NIM como

en metales. En todos los casos los cálculos necesarios para representar las gráfi-

cas se han realizado con el programa comercial Mathematica 9. También se han

definido las funciones matemáticas que se usarán en el Capítulo 4 para caracteri-

zar un dipolo puntual eléctrico.

En el Capítulo 3 se han descrito las curvas de dispersión de medios periódicos

NIM-dieléctrico y metal-dieléctrico utilizando la ecuación de Bloch así como la

aproximación de medio efectivo. De nuevo los cálculos necesarios para represen-

tar las gráficas se han realizado con el programa comercial Mathematica 9. En este

mismo Capítulo se ha considerado el caso de la doble refracción con una única

polarización. Se han calculado las curvas de isofrecuencia y a partir de ellas los

ángulos de refracción del rayo ordinario y el extraordinario, todo ello haciendo

uso de las ecuaciones de Bloch y realizando los cálculos con Mathematica 9.

A continuación se ha representado la intensidad del campo magnético de un haz

gausiano incidiendo oblicuamente en un PLM y produciendo la doble refracción.

Para ello se ha simulado por el método de los elementos finitos con el software

comercial COMSOL 3.5 el campo magnético producido por una onda plana con

diferentes ángulos de incidencia en una porción del espacio que abarca una an-

chura de un periodo del PLM. Los resultados obtenidos se han combinado en

MatLAB R2012a para producir la imagen final.



x Resumen

Además se ha evaluado la reflectancia y la transmitancia distribuida entre los haces

en el montaje propuesto. Para saber cuánta energía se ha reflejado y transmitido

hemos considerado el cociente del flujo del vector de Poynting de las ondas re-

flejadas y transmitidas respecto a la incidente. No hemos considerado absorción

dentro del PLM así que el flujo de energía normal a la superficie de separación

aire-PLM es una constante en ambos medios. Hemos considerado las compo-

nentes normales del promedio temporal del vector de Poynting incidente, reflejado

y transmitido, con polarización P. En las simulaciones numéricas hemos evaluado

el campo magnético Hx. Para obtener el campo eléctrico y así poder calcular el

vector de Poynting se ha hecho una simple descomposición del campo magnético,

Hx = H1x +H2x. En particular H1x representa el campo magnético que experi-

menta refracción positiva y H2x el que experimenta refracción negativa. Se ha

calculado la transformada de Fourier del campo total Hx a lo largo de la direc-

ción y; en el dominio de las frecuencias los campo H1x y H2x están localizados

alrededor de diferentes frecuencias ky lo que finalmente nos permitirá discernir la

proporción de energía que corresponde a cada haz.

En el Capítulo 4 se ha definido la PSF 3D así como su transformada de Fourier,

la ATF. Estas herramientas y su versión 2D se utilizan exhaustivamente en este

capítulo y los siguientes para caracterizar elementos formadores de imágenes.

También se ha representado la respuesta de un dipolo puntual eléctrico a través

de una superlente utilizando el desarrollo matemático de la Sección 2.3. En todos

el capítulo se ha usado Mathematica 9 para las representaciones con la excep-

ción de la Figura 4.14 en donde se ha simulado con COMSOL 3.5 el modulo del

campo eléctrico emitido por una fuente lineal y transmitido por una lámina de

índice negativo.

En el Capítulo 5 se utilizan las herramientas introducidas en los capítulos anterio-

res para desarrollar la formación de imágenes en metales. El estudio se realiza

por procedimientos estándar y haciendo uso de Mathematica 9 en la mayoría de

los casos. Existen tres excepciones: la figura 5.4 donde se ha simulado un medio
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periódico en el régimen de canalización haciendo uso de COMSOL 3.5. También

se ha simulado con COMSOL 3.5 la Figura 5.8 en donde se combina un medio

con refracción negativa y otro con refracción positiva.

En la última Sección Capítulo 5, se la PSF tanto en intensidad como en fase de una

superlente formada por un PLM. Para ello se procesa la intensidad a la salida de la

superlente con una variación del algoritmo de deconvolución ciega que incluyae

las condiciones de simetría del PLM. De esta manera se exigirá la simetría de

la PFS así como de su transformada de Fourier, la función de transferencia. La

implementación del algoritmo así como las figuras se han realizado con MatLAB

R2012a.

En el Capítulo 6 se analizan los haces Bessel plasmónicos. Para su estudio se

recurre a Mathematica 9 a excepción de los patrones de intensidad de los haces

Bessel en los medios estratificados para los que se ha utilizado COMSOL 3.5. Fi-

nalmente se introduce la formulación de los haces Airy y se desarrolla con detalle.

De nuevo todas las figuras relacionadas con los haces Airy han sido realizadas con

Mathematica 9.

Conclusiones

Con el objetivo de estudiar la formación de imágenes en nanoestructuras plas-

mónicas se ha analizado el patrón de difracción 3D producido por una fuente pun-

tual sobre una lámina de NIM. Este patrón es la transformada de Fourier 3D de una

función a la que llamamos la función de transferencia generalizada. Se observa

que la ATF generalizada está compuesta por dos partes diferentes: una de ellas,

con forma esférica, contiene la información del campo lejano. La otra, con forma

de hiperboloide, se asocia a las componentes evanescentes del campo electromag-

nético. Se concluye que la resolución sub-λ viene determinada principalmente

por la modulación de la ATF generalizada en la parte que se corresponde con el

hiperboloide. También se concluye que el aumento de la resolución transversal
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dentro del régimen de campo cercano puede producirse a costa de la pérdida de la

discriminación en profundidad.

La formación de imágenes con superlentes de NIM asimétricas también se evalúa

en la Tesis, centrándonos en las aberraciones primarias asociadas y en los efectos

de la reflexión. Ambos son efectos no deseados que provienen del desajuste de las

impedancias en las interfases. Para corregirlos se propone diseñar una superlente

con un revestimiento reflejante que reduzca al mínimo la reflexión de la luz. Así

mismo, se concluye que para evitar aberraciones esféricas basta con colocar el

plano objeto a una distancia concreta de la interfase de entrada de la superlente.

Especialmente para superlentes con anchos sub-λ la contribución de las ondas

evanescentes es significativa. Por tanto, para conseguir una superlente con una

resolución óptima es necesario buscar un acuerdo entre la contribución de las

aberraciones de orden superior y la contribución de las ondas evanescentes.

Volviendo a centrarnos en las superlentes simétricas, se sabe que su resolución

puede mejorarse dividiendo el NIM en múltiples películas. A cambio se reduce

la profundidad de campo y la capacidad de observar imágenes fuera del plano.

Por tanto, a la hora de diseñar una superlente multicapa conviene alcanzar un

equilibrio entre el poder de resolución requerido y la capacidad de discriminación

en volumen que se desea.

En esta Tesis, además de las superlentes fabricadas con NIMs también se estudian

las superlentes metálicas. En su superficie pueden excitarse plasmones polari-

tones. Esto permite acceder a un enorme espacio de índices de refracción efec-

tivos que pueden ajustarse fácilmente variando los materiales, las dimensiones o

la geometría. En concreto, podemos diseñar un medio metal-dieléctrico para que

se comporte como un medio uniáxico con permitividad próxima a cero. En el ré-

gimen de canalización estos medios permiten la propagación de altas frecuencias

espaciales. Su interacción con los modos evanescentes de la fuente permite la for-

mación de imágenes sub-λ a lo largo del eje óptico del metamaterial. Finalmente
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hemos desarrollado un método de ajuste simple que incluye las frecuencias espa-

ciales altas en las relaciones de dispersión, las cuales no aparecen en el modelo

estándar de la aproximación de medio efectivo.

También proponemos una ley de refracción generalizada que describe la doble

refracción de las ondas polarizadas-TM. El acoplamiento de los modos de la red

y los efectos no locales son responsables de este efecto. Se ha llevado a cabo un

análisis sobre la distribución de energía entre estos haces refractados en función

del ángulo de incidencia en la PLM.

Fuera del régimen de canalización también es posible producir imágenes sub-λ .

Para ello proponemos un dispositivo formado por dos PLMs altamente anisotrópi-

cos. El primero convierte las ondas evanescentes en ondas de Bloch. La disper-

sión producida dentro de ese medio es compensada por la refracción negativa del

medio adyacente. Su dispersión tiene una curvatura opuesta a la del primer medio.

El medio con refracción negativa recoge un amplio espectro de ondas de Bloch y

posteriormente las enfoca adecuadamente en el plano de salida del dispositivo.

Gran parte de los resultados presentados en esta Tesis se sustentan en el análisis de

la PSF. Aunque esta función es útil en la formación de imágenes, es técnicamente

complicada de medir. Para lidiar con este problema se propone una versión del al-

goritmo de deconvolución ciega que incluye ciertas condiciones impuestas por la

física del sistema. Éste permite recuperar la PSF mediante el patrón de intensidad

medido en la interfase de salida de la superlente. Mientras que en los algoritmos

de deconvolución ciega estándar sólo se recupera el módulo de la PSF, la versión

introducida en esta Tesis también es capaz de recuperar la fase.

Además de formar imágenes sub-λ canalizando ondas evanescentes, los PLMs

también permiten la propagación de haces localizados adifraccionales con una an-

chura de tamaño sub-λ . Específicamente nos referimos a haces Bessel propagán-

dose en medios dieléctrico fuera del régimen de canalización. Para producir este

fenómeno hace falta excitar en una superlente un numero adecuado de SPPs de

alto orden y que estén en fase. Los efectos disipativos de los metales conducen
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a un régimen adifraccional limitado por la longitud de atenuación de la energía.

Sin embargo, la localización del haz sobre el eje se mantiene a lo largo de un

intervalo que es mayor que la longitud de atenuación de la energía en más de

un orden de magnitud. La posibilidad de excitar múltiples haces Bessel en estas

nanoestructuras abre el camino para la formación de imágenes superresolventes.

Por último, consideramos otro tipo de haces adifraccionales: los haces Airy. Éstos

haces conservan su perfil pero siguen una trayectoria parabólica en el régimen

paraxial. En particular, hemos analizado la fase de Gouy que se puede expresar

en este tipo de haces con una integral de línea. Las ecuaciones que describen las

líneas de corriente, el vector de Poynting y la variación espacial de la velocidad

de fase en estos haces proporcionan un punto de partida para explorar el flujo de

energía electromagnética. Este análisis general se puede aplicar tanto a haces Airy

plasmónicos como a haces propagándose por el espacio libre.
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Chapter 1

Introduction

1.1 Motivation

In 1873, Ernst Abbe concluded that the resolving ability of an optical imaging

system is limited to half the working wavelength due to the diffraction of light

[1]. This fundamental limit, called the diffraction limit is attributed to the finite

wavelength of electromagnetic waves. In any optical system made of materials

found in the nature the spatial details of the object smaller than a wavelength,

carried by the evanescent waves, are lost due to the strong attenuation these waves

experience when traveling from the object to the image.

In 1968, Veselago [2] showed that a medium with both negative permittivity and

permeability, called negative index material (NIM), exhibited a number of un-

common phenomena, such as reverse Doppler shift, Čerenkov radiation and the

reverse equivalents of Snell’s law. The latter phenomena let a slab made of such

a material to act as a focusing lens, producing a real image of a source placed in
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front of the slab. It was not until 2000 when Pendry suggested another extraor-

dinary property of the NIM slabs: they are not restricted by the diffraction limit.

They can produce perfect images if they are completely lossless and impedance

matched to the surrounding medium [3, 4]. The NIM lens achieves perfect imag-

ing by focusing propagating waves as well as supporting growing evanescent

waves employing surface polariton resonances excited in the near field. Evanes-

cent waves restore at the image plane the decaying evanescent waves emanating

from the source. We will refer to a piece of matter capable of sub-diffraction limit

focusing as a superlens.

The ability to overcome the diffraction limit introduced in Pendry’s seminar pa-

per was questioned both theoretically [5] and in numerical simulations [6]. They

discuss the fact that near-field modes amplification makes fields in the superlens

image plane non-integrable. This problem must be avoided by considering losses

in the NIM. It is noteworthy that realistic NIMs always have a significant amount

of losses that cannot be ignored in the calculations. Consequently, the large ampli-

fication of the evanescent spatial frequencies causes large amounts of dissipation,

which does prevents the complete restoration of these wave fields.

Not only losses but a variety of parameters determine the evanescent spatial band-

width transmitted and consequently the resolution [7]. For instance, it is possible

to increase the resolution of the slab lens by choosing an asymmetric configura-

tion with a large dielectric constant on the side of the image [8]. It has also been

shown that slight deviations from the impedance matched conditions can lead to

the resonant excitation of slab plasmons which can also help to increase the reso-

lution [8]. In addition, it is also possible to increase the resolution by restructuring

the lens [9]. However the introduction of gain materials is believed to be the most

efficient approach but also very challenging [4, 10–18].
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(d)(c)(a)

(b)

OBJECT

IMAGE

FIGURE 1.1: (a) First experimental realization of a NIM. A split ring structure
etched into copper circuit board plus copper wires to give negative µ and neg-
ative ε . Reprinted from [19]. (b) SEM image of the 21-layer fishnet structure.
Reprinted from [20]. (c) Optical superlensing experiment with a silver layer
as a lens. Reprinted from [21]. (d) Schematic of an hyperlens and numerical
simulation of imaging of sub-diffraction-limited objects. Reprinted from [22].

The first experimental demonstration of a NIM at microwave frequencies was per-

formed by Smith et al. [23, 24], whose arrangement can be seen in Fig. 1.1(a).

They demonstrated negative refraction at microwave frequencies using a NIM

made of an array of wavelength scale unit cells. This unit cell consists of a

split-ring resonator and a wire. Improved experimental results verifying nega-

tive refraction have been reported using a refined version of the same split-ring

resonators and wires medium [25, 26]. This kind of medium is only efficient

for the fabrication of superlenses at microwaves and infrared frequencies due to

the strong absorption at higher frequencies. A fishnet structure, i.e., a perforated

metal-dielectric-metal sandwich as shown in Fig. 1.1(b) can substitute the split-

ring-resonator arrangement [20, 28, 29], which fails to provide negative µ above

infrared frequencies [27].

All the NIMs that have been developed until today are obtained by putting together

two structured materials that show separately a negative dielectric permittivity and
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negative magnetic permeability. The majority of the metamaterial studies focused

on achieving the desired electromagnetic response at a single frequency band,

dual-band [30, 31], multi-band [32] and even tunable [33]. All-angle negative re-

fraction in two-dimensions was then demonstrated by direct observation of plane-

wave refraction through prism-shaped segments of such assemblies [34, 35].

In the near field, the electric and magnetic responses of materials are decoupled.

Therefore, for transverse magnetic waves, only the negative permittivity is request

for subwavelength image creation [3]. Noble metals such as silver are natural

candidates for superlensing at optical ranges. Negative permittivity is easily at-

tainable with them. At optical frequencies, |ε| in metals can be comparable to

the dielectric permittivity of a host material, allowing the excitation of a surface

plasmon-polariton (SPP) resonance on the boundaries between metal and dielec-

tric. The subwavelength details of the source are transmitted through the system

because they couple to the SPP [3, 8]. An experimental realization of this kind

of superlens can be seen in Fang et al. experimental setup shown in Fig. 1.1(c).

In 2003, a few optical experiments demonstrated that evanescent waves are in-

deed significantly enhanced across a silver slab [36, 37]. The experiments found

that the evanescent enhancement factor increases exponentially until a particular

film thickness related with the wavelength, then the material loss becomes more

prominent. Consequently it is possible to reduce absorptive effects introducing

active materials [11] or exfoliating the original thick slab into ultrathin layers and

distributing it around between the source and image planes producing an array

of elementary superlenses. The incident evanescent waves excite plasmon reso-

nances which transfer the inhomogeneous waves via plasmon-mediated tunneling

mechanism [38–41], often referred to as resonant plasmon tunneling [42], ampli-

fying itself to smaller extents in each layer, reducing the absorption in the metals,
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and consequently enhancing the output image resolution [4, 43, 44].

During studies of imaging in silver-air layered media it was noted that they may

be understood as a particular case of a metal-dielectric periodic layered media

(PLM). These media can be engineered to provide a promising platform for the

study of surface plasmons related phenomena, such as negative refraction [45],

and subwavelength focusing [46–48]. In addition subwavelength imaging in this

kind of structures may happen due to a principle other than negative refraction and

amplification of evanescent waves. The evidence of this was reported by numer-

ous authors [49–52]. A slab of PLM may be modeled to display a flat isofrequency

contour that makes it behave as a waveguide, with little or no diffraction taking

place, in a scheme that helps the formation of a super-resolved image on the exit

surface [4]. This regime was called canalization [52].

The problem of extending the use of structures that contain metallic components

to the visible range has since been addressed in several publications [39, 53–63].

The major issues under discussion are the inherently large absorption and scatter-

ing losses which are not easily overcome. Some original non-periodic proposals

came out taking into consideration new geometries to face this challenge. For

instance Verslegers considered an aperiodic array of coupled metallic nanomet-

ric waveguides with different sizes [46]. Attenuation in this metamaterial during

propagation is considerably lower than in the PLMs.

In 2006, a new kind of superlens referred to as a far-field superlens was proposed

[65, 66] and subsequently tested [64]. The far-field superlens is made of a sil-

ver superlens with additional nanoscale corrugations on its top surface. This lens

not only enhances the evanescent waves but also converts them into propagating

waves. A proper transfer function of the far-field superlens is crucial, because
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it ensures the ’uniqueness’ required for the reconstruction process to form sub-

diffraction-limit images. The main limitation of the far field superlens is that

requires a subtle transfer function design and an intense numerical image recon-

struction computing, as the image cannot be directly formed by a grating in this

application.

The aforementioned superlenses cannot provide magnification to the image, which

is one of the fundamental properties of conventional optical lenses. This drawback

limits their applications in conventional optical systems, as the image would have

the same dimensions as the object; the image could not be directly resolved by

a conventional optical system if the object itself is already irresolvable by the

same system. These superlenses have to rely on non-optical imaging systems like

atomic force microscopy, focused ion beam, scanning electron microscopy, scan-

ning probe microscopy or nontrivial numerical image reconstructions to generate

images beyond the diffraction limit.

In 2006 a breakthrough in superlenses occurred when hyperlenses were proposed

and theoretically studied [67, 68]. They are layered metal-dielectric cylindrical

lenses producing magnified sub-diffraction-limited images in the far field by con-

verting the evanescent waves into a propagating waves [69]. Specifically, hyper-

leses provides a nearly straight dispersion in cylindrical coordinates which results

in point-to-point mapping from the center surface to the outer one. While this

yields sub-diffraction resolution, it implies that the hyperlens is incapable of fo-

cusing plane waves [70]. Different experimental proposals following the concept

of hyperlensing were subsequently reported at the optic wavelengths [22, 71], as

can be seen in Fig. 1.1(d). Other configurations rather that cylindrical, such as

spherical [72], tapered metallic wire arrays [73–76] or uniquely designed material

dispersions [77–80] have been proposed since then.
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More recently, other metamaterial-based focusers, known as metalenses, have

been developed with super-resolving power [81–84]. A metalens is created by

combining a metamaterial slab and a phase compensation mechanism to bring a

plane wave to a focus. The hyperlens and the metalens thus share the same ma-

terial requirement, with practical realizations including multilayers [22, 88]. In

addition, a coupler is needed to induce a phase compensation mechanism.

A major limitation for the hyperleses and metalenses is the material losses that

set bounds to the lens resolution and signal transmission. To overcome the effect

of losses several approaches may provide solutions, such as addition of a gain

medium in dielectrics [15], searching for better plasmonic materials among exist-

ing elements, band structure engineering, materials doping or alloying [85, 86].

In addition, the object has to be placed in the near field of the lens to make use

of the evanescent waves that normally decay away from the object. New imag-

ing schemes may be needed to solve this issue. Besides, current designs for both

hyperlenses and metalenses have very limited field of view due to the limited

physical size of the lens. Better designs may solve the problem but it remains

wide open to solutions.

Both superlenses and hyperlenses are very promising in applications such as ex-

tending the optical microscope into the nanometre scale; reducing ultra-small

scales optical lithography which is the key to scaling down integrated circuits.

Optic and magnetic data storage and biosensing [87] may also benefit from the

ability to write or read information within ultra-small volume, thereby increasing

storage densities or sensing resolution.



8 Chapter 1 Introduction

1.2 Scope of this Thesis

In this Thesis we focus on the superlensing phenomena using either NIM or PLM.

More specifically, we deeply examine the image formation process. First, we

derive a nonsingular, polarization-dependent, 3D impulse response that provides

unambiguously the wave field scattered by a layered lens and distributed in its

image volume. By means of a 3D Fourier transform, we introduce the general-

ized amplitude transfer function in order to gain a deep insight into the resolution

power of the optical element. With these tools and the point dipole spread function

we show that NIMs with moderate absorption are appropriate for subwavelength

resolution keeping a limited degree of depth discrimination. We also found out-

of-focus imaging limited by the polariton resonances in the subwavelength image

formation process.

By considering flat NIM lenses we report on a procedure to improve the reso-

lution of far-field imaging using a neighbouring high-index medium coated with

a NIM. Based on negative refraction, geometrical aberrations are considered in

detail since they may cause a great impact in this sort of diffraction-limited imag-

ing by reducing its resolution power. Standard aberration analysis is employed to

refine the asymmetric configuration of metamaterial superlenses.

A great part of this Thesis focuses on layered media. We point out the existing

limitations of NIM flat lenses in the formation of 3D images. In addition we

investigated the significant reduction of the limit of resolution by exfoliating NIM

flat lenses into ultrathin layers. This super-resolving effect has its counterpart in

the reduction of the depth of field.
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Regarding PLMs, we show a procedure to manage the subwavelength diffracted

wave fields inside multilayered plasmonic devices to achieve ultra-resolving lens-

ing. Both homogeneous waves and a broad band of evanescent waves are trans-

formed into propagating Bloch modes by means of a metal-dielectric superlattice.

Beam spreading is subsequently compensated by means of negative refraction.

Optical properties of nanostructured PLMs are also studied under the epsilon-

near-zero regime, a concept derived from the effective-medium approach. The

PLM may exhibit either superlensing driven by broadband canalization from point

emitters or single-polarization double refraction, and conventional positive as well

as negative, even at subwavelength regimes. For the latter case, we formulated a

modified effective medium approximation (EMA), and subsequently a generalized

refraction law, that describes both refractive behaviors concurrently. We analyze

the energy-flow concerning both positive and negative refraction as well as the

reflectance.

While the most conventional way to achieve superresolution is by diffraction-

managed nanostructures, new avenues arise by direct manipulation of the wave

fields. We will demonstrate the existence of subwavelength nondiffracting Bessel

beams propagating in both layered and wire media. In both cases the superresolu-

tion phenomena provided by the plasmonic interaction between matter and light

is studied. Intensity patterns produced in these nanostructures are also analyzed

with a view to the imaging formation.

Airy beams are also candidates to transport subwavelength information through

nanostructures. We introduce a brief theoretical treatment of this sort of beams

including the important role of the Gouy phase. Finally, Airy beams propagating
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inside plasmonic nanostructures are developed in the same way as we did previ-

ously using Bessel beams.



Chapter 2

Electromagnetic Waves in

Dielectrics, Metals and NIMs

Before presenting the main results of this Thesis, some fundamental concepts have

to be introduced. In Chapter 2 we review the basic electromagnetism that will be

applied in the following chapters. For instance NIMs also known as double neg-

ative materials are briefly characterized. Additionally plane wave propagation

inside a NIM is reviewed. This background is useful to describe surface waves

generally, and particularly in the study of surface polaritons. Finally, the math-

ematical tools to easily describe the fields emitted by a point dipole source are

outlined for the free space, and their propagation through a slab of any material.

In Chapter 4 the dipole source analysis will be applied to the image formation

with NIM slabs.



12 Chapter 2 Electromagnetic Waves in Dielectrics, Metals and NIMs

ε > 0, μ > 0

most dielectric

materials

ε > 0, μ < 0

some ferrites

ε < 0, μ > 0

metals, doped

semiconductors

ε < 0, μ < 0

no natural

 materials

μ

ε

III

III IV

FIGURE 2.1: Material parameter space characterized by electric permittivity
and magnetic permeability.

2.1 Negative-ε and Negative-µ Materials

Electric permittivity, ε , and magnetic permeability, µ , are two fundamental pa-

rameters in electromagnetism. They characterize the electromagnetic (EM) prop-

erties of a medium. Physically, permittivity (permeability) describes how an elec-

tric (magnetic) field affects, and is affected by a medium. That is determined by

the ability of a material to be polarized in response to the electric (magnetic) field.

A common way to represent the different kind of isotropic materials and their

EM properties is by representing it in the material parameter space as shown

in Fig. 2.1. Region I in the upper-right quadrant covers materials with simul-

taneously positive permittivity and permeability, which include most dielectric

materials. Quadrant II embraces metals, ferroelectric materials, and doped semi-

conductors that could exhibit negative permittivity at certain frequencies (below

the plasma frequency). Despite the fact that quadrant III materials with simulta-

neous permittivity and permeability do not exist in nature, it can be manufactured

with the existing technology. Region IV is comprised of some ferrite materials

with negative permeability, the magnetic responses of which, however, quickly

fade away above microwave frequencies.
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(a) (b)

FIGURE 2.2: (a) NIMs working at microwave frequencies consisting of cop-
per SRRs and wires deposited lithographically on standard circuit boards.
Reprinted from [24]. (b) Fishnet structure in which two layers of metal meshes

(gray) are separated by a dielectric layer (cyan).

Metamaterials from region III are nanocomposites that exhibit exceptional proper-

ties not readily observed in nature. These properties arise from response functions

that are not observed in the constituent materials and result from the inclusion

of artificially fabricated, extrinsic, low dimensional inhomogeneities. Veselago

medium is probably the most famous class of metamaterial in the present wave of

complex EM media. In his study of 1960’s [2], Viktor G. Veselago discussed the

peculiar behavior of EM waves in connection with materials that have simulta-

neously negative permittivity and negative permeability. These phenomena (neg-

ative refraction, reversed Doppler shift, inverse Cherenkov radiation, etc.) were

unexpected. Now, after 40 years, ways have been developed to create resonating

structures which, when embedded in a support matrix, make the macroscopic re-

sponse negative in both ε and µ , although only within a narrowband [23]. The

possibility of creating optical negative index metamaterials using nanostructured

metal–dielectric composites has triggered intense basic and applied research over

the last decade [3, 89–93].

Simultaneous negative ε and µ can be reached with different designs. The first ex-

perimental realization was performed by Smith and colleagues in the microwave
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domain [23, 24]. They used a periodical structure of splitting ring resonators

(SRRs) like the one from Fig 2.2(a). The elements size and spacing are much

smaller than the wavelength of EM waves in the same frequency window. Such

a collection of inhomogeneous objects can be characterized by an equivalent ho-

mogeneous material with effective relative permittivity, and permeability at the

macroscopic level. A negative effective refractive index, was achieved by over-

lapping these materials.

Ever since then, considerable interest has been sparked in the field of metamate-

rials. Within several years, magnetic metamaterials, and consequently NIMs have

been advanced from microwave frequencies to the visible region [92, 94, 95]. Ap-

proaches moving to shorter wavelengths were initially based on concepts from the

microwave regime (such as SRR) with scaled down unit cell sizes. The main idea

was that the magnetic resonance frequency of the SRR is inversely proportional to

its size. Using a single SRRs, this approach works up to about 200 THz [96–98].

However, this scaling breaks down for higher frequencies in a single SRR case

because at frequencies smaller than about 200 THz, the metal behavior starts to

strongly deviate from an ideal conductor. The non-ideal metal behavior leads to a

modified scaling law where the frequency approaches a constant and becomes in-

dependent of the SRR size [98]. This scaling limit combined with the fabrication

difficulties of making nanometer-scale SRRs along with metal wires led to the

development of alternative designs that are more suitable for the THz and optical

regimes. Nonetheless, feature sizes for metamaterials operating in the infrared or

visible range may be smaller than the resolution of state-of-the-art photolithog-

raphy (due to the diffraction limit), thus requiring nanofabrication processes with

100- or sub-100-nm resolution.
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The most successful optical NIMs so far are the fishnet structures [90, 99, 100],

outlined in Fig 2.2(b), which consists of two layers of metal meshes separated by

a dielectric spacer layer. The paired stripes oriented parallel to the electric field

provide negative ε , while the other pairs of stripes parallel to the magnetic field

offer negative µ . Since the thickness of the spacing dielectric is easily controlled,

the simple design of the fishnet structure significantly eases the fabrication bur-

den, compared to the conventional approach of combing SRRs and metallic wires.

Another key benefit of the fishnet structures is that the EM waves impinge normal

to the fishnet sample surface to produce the negative refractive index while the

SRR configurations works better with oblique incidence.

2.1.1 Material Dispersion

Dispersion properties of isotropic materials may be properly characterize in the

classical electromagnetism formulation by the Lorentz model. In this model the

permittivity and permeability as functions of the frequency, ω , follow very similar

formulas due to the symmetry of EM waves. It may be derived from the oscillation

equation of electric charges or fictitious magnetic charges driven by an external

EM wave [101]. If there are many oscillating charges of different resonant fre-

quencies, the dielectric and magnetic functions for a multiple-oscillator model are

ε (ω) = 1−∑
j

ω2
p j

ω2−ω2
0 j + iγ jω

, (2.1a)

µ (ω) = 1−∑
j

ω2
pm j

ω2−ω2
0m j + iγm jω

, (2.1b)
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respectively. From now on, we will consider the most simple situation in which

only one oscillation is considered so the index j disappears. This approach is

valid provided that the neglected resonances are far from the working spectral

band. Taking this into consideration, ωp (ωpm) is the plasma frequency, ω0 (ω0m)

is the resonant frequency and γ (γm) is the damping factor for the permittivity

(permeability). The subscript m denotes the magnetic response. Substituting the

proper values into Eqs. (2.1), we can characterize material properties over a wide

frequency range from microwave to visible. In the optical regime, µ = 1 holds

for most of the materials that we can find in the nature. Natural materials that

exhibit electric responses are far more common. This is particularly true when we

move beyond the gigahertz region, where the magnetic response of most materials

begins to tail off.

For noble metals, ωp is at visible or UV frequency. In addition, ω0 vanishes

under the free electron approximation. Under these assumptions Eq. (2.1a) sim-

plifies to, ε(ω) = 1− [ω2
p/(ω

2 + iγω)], the expression for ε in the Drude model

of metals [102]. This formulation implies that the permittivity of metals is always

negative below the plasma frequency. In addition, they do not have magnetic ac-

tivity (µ = 1). Metals are often optically described by their refractive index, n,

defined as n2 ≡ ε . For values of the damping frequency different from zero the

refraction index is complex, n = n′+ in′′, due to the complex values of the per-

mittivity, ε = ε ′+ iε ′′. Tabulated datasets for n′, and the extinction coefficient,

n′′, are most often described from Johnson and Christy in Ref. [103] and Palik

Handbook of Optical Constants [104] in the literature. Optical constants of silver

in Johnson and Christy were determined through measurements of reflection and

transmission at normal incidence and transmission of p-polarized light at 60deg.
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FIGURE 2.3: ε(ω) tabulated values of Ag interpolated from Johnson and
Christy (red), Palik (blue), Drude model (black). The permittivity is plotted
(a) in part of the ultraviolet spectrum and (b) for a broad range of wavelengths.
The continuous lines correspond to the real part of ε . Dashed lines fit the imag-

inary part of ε .

In contrast, the optical constants compiled by Palik were obtained via reflectance

measurements using synchrotron radiation and polarimetric measurements.

One of the most common metals for the design of plasmonic nanostructures in the

optical range is silver. Lower losses compared to other metals make it especially

attractive in this frequency range. Figure 2.3 shows the dielectric function of Ag

as derived from the data of both Johnson and Christy, and Palik. The Drude model

with ωp = 13.7 rad/fs and γ = 274×10−4 rad/fs is also included [105]. Note that

γ � ω so that Eq. (2.1a) can be approached by ε(ω)≈ 1− (ωp/ω)2.

Silver permittivity in the vicinity of the plasma frequency is depicted in Fig. 2.3(a).

At these shorter wavelengths there is a region of anomalous dispersion where ε ′

increases with the wavelength, λ0. The Drude model itself is inaccurate in this

range in part cause by the contribution of the bound electrons. Despite the trans-

parency of metals within this regime, ε ′′ may be substantially higher than the real

component for such frequencies. For most visible and infrared wavelengths we

can see in Fig. 2.3(b) that the metal exhibits a large, negative, real component of

the permittivity while the imaginary part remains small compared with ε ′. Under
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FIGURE 2.4: Schematic representation of a plane wave propagating in a di-
electric (left) and a NIM (right). Note that in the NIM, the wave vector k and

Poynting vector S are antiparallel.

these circumstances the EM field hardly penetrates inside the metal and the energy

losses decrease. In Chapter 3 we will see that metals are suitable for the design of

1D plasmonic metamaterials.

2.1.2 Plane Waves in Isotropic NIMs

Fields in NIMs have a unique behavior that can be inspected thought the prop-

agation of a plane wave. Let us consider a monochromatic plane wave, E =

E0ei(k·r−ωt), propagating in an isotropic, homogeneous medium in the absence

of charges and currents. Considering the constitutive relations D = εε0E and

B = µµ0H, Maxwell equations became

k×E = µµ0ωH, (2.2a)

k×H =−εε0ωE. (2.2b)

It can be readily seen that the wave vector, k, the electric field, E, and the magnetic

field, H, form a right-handed triplet of vectors, as a plane wave propagates in

dielectric materials with ε > 0 and µ > 0. In contrast, these vectors form a left-

handed triplet in materials with ε < 0 and µ < 0. Moreover, the Poynting vector,

defined as S = E×H, is antiparallel to the wave vector k in such materials. As a
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consequence there is a backward propagation in the phase velocity, vp. Fields in

dielectric and NIMs are both simultaneously plotted in Fig. 2.4. Refractive index

in NIMs must take a negative sign as a consequence of the fields orientation [2].

It must be noted that dispersionless material parameters ε < 0 or µ < 0 cannot

exist. Negative ε or µ for static fields would, for example, imply that its energy

density,

W =
1
2
(ε0εE2 +µ0µH2)< 0 (2.3)

is negative, which is clearly not possible. Negative ε and µ are resonant effects

and they are necessarily dispersive and dissipative. A non-dispersive NRI would

imply, for example, that time runs backwards for light in the medium [3]. For

this reason is necessary to consider the permittivity and permeability as complex

numbers.

Another remarkable property of the NIMs is negative refraction when light orig-

inally propagates in a dielectric. Negative sign in the refractive index gives to an

unusual behavior of the wave vector in the plane interface between a dielectric

and a NIM. The wave vector component that is orthogonal to the normal surface

is preserved as usual. However, the parallel component has opposite signs in the

dielectric and NIM and then refraction angle takes a negative value. This phe-

nomenon can be understood in geometrical optics basis as a consequence of the

negative sign of the refractive index in the Snell’s law.
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2.2 Surface Waves

Surface waves (SWs) are waves guided along an interface between two media of

different EM properties. EM fields associated with SWs are localized in the vicin-

ity of the interface and are damped out on both sides of it unlike the conventional

bulk EM waves.

Although SWs have been studied theoretically since the beginning of the 20th

century [106] only a close circle of specialists were interested on it. At that time

there were not utilized except in radiophysics [107]. SWs start to be significant

in optics for the first time in the 1970s when a laser source, coupling prism, and

grating couplers were used to excite and detect them [108].

It is worth stressing that SWs are strongly confined in the interface leading to an

enhancement of the EM field. Consequently, SWs have an extraordinary sensi-

tivity to the boundary conditions. In particular, surface plasmon polariton-based

devices exploiting extraordinary sensitivity to surface conditions are widely used

in chemo- and bio-sensors [109]. Phenomena such as Raman scattering, second

harmonic generation, and fluorescence are consequences of the optical enhance-

ment of the EM field near the metal-dielectric interface [109–113].

Assuming passive media, NIMs are able to amplify waves that otherwise would

have an exponential decay. We shall consider again the field of a plane wave

spreading inside a NIM, but we now assume the optical parameters to be com-

plex. The real parts of these parameters remains negative for NIMs, {ε ′,µ ′}< 0.

In addition, in a passive medium the imaginary components must be positive
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FIGURE 2.5: Surface wave propagation along a single dielectric-NIM inter-
face for TE polarization. The propagation constant and the electric field are

included.

{ε ′′,µ ′′} > 0 in agreement with the Pointing theorem [114]. Under these con-

ditions Im(k2)< 0 and

{Re(k)> 0, Im(k)< 0} or {Re(k)< 0, Im(k)> 0}, (2.4)

that means that the wave intensity decreases in a direction where light flux prop-

agates but opposite to the wave vector propagation as we can expect from a lossy

medium.

2.2.1 Surface Waves in a Dielectric-NIM Interface

By exciting an electromagnetic wave in a dielectric-NIM interface we produce a

dipole-carrying excitation. The coupling state between the surface wave and a

dipole-carrying excitation is commonly called a surface polariton [115].

To characterize the surface polaritons phenomenon we consider the simplest case:

a planar interface normal to the z axis at z1 = 0 as shown in Fig. 2.5. Waves

propagate along the y direction without spatial variation in the perpendicular. We

consider a dielectric medium with positive ε1 and µ1 at z < 0 and a NIM with
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negative ε2 and µ2 at z > 0. Permittivities and permeabilities are both real for the

sake of clarity.

As mentioned above, these SWs are confined in the dielectric-NIM interface.

Therefore the field amplitudes in the dielectric and the NIM exponentially de-

cay as we move away from the surface. To satisfy this condition the component

of the wave vector that is perpendicular to the interface must be purely imaginary,

kz j = iκ j. Consequently, in both media j = {1,2}, the parameter

κ j =
√

k2
SW− k2

0ε jµ j, (2.5)

must be a real positive number, and the wave vector component along the propaga-

tion direction of the SW, called the propagation constant must satisfy the condition

k2
SW > max{k2

0ε1µ1, k2
0ε2µ2} being k0 = 2π/λ0 the vacuum wavenumber.

Equations (A.1) and (A.4) and their dual equations from Appendix A can be ap-

plied to the electric and magnetic field of a SW by considering two semi-infinite

media. Amplitudes of the propagating waves in the dielectric medium, C1, and

counterpropagating waves in the NIM medium, B2, vanish since we do not con-

sider any external source. In the dielectric halfspace z < 0

E1(y,z) = D1eκ1zeikSWyx̂, (2.6a)

H1(y,z) =
−D1

ωµ0µ1
eκ1zeikSWy (iκ1ŷ+ kSWẑ) , (2.6b)

and in the NIM halfspace,

E2(y,z) = A2e−κ2zeikSWyx̂, (2.7a)

H2(y,z) =
A2

ωµ0µ2
e−κ2zeikSWy (−iκ2ŷ+ kSWẑ) . (2.7b)
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Applying the boundary conditions (A.5) in z1 = 0 we conclude that D1 = A2. We

also conclude that
κ2

κ1
=−µ2

µ1
. (2.8)

It should be recalled that κ must be real and positive. Thus, µ1 and µ2 must have

opposite signs to verify Eq. (2.8). This is why TE surface modes exist only at

interfaces between materials with opposite signs in their magnetic permeabilities.

Combining Eq. (2.8) and (2.5) we arrive to the dispersion relation for a SW prop-

agating along the interface at z1 = 0,

kSW = k0

√
µ1µ2

µ1 +µ2

ε2µ1− ε1µ2

µ1−µ2
. (2.9)

It can be proved that this function is also valid for both real and complex permit-

tivities and permeabilities.

The TE SWs have been characterized applying the transfer matrix method in a

dielectric-NIM interface. It is possible to characterize SWs for TM-modes by

following an analogous procedure. Alternatively, an expression for TM-modes

can be inferred applying the duality theorem summarized in Table A.1, on the

above-deduced TE-modes expressions. In this particular case, the permittivities

must have opposite signs in both materials to satisfy the dual of Eq. (2.8), namely

κ2ε1 = κ1ε2.

Surface waves properties in air-NIM interfaces are examined by taking a closer

look at their dispersion relation (2.9) and its dual for TM-modes. Figure 2.6(a)
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FIGURE 2.6: (a) Dispersion relation for TE and TM SWs sustained at an air-
NIM interface. NIM optical parameters are depicted on (b). Shaded region

corresponds to frequencies where ε2 and µ2 are negative simultaneously.

shows the SW dispersion curves in a NIM with optical parameters

ε2(ω) = 1−
ω2

p

ω2 , (2.10a)

µ2(ω) = 1− Fω2

ω2−ω2
0
, (2.10b)

similar to those that have been achieved with artificial structures [115]. This dis-

persive parameter are plotted in Fig. 2.6(b) being ωp = 10 GHz, ω0 = 4 GHz,

and F = 0.56 extracted from Ref. [115]. The frequency range in which both ε2

and µ2 are negative extends from ω0 up to 0.6ωp. While it is possible to find SW

modes out of this range as long as the sign of µ1 and µ2 (ε1 and ε2) are opposite in

TE (TM) modes, we focus on modes connected with a NIM. In this regard, only

the TE-mode branch in Fig. 2.6(a) lies completely within the frequency range in

which the media are left-handed. The upper branch, is only partially inside this

range, while the lowest branch, lies outside this range. It is also important to high-

light that due to their bound nature, the SW must be evanescent at both sides of

the interface. That only can be achieved in the part of the dispersion curves lying

at the right side of the light line in Figure 2.6(a).
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There are three dashed lines in Fig. 2.6(a) denoting the frequencies in which the

three surface mode branches approach asymptotically to a limit value. The TE

asymptotic values can be found by inserting the ε j and µ j dispersive values into

the dispersion relation (2.9) yielding to

ωTE1 =
ω0√

1− F
1+µ1

. (2.11)

In this limiting case kSW goes to infinity as the frequency approaches to ωTE1, and

the group velocity, vg, goes to 0. The mode thus acquires electrostatic character.

Following the same procedure we can obtain the corresponding frequencies for

TM-modes,

ωTM1 =
ωp√
1+ ε1

, (2.12a)

ωTM2 = ω0. (2.12b)

At these frequencies the p-polarized waves acquire a magnetostatic character.

The above discussions for Fig. 2.6 implicitly assume an ideal NIM with real ε2

and µ2. However, permeability and permittivity both suffer from losses, therefore,

ε2 and µ2 are complex. Furthermore, the wave vector component kSW is also

complex. That makes bound SWs having a propagation constant Re(kSW) that

approaches a maximum finite value. There is also an attenuation on its amplitude

as the SW propagates since Im(kSW) > 0. This attenuation is especially relevant

in the optic and infrared range.
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FIGURE 2.7: Surface plasmon polariton propagation at a single dielectric-metal
interface. The SPP propagation constant and the magnetic field are included.

2.2.2 Surface Waves in Metals: SPPs

The SW in metal-dielectric interface, also called surface plasmon polariton (SPP)

refers to the coupling in a surface between the quanta of the collective excitation of

free electrons with a surface polariton. We are going to approach this phenomenon

from the point of view of the classical electromagnetism.

The simplest geometry sustaining SPPs, depicted in Fig. 2.7, is that of a single

flat interface between a dielectric non-absorbing half space with positive real di-

electric constant ε1 and an adjacent metal half space described via a dielectric

function ε2. Both are nonmagnetic materials. In this scenario SWs are confined

to the interface, i.e. with evanescent decay in the z direction. The procedure fol-

lowed in Section 2.2.1 to infer the fields and dispersion relation for a SW in a

dielectric-NIM interface remains valid in terms of the wave field formulation. TE

SWs cannot exist due to the presence of nonmagnetic materials. However, for TM

polarization, the dispersion relation,

κ2

κ1
=−ε2

ε1
, (2.13)
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can be satisfied. The corresponding SPP wavenumber results,

kSPP = k0

√
ε1ε2

ε1 + ε2
. (2.14)

Now we want to examine the properties of SPPs by inspecting their dispersion re-

lation depicted in Fig 2.8(a) for an air-metal interface. The metal permittivity may

be characterized using Eq. (2.1a) in the limit case when ω0→ 0 and considering

only one oscillator mode,

ε2 (ω) = 1−
ω2

p

ω(ω + iγ)
. (2.15)

Due to their bound nature, SPP only exist in the part of the dispersion curve lying

at the right of the light line. The red lines in Fig. 2.8(a) draws (2.14) for a lossless

metal, i.e. γ = 0. For large wave vectors the frequency of the SPP approaches the

characteristic surface plasmon frequency

ωSP =
ωp√
1+ ε1

, (2.16)

which is formally similar to Eq. (2.12a). As mentioned previously, the mode

acquires a magnetostatic character [116].

The above discussions illustrated in Fig. 2.8(a) have assumed an ideal conductor.

On that context the damping frequency have a non zero value and therefore ε2

and kSPP are both complex. Blue lines in Fig. 2.8(a) shows the dispersion relation

of SPPs propagating in an air-silver interface, following the Drude model for the

metal. Finally a more realistic SPP dispersion relation is depicted in Fig. 2.8(b).

Johnson and Christy tabulated values for Ag [103] are introduced in Eq. (2.14).
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Drude damping γ = 0 (red) and γ = 97.5×10−3ωp (blue). (b) Same dispersion
relation replacing the Drude metal by Johnson and Christy tabulate values for

Ag [103].

Compared with the dispersion relation of completely undamped SPPs it can be

seen that the bound SPPs approach a maximum, finite wavenumber.

Due to the penetration of the evanescent fields inside the materials sustaining the

SPP, we may define an evanescent decay length for the dielectric ( j = 1) and for

the metal ( j = 2) as

l j =
1

2Re(κ j)
, (2.17)

which is of particular relevance in subwavelength-resolution image formation in

the canalization regimen [56], as we will see in Chapter 5. By substituting (2.14)

into Eq. (2.5), l j can be rewritten in terms of permittivities, in the media,

l j =
1

2k0

√
ε1 + ε2

−ε2
j

. (2.18)

We see from this equation that the evanescent decay length goes to zero at ωSP

where ε2 =−ε1 disregarding losses. At frequencies close to the surface plasmon

frequency, in which the confinement is maximum, l1 and l2 are of the same order
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SPP at a frequency ω = 0.4ωp.

of magnitude, however, at lower frequencies these two decays increasingly be-

come dissimilar. This can be clearly seen in Fig. 2.9(a) where l j is plotted as a

function of ω in an air-metal interface. The evanescent decay lengths are normal-

ized to the inverse of the plasma wavenumber, kp = ωp/c. The metal permittivity

has been described by the Drude model (2.15) with zero damping frequency. It is

noteworthy that the evanescent decay length of the metal is limited to the limiting

value 1/2kp. If we consider a realistic metal like silver, with ωp = 13.7 fs [105]

then k−1
p = 21.9 nm and the evanescent decay length can never be longer than

∼ 10 nm. Note that the decay l2 remains close to its maximum value except in the

vicinity of ωSP. Indeed, Fig. 2.9(b) shows that l2 is 0.49 k−1
p by evaluating |H|2 at

ω = 0.4ωp. As a consequence, the design of SPP-based structures with coupling

of SWs has to be performed in nanoscale.
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FIGURE 2.10: Schematic of a point dipole (a) in free space and (b) in a layered
medium.

2.3 Point Dipole Sources

In this Section we evaluate the electric field generated by a point dipole in free

space and near a multilayered nanostructure, with a particular interest in the dis-

tribution of the transmitted field. The free space field solution is examined as a

starting point. Consider a point dipole placed at rL = (0,0,−zL) in a homoge-

neous and isotropic medium characterized by µ1 and ε1 depicted on Fig. 2.10.

The electric field at r = (x,y,z) can be expressed as [117]

E(r,ω) = µ1µ0ω
2
=
G(r,rL,ω) ·d, (2.19)

where
=
G is the Green tensor in free space and d is the electric dipole moment

of the point source. Using Weyl scalar representation to develop spherical waves

into plane wave function, the electric dipole field in the half-space z >−zL can be

described as [118, 119]

E(r,ω) =
iµ1µ0ω2

8π2

∫ ∫
∞

−∞

ei[k⊥R+kz1(z+zL)]

kz1
[(ŝ⊗ ŝ+ p̂⊗ p̂) ·d]d2k⊥, (2.20)
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being k⊥ = (kx,ky), R = (x,y) and⊗ the tensor product. The unitary vectors ŝ and

p̂ points in the directions of the electric field for s- and p-polarization respectively:

ŝ = (k⊥/k⊥)× ẑ and p̂ = ŝ× k̂u where k⊥ = |k⊥| and k̂u is the unitary vector in

the direction of k.

Let us now consider a stratified medium composed of j-1 layers shown schemati-

cally in Fig. 2.10. Provided that the point source is set in the medium number 1,

the electric field generated by the dipole in the j+1 space at zL can be written as

E(r,ω) = ω
2
µ1µ0

=
GMLayer(r,rL,ω) ·d, (2.21)

where the Green tensor of the multilayer is [120]

=
GMLayer(r,rL,ω) =

i
8π2

∫
∞

0

k⊥
kz1

eikz1(z−zL)(Ts
=
S+

Z j+1

Z1
Tp

=
P)dk⊥, (2.22)

being Ts the transmittance for the electric field at s-polarization [see Eq. (A.11a)]

and Tp its dual quantity for the magnetic field at p-polarization. It must be em-

phasized that Tp applies to a magnetic field. Is necessary to add in (2.22) the ratio

Z j+1/Z1, where

Z j =

√
µ0µ j

ε0ε j
, (2.23)

is the impedance of the medium j, to include Tp in a function that applies to an

electric field.
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The elements of the tensor
=
S are

S11 = πJ0(k⊥R)+πJ2(k⊥R)cos(2ϕ) , (2.24a)

S12 = S21 = πJ2(k⊥R)sin(2ϕ) , (2.24b)

S22 = πJ0(k⊥R)−πJ2(k⊥R)cos(2ϕ) , (2.24c)

S13 = S23 = S31 = S32 = S33 = 0 . (2.24d)

In Eqs. (2.24) the function Ji represents the Bessel function of order i, R = |R| and

ϕ is the azimuthal angle of R as measured with respect to the x axis. Similarly the

elements of
=
P are

P11 =
k2

z1

k2
1
[πJ0(k⊥R)−πJ2(k⊥R)cos(2ϕ)] , (2.25a)

P12 = P21 =−
k2

z1

k2
1
[πJ2(k⊥R)sin(2ϕ)] , (2.25b)

P13 = P31 =−
k⊥kz1

k2
1

[2πiJ1(k⊥R)cos(ϕ)] , (2.25c)

P22 =
k2

z1

k2
1
[πJ0(k⊥R)+πJ2(k⊥R)cos(2ϕ)] , (2.25d)

P23 = P32 =−
k⊥kz1

k2
1

[2πiJ1(k⊥R)sin(ϕ)] , (2.25e)

P33 =
k2
⊥

k2
1
[2πJ0(k⊥R)] . (2.25f)

The electric field dipole function will be applied to a NIM slab in Chapter 4.



Chapter 3

1D Metamaterials

Photonic band-gap materials, sometimes referred as photonic crystals, are arti-

ficial inhomogeneous structures composed of periodic regions of material with

a specific permittivity and permeability different form the surrounding homoge-

neous background media. We want to focus our attention in the 1D case of the

periodic layered media (PLMs): a special kind of multilayered media in which

thin films of different material are stacked in a periodic fashion. Allowed and for-

bidden energy bands will be determined by the periodic potential function modi-

fying the propagation of EM waves. The spatial dispersive response of the PLM

depends on the direction of the wave vector in a more complicated manner than

a homogeneous material. Nonetheless, the metamaterial periodicity may be at

scales much smaller than the wavelength for which and effective medium ap-

proach can simplify the calculations. Wave propagation in these media exhibits

many potentially useful phenomena including trirefringence, Bragg reflection and

optical stop bands.
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In Chapter 3 we introduce a way to solve the fields and dispersion relations in

an infinite PLM through the Bloch waves. Band structures and dispersion curves

for metal-dielectric are also analyzed, paying special attention to the losses. A

complementary analysis for dielectric-NIM dispersion curves is done. We also

evaluate the consequences of deviating from the ideal matching conditions be-

tween the optical constants of the two media.

As an alternative to the Bloch formulation the effective media theory is introduced

for the analysis of PLM with subwavelength periodicity. Metal-dielectric PLM

dispersion relations are revised within this approach. A more in-depth analysis of

effective media in the EMA shows that their dispersion curves can be either hyper-

bolic or elliptic. The agreement between these predictions and the real dispersion

curves is analyzed. We found that nonlocal effects lead to relevant disparities and

propose some corrections in the EMA theory to solve it.

Finally the possibility to induce induce single-polarization double refraction by

nonlocal effects is considered and numerically tested.

3.1 Bloch Modes

Consider the propagation of EM radiation in a PLM like the one outlined in

Fig. 3.1. We assume that the period has a width, Λ = w1 + w2, where w1 =

z j+1− z j and w2 = z j+2− z j+1 are the thickness of the layers j + 1 and j + 2,

respectively, thus Λ = z j+2− z j. The layers are set normally to the z axis, and
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FIGURE 3.1: Periodic layered media outline. Amplitudes of propagating (A j
and C j) and counterpropagating waves (B j and D j) are included

therefore the permittivity and permeability profile in a unit cell are,

(ε,µ) =

 (ε1,µ1), z j < z < z j+1,

(ε2,µ2), z j+1 < z < z j+2.
(3.1)

PLMs are invariant under lattice translation and consequently ε(z) = ε(z+Λ).

Correspondingly, permeability satisfies the condition µ(z) = µ(z+Λ). The shift

invariance constraint also applies to the electromagnetic fields. From here on we

will consider only TE modal wave fields in order to deduce the dispersion relation

in PLMs. By using the duality theorem we may infer the dispersion relation for

TM waves straightforwardly. Thus, considering the Floquet-Bloch theorem and

TE-modes, the electric field satisfies [121]

E j+2(y,z+Λ) = E j(y,z)eiKΛ, (3.2)

where K is known as the Bloch wavenumber and E j is the field inside the jth layer

analytically shown in (A.1). The phase gained by the Bloch wave between z j and
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z j+2 in terms of the column vector representation introduced in the Appendix A is

 C j

D j

= e−iKΛ

 C j+2

D j+2

 . (3.3)

Expanding the left column vector evaluated at z j via the transfer matrix method it

follows that the previous equation satisfies the eigenvalue problem

=
Mscell

 C j+2

D j+2

= e−iKΛ

 C j+2

D j+2

 , (3.4)

being the unimodular transfer matrix,

=
Mscell=

=
D−1

s j
=
Ds j+1

=
P j+1

=
D−1

s j+1
=
Ds j+2

=
P j+2 . (3.5)

To solve the eigenvalue problem we look for non-trivial solutions of

det
[ =
Mscell −e−iKΛ

=
I
]
= 0, (3.6)

where
=
I is the 2×2 identity matrix. After some algebraic manipulations we found

two independent equations,

e−iKΛ = trs/2± i
√

1− (trs/2)2, (3.7)

where

trs = 2cos(w1kz1)cos(w2kz2)−
k2

z1µ2
2 + k2

z2µ2
1

kz1µ1kz2µ2
sin(w1kz1)sin(w2kz2). (3.8)
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is the trace of the unimodular transfer matrix. Equation (3.7) can be reduced to

cos(KΛ) = trs/2, (3.9)

by trigonometric manipulations. A p-polarization equivalent equation can be

found by applying the duality theorem from Table A.1. The dispersion curve

is reproduced periodically in adjacent K-frequency bands with a 2π/Λ period.

By simple inspection of the wave dispersion equation we found that in lossless ma-

terials the regimes where |trs|/2 < 1 correspond to real values of K. These propa-

gating waves travel along the metamaterial without attenuation. When |trs|/2 < 1

the amplitude of the Bloch waves will exponentially decay as it goes forward in

the z axis. The band edges are the regions in-between allowed and forbidden

bands, therefore they satisfy trs = {2,−2}. This criterion will be revised further

when the material losses are take into account.

The group velocity, vg ≡∇∇∇kω , can be determined thought the dispersion curves.

Moreover, for a monochromatic beam, the group velocity of this wavepacket is

always perpendicular to the dispersion curves. Finally, the dispersion curves pro-

vide information about the evanescent decay length of a given Bloch wave, as we

will discus later.

3.2 Metal-Dielectric Periodic Layered Media

Let us examine the spatial dispersion in PLMs composed of a dielectric and a

metal. In Fig. 3.2(a)-(d) TM and TE propagating Bloch waves domains are plotted
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of 50 nm. (e)-(h) exact dispersion curves for the fm highlighted in subfigures
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for different PLMs as a function of the metal filling factor,

fm = wm/Λ, (3.10)

where wm is the width of the metallic layers. The wavelength in the plots is set

to λ0 = 485 nm. The lossless permittivity is εm = −7.754 while the dielectric

permittivities, εd , changes from one plot to another.

We found band structures that significantly differ depending on the polarization.

The TE-modes that do not allow the propagation of SWs, as we introduced in

Section 2.2.2, have a simple band structure. The band edges of spatial frequencies

k⊥ occurring at K = 0 and K = π/Λ are shown in Fig. 3.2(a)-(d) with a solid red
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(blue) line for the TE (TM) modes. In the limit case in which fm = 0, the PLM

will become a dielectric. Dielectrics are homogeneous and isotropic media thus,

the TE- and TM-modes have the same spatial band structure. Consequently, both

band edges will be found at k⊥ = k0
√

εd . The higher TE propagating frequencies

became evanescent as fm increase and thus, the spatial bandwidth goes to 0. In the

other hand, employing higher εd the spatial bandwidth will increase. Furthermore,

the range of fm allowing to transmit TE-modes gets larger as εd grows.

As we mentioned above TE- and TM-modes dispersion relations are equal when

fm = 0. They are also equal in the normal incidence case, k⊥ = 0. However, in

some cases we found a broader spatial band structure for the TM-modes, primar-

ily due to the propagation and tunneling of SWs in the metal-dielectric interface.

Thus, it is possible for TM-modes to have a superresolving behavior, propagating

frequencies that are over the diffraction limit. The spatial bandwidth is connected

with the kSPP of a single metal-dielectric interface, introduced in Eq. (2.13). This

spatial frequency is outlined with black dashed lines in Fig. 3.2. Is easy to prove

that there is only one fm at the given kSPP where we can found TM-polarized so-

lutions to the Eq. (3.9), fSPP = εd/(εd + |εm|). The band edges in Fig. 3.2(a)-(d)

cut at k⊥ = kSPP. We see in Eq. (2.13) that this point moves to higher k⊥ as εd

increases. This displacement to higher frequencies could allow broader spectral

bandwidths, however, the spatial bandwidth cannot get indefinitely broader. There

is a limit kSPP up to which the first band splits. Comparing Fig. 3.2(b) and (c) we

can see the gap in the TM spatial bands created by this splitting. In addition it

always exists another TM allowed band over the kSPP frequency. It is sustained

exclusively by plasmon resonances, thus, it is limited to the range of spatial fre-

quencies close to these resonances. However, the losses strongly limit the higher

bandwidths as will be discussed later.
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Figure 3.2(e)-(f) plots the contour lines derived from Eq. (3.9) for the filling fac-

tors outlined with black solid lines in Figs. 3.2(a)-(d). By simple inspection of

these plots we realize that the TE-modes have circular dielectric-like contours

so this polarization is spectrally isotropic. As we get far from the normal inci-

dence, k⊥ = 0, TM dispersion curves differ from the TE curves. For instance,

Fig. 3.2(e) reveals that the TM band is clearly anisotropic, and there is a second

allowed band purely sustained by plasmons resonances at frequencies over kSPP.

In Fig. 3.2(f) dispersion for a PLM with high kSPP and filling factor close to fSPP.

A very large spatial allowed band appears. Furthermore, in a wide k⊥ range the

Bloch wavenumber, K, remains almost constant. As the group velocity is per-

pendicular to the dispersion curves the light propagation will be nearly diffraction

free. This kind of propagation regimen is called canalization [56]. At high εd

we find that a new band gap divides this band creating a structure of three bands

as we can see in Fig. 3.2(g). Figure 3.2(h) shows spatial dispersion at a higher

fm. Consequently, dispersion dominantly has a metallic-like behavior. There is

only an small TM propagating band far from the normal incidence. There are no

solutions for propagating TE-modes.

3.2.1 Effects of Losses in PLMs

The above discussion has been made without taking into account the metal losses.

The EM waves are commonly considered propagation modes at spatial frequen-

cies k⊥ at which the complex Bloch wavenumber, K ≡ K′+ iK′′ satisfies K′′ = 0

and evanescent when K′ = 0. However, the nature of the waves in real metal-

dielectric periodic media cannot longer be set as purely propagating or evanescent

by the previous criterion because K is always a purely imaginary number. These
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Bloch waves with mixed components are always attenuated during their propa-

gation. It is convenient to classify these waves as a function of their evanescent

decay length lPLM,

lPLM =
1

2K′′
. (3.11)

Having in mind applications like near-field image formation, we will call low

decay inhomogeneous waves to the waves with lPLM longer than λ0/4. Similarly,

the Bloch waves with lPLM < λ0/4 will be referred as high decay inhomogeneous

waves. It is worth stressing that losses strongly affect, specially in the visible

and near-IR, thus we do not expect a lPLM longer than few wavelengths for Bloch

waves within the PLM. That fact limits the range of functional performance of

PLM to the near field.

By considering that K′′ is connected with k⊥ throughout Eq. (3.9) we will split the

spatial bandwidth of a PLM in bands. We will refer to the k⊥ spatial frequency

ranges in which K′′ < 2/λ0 as low decay bands. Complementary to this, we will

call high decay bands to the spatial frequency ranges in which K′′ > 2/λ0. More-

over, we will define cutoff frequencies kcut, separating the low and high decay

bands. Note that low decay bands and high decay bands are, in practical terms,

the same than allowed bands and forbidden bands in lossless PLMs.

In Fig. 3.3 the dispersion curves from Figs. 3.2(e)-(h) have been replotted taking

into account realistic losses in silver (εm = 7.754+ 0.727i). The cutoff frequen-

cies have been pointed with dotted vertical lines. High decay bands are shaded

in blue. If we compare K′ in Fig. 3.3 with its equivalent disregarding losses in

Figs. 3.2(e)-(h) we find differences that are significant in the high decay bands.

Metal losses in the structured media leads to a reduction of the bandwidth in the

low decay band, however K′ remains almost unaltered within this spectral band.
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to εm =−7.754+0.727i and the wavelength is 485 nm.

For instance, kcut = 0.682π/λ0 for TM-modes in Fig. 3.3(a) while the equiva-

lent lossless cutoff frequency is 0.686π/λ0. On the other hand, low decay bands

in the TE-modes from Figs. 3.3(d) are strongly reduced compared with the loss-

less case. Figure 3.3(d) cutoff frequency is 0.11π/Λ while the equivalent fre-

quency in the lossless periodic medium is kcut = 0.15π/Λ. Also TM-modes low

decay band from Figs. 3.3(c) are drastically reduced due to the presence of losses

and kcut is reduced to kcut = 0.73π/Λ with 5.00π/Λ in Fig. 3.2(c). Hence very

large bandwidth predicted in lossless TM Figs. 3.2(f)-(g) are not realistic. Never-

theless, by making fm = 0 we found that the cutoff frequency for the dielectric,

kcut = 0.57π/Λ, is smaller than the previous lossy kcut. Thus the metal-dielectric

PLM can show wider low decay bandwidths rather than the dielectric itself. In the
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opposite scenario, Fig. 3.3(g) does not shows low decay bands at all in the TM

modes. The equivalent lossless medium has low decay bands from k⊥ = 0.75π/Λ

to k⊥ = 1.33π/Λ. The large presence of a lossy metal in the PLM, a 70 per-

cent of it, prevents in practical terms the propagation of Bloch waves within the

nanostructure. In conclusion, the filling factor of the metal governs the dissipa-

tive effects in the metamaterial, thus low values of fm are of great convenience to

achieve large spatial bandwidths.

3.3 Dielectric-NIM Stratified Media

So far, we have considered metal-dielectric periodic structures. Moving on to

dielectric-NIM structures, TM and TE SWs can exist. Consequently both polar-

izations are able to interact with free-space evanescent waves. Despite the dif-

ferent possibilities that NIMs confer to the design of PLM, in this Thesis we will

focus on the particular case that fNIM = 0.5, and the optical constant are related by

εd =−εNIM and µd =−µNIM. We will refer to these last conditions as the perfect

matching conditions. In principle, this kind of structures allow the propagation of

an extremely large number of k⊥ without either diffraction or attenuation. For that

reason dielectric-NIM structures are of particular relevance in superlensing [122].

In the limit case when the perfect matching conditions are fulfilled the dispersion

relation becomes K(k⊥) = 0, thus, vg will point in the direction of the layers pe-

riodicity for all the frequencies. It is noteworthy that all the frequencies, even the

evanescent ones will propagate without attenuation in the perfect matching case

caused by the enhancement of evanescent waves near the interfaces. Unavoidable

losses in realistic NIMs are the main reason why the perfect matching conditions
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FIGURE 3.4: (a) Full wave air-NIM TM-modes dispersion curves and (b) TE-
modes dispersion curves. The wavelength is set to 10 µm with a NIM filing
factor fNIM = 0.5. The period is 500 nm long and the permeability is set to

µNIM =−1 in the NIM.

cannot be fulfilled. Besides, even in lossless NIMs small deviations from the per-

fect matching conditions on the electromagnetic constants modifies the dispersion

curves as we can see in Fig. 3.4. The TE- and TM-modes dispersion curves for

an air-NIM periodic structure have been plotted. Permeability in the NIM is set

to µNIM = −1 while the permittivity takes values that deviate slightly from the

perfect matching conditions, from εNIM = −1.001 to εNIM = −1.100. Insofar

as the permittivity deviates from the perfectly matching conditions, kcut shifts to

smaller spatial frequency. Accordingly, the spatial bandwidth reduces as εd de-

viates from the perfect matching conditions. This phenomenon occurs for both

polarizations, however, TE-modes bandwidth decreases at a slower rate. On the

contrary, we can deduce through the duality theorem that TE-modes bandwidth

decreases faster that TM-modes bandwidth under permittivity deviations from the

perfect matching conditions.
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TM-modes dispersion curves in periodic air-NIM media with fNIM = 0.5 at the

wavelength of 10 µm. The period is 500 nm long and ε ′NIM = µ ′NIM =−1.

3.3.1 Dielectric-Lossy NIM Periodic Media

The lossless approach serves as an useful qualitative description of dielectric-

NIM PLM dispersion curves. For an accurate characterization it is necessary to

consider that realistic NIMs have losses. Moreover, these losses are of special

relevance in the near infrared range and higher frequencies. In order to analyze

the effect of losses the dispersion relations of periodic media composed of air and

lossy NIM slabs are plotted in Fig. 3.5. The structural parameters of the PLM

are Λ = 500 nm and fNIM = 0.5. Besides, permittivities and permeabilities for

the metamaterial are equal, εNIM = µNIM at λ0 = 10 µm. Their real parts are

µ ′NIM = ε ′NIM =−1 while the imaginary parts take values from 10−1 to 10−3. By

simple inspection of Fig. 3.5 we observe that by increasing the imaginary part

in the electromagnetic constants we reduce the propagating-waves bandwidth.

Losses should decrease exponentially to obtain a linear improvement in the spa-

tial resolution [123]. In the particular case that the perfect matching conditions

are fully satisfied all the k⊥ will propagate without attenuation. However the

imaginary part of εd and µd must be negative and this entails the use of an active

medium. It should be feasible to use gain materials to compensate for the losses

introduced by plasmonic nanostructures in NIMs. For example, we may combine
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metamaterials with electrically and optically pumped gain media such as semi-

conductor quantum dots [124], semiconductor quantum wells, and organic dyes

[125] embedded into the metal nanostructures.

Finally, in Fig. 3.6 the consequences on changing the period, Λ, in lossy media

have been evaluated. The Bloch modes are still transmitted without significant on-

axis dephase (diffraction). We see that by decreasing Λ the number of transmitted

frequencies limited by kcut grows. This results as a consequence of the coupling of

SWs in the air-NIM interfaces. The closer they get the more intense is the modal

coupling.

3.4 Effective Media

We have analyzed metamaterials which consist of periodically distributed struc-

tured elements, whose size and spacing are much smaller than the wavelength of

EM waves. As a result, the nanoscopic detail of each individual structure can-

not be sensed by EM waves. What matters is the average result of the collective
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response of the whole assembly. In other words, such a collection of inhomoge-

neous objects can be characterized by an equivalent homogeneous material with

effective relative permittivity and permeability at the macroscopic level. The most

attractive aspect of metamaterials is that effective permittivity and permeability

can be controlled, using properly designed structures.

The effective medium approach, as Rytov exposed in his seminal paper [126],

involves representing MD multilayered metamaterials as an uniaxial plasmonic

crystal, whose optical axis is normal to the layers. Under this condition, the pe-

riodic lattice behaves as an uniaxial crystal characterized by the permittivity and

permeability tensors [127]

=
ε=


ε⊥ 0 0

0 ε⊥ 0

0 0 ε‖

 and
=
µ=


µ⊥ 0 0

0 µ⊥ 0

0 0 µ‖

 , (3.12)

being ε⊥ and µ⊥ the effective optical constants in the direction perpendicular

to the periodicity. Additionally ε‖ and µ‖ are the effective optical constants in

the direction of the periodicity. The dispersion equation within the EMA for TE

modes is
k2

z

ε⊥µ⊥
+

k2
⊥

ε⊥µ‖
= k2

0. (3.13)

Similarly, the dispersion equation for TM-modes is

k2
z

ε⊥µ⊥
+

k2
⊥

ε‖µ⊥
= k2

0. (3.14)

Provided that
=
µ were a constant, TE- and TM-modes correspond to the well-

known ordinary and extraordinary waves respectively. Equations (3.13) and (3.14)

are obtained from Eq. (3.9) in the limit that the period Λ tends to zero. As can be



48 Chapter 3 1D Metamaterials

easily seen, Eq. (3.9) is periodic in kz, while Eqs. (3.13) and (3.14) for the EMA

are not. To avoid this, kz in (3.13) and (3.14) can be replaced by (2/Λ)sin(k⊥Λ/2)

to obtain the quasi-effective medium approximation (QEMA) [128].

The permittivity and the permeability along the optical axis are given by

ε‖ = Λ

(
w1

ε1
+

w2

ε2

)−1

, (3.15a)

µ‖ = Λ

(
w1

µ1
+

w2

µ2

)−1

. (3.15b)

Complementarity to this,

ε⊥ =
w1ε1 +w2ε2

Λ
, (3.16a)

µ⊥ =
w1µ1 +w2µ2

Λ
, (3.16b)

corresponding to the permittivity and permeability in the transversal direction.

Dispersion relations (3.13) and (3.14) can be applied to the perfect matching con-

ditions: ε1 = −ε2, µ1 = −µ2, and fm = 0.5. Under these conditions we need to

take into account that µ⊥/µ‖ = 0 same as ε⊥/ε‖ = 0. As a result K is 0 for all the

values of k⊥ at both polarizations. This is an ideal configuration for diffraction-

free beam propagation.

The agreement between the EMA and the exact Bloch dispersion curves depends

on Λ/λ ratio. The TE and TM dispersion curves given in Eq. (3.13) and (3.14)

within the EMA, and the Bloch dispersion curves derived from Eqs. (3.9) are

plotted in Fig. 3.7 for periodic structures containing SrTiO3-lossless metal and

GaP-lossless metal. Exact dispersion equations are plotted with different Λ for

TE and TM polarization in Figs. 3.7(a) and (b). For high values of Λ the shape
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FIGURE 3.7: Exact PLM dispersion curves and EMA for TE-polarized waves
(solid line) and TM-polarized waves (dashed line) in (a) and (b) at different
Λ listed in the legend. In (c) and (d) the TM field intensity (line) and the TE
field intensity (dashed) propagating in periodic media at different Λ and k⊥ =
k0 are plotted. The metal permittivity is set to εm = −7.754 at a wavelength
λ0 = 485 nm. SrTiO3 is set as the dielectric in (a) and (c) with fm = 0.35 and
εd = 6.596. In (b) and (d) we take GaP with εd = 13.287 for the dielectric and

the filling factor is set to 0.50.

of the EMA curves does not fit with the Bloch dispersion equations. However, it

is obvious that the contour lines from Bloch TE- and TM-modes reach a limiting

shape that match the EMA contour lines by reducing Λ. Consequently the EMA

is able to characterize the contour lines of a periodic structure when the thickness

of the periods is small enough, roughly about λ0/10. Additionally, it should be

emphasized that the EMA TE-polarized dispersion curves have a circular shape

and the TM-polarized curves may be either hyperbolic, as in Fig. 3.7(a), or elliptic

like in Fig. 3.7(b).

There exists the second TM-band out of range in Figs. 3.7(a) and (b). Thus, in a
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FIGURE 3.8: (a) Effective permittivities ε⊥ and ε‖ of 1D periodic media com-
posed by a dielectric and a lossless Drude metal. The permittivity of the di-
electric (SrTiO3) is εd = 6.596 and the metal filling factor is fm = 0.35. EMA
dispersion curves for TM- and TE-modes using material parameters from sub-

figure (a) and different frequencies are plotted in subfigures (b)-(d).

metal-dielectric superlattice we have two extraordinary TM-polarized modes and

the ordinary TE-polarized mode.

Photonic layered media under the EMA has the properties of homogeneous and

anisotropic media. In this kind of media the Bloch waves propagate with constant

intensity as a consequence of the absence of non local effects. In the Figs. 3.7(c)

and (d) the TM magnetic field and the TE electric field intensity normalized to

their intensities at z = 0 are plotted. As Λ gets smaller the dependence of the field

with z disappears and the wave intensity becomes constant. This effect does not

depend either on the material permittivities, or on the polarization.
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3.4.1 Hyperbolic Metamaterials

EMA is used to approach the PLM as an effective uniaxial anisotropic medium.

The anisotropy of the resulting effective media is modulated not only by the filling

factor of the metal but also by its strong dispersive character [55]. In Fig. 3.8(a)

we represent the permittivities ε‖ and ε⊥ of the plasmonic crystal shown in Fig. 3.1

for a wide range of frequencies. There are two noteworthy frequencies in the plot.

The lower one,

ω⊥ = [1+ εd(1− fm)/ fm]
−1/2

ωp, (3.17)

sets the point in which ε⊥ = 0 while the highest one,

ω‖ = [1+ εd fm/(1− fm)]
−1/2

ωp, (3.18)

sets the point in which ε‖ diverges and change its sign. In Fig. 3.8 ω⊥ = 0.274ωp

and ω‖= 0.469ωp. Also, for frequencies far under the plasma frequency, ω�ωp,

we come near the following expressions: ε⊥ ≈ fmεm and ε‖ ≈ εd/(1− fm). It is

noteworthy that ω⊥ < ω‖ if fm < 0.50, however, if fm > 0.50 it may be just the

opposite.

The TE-modes contour lines are plotted in Figs. 3.8(b)-(d) by using Eq. (3.13) for

nonmagnetic materials (µ⊥ = µ‖ = 1), that is

k2
z + k2

⊥ = k2
0ε⊥. (3.19)

This is the equation of a circumference with radius k0
√

ε⊥. Hence, TE-modes

dispersion equation within the EMA is equivalent to that of a dielectric with per-

mittivity ε⊥. It clear in Fig. 3.8(a) that for frequencies lower than ω⊥ the effective
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permittivity ε⊥ < 0. The latter condition prevents propagating TE-modes to exist

in effective media since they behave like a metal.

Equivalently TM-modes in the EMA for nonmagnetic materials can be deduced

from Eq. (3.14),
k2

z

ε⊥
+

k2
⊥

ε‖
= k2

0. (3.20)

The latter equation predicts different kinds of spatial dispersion depending on the

sign of ε⊥ and ε‖. A hyperbolic dispersion illustrated in Fig. 3.8(b) exists up to a

frequency ω⊥. It is noteworthy that Bloch waves having low spatial frequencies

k⊥ cannot propagate in the medium. Only at k⊥ higher than k0
√

ε‖ we can find

real solutions in the dispersion curves. From ω⊥ to ω‖ both ε‖ and ε⊥ are positive.

The contour line given by Eq. (3.20) becomes an ellipse centered in the origin as

can be seen in Fig. 3.8(c). The semi-axis, k0
√

ε⊥, is thinner than the semi-axis

k0
√

ε‖. Furthermore, by increasing the frequency ω the ellipse stretches along

the k⊥ axis. Nearby the limit case when ω = ω‖, the ellipse becomes almost

a straight line. This is the canalization regimen behavior [56] that allows the

transmission of a wide number of frequencies without diffraction. In the range

ω‖ < ω < ωp, dispersion curves turn to a hyperbola centered at k⊥ = 0 as can be

seen in Fig. 3.8(d). Finally, at frequencies beyond ωp, the TM-modes dispersion

curve turns again into an ellipse. The main difference with the elliptic dispersion

curves in the range ω⊥ < ω < ω‖ is that now ε⊥ > ε‖, thus the ellipse is stretched

in the kz axis.
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3.5 Dual Hyperbolic-Elliptic Media

A major problem in the description of the spatial dispersion curves for TM waves

arises when the EMA provides positive values of ε⊥ and ε‖ leading Eq. (3.20) to an

ellipsoidal shape. In this case the plasmonic band is completely missed. In order

to recover it a simple curve-fitting method is proposed in Ref. [122, 129]. We

will include in the curve fitting a set of data involving points from solutions of the

exact dispersion equation (3.9) placed in the vicinity of the Brillouin boundaries,

kz = (2m+ 1)π/Λ where m is an integer. To find a formula that best fits this

given set of data we propose a new off-center ellipsoid or revolution centered in

kz = (2m+1)π/Λ with semiaxis k0
√

ε̃‖ and k0
√

ε̃⊥,

k2
⊥

ε̃‖
+

[kz− (2m+1)π/Λ]2

ε̃⊥
= k2

0. (3.21)

For convenience, the data set is better fitted to the Taylor expansion of Eq. (3.21)

around kz = (2m+1)π/Λ. Up to a second order, we write k⊥ = A−B[kz− (2m+

1)π/Λ]2, where A = k0
√

ε̃‖ and B = (2k0ε̃⊥)−1√ε̃‖. Once we determine A and B

from the parabolic-curve fitting, we may derive the semi-axes.

Figure 3.9 shows the exact TM dispersion curves for lossless Ag-GaAs PLM with

different wd . We also include the ellipsoids derived from Eq. (3.21) after the cor-

responding curve fitting. The proposed ellipsoids provide accurate results except

in the vicinities of kz = 0 (more generally around kz = 2mπ/Λ). In this region,

two neighboring ellipsoids cut at a certain value of k⊥, what happens merely if
√

ε̃⊥ > π/k0Λ. From physical fundamentals we expect that a bandgap emerges as

a consequence of Bragg reflections. Note that Eq. (3.21) itself does not provide an

accurate spatial dispersion near the bandgap but it reveals its presence in a simple
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GaAs multilayer with wm = 12 nm at λ0 = 1.55 µm. We included the average

permittivities predicted by the EMA.

way. In the case that two TM-mode allowed bands are present we estimate that

k0
√

ε̃⊥ = k0
√

ε⊥+π/Λ provided ε⊥ > 0. This equation may be rewritten as

ε̃⊥ =

(√
ε⊥+

π

k0Λ

)2

. (3.22)

This equation can estimate analytically the value of ε̃⊥ instead of employing the

proposed curve fitting.
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FIGURE 3.11: (a) Isofrequency curve at the wavelength λ0 = 1.129 µm for a
PLM with Ag layers of wm = 10 nm and GaAs layers of wd = 100 nm (thick
blue lines) and the vacuum (thin gray line). The permittivities of the dielectric
and metal are εd = 6.2 and εm = −57.8 respectively. (b) Angles of refraction
θ+ (solid line) and θ− (dashed line) in terms of the angle of incidence from the
vacuum. (c) Numerical experiment of single-polarization double refraction in

our metal-dielectric periodic medium.

In Fig. 3.10, we represent the values of ε̃⊥ and ε̃‖, which were calculated for a Ag-

GaAs PLM of wm = 12 nm at telecoms wavelength. These estimates are depicted

together with ε‖ and ε⊥ EMA-based. Note that ε‖ and ε̃⊥ are positive parameters,

despite the fact that ε⊥ changes their sign. Along with increasing values of wd ,

both permittivities ε̃‖ and ε̃⊥ decrease. We point out that some plasmonic metama-

terials are of the form such that the EMA estimates an hyperboloidal dispersion,

specifically when ε⊥/ε‖ < 0, in opposition of the ellipsoidal dispersion given by

our approach.

3.6 Double Refraction Induced by Nonlocal Effects

As discussed above, the existence of two branches representing the solutions of

Eq. (3.9) involves that harmonic excitations of a given Ki spatial frequency lead

to propagation of twin beams inside the PLM. This phenomena has been shown
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in [130]. Additionally, the same phenomena have been reported using graphene

[131]. In Ref. [122, 132] the double refraction phenomenon in PLM is numer-

ically simulated with a TM-mode analysis in COMSOL Multiphysics. In this

section the simulations and further analysis with PLM are reviewed.

We consider a wave-field pattern of a spatial wave packet propagating in air at

θi = 40 deg with respect to the layers orientation and impinging in an Ag-TiO2

PLM. In Fig. 3.11(a) its air and Ag-TiO2 PLM isofrequency curves are plotted.

We also plot Ki = k0 sinθi with a vertical dashed line. The propagation direction

of the incident and scattered twin rays is indicated by arrows at the cutoff point

between Ki and the isofrequency curves. Scattered twin rays propagate at an angle

θ+ = 62.2 deg for positive refraction and θ− =−38.9 deg for negative refraction.

The angles θ± were evaluated from the normal vector of each one of the two

branches appearing in the isofrequency curve, pointing the direction of power

flow of the scattered fields under positive and negative refraction. In Fig. 3.11(b)

we represent θ+ and |θ−| for different angles θi of incidence. As we observe, θ+

increases for high θi and it is limited by 76.0 deg at grazing incidence. On the

other hand, the |θ−| curve reaches a plateau at |θ−|= 35.9 deg approximately, and

does not increase any further at high θi as a consequence of the hyperbolic-like

spatial dispersion of this second branch. Therefore negative refraction is related

to canalization of subwavelength signals [55].

Figure. 3.11(c) plots the intensity |H|2 of the TM wave field considering a wave-

length of λ0 = 1.129µm. In order to achieve an increased resolution, we first

computed the spatial distribution of the incident beam and the scattered fields in

the Fourier domain. We verify the values of θ± as deduced from the isofrequency

curve derived from Eq. (3.9) and plotted in Fig. 3.11(a), which are in excellent

agreement with our numerical simulations shown in Fig. 3.11(c). The incident
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FIGURE 3.12: Transmittance distributed between the twin beams (T1 and T2)
in our PLM for different frequencies around ω⊥ = 0.126 ωp. Reflectance R is

also included.

Gaussian beam has a waist (FWHM equal to 4λ0) placed close to the air-PLM

interface.

Finally we evaluate the reflectance and the transmittance distributed between the

twin beams in our air/PLM arrangement. To find out how much energy is re-

flected from the boundary and transmitted into the second medium, we need to

consider the ratios of the Poynting power flow of the reflected and the transmitted

waves to that of the incident wave. Since we are disregarding absorption inside

the PLM, the power flow normal to the boundary surface is a constant through-

out the medium. Thus we consider the normal component of the time-averaged

Poynting’s vectors of the incident, reflected and transmitted p-polarized waves. In

numerical simulations using the TM-mode analysis in our finite-element method

(FEM) software, we evaluate the magnetic field Hx in the optical arrangement;

subsequently we will treat the field inside the PLM and in the vacuum indepen-

dently.

In Fig. 3.12(a)-(c) we show transmittances T1 and T2 of the Bloch modes undergo-

ing positive refraction and negative refraction, respectively, for different frequen-

cies near ω⊥ = 0.126 ωp as derived from Eq. (3.17) and angles of incidence. We
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include the reflectance R evaluated on air, which takes its highest values (around

0.2) at angles near θi = 0. Note that T1 +T2 +R yields the unity, apart from small

deviations attributed to FEM-limited accuracy. In general, T1 decreases as the

angle θi increases, attaining a zero transmittance from its critical angle, which is

equal to 41.1deg in Fig. 3.12(a) and 68.4deg in Fig. 3.12(b). In Fig. 3.12(c) no

critical angle may be found. On the other hand, T2 increases along with θi en-

hancing negative refraction. Moreover, negative refraction caused by hyperbolic

dispersion is dominant at frequencies below ω⊥ and positive refraction attributed

to elliptic dispersion is more vigorous above ω⊥ in clear agreement with the EMA.

For high angles of incidence, however, this phenomenon may be reversed. As a

simple demonstration, note that the equilibrium condition T1 = T2 is reached at an

angle θi = 44.4deg in Fig. 3.12(c); for higher values of θi the beam with nega-

tive refraction carries the most power flux (along the y direction). As a conclusion,

negative refraction plays an essential role in regimes of the EMA related to elliptic

dispersion. We reported the results of this Section in Ref. [132].



Chapter 4

Image Formation Using NIMs

In this Chapter we will develop the concept of image formation with NIMs. We

start from the simplest approach based on geometrical optics and move forward to

the electromagnetic formulation. The fundamentals will be reviewed: transmis-

sion and reflection coefficients, transfer function, and point spread function (PSF).

Particular attention should be paid to a 3D formulation of the PSF and its pecu-

liarities in comparison with the most well-known 2D PSF, especially, in the depth

of focus. We will also review the asymmetric superlenses as image forming sys-

tem including an aberration analysis. In addition, we will evaluate the transmitted

fields of a linear dipole through a NIM superlens for both TE and TM polariza-

tion. Finally we will analyze the effect of exfoliating a NIM superlens in multiple

slabs by means of the PSF.
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FIGURE 4.1: Veselago’s lens schematic

4.1 Geometric Optics Approach

A new kind of flat lens with negative index of refraction was proposed by Vese-

lago in 1968 [2]. Note that the Snell law is valid in this material. Therefore, a

lens with a refractive index nNIM =−1 surrounded by air will transform a diverg-

ing bundle of rays to a converging ray bundle, as shown in Fig. 4.1. A negative

refractive index medium bends light to a negative angle relative to the surface nor-

mal. Light formerly diverging from a point source is set in reverse and converges

stigmatically back to a point. Released from the medium the light reaches a focus

for a second time. The image-forming system reproduces an inverse mirror image

inside the NIM and a real image at the outer plane with lateral and axial magnifi-

cation equal to 1. The distance from the object to the image is always twofold the

NIM layer width, 2wNIM. Importantly, in the Veselago lenses the optical distance

covered by the rays in the dielectric cancels the optical distance in the NIM and

consequently the optical length is zero. Additionally, the depth of field (DOF) is

equal to the width of the flat lens, wNIM, being the DOF defined as the width of

each of the two zones where we may encounter real conjugate pairs of objects and

images, simultaneously.
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Real NIMs have always losses that should be considered. They reduce the inten-

sity transmission and modify the rays paths. Note that, NIMs are strongly disper-

sive and hence the superlens behavior of this kind of media is limited to a short

bandwidth. From the point of view of the geometric optical approach the ray un-

der grazing incidence gives maximum value for the wavenumber k⊥ = k0. Spatial

frequencies over this maximum value are not considered and consequently some

purely electromagnetic properties of the NIM lenses are not taken into account in

the geometrical approach.

4.2 Electromagnetic Formulation

The analysis of the NIM lensing performed by Veselago was conducted from the

geometric point of view. In 2000 Pendry revealed in his seminar paper [3] that

these NIM lenses can enhance evanescent waves which otherwise will rapidly de-

cay in free-space propagation. The contribution of these waves allows to recover

details from the image smaller than the wavelength in the object plane. Evanes-

cent waves are enhanced due to the coupled SWs excited at the input and output

interfaces of the NIM slab [5, 7, 133]. It is also remarkable that a phase reversal is

accomplished for the homogeneous part of the field within the NIM, compensating

the phase gathered by the wave when traveling away from the source. In principle,

the image can recover all the Fourier frequencies provided that the perfect match

condition are fulfilled. An unbounded range of evanescent-wave frequencies will

contribute to the field intensity in the image plane. Consequently this kind of

lenses are referred as perfect lenses [8]. Nonetheless, this ideal reconstruction of

the object cannot be reached since the metamaterial always exhibits losses, lead-

ing to a cutoff frequency on the flat-lens transmittance. This is particularly true for
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FIGURE 4.2: Schematic geometry of the planar perfect lens. Incident fields A j,
C j and reflected fields B j, D j are plotted

the optical range. The contribution of µ ′′ to the metamaterial losses is especially

significant at this range of frequencies. In spite of the fact that compensation of

amplitudes results impossible in practice, superresolution can be achieved. In the

past years, this attractive property combined with new improvements in nanofab-

rication have triggered the fabrication of NIMs [20, 28, 100, 134, 135]. Nega-

tive refraction and subwavelength imaging have been demonstrated at microwave

[136], infrared [58, 137] and visible wavelengths [88].

It should be noted that extremely-high resolution could be obtained at the price of

signal delay [138]. Only at the stationary solution the enhancement of the evanes-

cent frequencies by means of the SW excitation and propagation is fully accom-

plished. The smaller details take the longer time to be developed. Therefore, an

infinitely high resolution would need an infinitely long time for its realization.

Consider the flat lens from Fig. 4.2 where a NIM layer of width wNIM is sur-

rounded by dielectrics. The TE field in the object space z < z1 is evaluated as the

superposition of an incident wave field

Ein =
∫∫

A(k⊥)exp[ik⊥R+ ikz1(z− z0)]d2k⊥, (4.1)
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and the reflected field

Er =
∫∫

Rs(k⊥)A(k⊥)exp[ik⊥R− ikz1(z− z0)]d2k⊥, (4.2)

where Rs = B1/A1 stands for the s-polarized reflection coefficient at the object

plane (see Fig. 4.2 and Appendix A for clarity). The propagation constant kzi is

given by

kzi =±
√

k2
0µiεi− k2

⊥, (4.3)

where the (+) sign goes for the dielectrics and the (−) goes for the NIM. The

plane-wave representation of the wave field, the spatial spectrum

A(k⊥) =
1

(2π)2

∫∫
Ein(R0,z0)exp(−ik⊥R0)d2R0, (4.4)

represents the 2D Fourier transform of the field propagating toward the superlens

at the object plane z0, being R0 = (x0,y0).

Inside the NIM slab (z1 < z < z3), the wave field is again a superposition of the

propagating field

Et13 =
∫∫

Ts13(k⊥)A(k⊥)exp[ik⊥R+ ikz2(z− z2)]d2k⊥, (4.5)

and the counterpropagating field

Er13 =
∫∫

Rs13(k⊥)A(k⊥)exp[ik⊥R− ikz2(z− z2)]d2k⊥. (4.6)

The ratios Rs13 =B3/A1 and Ts13 =A3/A1 represent the contributions of propagat-

ing and counterpropagating waves inside the NIM layer, and z = z2 is the location
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of the intermediate image plane. They can be deduced through the transfer ma-

trix method shown in Appendix A. To evaluate A3 and B3 we solve the equations

system  A3

B3

=
=
Ms34

 C4

0

 , (4.7)

where the transfer matrix
=
Ms34=

=
P3

=
D−1

s3
=
Ds4

=
P4 connects the amplitudes of the elec-

tric field at z = z2 and with the image plane. The amplitude C4 can be easily de-

rived from the transmission coefficient, Ts = C4/A1, between the object plane z0

and the image plane z4. It is also possible to derive the reflectance and transmit-

tance by means of the Airy’s formulae while in this Thesis we follow the transfer

matrix formulation. In addition, is straightforward to deduce p-polarized waves

reflection coefficient that applies directly to the transverse magnetic field as given

from the duality theorem (A.1).

Finally, the field emerging from the imaging system at z > z3 is determined by

means of the equation

Eout =
∫∫

Ts(k⊥)A(k⊥)exp[ik⊥R+ ikz3(z− z4)]d2k⊥. (4.8)

The analysis given above is fully consistent with Maxwell’s equations. It is

straightforward to verify that inserting Eq. (4.4) into Eq. (4.8) leads to the 2D

convolution,

Eout(R,z) =
∫∫

Ein(R0, z0)h3(R−R0,z− z4)d2R0. (4.9)
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We recognize the 3D function

h3(R,z) =
1

(2π)2

∫∫
Ts(k⊥)exp(ik⊥R+ ikz3z)d2k⊥, (4.10)

as the 3D PSF of the optical system. It is noteworthy to mention that a planar per-

fect lens is a linear and 3D shift-invariant system as we can derive from Eq. (4.9).

We can use the duality theorem (A.1) to deduce equivalent equations for the TM-

modes magnetic field.

4.3 3D Point Spread Function

In this Section we will review the 3D PSF and the generalized amplitude transfer

function (ATF). The results of this Section can be found in Refs. [139, 140]. Pro-

vided that the NIM is characterized by ε2 = µ2 =−1, that is disregarding material

losses, and the superlens is immersed in vacuum, T = 1 yielding h3(R,0)= δ2(R).

In this limit case [3], the presence of the 2D Dirac delta function δ2 leads to a per-

fect image

Eout(R,z4) = Ein(R,z0). (4.11)

However, h3(R,z) would exhibit a singular behavior in z < 0. From the Weyl’s

representation of the scalar Green’s function, one may derive that [141]

h3(R,z < 0) =
1

2π

∂

∂ z

[
exp(−ik0r)

r

]
, (4.12a)

h3(R,z > 0) =− 1
2π

∂

∂ z

[
exp(ik0r)

r

]
, (4.12b)
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FIGURE 4.3: Absolute value of the 3D PSF for a NIM slab surrounded by air.
At λ0 = 600 nm the NIM optical parameters are ε2 = µ2 = 1+0.1i. The size of
the NIM slab is 1800 nm in (a), 600 nm in (b), 400 nm in (c), and 60 nm in (d).
Plots are normalized to unity at r = 0, and contour lines for a value 1/2 (solid
line) are drawn in black. The image plane is displayed with a vertical dashed

line.

where the distance from the observation point, r= (R,z), to the focal point located

at the origin is r = |r|. We will see that the imaginary part of the refractive index

regularizes the out-of-focus field distribution given in Eq. (4.12a).

Let us illustrate the image formation process in the superlens depicted in Fig. 4.2

considering losses. We further assume a slab of NIM surrounded by air and set

λ0 = 600 nm. The optical constants ε2 = µ2 = −1+ iδ , being δ = 0.1. Un-

der these circumstances, a perfect imaging cannot be achieved, however a good

replica may be found at the plane z4 since δ � 1.

The amplitude of the 3D PSF |h3| is depicted in Fig. 4.3 for slabs of different

widths, wNIM. There is an unique PSF for both polarizations provided that ε2 = µ2.

Since T is radially symmetric, the 3D PSF varies upon the axial coordinate, z, and

the modulus of the transverse vector, R, as

h3(R,z) =
1

2π

∫
∞

0
T (k⊥)J0(k⊥R)exp(ikz3z)k⊥dk⊥, (4.13)

where J0 is a Bessel function of the first kind.
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Shifting the image plane at z = 0, the exit surface of the layered lens would be

found at z = z3− z4 = w1−wNIM. Bearing in mind that w1 ≥ 0, the meaningful

part of the PSF lies within the range z ≥ −wNIM as considered in the graphical

representation. The 3D amplitude distribution of the PSF for a subwavelength

width wNIM shows a distinct behavior in comparison with those impulse responses

for wNIM � λ0. For instance, the FWHM of the PSF at the image plane ∆⊥ =

73.5 nm is clearly subwavelength if wNIM = 60 nm; in fact, ∆⊥ would vanish if

wNIM were identically zero. Moreover, the amplitude reaches a maximum value

at the center point R = 0 on the output plane, z = z3− z4. The response of the

optical system points to that for near-field imaging. On the contrary, ∆⊥= 552 nm

comes near the wavelength at wNIM = 1.8 µm. Here, the maximum amplitude is

found approaching the image plane far from the output plane, existing in a small

longitudinal shift of 104 nm. Furthermore, one may determine a FWHM along

the z axis, and in our case we found ∆z = 1.70 µm.

4.3.1 Far-Field Term and Near-Field Term

The 3D PSF given in Eqs. (4.10) and (4.13) can be splitted in its near field term

hN and the far field term hF ,

h3(R,z) = hN(R,z)+hF(R,z). (4.14)

The far field term may be represented as follows [142]:

hF(R,z) =
−ik0

2π

∫∫
a(ŝ)exp(ik0ŝ · r)dΩ. (4.15)
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FIGURE 4.4: Absolute value of the angular spectrum in the semispace z > 0
associated with the 3D PSF for the superlenses analyzed in Fig. 4.3.

Thus, hF is evaluated from Eq. (4.10) within the far field spectral domain, 0≤ θ ≤
π/2, being dΩ = sinθdθdφ the element of solid angle in spherical coordinates.

In Eq. (4.15) the 3D unitary vector ŝ = s⊥+ szz is deduced from the dispersion

equation

k0ŝ = k⊥+ kz1ẑ. (4.16)

Finally, the angular spectrum is

a(ŝ) =
i

λ0
T (k⊥)sz, (4.17)

where sz = cosθ . Since k⊥ = k0 sinθ , the transmittance, T , depends exclusively

upon the azimuthal coordinate, θ , and so does the angular spectrum a(s).

The radiation intensity of a point source is in direct proportion with the squared

absolute value of |a(θ)|2. The magnitude of the angular spectrum |a| in the semis-

pace z > 0 (θ < π/2) is plotted in Fig. 4.4 for the NIM lenses from Fig. 4.3. The

material absorption attenuates the radiation intensity. Thus, higher values of wNIM

implies smaller |a(θ)|. However, the normalized radiation pattern is quite similar

in all cases.

To gain a deep insight into the term hF of the 3D PSF, let us consider the limit
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case δ → 0. In this case, T = 1 and the transverse distribution of the PSF is an

Airy disk,

hF(R,0) =
J1(k0R)

λ0R
, (4.18)

where J1 is a Bessel function of the first kind. Along the axis R = 0, the far-field

3D PSF may be expressed analytically as

hF(0,z) =
(1− ik0z)exp(ik0z)−1

2πz2 . (4.19)

This function is well-behaved in z< 0 so that, as expected, we encounter a singular

response in the near-field term of the PSF. It is important to remark that |hF |
in Eqs. (4.18) and (4.19) is maximum at the origin, whose central lobe has the

FWHMs ∆⊥ = 0.705λ0 and ∆z = 1.55λ0, respectively. At λ0 = 600 nm, we have

∆⊥ = 423 nm and ∆z = 929 nm. These numbers are roughly in agreement with

the numerical simulation performed in Fig. 4.3(a) for wNIM = 1.8 µm revealing

that hF is the dominant part of the 3D PSF in this case. This is also true for higher

values of wNIM. Otherwise, the near-field component becomes significant (see

Figs. 4.3(b)-(c) for wNIM = 600 and 400 nm), and even takes the control of the

amplitude distribution in the image volume for slabs of a subwavelength width, as

shown in Fig. 4.3(d).

We point out that hF given in Eq. (4.15) represents a focused wave with focus

at the origin r = 0 and, as a consequence, it may follow the standard mathemat-

ical treatment of apertured spherical beams. In the limiting case δ = 0, it yields

an aberration-free focal wave, since a(ŝ) is a real function excepting a constant

complex factor; otherwise, monochromatic aberrations arise [141, 143].
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ATF are shown (a) in 3D and (b) on the meridional plane sx = 0.

4.3.2 Generalized Amplitude Transfer Function

From Eq. (4.15), we infer that hF may be written in terms of a 3D Fourier trans-

form of the function a(ŝ), which has extent in three dimensions and is wrapped

around the unit hemisphere

ŝ · ŝ = 1, (4.20)

and sz ≥ 0 (see Fig. 4.5). In McCutchen’s original paper [144], the function a is

coined the generalized aperture, describing the patch of solid angle occupied by

the Huygenian source at the aperture plane of the converging wave. In our case,

however, the field amplitude is determined by the function T rather than the opac-

ity on the exit pupil plane. Therefore, a(ŝ) is simply recalled as the generalized

ATF of the NIM planar lens.

The near-field component of the wave field, hN might be expressed in the form of

Eq. (4.15) if the angular coordinate θ is represented in the complex plane. Setting

θ = π/2− iα (4.21)

and running the real parameter α from 0 to ∞ allows us to consider the normalized

wave vector ŝ with real transverse component of modulus s⊥ = coshα > 1 and
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the purely imaginary axial component sz = isinhα . The dispersion equation is

conveniently rewritten as s2
⊥− Im(sz)

2 = 1, representing a unit hyperboloid shown

in Fig. 4.5. It is immediately derived that the angular spectrum a(ŝ) wrapped

around the hyperboloid surface constitutes the second sheet of the generalized

ATF associated with evanescent components of the wave field.

Following the reasoning given above, it is concluded that the 3D PSF h3 is fully

computed by means of the 3D Fourier transform

hF(r) =
−ik0

2π

∫∫
a(ŝ)exp(ik0ŝ · r)d3ŝ, (4.22)

provided that the generalized ATF a(ŝ)≡ a(ŝ)δ1(s−1), and provided the real part

and the imaginary part of ŝ are nonnegative. Here, δ1 is the Dirac delta function.

Previously, we mentioned that the 3D PSF h3 is a singular function if the meta-

material lens is lossless, assuming that the absolute value of its negative refractive

index perfectly matched with that of the environment media. Such a singular be-

havior might be inferred now by considering the near-field term of the 3D ATF.

The function a(ŝ) modulates the ATF over the hyperbolical sheet. If δ 6= 0, then

a(ŝ) is effectively bounded, which leads to a 3D ATF representing an open sur-

face of a finite area. Neglecting dissipation, however, a becomes unbounded, thus

providing in the spectral domain a hyperboloid of infinite extent.

As shown in Fig. 4.6, the modulus |a| is maximum at θ = 0 for the far field term,

approaching λ
−1
0 exp(−k0δwNIM), and it decreases to zero at θ = π/2. Within the

near-field regime, |a| grows exponentially at increasing values of α , however, at-

taining a local maximum |a|max before it decreases for α→∞. For wNIM = 60 nm,

the maximum |a|max = 4.77 µm−1 at αmax = 2.02 rad, which corresponds to a nor-

malized spatial frequency s⊥ = 3.82 (and sz = 3.69i). On the far field sheet, the
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FIGURE 4.6: Absolute value of the angular spectrum |a| for the numerical sim-
ulations of Fig. 4.3. The component of the far field is represented in the subfig-

ure (a) and the near-field term of the ATF is shown in(b).

generalized ATF remains comparatively low, since |a| ≤ 1.57 µm−1 = |a(θ = 0)|.
The effective area of the hyperbolical surface, where a(ŝ) takes significant values,

also surpasses in several units that from the unit hemisphere. On the other hand,

for wNIM = 1.8 µm, |a|max = 5.7610−5µm−1 at αmax = 0.104 rad, associated with

a unit vector of s⊥ = 1.005 (and sz = 0.104i). This is several orders of magnitude

lower than the maximum |a|= 0.253 µm−1 given at θ = 0. Clearly, the effective

area of a(ŝ) on the hyperboloid is here a fraction of that from the hemisphere.

We conclude that the generalized ATF provides geometric and analytic arguments

in order to derive critically whether hN represents the dominant contribution to

the 3D PSF. This is of relevance, since the subwavelength resolution is achieved

exclusively in such a case.

4.3.3 Out-of-Focus Response

For microscopy applications, an extended object should be confined in the vicini-

ties of the NIM slab in order to give rise to real images. A quasi-planar source with

grooves and small surface defects contains some depth information that might be
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FIGURE 4.7: Intensity of the wave field in the image volume of two point
sources centered at R1 = −R2 = 60 ŷ nm provided under different conditions
of depth: (a) both sources are located in the same transverse plane and (b) one
source is 40 nm closer to the lens. The layer width is wNIM = 60 nm and material

absorption is δ = 0.1.

transmitted through the lens. This issue is not evident, however, since the decay

of the wave field from the output plane of the lens leads to inability for producing

3D focusing of energy in spots smaller than λ0 [145].

Let us analyze the situation with multiple localized emitters when they are not

found necessarily in the same transverse plane. Therefore, they should be placed

in planes very close among themselves. In order to determine the limit of res-

olution with multiple localized emitters making use of the PSF we may find di-

verse criteria. Perhaps the most known criterion was introduced by Lord Rayleigh

[146], which establishes that two point objects are resolved if the maximum in the

diffraction pattern excited by one source lies at least on the first dark ring of the

diffraction pattern generated by the second source.
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Note that for a diffraction pattern in the form of an Airy disk, the limit of reso-

lution coincides with 1.18 times the FWHM of the central peak in intensity. We

consider a similar criterion. Specifically we simply consider the FWHM of the

PSF as the limit of resolution of the image-forming system.

As illustration, we show in Fig. 4.7 the contour plot of the field intensity in the

image space of the near-field superlens analyzed in Fig. 4.3(d) as it is produced by

two equienergetic point sources. An incoherent superposition is assumed to get rid

of interference phenomena. Therefore, the intensity distribution is proportional to

∑
j=1,2

∣∣h3(R−R′j,z− z′j)
∣∣2 . (4.23)

This is consistent, for instance, with fluorescence microscopy under the first Born

approximation [147]. Nevertheless, the output intensity of any point-like source

as an electric dipole antenna might be computed straightforwardly by inserting the

appropriate field Ein rather than the Dirac delta function into Eq. (4.9). Both points

are separated |R′1−R′2| = 120 nm along the transverse direction. We analyze the

case that one of these objects O1 stays closer to the lens than O2, and therefore

its image O′1 remains in a plane (here z′1 = 0) farther from the lens back face. In

this plane, the presence of the second image O′2 is imperceptible in virtue of the

evanescent nature of its wave field. Moving to the geometric image plane of O′2

(z′2 =−40 nm), it is clearly detected, however, superposed to the strong back tail

produced by O′1.

In the case analyzed previously, out-of-focus side-lobes of the PSF attain a con-

siderable strength leading to a fast image blurring and loss in resolution power.

Following the half-maximum dashed line of the image intensity of O′2 at its geo-

metric image plane z = z′2 shown in Fig. 4.7, it also embodies the diffraction spot
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FIGURE 4.8: Same as in Fig. 4.7 for δ = 0.001.

of O′1 and, as a consequence, one may consider that both image points are not

resolved. In order to increase the transverse resolution of the system, we consider

its response for a more favorable value of the absorption parameter, δ = 10−2.

Here, the half-maximum closed lines are separately associated with each impulse

response of the two point sources. This superresolution mechanism relies ex-

clusively on a decrement of the FWHM of the in-focus PSF of O′2. In fact, the

out-of-focus PSF of O′1 has a larger FWHM.

From the discussion given above, one may infer that improving the resolution

power of near-field NIM lenses is achieved at the cost of a fast image degradation

in out-of-focus planes. Let us deeply examine this assessment with the help of

Fig. 4.8. For an extremely low absorbing layer with parameter δ = 10−3, the low-

est limit of resolution along the transverse direction (in-focus FWHM) is achieved

in comparison with Fig. 4.7. Nevertheless, its back tail at z < 0 spreads much
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FIGURE 4.9: Point dipole source field at the other side of a NIM layer w2 =
40 nm wider. The dipole source is placed in the xz plane. The dipole is tilted and
angle (a) 0deg, (b) 45deg, (c) 60deg and (d) 90deg with the z axis. The field is
evaluated in the image plane, located 80 nm from the object plane. The dipole
source radiates at the wavelength of λ0 = 632.8 nm. The optical constants of

the NIM are ε2 = µ2 =−1+0.1i.

faster, hindering the observation of other images (O′2) geometrically reproduced

at the rear. Specifically, at z′2, the radius of the out-of-focus diffraction spot asso-

ciated with O′1 goes beyond the gap |R′1−R′2| between this image and O′2. This

behavior becomes more evident as δ decreases and, more generally, if any physi-

cal mechanism improves the capability of the flat lens in resolving closer images

placed in the same transverse plane.

4.3.4 Imaging Electric Point Dipoles

For completeness, let us evaluate numerically the scattered wave fields generated

by an electric point dipole with arbitrary orientations. For the sake of clarity we

assume that the electric dipole is placed in the vacuum. Except for the sign the

refractive index of the NIM, n2, must be the same as the refractive index in the

vacuum, n1 = 1. Nevertheless, realistic losses naturally presented in the imaginary

part of the refraction index in the NIM are included being n2 = −1+ δ i, where

δ = 0.1. A good reproduction in the plane z= z4 can be done if the effect of losses

is weak. In Fig. 4.9 we plot the intensity in the conjugate of the plane z0. Any
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value of w1 < w2 yields the same result as there is a shift invariance. Red dashed

lines indicate the points in which the intensity falls to a half of its maximum value.

The FWHM ∆y measured at the x = 0 line is the distance between the two points

of the dashed line at crossed by the x = 0 line. We can see that ∆y depends on the

dipole direction, especially when d it is contained in the plane xy. For instance,

∆y = 42.4 nm when d points in the z-direction; for θ = 60o the FWHM grows

to 43.5 nm, and if d points in the y-direction the value of the FWHM boosted

to 84.6 nm. We should underline the lateral shift at the intensity maximum for

the different polar angles. As Fig. 4.9 shows the intensity maximum is placed a

distance of (a) 0 nm, (b) 9.5 nm, (c) 13.2 nm, and (d) 19.7 nm from the origin. To

sum up, the anisotropy in the amplitude distribution produced in the image plane

by a electric dipole challenges the unique description of the resolution in the flat

superlens.

4.4 Asymmetric Arrangements and Aberration Correction

An asymmetric flat superlens is a film made of a NIM that is deposited on a

smooth, transparent body such as glass with positive dielectric constant. There-

fore, the object space has an index of refraction different from that in the image

space, leading to an asymmetric arrangement. Originally, this idea was conceived

because when using a solid substrate, these imaging devices are mechanically

much more stable than a layer sustained in free space [8].

In the case that the lensing flat slab shows effectively a negative permeability, neg-

ative refraction allows imaging mainly using homogeneous waves. Moreover, if

the index of refraction of the output medium is higher than that index of refrac-

tion corresponding to the medium surrounding the object, some evanescent waves
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FIGURE 4.10: Schematic representation of an asymmetric flat lens of negative
refractive index n2 and width w2.

emitted by the source become homogeneous after passing through the lens. This

fact allows the formation of far field images with subwavelength resolution.

Unfortunately there is no perfect image plane in the asymmetric arrangement and

the image suffers from aberrations. Note that the root of aberrations in symmet-

ric superlenses is diverse and may be caused by materials having an impedance

(and index of refraction) not matched to free space [148, 149], material losses

[6, 150], because the equifrequency curve is slightly deformed from an ideal

spherical shape particularly for large angular components [151, 152], and caused

by the anisotropic effect from nonmagnetic anisotropic media [153, 154]. Here

we focus on the index of refraction mismatching that comes naturally in the asym-

metric configuration. Moreover, Seidel aberrations have been discussed in dif-

ferent kinds of imaging nanostructures like metallodielectric photonic crystals

[155, 156], negative-refractive lenses fabricated out of a silicon-on-insulator pho-

tonic crystals slab [155], graded photonic crystals lenses [157], and spherical

lenses composed of NIMs [158, 159]. In the previous examples, nonapertured

superlenses are usually considered and oblique aberrations may be disregarded.

Let us consider the asymmetric flat lens shown in Fig. 4.10. A point object O1 is

suspended at a distance w1 from the front face of the superlens made of a material



4.4 Asymmetric Arrangements and Aberration Correction 79

exhibiting negative index of refraction, n2 < 0. Assuming that the object space is

characterized an index of refraction n1 > 0, and that the width w2 of the lens is

sufficiently large, a real Gaussian image O2 is formed inside the NIM [2]. Trav-

eling through the lens exit surface we reproduce the secondary, outlying image

at O3 in a semi-infinite dielectric of index of refraction n3. Provided the index

of refraction in the image space turns out to be positive, n3 > 0, the image point

O3 is also real, which is located at a distance w3. Here we employ oriented axial

distances, i.e. w1 < 0 and w3 > 0 for a real object and a real image, respectively.

Also the lens width w2 > 0.

For a nonapertured set up, the chief ray joins the points O1, O2 and the Gaussian

image O3 by means of the same straight line. Let us evaluate the aberration of a

ray passing through the point P2, which is placed on the exit surface at a height

hout, with respect to the chief ray. This aberration is estimated by the optical-path

difference of both light rays, i.e., W = n1(O1P1−O1Q1) + n2(P1P2−Q1Q2) +

n3(P2O3−Q2O3). Note that O1Q1 =−w1, Q1Q2 = w2, and Q2O3 = w3. Finally,

this ray aberration reads approximately [160]

W (hout)≈ 0a20h2
out + 0a40h4

out + 0a60h6
out. (4.24)

The aberration terms 0a20, 0a40, and 0a60 are attributed to defocus, primary spher-

ical aberration (SA), and fifth-order SA, respectively. These aberration coeffi-

cients are evaluated by using the geometric relations tanθ1 = hin/w1 and tanθ2 =

(hin−hout)/w2, and the Snell law. In particular, the Gaussian image plane is given

under the condition 0a20 = 0, which yields

w3 = n3

(
w1

n1
− w2

n2

)
. (4.25)
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FIGURE 4.11: Geometric imaging for a flat lens of n2 = −2 sandwiched be-
tween dielectric media of indices of refraction n1 = 1 and n3 = 4. (a) Gaussian
imaging based on Eq. (4.25). (b) Red line represents primary SA given by

Eq. (4.26) and blue line represents fifth-order SA.

Therefore an axial displacement of the object point O1 changing w1 leads to an

image shift following a direct proportion, as shown in Fig. 4.11(a). Note that a

real paraxial image O3 is attained with the condition w2 ≥ w1n2/n1, that is, if the

secondary paraxial image O2 is also a real image. At the Gaussian image point

O3, where Eq. (4.25) is satisfied, the aberration coefficient for primary SA gives

0a40 =
n1n2[n3

1(n
2
2−n2

3)w2 +n3
2(n

2
3−n2

1)w1]

8n2
3(n1w2−n2w1)4 . (4.26)

Note that primary SA cannot be totally corrected for 0≤−w1 < ∞ when n1 = n3

except for the perfect lens, where additionally n2 = −n3. This is a well-known

case where high-order aberration coefficients also vanish leading to stigmatic

imaging. Also a plane-parallel asymmetric plate may be corrected of primary

SA. Provided the equation 0a40 = 0 is satisfied, we obtain a linear relationship

between the lens width w2 and the on-axis object distance

w1 =
n3

1(n
2
3−n2

2)

n3
2(n

2
3−n2

1)
w2. (4.27)

in terms of the index of refraction of the media involved. A given flat lens can-

not be corrected of primary SA for more than one object plane, as shown in
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FIGURE 4.12: Ray tracing for an object point located at (a) w1 = −0.1 w2,
which is corrected of primary SA, (b) w1 = −0.4 w2, and (c) w1 = −0.5 w2
from the front surface of a flat lens of width w2. Refraction index are the same
as in Fig. 4.11. Traces corresponding to paraxial (slope lower than 30 deg) and
nonparaxial rays are drawn in different colors. Green dots represent conjugated

points.

Fig. 4.11(b), and therefore images originated from scatters that fail to keep (4.27)

suffer from SA. Furthermore, the primary SA coefficient 0a40 diverges for the lim-

iting case w3 = 0, excepting when n1 =−n2, leading to perfect geometric imaging.

Therefore quality of the (real) image improves as the (real) object point O1 come

close to the input surface.

In Fig. 4.12, we plot a ray tracing for a flat metamaterial lens of n2 = −2 sur-

rounded by object and image media of index of refraction n1 = 1 and n3 = 4. Fix-

ing the lens width w2, Eqs. (4.25) and (4.27) provide the values w3 = 1.6 w2 and

s1 =−0.1 w2, respectively. The corresponding ray tracing is shown in Fig. 4.12(a).
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Stigmatic imaging may produce a convergent focused beam of numerical aperture

n3 sinα = n1 that leads to an angular semiaperture α = 14.5deg. In our case, the

numerical aperture is slightly reduced down to an effective value αeff = 10.9deg

caused by noncorrected high-order aberrations. To inspect the deterioration of the

image due to SA effects, we also present in 4.12(b) the ray tracing for a point ob-

ject placed at w1 =−0.4 w2 further from the lens entrance surface. We observe a

ray distribution that is barely confined around the Gaussian image point O3, repre-

sented as a green dot in the image space. As a limiting case, we plot in Fig. 4.12(c)

the trajectories of rays emerging from a point that is located at w1 =−0.5 w2 that

leads to 0a40→ ∞.

We point out that (4.27) gives a negative value of w1 provided that the index of

refraction n3 in the image plane is either higher or lower than n1 and |n2| simul-

taneously. In order to achieve a subwavelength effect, we aim for transforming

evanescent waves emitted by the source O1 into homogeneous wave modes in the

image space. In this case it is preferable for a high-index transparent medium

n3 > n1 to register the image.

To conclude let us make an explanatory remark concerning the index of refrac-

tion of the media involved on the analysis of the image formation. The ratio

n3/n1− 1 provides the relative enlargement of spatial bandwidth corresponding

to evanescent waves in the object space that are transformed into homogeneous

plane waves in the image space. This is clearly a subwavelength effect, which has

been exploited elsewhere [161]. In image formation, this physical phenomenon

leads to a superresolving effect. On the other hand, we point out that the value of

n2 is arbitrarily chosen provided it takes a negative value. In fact, this is a degree

of freedom that may be profited at the time of imposing an additional constraint

of interest.
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In order to take a suitable choice for the value of n2, we considered the reflection

and transmission properties of light that impinges obliquely onto the NIM thin

film, which has been deposited on top of the transparent substrate. We set the

NIM width by imposing

kz2w2 =−(2m+1)π/2, (4.28)

for m = 0,1,2, . . .. It will eliminate the reflection of light completely, which is

intrinsically a dispersive phenomenon depending upon k0. This is commonly de-

nominated an anti-reflecting coating. For that purpose we additionally impose

that the s-polarized reflection coefficient deduced with the matrix method from

Appendix A vanishes, Rs = 0. For normally incident light, i.e., k⊥ = 0, and as-

suming that µi = sign(kzi), we finally obtain a condition n2 = −
√

n1n3 involving

the index of refraction of all media. Note that the latter equation is held in sim-

ulations shown in 4.11, and it is well-known in the theory of antireflecting films

when its index of refraction is |n2|. Finally, a quarter-wave layer satisfying (4.28)

with w2 = λ2/4(+mλ2/2 for m 6= 0), being λ2 = λ0/(−n2), is of interest.

In Fig. 4.13(a)-(c), we show the transmission coefficient Ts from the matrix method

that has been evaluated for s-polarized waves and superlenses of different widths.

Optimum geometric conditions are assumed under all circumstances, where equa-

tions (4.25) and (4.27) are satisfied. We observe that |Ts| ≈ 0.5 for k⊥ = 0 in

all cases and, therefore, reflection is extinguished (Transmittance for s-polarized

waves is |Ts|2n3/n1). However, reflection coefficient might have a certain sig-

nificance in higher spatial frequencies. We also observe a flat variation of the

argument of Ts for k⊥ < k0, which is a consequence of eliminating primary SA.
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FIGURE 4.13: Transmitance (modulus and argument) for (a)-(c) s-polarized
waves and (d)-(f) p-polarized waves in a superlens of µ2 = −1+ 0.001i and
ε2 =−4+0.001i. Surrounding transparent media have again index of refraction
n1 = 1 and n3 = 4. We consider different widths for the NIM flat lens: (a) and
(d) w2 = 0.125λ0; (b) and (e) w2 = 0.875λ0; (c) and (f) w2 = 5.125λ0. Note

that all the horizontal scales are not the same.

For ultrathin slabs, however, |Ts| is of relevance at higher frequencies. By con-

sidering a boundless medium of index of refraction n1 = 1, note that there is no

time-averaged power flow for k⊥ > k0. The field intensity within this spectral do-

main, in the presence of the superlens, is by no means zero, and the transmission

coefficient might reach values higher than unity, as seen for m = 0. In these cases,

the time average of the power flow in the object space is supported partially by

evanescent waves that, in principle, can contribute to the far field. For them, the

phase in the spatial spectrum changes by far and, therefore, aberrated images are

expected in the Gaussian image plane. Fig. 4.13(d)-(f), we also present the trans-

mission coefficient Tp in amplitude and phase for p-polarized waves. Finally,

from Figs. 4.13(a) and 4.13(d) we observe that these spatial frequencies surpass-

ing 4k0 have a small contribution to the image formation; note that the wave field

also falls off fast in the transit from the output plane of the lens toward the image

plane, thus frustrating a three-dimensional (3D) focusing [145].
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For a slab width much higher than the wavelength, the evanescent waves emitted

by the source point O1 cannot reach the entrance face and homogeneous waves

satisfying k⊥≤ k0 contribute effectively to the transmitted field in the image space,

as shown in Fig. 4.13(c) and 4.13(f) for w2 = 5.125λ0. Decreasing w2 down to

values close to λ0 leads to the conversion of evanescent waves in the medium 1

to homogeneous waves in the medium 2. In Fig. 4.13(b) and 4.13(e), we observe

a critical participation of waves with transverse spatial frequencies k0 < k⊥ < 2k0

for a lens width w2 = 0.875 λ0. In the limit w2 = 0.125 λ0 associated with m =

0, we include the spatial bandwidth into the interval 2k0 < k⊥ < 4k0 involving

evanescent waves in media 1 and 2, which are transformed into homogeneous

waves in the image space, as seen in Fig. 4.13(a) and 4.13(d). For that reason such

a spectral stretching allows a subwavelength-resolution effect in the formation of

far field images.

It is commonly accepted that electric dipole fields, due to their high spatial con-

finement, are EM sources appropriated for the examination of the limit of res-

olution in near-field superlenses [55, 120]. For that purpose we use the field

distribution generated by an line source reducing 3D calculations to a simpler

two-dimensional (2D) problem. The orientation of the line emitter lies along the

y axis, which is parallel to the input and output surfaces of the thin NIM coating.

In Fig. 4.14, we present the modulus of the electric field E that is emitted by a

line source and that is transmitted through a NIM lens of µ2 = −1+ 0.001i and

ε2 =−4+0.001i and different widths. The flat lens is sandwiched between media

of index of refraction n1 = 1 and n3 = 4. The object point O1 is placed at a distance

w1 = 0.1w2 from the superlens, following Eq. (4.27) to minimize primary SA. We

compute the scattered field within the interval z≥−w3 constituting the real image

space. The numerical simulations were performed using a finite-element method.
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FIGURE 4.14: Modulus of the electric field emitted by a line source and
transmitted through a negative-index slab with µ2 = −1 + 0.001i and ε2 =
−4+ 0.001i and different widths: (a) w2 = 0.125λ0, (b) w2 = 0.875λ0, and
(c) w2 = 5.125λ0. In all cases we present the field within z≥−w3. The density
plots are normalized to unity at the paraxial image point (x,z) = (0,0). The
dashed line indicates points where amplitude falls off 1/2. The thin vertical line
marks the Gaussian image plane. The wave fields corresponding to the Gaus-
sian image plane for (a), (b), and (c) are plotted in (d), (e), and (f), respectively.

If the superlens has a width w2 below the wavelength, as used in Fig. 4.14(a)

and (d), one would expect to achieve superresolution. In this case, however,

the FWHM of the modulus of the electric field in the Gaussian image plane

yields ∆x = 0.69 in units of λ0, even exceeding the limit of resolution applied

to diffraction-limited systems. In order to understand such a behavior, we analyze

the transmission coefficients plotted in Fig. 4.12(a). We observe that the phase is

stabilized for |kx|< k0, but it has a fast decreasing variation for higher spatial fre-

quencies. In this sense, the effective bandwidth in the transmission coefficient for

frequencies associated with inhomogeneous waves in the medium 1 is, in practical

terms, three times larger than the bandwidth for homogeneous waves; therefore
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the unbalanced contribution of the different spatial frequencies will make the im-

age recovery difficult. A simple defocus provoked by a shift of the image plane

toward the NIM lens serves to diminish the phase variation and aberration effects

in the image. Exactly at the exit surface of the superlens, the FWHM of the elec-

tric field is ∆x = 0.086, leading to a subwavelength resolution.

A different behavior is expected for w2 ≈ λ0. Figure 4.14(b) illustrates the diffrac-

tion behavior of a thin NIM film in the case that w2 = 0.875λ0; that is, m = 3 in

Eqs. (4.28). The limit of resolution has decreased substantially in the Gaussian

image plane, where ∆x = 0.38. Taking in mind the results shown in Fig. 4.14(b),

this superresolving response is attributed to evanescent waves in medium 1 that

are converted into homogeneous waves in medium 2, which belong to the spectral

range k0 < |kx|< 2k0. In this spectral band, however, the coefficient of transmis-

sion presents some strong variations in its phase, preventing us from the observa-

tion of an aberration-free image. Moreover, the phase of the transmission coef-

ficient increases with kx so that a defocus is expected to balance high-frequency

aberrations. Contrary to the previous case, the on axis shift must be performed

moving far from the NIM lens in order to achieve the minimum spot size. In prac-

tice, the resolution improvement that is attainable with defocus may be considered

negligible.

Finally, if w2 = 5.125λ0, as shown in Fig. 4.14(c), the FWHM of the central lobe

in the paraxial image plane yields ∆x = 0.56 in units of λ0, which is close to the

diffraction limit, λ0/2. In this case, the depth of focus is significantly short, which

allows the evaluation of the FWHM along the z axis. This gives ∆z = 9.81, also in

units of λ0. We conclude that the focused wave field is localized much stronger in

the transverse direction than on axis.
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The analysis that we have carried through in previously is essentially for s-polarization.

We point out that a similar p-polarization analysis is also possible based on mag-

netic dipoles aligned along the y axis. For that purpose, now we consider a line

source with a uniform distribution of elementary magnetic dipole moment m,

which is placed at O1. By comparing such a wave field with the scattered field

represented in Fig. 4.14, for different widths of the NIM slab, we conclude that

discrepancies are appreciable, in general, which are clearly attributed to depar-

tures in the coefficient of transmission for both polarizations, namely Tp and Ts.

Also we find that the spot size of the wave field is lower for magnetic dipoles.

In order to estimate the limit of resolution unambiguously, we follow an approach

that is based on the PSF of the optical system. In fact, it is more appropriate to

derive the PSF in 2D; that is,

h2(x, z) =
1

2π

∫
∞

−∞

T (kx)exp(ikxx+ ikz3z)dkx. (4.29)

In Fig. 4.15, we present the 2D PSF for the same superlens considered, for in-

stance, in Fig. 4.14. One more time, the object plane is placed at a proper distance

w1 to compensate primary SA. We find again that the diffractive behavior of a slab

width w2 below the wavelength differs substantially from that lens with w2� λ0.

Additionally, the impulse response is notably different for s-polarized waves and

p-polarized waves. Note that the PSF for p-polarized waves is computed by using

in Eq. (4.29) the corresponding coefficient of transmission Tp. The FWHM of the

PSF central lobe for s-polarized waves takes higher values than those evaluated for

p-polarization, especially in ultrathin NIM layers. For instance, if w2 = 0.125λ0,

shown in Fig. 4.15, the FWHM of the PSF in the Gaussian image plane yields

∆x,s = 0.83 in units of λ0, for s-polarized waves, which is much higher than the
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FIGURE 4.15: Modulus of the 2D PSF |h2| for a NIM flat lens with µ2 =−1+
0.001i and ε2 =−4+0.001i for different states of polarization: (a)-(c) applies
for p-polarized waves and (d)-(f) for s-polarization. In (g)-(i), we chart the data
for the Gaussian image plane. The slab width is also varied: w2 = 0.125 λ0 for
subfigures placed in the left column, w2 = 0.875λ0 for subfigures in the central

column, and w2 = 5.125λ0 for plots on the right.

FWHM encountered for p-polarized waves, ∆x,p = 0.23. However, differences

derived by the state of polarization are negligible in the case wNIM = 5.125λ0, as

shown in Fig. 4.15(i). From Fig. 4.15(c) and Fig. 4.15(f), we conclude that this

is true not only in the Gaussian image plane but also in out-of-focus planes. Note

that the FWHM from the PSF is slightly greater than that obtained in Fig. 4.14

from a line dipole. It is worthy to point out that a similar effect has been reported

when comparing the PSF and the image of a subwavelength Gaussian beam in

metal-dielectric multilayers [162]. In both cases, the explanation is nevertheless
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FIGURE 4.16: Evanescent wave field with transverse spatial frequency k⊥ =
2k0 traveling from the object plane to the image plane of a flat monolayer and a
trilayer superlens. In all cases λ0 = 600 nm, δ = 0.1, and wNIM = 60 nm. Thick
dashed lines indicate the position of the object plane and the final image plane.

Thin dashed lines denotes intermediate image planes.

not difficult. The broader PSF has an irregular phase variation, not shown in

Fig. 4.15, which is of critical relevance in the convolution that defines the output

field (4.9). In a similar manner, fast changes in the phase of an incident wave

field may lead to severe distortions in the image space. Obviously, phases of input

fields and phases of PSFs would not play a role if the ondulatory superposition

(4.9) are fully incoherent. As a consequence, subwavelength signals transmit-

ted by NIM coatings occasionally yield anomalous localized distributions whose

FWHMs surpass the limit of resolution determined by the PSF. We reported the

results of this Section in Ref. [163].

4.5 Imaging with Periodic Structures

Originally the flat superlens was conceived as an image-forming system composed

of a single NIM slab [2]. Also a silver nanolayer demonstrates the ability of gen-

erating an image with sub-wavelength features [3] as will be shown in the next

Chapter. Soon it was shown that the limit of resolution of a metallic superlens

might be reduced substantially if it is substituted by a set of layers with free-space
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in between [43]. This improvement is based on the lesser amplification of evanes-

cent waves, so that dissipative effects also diminish. In Fig. 4.16 we compute

the electric field of an evanescent wave field with transverse spatial frequency

k⊥ = 2k0 propagating from the object plane toward the image plane for two dif-

ferent NIM superlenses immersed in free space: (a) one lens is composed of a

single layer of width wNIM and (b) the second lens is composed of three equidis-

tant films of width (and separation) wNIM/3. The NIM has a width wNIM = 60 nm;

also εNIM = µNIM = −1+ δ i being δ = 0.1. In all cases λ0 = 600 nm. The am-

plification of the evanescent wave in the multilayered superlens is significantly

lower. The existence of secondary images in the intermediate spaces allows that

new evanescent waves with higher spatial frequency contributes effectively in the

formation of the final image, thus improving the resolution power [4]. This idea

is being upgraded in recent years [39, 55, 162, 164].

A general NIM multilayer flat lens is sketched in Fig. 4.17. Inside the lens-

ing arrangement N NIM layers are distributed uniformly. Every thin film has a

width wNIM/N. Therefore wNIM denotes the resultant length after summing up
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the widths of all the layers, leading to a distance 2wNIM between the plane of the

object and the final geometric image plane. Note that every interface dielectric-

NIM generates a stigmatic image that acts as an object for the next interface,

giving 2N − 1 secondary images. The distance between two adjacent layers is

(F/N)wNIM, where F is a non-dimensional coefficient of proportionality. The

width of the multilayer arrangement e results by summing up N NIM films and

N−1 interspaces,

e = wNIM

(
1+F

N−1
N

)
. (4.30)

In order to generate a real image, the superlens width e should be lower or at least

equal to the distance between the object plane and the image plane, e ≤ 2wNIM.

In this case F ranges within the interval

0≤F ≤ N
N−1

≤ 2, (4.31)

and the natural number N ≥ 2.

Let us point out three cases of special interest. First, if F = 0 the set of N films

are stacked so that the optical system behaves like a monolayer superlens of width

wNIM as shown in Fig. 4.17(b). When F = 1 the NIM films and the free space

in between coincide in breadth, as illustrated in Fig. 4.17(c). Finally in the limit

F = N/(N−1), the input and output faces of the arrangement are in contact with

the object and image planes, respectively. This is depicted in Fig. 4.17(d).

In order to evaluate the limit of resolution corresponding to multilayer superlenses

we estimate the in-focus FWHM of the 3D PSF. In this case the transmission coef-

ficient T used in Eq. (4.10) is computed by using the characteristic matrix formu-

lation for isotropic stratified media [121]. In the numerical simulations we use a

NIM of total width wNIM = 60 nm and with an absorption coefficient δ = 0.1; also
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normalized to wNIM as a function of F .

the radiation wavelength is λ0 = 632.8 nm. The results are shown in Fig. 4.18(a).

Within the interval 0 ≤ F ≤ 1 the FWHM exhibits a linear decreasing behav-

ior. However its value is maintained constant for F > 1. On the other hand, the

FWHM decreases if the number N of layers increases up to a saturation limit. In

practical terms we may consider that 128 layers represents this limiting case, for

which the FWHM is only 8.82 nm.

The multilayer superlens turns up as an alternative of special interest in com-

parison with the monolayer case since the former reduces the limit of resolution

significantly. However this sort of devices withstands a major difficulty in order

to generate real images. In the first place, the scattering objects should be located

closer to the entrance face of the superlens, and as a consequence the conjugate

images are also found nearer the output interface. For convenience we introduce

the definition of the depth of field ∆ as the width of the two zones where we

may encounter real conjugate pairs of objects and images, simultaneously. Such

a width is obtained by considering the distance object-image and subtracting the

superlens width, ∆ = 2wNIM− e. By employing Eq. (4.30), we finally obtain

∆ = wNIM

(
1−F

N−1
N

)
, (4.32)
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that provides a linear relationship between the depth of field and the distance from

adjacent layers. Note that ∆ is reduced if the interspace width increases.

The depth of field (4.32) as a function of F is depicted in Fig. 4.18(b) for different

number N of layers. It is shown that increasing the interspace between layers

reduces the depth of field linearly. The slope of these straight lines, (1−N)/N,

quickly drops when the number N of layers increases, reaching the limiting value

−1.

By comparing Fig. 4.18(a) and Fig. 4.18(b) we conclude that an increase in the

number N of layers leads to a reduction of the limit of resolution. This effect is

achieved in detriment of reducing the depth of field, which results highly harmful

in the formation of 3D images. This tendency is repeated if the interspace be-

tween layers increases. Optimization of the geometric coefficient F might con-

sist of reaching a trade-off between the limit of resolution and the depth of field

necessary for a specific application.

To further inspect the power of resolution of these stratified superlenses, we have

estimated the out-of-focus FWHM in the focal volume. We have computed the

3D PSF for N = 4 nanolayers and different values of F , which are depicted in

Fig. 4.19. In the numerical simulation, the wavelength is set λ0 = 632.8 nm,

and the parameters characterizing the NIM are wNIM = 60 nm and δ = 0.1. In

Fig. 4.19 we observe that a higher F goes with a narrower central peak of the 3D

PSF, involving a resolution improvement in transverse planes close to focus, z= 0,

where sidelobes may be neglected. However evanescent tails grow up with F ,

which are plainly seen in planes near the focal plane. These sidelong peaks lead

to discontinuities in the limit of resolution, which are derived from our criterion

resolution, likewise the case N = 1 previously analyzed. In particular, the first
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discontinuity is found at z = −37.7 nm in Fig. 4.19(a) and it is shifted to z =

−14.5 nm in Fig. 4.19(c). We remind that a higher interspace between layers, that

is an increment of F , forces a deterioration of the depth of field. In this sense

we have included a dashed line in each subfigure to mark the boundary z = −∆

delimiting the real image space and the virtual image space. It is confirmed that

an increase of F leads to a depth-of-field falloff. The results of this Section can

be found in Ref [140].





Chapter 5

Image Formation Using Metals

In the previous Chapter we addressed the image formation with NIMs. This Chap-

ter will partially take advantage of the previous physical analysis to describe the

image formation with metals at optical frequencies. Unlike propagation inside

NIMs, plane waves inside metals are always inhomogeneous. However, a sim-

ple silver slab is capable of imaging in the near-field with resolution beyond the

diffraction limit [3]. The evanescent p-polarized field could be transferred through

the metal via plasmon-mediated tunneling mechanism. We review the transmis-

sion of this electromagnetic signal in a single metal slab and its contribution to the

image formation. Both losses and the cutoff wavelength of the SPP mode limit the

superlens resolution [7, 165]. This obstacle has been tackled to some degree in

several ways. One of them consists in exfoliating the silver slab to be transformed

into a PLM [8, 55] with effective anisotropic properties and strong coupling of the

SPP modes between neighboring layers. We will study light propagation in metal-

dielectric PLMs, and more specifically the mechanism to transfer p-polarized sub-

wavelength wave fields without diffraction. In this regard, a connection between
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canalization and epsilon-near-zero (ENZ) materials will be introduced.

Additionally, it will be shown a kind of metal-dielectric superlens working in a

regimen different from canalization. It is made of two PLM joined together one

after another. Rather than light propagation without diffraction negative refraction

is induced on the interface separating the PLMs. The width of the second nanos-

tructure is chosen to compensate the antagonist diffraction of the first media. The

resulting compound is able to achieve subwavelength resolution.

To conclude, the possibility to fully recover the PSF throughout measures of the

intensity at the superlens output interface will be addressed. Specifically, we will

use the definition of PSF given in Eq. (4.10) instead of that shown in Ref. [166]. A

version of the blind deconvolution algorithm including particular PLM thresholds

are considered to this end. While standard blind deconvolution algorithm only

recovers the PSF modulus, the version introduced in this chapter is also able to

recover the phase.

5.1 Monolayer metallic superlens

The image formation by metallic single-layer superlenses is based on the excita-

tion of SPPs on the entrance and exit interfaces of the slab [167]. As a conse-

quence wave amplification inside the metallic slab compensates the attenuation

produced in the surrounding dielectric. The simple model for a metallic super-

lens it is a layer of low-loss metal. Most of the designs in this kind of lenses use

silver due to its lower losses in the optical range of frequencies. To better under-

stand metallic superlens we proceed to analyze superlenses made of an Ag slab

sandwiched by air. In Fig. 5.1(a) we plot a single-layer superlens and the field
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FIGURE 5.1: (a) Schematic representation of a metallic flat lens. In the sketch
the magnetic field of a TM-polarized point-like source is superimposed. The
field of the point distribution propagates at λ0 = 337 nm and is located wm/2 far
from the entrance interface of the lens. The lens is a slab of Ag with permittivity
εm =−1.00+0.28i immerse in air. It has a thickness wm = λ0/10. For the same
slab with different thickness (b) plots the PSF FWHM at the outside interface in
TM (blue) and TE polarization (red) and substituting the slab by air (green). The
transmission coefficient of the slab are plotted for wm = 0.1λ0 in (c), wm = 0.5λ0
in (d), and wm = 0.9λ0 in (e). Figs. (f)-(h) show the PSF in the output space
corresponding to the transmissions (c)-(e) of the TM polarization. The PSF
is normalized to its value at the output surface where R = (0,0). The black

contours correspond to the values of the PSF equal to 0.5.
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excited with a TM-polarized point source placed wm/2 far from the entrance of

the lens. In the absence of the metal slab the source produces a field distribution

H(y) = δ (y) in the object plane. Consequently, the field in the image space of

the metal slab matches the 1D PSF. The lens has a width wm = 0.1λ0. The dipole

radiates at a wavelength λ0 = 337 nm. At this wavelength the Ag permittivity is

εm = −1.00+ 0.28i [103]. The slab width is slightly longer than the Ag evanes-

cent decay length at this wavelength (about 20 nm) however, we can see values

of |H| at the outside interface smaller but negligible. In fact, there are two rel-

ative maxima at both slab interfaces. The reason for these maxima relies on the

SPPs intensifying the evanescence waves with spatial frequencies closed to the

SPP resonance.

In order to understand how SPPs affect the resolution in these superlenses let us

pay attention now to the FWHM values at the output interface plotted in Fig. 5.1(b).

A large transmission band is necessary to produce a small FWHM in the PSF at

the output interface, consequently plasmon resonances make TM-polarized wave

fields candidates to achieve it. In Fig. 5.1(c)-(e) we observe that these resonances

make always TM polarization transmission broader than TE. However the TM

FWHM rapidly grows at wm ∼ 0.8λ0. The contribution of the evanescent frequen-

cies to the image produces sidelobes that affects the FWHM as we can see in the

PSF from Fig. 5.1(h). Contrary, in Fig. 5.1(f) and (g) field is mostly localized

centered in the vicinity of the output interface. A flat transmission in modulus

and phase is the key to avoid the sidelobes effect. Also, higher cutoff frequencies

would be desirable to improve the resolution. With this in view, we need to add

new elements to the design of the superlens.
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FIGURE 5.2: Geometry of the bilayer periodic structure; εm stands for permit-
tivity in the metal and εd for the dielectric.

5.2 Image-Forming Multilayered Stacks

By coupling a few of these elementary thin lenses we may compose a PLM capa-

ble of transmitting high-frequency electromagnetic waves by resonant tunneling

[43, 168]. Assuming a perfect periodic process, a set of evanescent waves is effec-

tively converted into propagating Bloch waves with characteristic pseudo-moment

and consequently carrying EM energy. Additionally, transmission and reflection

coefficients depend on Fabry-Perot resonances due to the finite size of the PLM.

These resonances distort features at certain spatial frequencies.

5.2.1 Canalization

We can preclude dephasing of different spectral components in a PLM by tuning

the filling factors of the materials involved. As a result the wave fields propagate

inside the multilayered projecting the optical wavefront in between its external

boundaries almost without diffraction including sub-wavelength details. We will

refer to this effect as canalization (also known as self-collimation).
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A simplified description of PLM in the self collimation regime may be achieved

by using the EMA [126, 169] in the special case when one of the elements in the

permittivity tensor approaches zero and thus, the uniaxial metamaterial becomes

extremely anisotropic. We will refer to the materials in this case as ENZ materials.

The ENZ metamaterials have been widely analyzed, which may have other sim-

ple forms like a metallic mesh of thin wires and embedded metallic nanoparticles

in a dielectric medium [170–172]. These metallic composite materials strongly

modify the emission of a nearby source, canalizing the radiated energy along its

effective optical axis [4, 43, 162, 173, 174]. However, even in the long-wavelength

regime, the dispersion of ENZ multilayers may change drastically caused by non-

local effects in the structured media [175–177].

A periodic nanostructure of bilayered unit cell is depicted in Fig. 5.2 representing

an ENZ material. The relative permittivity of the dielectric εd is positive and dis-

persionless. This one-dimensional metamaterial is formed by alternating layers of

dielectric and metallic materials oriented perpendicular to the z-axis. In particular,

wm stands for the thickness of a metallic film, and the dielectric-layer thickness is

wd . If the multilayered periodic structure is ideally unbounded, one may describe

dispersion by means of the Bloch equation (3.9).

The subwavelength character of a PLM relies on the fact that its period Λ =

wm +wd is much smaller than the operating wavelength an therefore k0wm,d � 1.

Under these conditions EMA becomes reliable and sets the framework for the

uniaxial ENZ. Interestingly, designed ENZ metamaterials are also obtained below

the plasma frequency. In this spectral range of frequencies εm < 0 and εd > 0, en-

abling ε⊥ to change its sign depending on the layer thickness wm and wd . Specifi-

cally, this occurs at the frequency ω⊥ introduced in Eq. (3.17), which is depicted
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in Fig. 5.3(a), in terms of the metal filling factor, fm = wm/Λ, for different di-

electric materials. In the spectral domain, the EMA dispersion relation previously

introduced in Eq. (3.20) represents an ellipse provided that both ε⊥ and ε‖ are

positive when ω > ω⊥. On the contrary, if ε‖/ε⊥ is negative, occurring in the

low-frequency regime, ω < ω⊥, Eq. (3.20) gives a hyperbola. Exactly at ω⊥ the

dispersion curve reduces to kz = 0 for all k. In principle, this enables a given

subwavelength scattered field at the input plane of the PLM to be reproduced ex-

actly at the exit plane by means of a perfect phase matching of the signals [43].

This self-collimation regime will govern wave propagation under the more general

condition ε⊥/ε‖→ 0, and thus we alternatively might impose ε‖ to be infinitely

large [56]. As shown in Fig. 5.3(a) ω⊥ decreases at lower filling factors and for

dielectrics of higher refractive index.

We performed exact calculations of the dispersion Eq. (3.9) for ε⊥-zero PLMs

composed of Ag-GaAs. For sufficiently thin layers, the curves conserve their

shape; this occurs when the period Λ is lower than the decay length (23 nm for
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Ag). Figure 5.3(b) shows the dispersion at different frequencies. In the numerical

simulations, silver is set to have a plasma frequency ωp = 12.9 fs−1, which allows

us to estimate Re(εm) in good agreement with experimental data, especially in

the near infrared [104]; for illustration, we also consider a dispersionless isotropic

medium with εd = 12.4, which for instance would correspond to GaAs around

λ0 = 1 µm [178]. The metal filling factor at every frequency was chosen provided

that ε⊥ = 0,

fm(ω) =
εd

εd− εm(ω)
. (5.1)

Note that fm ≈ εdω2/ω2
p if ω � ωp, and fm ≈ 1 near the plasma frequency.

In Fig. 5.3(b), we observe a bounded interval for k-frequencies that is limited by

the cutoff frequency kcut; this occurs under the condition kz = ±π/Λ. The width

of such spectral band, 2kcut, increases for higher ω , as soon as εm approaches

−εd . In principle, this bandwidth only depends on retardation effects in the limit

εm = −εd , as was early proved in the context of superlensing [179]. The highest

frequency kcut can be estimated by applying the quasi-static approximation (km,d =

ik⊥) in Eq. (3.9) at cos(kzΛ) =−1, leading to the following approach,

kcut,1 =
1
Λ

ln
8

(1+ εd/εm)2 . (5.2)

In Fig. 5.3(c), we represent the approximated cutoff kcut,1 from Eq. (5.2) to be

compared with the exact value of the cutoff frequency kcut. Validity of Eq. (5.2)

is restricted to values of εm near −εd . Figure 5.3(c) allows us to analyze disper-

sion at low and moderate frequencies, specifically for cases satisfying |εm| > εd .

However, it is not difficult to demonstrate that, in the quasi-static regime, Eq. (3.9)

gives approximately the same dispersion curve in the kzk⊥ plane, previously nor-

malizing the frequencies by Λ−1, for εm = −γεd and also for εm = −γ−1εd , on
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the condition that ε⊥ = 0. Therefore, we may infer the diffraction behavior for

−εd/εm > 1 straightforwardly, provided we have that behavior for 0 <−εd/εm <

1 as shown in Figs 5.3(b) and 5.3(c). This is based on the fact that the changes

γ → γ−1 and fm→ 1− fm do not modify Eq. (3.9) in the limit km,d = ik⊥.

In Fig. 5.4, we depict the spatial distribution of the TM field B emitted by a line

source that is embedded in the center of some uniaxial ε⊥-zero PLMs. The B

field contained in the xy plane represent the EM fields as a linear combination

of space–time harmonic waves. The 2D simulations were performed by using

the RF module in the COMSOL Multiphysics modeling environment (TM-mode

analysis), which is based on the finite element method. In all cases, the period

Λ is three orders of magnitude shorter than the wavelength λ0, which is chosen

such that εm =−12.401 in Fig. 5.4(a) and εm =−12.800 in Fig. 5.4(b). Note that

our Λ surpasses the nanoscale limit resulting in a less-realistic picture, however,

the physical illustration involving superlensing is clearly improved. The contour

plots of |B|2 demonstrate the self-guiding of the radiated field along the z axis. The

FWHM of the canalized fields is ∆ = 2.6Λ and ∆ = 3.9Λ, respectively. Bearing in
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mind that kcutΛ = 21.6 in the first case, and kcutΛ = 9.68 in the second case, we

infer that the product kcut∆ is barely conserved. As a result, deep-subwavelength

lensing is clearly enhanced in the limit εm→−εd , a fact that on the other hand is

reported elsewhere [43].

Note that absorption in the metal also plays a relevant role in the self-guiding ef-

fect of subwavelength optical signals. A simple inspection of Eq. (3.9), as shown

in Fig. 5.3(b) but including a non-negligible imaginary part for εm, provides a

more realistic insight of our problem. In our numerical simulations, we included

Im(εm) = 0.84 following [104] for silver in the spectral band under consideration.

At λ0 = 534.9 nm, we found an extremely low value of kz = 0.0054(1+ i)m−1 at

k⊥ = 0, independently of Λ and provided that it remains much lower than the

evanescent decay length. In fact, kz is maintained practically unaltered up to

k⊥ = k0 and changes smoothly (specially Re(kz)) at higher spatial frequencies.

Therefore, the PLM retains the main feature of ENZ metamaterials. However,

evanescent decay length inside the PLM is significantly short, lPML = 93 nm.

In practical terms, these numbers also apply by changing the wavelength at λ0 =

542.8 nm. We point out that optimization of the PLMs might lead to propagation

lengths surpassing a wavelength, as reported in [180]. Altematively, this situa-

tion can improve by incorporating active gain materials in the layered medium as

pointed out in [11].

In Fig. 5.3(b), we showed that dispersion in uniaxial ENZ PLMs deviates from

the self-collimation regime at low frequencies. Specifically, if −εd/εm � 1, oc-

curring in practical terms in the infrared and at lower frequencies, the bandwidth

2kcut of k⊥-frequencies is severely reduced. In fact, these spatial frequencies are
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roughly limited by the period Λ of the PLM, exclusively. In this case, we esti-

mate kcut by means of simplifications of Eq. (3.9), again, based on the quasi-static

approximation. After a simple but full-length calculation, we finally obtain the

following approximated value of the cutoff frequency,

kcut,2 =
2+W (4/e2)

Λ
, (5.3)

that is kcut,2 ≈ 2.37/Λ, where W (·) is the product log function. Note that kcut,2 is

included in Fig. 5.3(c), demonstrating that it is accurate in the limit ω → 0. We

reported the results given above in Ref [181].

5.2.2 Diffraction-Management

Now we will follow a different approach that leads to control dephasing of sub-

wavelength outputs. This is based on counterbalancing the phase response of

high-transparent metallic superlenses in order to flatten the overall phase mis-

match at the image plane. In geometrical terms, negative refraction of high-

frequency Bloch waves excited by a nanosized object contributes to achieve nearly-

stigmatic subwavelength imaging. This study is elicited by a recent direct observa-

tion of light focusing through a PLM flat lens designed and fabricated using a III-

V semiconductor slab to operate at optical frequencies [182]. More sophisticated

devices following the above primitive idea have been presented [183]. However

the spot size of a reproduced localized field would be clearly diffraction limited.

A recent tentative to overcome this limit by using uniform arrays of plasmonic

waveguides has been proposed elsewhere [184–186]. Here we do not take into

consideration hybrid metal/dielectric media with axial symmetry; on the contrary,
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FIGURE 5.5: Transmission coefficients in modulus and phase for finite periodic
structures made of silver and a dielectric: (a) SrTiO3; (b) GaP. In (a) we have
N1 = 19 silver layers with a filling factor of fm,1 = 0.35 within a period of
Λ1 = 30 nm. In (b) we consider N2 = 7 periods of Λ2 = 50 nm for a silver
filling factor fm,2 = 0.50. In both stacked devices the surrounding medium is

the vacuum. (c) The transmission coefficient of the coupled structure.

we consider PLM devices superlens where the wave field is partially transmitted

with a complex amplitude.

In our discussion we shall consider that two flat superlenses SL1 and SL2 are firmly

attached. The transmitted field, Hy = T H0 is written as the combination of T1,2 and

R1,2, the transmission and reflection coefficients of the superlenses SL1 and SL2

that can be deduced from the transfer matrix procedure introduced in Appendix A.

The phase increment of the transmitted wave Hy with respect to the incident field

H0 is the result of a summation of two terms, corresponding to the arguments of

the phasors T1, T2 respectively. We call it the phase addition rule. In this sense, the

dependence of arg(T1) upon kx might be compensated with a prescribed superlens

SL2 leading to an ultraflattened curve at least within a given spectral band. Next

we consider a procedure to play on the phase addition rule in order to achieve

subwavelength aberration-free images.

In Fig. 5.5 we represent the spectral dependence of the transmission coefficient
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T1,2 both in modulus and phase for a couple of metallodielectric multilayered de-

vices at λ0 = 485 nm. Figure 5.5(a) shows the transmission coefficient T1 for

a periodic structure consisting of N1 = 19 silver layers (Ag = −7.754+ 0.727i)

hosted in SrTiO3 (SrTiO3 = 6.596+0.070i). A thin metallic slab is symmetrically

displaced in the center of the unit cell, which has a period of Λ1 = 30 nm, is such

a way that the filling factor of silver is fm,1 = 0.35. Also the surrounding medium

of the stack is considered to be the vacuum. Finally, the evaluation of T1 is car-

ried out by using a standard transfer matrix formalism give in Appendix A. From

Fig. 5.5(a) we observe that, in practical terms, our finite lattice cannot transmit

spatial frequencies beyond kx = κSrTiO3k0, where the effective index of refraction

is κSrTiO3 = 4.35 in our numerical example. Since the refractive index of SrTiO3,

that is nSrTiO3 = Re
√

εSrTiO3 = 2.57, is considerably lower than κSrTiO3 , a resonant

tunnelling effect driven by SPPs is evident. Moreover, a decreasing variation of

the phase of T1 in terms of kx is clearly revealed. In Fig. 5.5(b) we depict the trans-

mission coefficient T2 for a second lattice made of N2 = 7 silver slabs placed on

GaP (εGaP = 13.287). In this case the period is Λ2 = 50 nm and the filling factor of

silver is f2 = 0.50. While the effective index of refraction κGaP is comparable with

that obtained in the previous case, the phase shows a completely different behav-

ior. Now the complex argument of the transmittance increases for higher spatial

frequencies kx. Note also that the phase increment observed in the GaP lattice

goes around 3π rads, which approximately corresponds to the phase decrement

attributed to the SrTiO3 multilayer. Then a coupled device including both types of

periodic nano-structures would yield a compensated-phase response. This finding

is confirmed in Fig. 5.5(c) where the net phase deviation of the transmission co-

efficient T is always lower than π rads within the effective bandwidth |kx|< κk0,

where κ = 4.5 once again.
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FIGURE 5.6: Isofrequency curves given from Eq. (3.9) for hybrid silver-
dielectric periodic media containing (a) SrTiO3 and (b) GaP. Note that k′z and

k′′z are the real part and the imaginary part of kz, respectively.

The different behavior observed in the phase dependence of transmittances T1,2

upon transverse spatial frequencies kx may be explained from the isofrequency

curves of the periodic lattices. In Fig. 5.6 we represent the Bloch dispersion equa-

tion (3.9) corresponding to p-polarized waves propagating within an infinite pe-

riodic multilayered structure, where the metal-dielectric interfaces are parallel to

the xy plane. Furthermore the component kz = k′z + ik′′z of the wave vector repre-

sents a Bloch pseudo-moment. From Fig. 5.6 we infer that the superlattice made

of SrTiO3 has an isofrequency curve with normal negative curvature. The propa-

gator exp(ik′zz) indicates that the dephase accumulated by a wave field is directly

proportional to k′z. Neglecting impedance mismatch at the input and output planes

of the multilayered device, we expect that the dependence of k′z upon kx follows

the same variation observed in the argument of the transmission coefficient T1

upon kx. Figure 5.5(a) and Fig. 5.6(a) indicate that this is in good agreement

up to the normalized cutoff frequency κ given by the solution of the equation

k′z(κk0) = k′′z (κk0) that is κ = 4.3. Note that κ represents essentially the effective

index of refraction κSrTiO3 described above. Next we may follow a similar pro-

cedure to relate the isofrequency curve given in Fig. 5.6(b), which corresponds

to the periodic medium containing GaP, with the phase spectral dependence of
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tial frequency kx. Note that C is practically invariant within the spectral domain

|kx|< 3.5k0.

the transmission coefficient T2 given in Fig. 5.5(b). In this case we conclude that

the positive curvature of the dispersion equation explains the phase increment ob-

served at higher spatial frequencies kx.

Phase compensation attributed to coupling of two MD superlattices with isofre-

quencies of opposite curvature also renders a geometrical interpretation of our

results. A wave packet that passes through the interface joining both MD su-

perlattices experiences negative refraction. When the fields propagate within the

lattice composed of SrTiO3, the angles corresponding with each unit vector N

pointing along the group velocity, assuming first that kx0 = k0 and second that

kx0 = 3k0, as measured with respect to the z axis are numerically estimated from

Fig. 5.6(a) and (b) giving θ1 =+0.07 rad and θ1 =+0.28 rad, respectively. Note

that these angles are significantly small. If these two wave packets travel through

the multilayered medium containing GaP, now these angles yield θ2 =−0.12 rad

and θ2 =−0.44 rad, respectively. Let us point out that the parameter

C =
tanθ1

tanθ2
, (5.4)
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FIGURE 5.8: FEM simulations shown superlensing of the device composing
the MD superlattice including SrTiO3, set on the left, and that containing GaP.
In (a) the slit width is 20 nm and in (b) the slit width is 200 nm. For the sake of
clarity, again we show the modulus of the magnetic field in (c) and (d) as it is

normalized plane by plane.

takes a value approaching −0.62 in both cases. Moreover C is a quantity approxi-

mately conserved for |kx|< 3.5k0, as shown in Fig. 5.7. This result provides a sig-

nificant contribution to our geometrical interpretation of the proposed diffraction-

managed imaging. A light ray emerging from a point on axis that propagates from

a plane z = 0 to z = L1 in the first medium and, immediately after, travels in the

second medium up to z = L1 +L2, such that C =−L2/L1 holds, gets its way back

to the z axis. Note that L1,2 = N1,2Λ1,2 in our numerical case, and that we have

−L2/L1 =−0.614.

As mentioned above, invariance of C holds for a wide spectral range. This is

important if we consider a localized source in the input interface of the first MD
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finite lattice. The light rays emerging from this point object are conveniently devi-

ated, by means of negative refraction, at the surface that joins the periodic media

involved. As a consequence all these rays are focused precisely at the exit plane

z = L1 + L2. In order words, the condition of stigmatism is approximately sat-

isfied so that nearly aberration-free images may be formed by our device. We

point out that spherical aberration is not completely removed in this study, which

is clearly seen in the spectral band 3.5 < |kx| < 4.5. As a result it shall finely

decrease the resolving power of the imaging system. This is illustrated in Fig. 5.8

by using FEM simulations in COMSOL Multiphysics 3.5. In front of our device

we insert a Cr layer whose width is 100 nm. Also the Cr film has a centered slit

aperture whose width takes a value of 20 nm in Fig. 5.8(a). A p-polarized plane

wave collides with the Cr film that collects part of the light, which subsequently is

guided toward the entrance surface of the diffraction-managed superlens. Thus the

deep-subwavelength wave field in the input is diffracted inside the first multilay-

ered medium; immediately after reaching the GaP superlattice it is continuously

compressed along the transverse direction. The output magnetic field consists of

a strong central lobe whose FWHM is ∆ = 130 nm, that represents only 0.27λ0.

This confirms the subwavelength character of the image-formation process in spite

of the fact that the object plane and the image plane are separated by a distance of

950 nm that supposes barely twice the wavelength λ0. We have repeated the FEM

simulations for other slit widths, and we have observed that the response of the

superlensing device is practically the same whether the slit width is substantially

smaller that ∆. Therefore ∆ stands for the limit resolution of the superlensing

coupled device. For wider slits, on the contrary, the magnetic field at the output

plane resembles that at the input plane. In Fig. 5.8(b) we show the wave field

for a slit aperture of 200 nm. In this case, the beam width that is excited by the
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FIGURE 5.9: Modulus of the 1D PSF at the image plane of our diffraction-
managed superlens. The 1D PSF of an aberration-free system maintaining the

same |T | is also represented graphically.

plasmonic slit is conserved not only at the exit but also all along the periodic me-

dia. This self-collimation regime is the result of the strong anisotropy of the two

superlattices involved, as shown in Fig. 5.6. Thus, the low frequency of the spatial

spectrum associated with the scattered EM waves at the input plane leads to the

dominant self-collimation of the EM flow.

To estimate the limit of resolution we alternatively employ the lD PSF, which is

simply the Fourier transform of the amplitude transfer function as shown in Sec-

tion 4.2. Figure 5.9 depicts |h(x)| that represents the modulus of the lD PSF at

the image plane of our diffraction-managed device. The FWHM of the central

peak yields 0.214λ0, which is very close to limit of resolution ∆ obtained from

FEM-based numerical simulations. For the sake of completeness we also have

represented the lD PSF for a purely aberration-free setup with the same transmis-

sion strength |T | as shown in Fig. 5.5(c). Therefore the argument of the transmis-

sion coefficient is set arbitrarily constant. After performing the corresponding lD

Fourier transform of |T (kx)| we estimate that the FWHM of the diffraction-free

lD PSF decreases up to a value of 0.195 λ0. We conclude that the 1D impulse

response is not broadened significantly due to residual phase offset. In general

terms we find that the lD PSF is weakly blurred, which is confirmed by simply
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inspection of the small strength associated with its closest sidelobes. This fact is

of relevance in coherent imaging of either localized scatterers or extended objects.

We reported the results given above in Ref. [187].

5.3 PSF Recovery Assisted by the Blind Deconvolution

Algorithm

Major results presented in this Thesis are sustained in the PSF analysis, particu-

larly the imaging process in multilayered structures. From an experimental point

of view the PSF must be recovered from the image intensity measures of a de-

tector. However, an accurate measurement of the PSF is a challenging task in

practice, specially if we are working with superresolving images in the optical

range. In this last Section we propose a realistic experimental set-up to measure

the PSF in a multilayer structure. Moreover, we introduce a method to recover

the PSF (intensity and phase) from the output intensity measures of a given PLM

superlens. This approach can be seen as a modification of the blind deconvolution

algorithm [188, 189] that includes a phase retrieval. We also reported the results

of this Section in Ref. [190].

The experimental setup shown in Fig 5.10 will be used to explain the method. We

consider a one-dimensional TM-polarized wavefront incident on a PLM through

a mask consisting of a good conductor, such as Cr, which is thin and has a bi-

nary transmittance. Assuming that the layers within the PLM are optically linear

and are infinite, the PLM defines a scalar linear shift-invariant optical system. In
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FIGURE 5.10: Experimental setup. A layered metamaterial deposited on a
mask with nonperiodic apertures is scanned with a SNOM microscope

spite of the short coherence length of various sources used with SNOM, the sub-

micrometer thickness of the MD media and layer thickness of the order of λ/10

make it necessary to consider a coherent model for the measurement.

Before describing the algorithm it is well worth remembering that the PLM output

magnetic field, Hout(x), can be expressed as a convolution of the 1D PSF, h(x) and

the input signal, Hin(x), in the real space, Hout(x) = h(x)∗Hin(x), or as a product

of these functions in the Fourier space,

Ĥout(kx) = ĥ(kx) · Ĥin(kx), (5.5)

where the Fourier transform is indicated with a circumflex accent. With this in

mind we consider a set of j discrete intensity measurements, I j(xi), at the Fig 5.10

multilayer output interface, being I j(xi) = |Hout, j|2(xi). We consider j = 1 . . .20,

and every measurement includes an image measured through a mask with two

apertures. The output wavefronts Hout, j are initially assigned with a random phase

distributions as a seed for the algorithm. Their amplitudes are fixed to
√

I j(xi).

The shape of each mask, Hin, j, is estimated from the intensity I j(xi).

We will iterative apply the recovering algorithm presented in Fig. 5.11. In our
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simulations the number of iterations is limited to pmax = 50 and p numbers the

iterations, p= 1 . . . pmax. In subsequent iterations, the transfer function ĥp is being

estimated as the median of the estimates ĥp, j for all the apertures. The purpose

of using the median is to eliminate the values of ĥp, j(kxi) = Ĥout,p, j(kxi)/Ĥin, j(kxi)

for the spatial frequencies kx at which Ĥin, j(kxi) has a small magnitude and may

introduce noise. The median of set of complex values is understood as if these

values were ordered by their absolute values. Calculation of the median makes

sense only after normalization of the phase taking into account that the functions

ĥp, j(kxi) are assumed to be real and positive at kx = 0. Then we apodize ĥp in

every iteration by multiplying it by a Hamming window function of the width wH .

The Hamming window is defined as rect(x/wH) · (a+ b · cos(2πu/wH)) where

a = 0.5435, b = 1−a, and rect(·) is the rectangular function. In this way, the high

spatial frequencies are slightly suppressed with respect to the low frequencies in

every iteration. Subsequently, the complex PSF hp, j(xi) is calculated. The PSF is

apodized in a similar way as ĥp. In the simulations, the Hamming windows are

rather broad (wH = 20λ0 and wH = 20k0 in the reciprocal space). Moreover hp is

forced to preserve an even symmetry in every iteration. The algorithm stops after

iteration pmax.

The algorithm has been tested for apertures separations always larger than λ0.

In the simulations we use a PSF obtained with the transfer matrix method for a

layered metamaterial consisting of silver and TiO2. The operating wavelength is

equal to λ0 = 404.7 nm, which is the line of mercury lamp. The permittivities of

both materials are equal to εAg =−3.998+0.692i [104] and εTiO2 = 6.392 [191].

The layered metamaterial consists of N = 7 elementary cells, each containing

three layers: two external TiO2 layers with the thickness of wTiO2 = 22.5 nm, and

a middle silver layer with wAg = 11 nm. We have designed this metamaterial
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FIGURE 5.11: Modified blind deconvolution algorithm for the recovery of
complex PSF

for superresolving imaging: the FWHM of |h(x)|2 is subwavelength and equal to

0.2λ0.

The results of the algorithm are presented in Fig. 5.12. The figure includes one

of the 20 aperture pairs with the corresponding intensity measurement, the orig-

inal and reconstructed PSF and ATF, and the absolute reconstruction error of the

measurement. As we can see, the algorithm is capable of retrieving an estimate

for the PSF, although the result is not exact, and due to the problems with the

uniqueness of the decomposition it should not be used in an automatic way. The

recovered PSF visually differs from the original one, but the reconstruction error

is not large. We are able to estimate the size of the PSF, and its phase near the

origin. The convergence of the algorithm is characterized in Fig. 5.13.

Altogether, the proposed algorithm allows the requirements for the fabrication of

the mask to be relaxed significantly. In particular the mask may be produced with
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FIGURE 5.13: Convergence of the modified blind deconvolution algorithm: εp
versus iteration p obtained for a set of 20 pairs of apertures
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laser lithographic techniques, and still can be used to measure the PSF with a

sub-wavelength resolution.



Chapter 6

Diffraction-Free Localized Wave

fields

Previously the possibility of wave field propagation in metamaterials under the

canalization regime has been addressed. In this Chapter we examine the Bessel

beams (BBs) and the Airy beams (AiBs). They are particular solutions to the

wave equation in a diffraction-free way without the support of a given structured

medium.

We start by reviewing the historical background of the diffraction-free wave fields.

The description of the Bessel field distribution is outlined below. More specifi-

cally, the BBs formulation is reviewed. The possibility to propagate BBs in strat-

ified and wire media are also discussed. When including metallic nanoelements,

the plasmon resonances will sustain high-frequency field contribution inside the
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medium allowing BBs with sizes under the diffraction limit. The intensity pat-

terns produced in the nanostructures are also analyzed with a view to the imaging

formation.

Finally we will consider AiBs as candidates to transport subwavelength informa-

tion through nanostructures under widely general conditions. Contrary to the BBs,

it is straightforward to excite it in a planar metal-dielectric interface. We will pay

special attention to the relevance of the Gouy phase in the AiBs. For the sake of

completeness, AiBs propagating inside plasmonic nanostructures will be finally

reviewed, focusing in the experimental achievements on this topic.

6.1 Introduction to Bessel Beams

Common beams suffer from diffraction, which spoils the transverse shape of their

field, widening it gradually during propagation. It was generally believed that the

only adiffractional wave was the plane wave, which does not undergo any trans-

verse change. As early as 1941 Stratton discovered “limited diffraction” solutions

to the wave equations and, in particular, to Maxwell’s equations under weak hy-

potheses [192], experimentally confirmed later by Durnin in 1987 [193, 194].

They have been constructed mathematically in more recent times [195] and soon

after produced experimentally [196], as illustrated in Fig. 6.1. These beams have

an infinite depth of field, i.e., they can propagate to an infinite distance without

changing their wave shape. Durnin termed these beams “nondiffracting beams” or

“diffraction-free beams”. They are also called Bessel beams because their trans-

verse beam profile is a Bessel function [193].



6.1 Introduction to Bessel Beams 123

(a) (b)

z0

R
zmax

AXICON

FIGURE 6.1: (a) First set up on generating BBs reprinted from [194]. (b)
Schematic for the generation of a BB with an axicon.

An interesting topic is what would happen to the ideal BB solution when truncated

by a finite transverse aperture. Not until 1987 an heuristic answer came from

an actual experiment, when Durnin et al. [194] shown experimentally that the

transverse intensity peak as well as the field surrounding it do not undergo any

appreciable change in shape for much longer than its Rayleigh range. Further

than this distance the intensity decays abruptly [193, 197, 198].

Bessel beams have many potential applications due to its limited diffraction. They

have been studied extensively both in optics [193, 194, 199] and acoustics. Ap-

plications include medical imaging [200], tissue characterization [201], Doppler

velocity estimation [202], and non-destructive evaluation of materials [203]. Re-

stricting ourselves to electromagnetism, there are studies on EM tweezers [204–

207], optical scalpels, optical guiding of atoms or corpuscles (charged or neutral)

[208–210], optical lithography [204, 211], optical imaging [197], communica-

tions in free space [212, 213], remote optical alignment [198] among others.

The self-healing property that is the self-reconstruction of the wave form after

interacting with an obstacle plays a relevant role in numerous applications, such

as the optical manipulation of micro-sized particles [204], the fabrication of long

polymer fibers induced by the photopolymerization [214] and microchanneling by
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structural modification in glass materials [215], the enhancement of energy gain

in inverse free electron lasers and inverse Cerenkov accelerators [216], and the

generation of Bessel photonic lattices imprinted in photorefractive crystals [217].

The possibility of independently tuning the phase and group velocities of a BB

opens the possibility of a number of applications in nonlinear optics. In particular,

a number of phenomena was observed: frequency-doubling [218] and high-order

harmonics in the extreme ultraviolet [219] using BBs, resonant self-trapping of

BBs in plasmas [209], the spontaneous formation of unbalanced BBs during ul-

trashort laser pulse filamentation in Kerr media [220], and high Raman conversion

efficiency in the formation of group velocity-matched X-wave pulses [221].

Fast development of plasmonics has propelled the irruption of BBs on the stage,

with the excitation of SPPs in several applications. Kano et al. reported the

first experimental result concerning an efficient excitation of local SPPs, by us-

ing the zeroth-order BB [222]. Specifically, radially-polarized BBs provide the

p-polarized waves required for the effective coupling to the SPPs [223–225]. This

type of BB can not be considered as a nondiffracting beam, i.e., the inherent

anisotropy of the strati-formed media prevents the BB maintaining its intensity

all along the direction of propagation. Evanescent BBs can be used as a virtual

probe for the two-photon fluorescence microscopy [226]. Evanescent BBs have

been observed also in all-dielectric stratified structures [227–233].

6.1.1 Basic Bessel-Beam Formulation in Free Space

Bessel beams traveling in free space are characterized by a prescribed propagation

constant along a given direction and concurrently their transverse patterns are
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clearly localized. As shown by Durnin [193], the free space wave equation

(
∇

2− 1
c2

∂ 2

∂ t2

)
ψ(r, t) = 0, (6.1)

has in polar coordinates the exact solution

ψ(R,z≥ 0, t) =
∫ 2π

0
A (ϕ)eik(ϕ)rdϕ = ei(kzz−ωt)

∫ 2π

0
A (ϕ)eik⊥(ϕ)Rdϕ, (6.2)

for a scalar field ψ propagating with velocity c into a source-free region z ≥ 0.

Due to the cylindrical symmetry in Eq (6.2) we consider that the wave vector is

explicitly k = k⊥+ kzẑ and r = R+ zẑ. The axial z dependence on the wave field

is thus separated from the transverse coordinates, R. When kz is real, the solu-

tion represents a nondiffracting field in the sense that the time-averaged intensity

|ψ(r, t)|2 is independent of z. Since in the domain of spatial frequencies the wave

vectors of the constitutive plane waves were wrapped around a conical surface,

similar to the Cerenkov radiation, this lead to a new appellative of conical waves,

employed a few times by some authors.

The spectral distribution A (ϕ) in Eq. (6.2) represents an arbitrary complex func-

tion of the angular coordinate ϕ . For solutions with complete axial symmetry,

A (ϕ) = A0, and the nondiffracting scalar field solution may be written:

ψ(r, t) = 2πA0ei(kzz−ωt)J0(k⊥R), (6.3)

where J0, is the zero-order Bessel function of the first kind. If k⊥ = 0, the solution

of Eq. (6.3) reduces to a plane wave travelling in the positive z direction. For

0 ≤ k⊥ ≤ ω/c, the solution represents a nondiffracting beam like the one from

Fig. 6.2 whose intensity profile radially decreases with increasing R.
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FIGURE 6.2: Bessel beams intensity profile at an arbitrary z plane and (a) k⊥ =
0.5k0, (b) k⊥ = 0.7k0, (c) k⊥ = k0

The amount of energy contained in each lobe of the zero-order Bessel distribution

is roughly equal to the amount of energy contained in the central peak [193, 234],

and it would require an infinite amount of energy to create a nondiffracting J0

Bessel beam over an infinite plane. Use of an aperture to restrict the radial extent

of the beam eliminates the infinite energy concern, but introduces edge diffraction

effects which cause the beam to spread.

6.2 Plasmonic Bessel Beams

Bessel beam size is unambiguously limited by diffraction inasmuch as its FWHM

is greater than half the wavelength. Transferring the idea of a BB to diffraction-

free optically structured media is strikingly easy to do [235]. The assistance of sur-

face plasmons polaritons in these media leads to subwavelength beamsizes. Since

a host medium cannot route a wave field by definition, confined nondiffracting

beams may be interpreted as a tight focusing within bulk inhomogeneous media.



6.2 Plasmonic Bessel Beams 127

(b)(a)

(c)
0.0 0.5

0.0

0.2

ω
/ω

p

k┴ /kp

0.13 0.20

1

0
-2 12y/Λ

k┴ 2 = 6.16 µm-1

-2 12y/Λ

k┴ 6 = 7.36 µm-1

-2 12y/Λ

k┴ 11 = 8.38 µm-1

-2 12y/Λ

k┴ 12 = 8.45 µm-1

|H
xm

|2  (
a.

u)

0.093

0.0950.095

FIGURE 6.3: (a) Geometry of the multilayered nanostructure; thin silver
nanomembranes of wm = 10 nm are impressed into fused silica εd = 2.25
at a rate of 3.33 µm−1. (b) Blue dispersion curves of guided modes for
N = 11. Dashed red line is the dispersion of ordinary SPP; dashed black
line is the light line of the dielectric material; green lines represent bandgap
edges of unbounded periodic medium. The inset shows the multi-modal disper-
sion in detail. (c) Intensity distribution |H xm|2 for several modal solutions at

λ0 = 1.55 µm.

6.2.1 Plasmonic Bessel Beams in Stratified Media

Let us first consider a monochromatic surface wave propagating with a wave vec-

tor k in a MD multilayered structure consisting of a finite number of metallic lay-

ers, N, and N−1 slabs of a dielectric material. The layers are alternatively placed

and stacked around a solid cladding, as shown in Fig. 6.3(a). The widths of the

metallic slabs and the dielectric slabs are denoted by wm and wd . The y axis is set
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perpendicular to the MD interfaces. A discrete function ε(y) characterizes the rel-

ative dielectric constant of the stratified medium. Particularly, it takes a real value

εd in the dielectric films and a complex εm in the metallic layers. Material proper-

ties of metals can be appropriately described by the Drude-Lorentz model, from

which the frequency-dependent permittivity follows the formula (2.15). We con-

sider the plasma frequency ωp = 12.9 fs−1 and the damping factor γ = 0.08 fs−1

for silver. Without loss of generality we assume that εd also denotes the dielectric

constant of the cladding.

A MD stratified medium commonly provides a number of EM field modes, which

we identify by an index m= {1,2, · · · ,M}. For convenience, we cast the magnetic

field of each plasmonic mode as

Hm(x,y,z) = H m(y)exp[ik⊥m(zcosθm + xsinθm)], (6.4)

where k⊥m is the wavenumber of the mth-order surface mode and θm determines

its in-plane direction of propagation. Furthermore, in order to excite surface res-

onances in the interfaces of our device, p-polarized waves should be employed.

Finally, the problem may be fully described in terms of the scalar wave field Hxm,

from which other EM components may be derived.

Using the standard matrix formulation for isotropic layered media, we can de-

scribe unambiguously the amplitude Hxm(y) distributed inside our device. For a

large number, N, of metallic strata the periodic medium operates just as a photonic

lattice whose unit cell p-polarization translation matrix is here denoted by
=
Mp,cell.

For an ideally unbounded photonic crystal with lattice period Λ = wd +wm the

Bloch wavenumber of the mth surface plasmon, Km, is characterized by the dual

of Eq. (3.9). It should be stressed that in this equation the Bloch wavenumber,
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Km, stands for the component of the wave vector of the periodic media in the

direction of the periodicity, y, by contrast with definitions given in the previous

chapters. Due to the periodicity, the values of k⊥m are restricted to allowed bands,

as depicted in Fig. 6.3(b). In the case presented we neglected material losses, thus
=
Mp,cell became unimodular. Since the periodic structure is finite, solutions are

derived from the equation [(
=
Mp,cell)

N ]11 = 0.

We have considered an structure with N = 11 periods like the one displayed in

Fig. 6.3(a). A discrete set of M = 12 surface modes where obtained. The modal

field decays exponentially in the limit |y|→∞ and it may vary substantially within

the stratified medium, as shown in Figure 6.3(c). However, these surface waves

are homogeneous in the xz plane, as shown in Eq. (6.4). In general, the larger

the number N of layers, the higher the number M = max(m) plasmonic modes

sustainable in such a MD nanostructure.

Strictly speaking, the homogeneous surface wave disclosed in Eq. (6.4) repre-

sents a nondiffracting beam whose propagation constant k⊥m is governed by the

MD multilayer. However, we may freely modify the spatial frequency kz ≥ 0

along the beam axis of a nondiffracting SPP (here taken to be the z axis) pro-

vided kz ≤ k⊥m. For that purpose we consider the superposition of two homoge-

neous surface plasmons of the same wavenumber k⊥m, but different directions

of propagation, given by the angles +θm and −θm respectively, as shown in

Fig. 6.4(a). The projections of the wave vectors onto the z axis coincide with

kz = k⊥m cosθm. Assuming additionally that both plasmonic modes become equal

in strength |Hxm|, the net flux power along the x axis is zero. The resultant field

H xm =Hxm(y)exp(ikzz)cos(kxmx+φm) yields Young fringes whose maxima are

controlled by the spatial frequency kxm = k⊥m sinθm and the dephasing φm of the

surface plasmons (see Fig.6.4(b)).
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FIGURE 6.4: Formation of a nondiffracting cosinusoidal beam mediated by
SPPs on a silver-fused silica interface: (a) Sketch of the wave vectors distribu-
tion and (b) contours of intensity |Hx|2 in the xz plane at λ0 = 1.55 µm. Excita-
tion of multiple high-order SPPs is schematically represented in (c) using here
every high-order SPP involved. (d) Intensity distribution in the xz plane running
with M = 12 modes. The quadrature from Eq. (6.5) on the surface y = y0 is per-
formed for a Bessel function of k⊥ = 5.90 µm−1 shown in red. The propagation

constant is kz = 6.12 µm−1 in (b) and (d).

The nondiffracting sinusoidal beam driven by monomode SPPs is clearly uncon-

fined [236]. Note that such a wave interference is practicable for any order m of

the mode. Therefore, we may conceive a coherent superposition of plasmonic co-

sine waves exhibiting the same propagation constant kz along the z axis, provided

that kz ≤ km for all m involved. This condition fixes the values of θm, as outlined

in Fig.6.4(c) for the twelve distinct SPPs. Moreover, localization around the beam

axis, set on a given MD interface y = y0 at x = 0, is achieved by adapting the
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individual dephases in such a way that φm = 0, giving

Hx = exp(ikzz)
M

∑
m−1

Hxm(y)cos(kxmx). (6.5)

The superposition proposed in Eq. (6.5) is not enough by itself to generate a lo-

calized wave field inside the MD device. For that purpose we manipulate the

amplitudes Hxm(y0) in order to match their phases at the beam axis. Furthermore,

we seek for values of Hxm(y0) leading to a field Hx(x,y0,0) to trace a Bessel

profile. We may express the zeroth-order Bessel function as

J0(kcutx) =
2
π

∫ kcut

0

1√
k2

cut− k2
x

cos(kxx)dkx. (6.6)

For convenience we assume that the arbitrary frequency kcut is higher than any kxm

involved. Our procedure is based on the fact that the integral (6.6) approaches the

series expansion (6.5) given at (x,y0,0) by means of a numerical quadrature with

preassigned nodes kxm [237]. The solutions Hxm(y0)= 2/(π
√

k2
cut− k2

x)
∫

Lm(kx)dkx

of the quadrature, expressed in terms of the Lagrange polynomials Lm, provide a

wave field through Eq.(6.5) whose intensity on the MD interface is approximately

J2
0 (kcutx). The resulting field is here called the nondiffracting Bessel plasmon,

which is depicted in Fig. 6.4(d) using all M = 12 modes involved at λ0 = 1.55 µm.

The central part of the waveform is accurately represented by the Bessel function,

whose highest main peak has an intensity FWHM ∆x = 0.38 µm. The error vis-

ible in the wings comes from difference between the finite series expansion and

the integral involving Bessel function.

After following the procedure given above, the oscillatory superposition (6.5)

yields the highest intensity achievable at x = 0 on the MD surface y = y0. Un-

der ordinary conditions it will not be found at a point out of the beam axis, where
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FIGURE 6.5: (a) Intensity pattern of the nondiffracting Bessel plasmon in the
xy plane for a phase matching at the top surface of the central layer. (b) The
same as in (a) for a phase matching at the uppermost MD interface. (a) 3D view

of the multilayered device and the surface BB generated in (b).

such a phase matching holds. As a consequence, a strong confinement of the

plasmonic BB is expected to occur around (x,y) = (0,y0).

In Fig. 6.5 we represent |Hx|2 derived from Eq. (6.5) when the phase matching is

boosted at different surfaces of the metal-dielectric nanostructure. In Fig. 6.5(a)

the phase matching is accomplished on the interface that belongs to the cen-

tral silver film. For convenience we discarded 5 plasmonic modes with index

m = {1,2,7,9,11}, which induced a field localization out of the beam axis. The

numerical quadrature was set for the BB that has a transverse frequency kcut =

5.90 µm−1. The anisotropic spot displays a subwavelength FWHM ∆y = 160 nm

along the y axis, and an in-plane FWHM ∆x = 416 nm. In Fig. 6.5(b) the beam

axis is relocated on the boundary of the MD device and the cladding. In this case

we employed 8 different surface modes (from m = 1 to m = 8) for the Bessel

quadrature, with kcut = 5.20 µm−1. As a consequence, the FWHM ∆x = 430 nm



6.2 Plasmonic Bessel Beams 133

λ0

|H
x(

0
, 
y 0

, 
z)

|2

0 500
10-4

100

z/λ0 -6 6

1

0

x/λ0

(a)

(b)

ẑ

x̂

|H
x(

0
, 
y 0

, 
0
)|

2

1

0

(c)

z = 0 λ0z = 0 λ0

z = 10 λ0z = 10 λ0

z = 20 λ0z = 20 λ0

z = 200 λ0z = 200 λ0

FIGURE 6.6: Numerical experiment with γ = 0.08 fs−1 for silver. (a) Surface
distribution of the initiated BB in the xz plane. (b) Evolution of the intensity
along beam axis. The dashed line represents the asymptotic behavior of the on-
axis intensity that is valid when a single long-range SPP contributes effectively
in Eq. (6.5). (c) Transverse intensity distribution normalized at the beam axis

for different propagation distances.

results in a slightly higher value than that obtained above, otherwise ∆y = 113 nm.

This is also illustrated in Fig. 6.5(c) by means of the full 3D arrangement. Note

that the transverse wave field in (a) is essentially different from (b), in spite of

using roughly the same in-plane Bessel distribution.

The control of the field is initially established in the xz plane, however, out-of-

plane intensity is determined by the geometry and materials composing the multi-

layered waveguide. The Bessel-like distribution along the x axis cannot be main-

tained in other directions, due to the intrinsic anisotropy of the stratified medium.

Moreover, the field of the Bessel plasmon is enhanced along distinctive paths in

the transverse xy plane.
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Purely diffraction-free Bessel plasmons described above exist assuming an ideal

conductor with γ = 0. Therefore, we consider now the case when γ in Eq. (2.15)

is no longer zero and with it the SPP propagation constant k⊥m becomes complex.

The traveling SPPs are damped with an evanescent decay length lm. As a conse-

quence, the nondiffracting nature plasmonic BBs is preserved, but each mth-order

SPP contributing in the summation of Eq.(6.5) runs a distance shorter than its

propagation length lm. This effect is illustrated in Fig. 6.6(a). The phase fronts

of the field Hx advance with a constant velocity, provided kz = Re(k⊥m)cosθm is

conserved. The modal angle θm brings to effect that each causal plasmonic sig-

nal travels its own distance lm, to reach the beam axis at the z axis coordinate

lm/cosθm. In our numerical simulation l1 = 267 µm, l2 = 45.0 µm, and lm de-

creases fast at higher m, up to l11 = 3.09 µm and l12 = 3.06 µm; however θm� 1

leading to an incessant drop of higher mth-order terms taking part in the summa-

tion in Eq.(6.5). Consequently, the on-axis intensity is reduced by a factor 1/e at

z = 6.8 µm, as shown in Fig. 6.6(b), which is primarily determined by the evanes-

cent decay length of the highest-order SPPs. Fig. 6.6(c) elucidates how the Bessel

profile of the nondiffracting plasmon evolves toward a cosine amplitude distribu-

tion. This evidences that the 1st-order sinusoidal SPP contributes exclusively to

the wave superposition (6.5) at sufficiently long distances. We reported the results

of this Section in Refs. [238, 239].

6.2.2 Plasmonic Bessel Beams in Wire Media

Diffraction-free localized solutions of Maxwell’s equations can also be found in

a wire media. Let us first consider metallic wires of radius r0, made of a bulk

metal with permittivity εm. We assume a periodic squared distribution of this

sort of wires in a way that stands for the lattice period, as shown in Fig. 6.7.
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FIGURE 6.7: Periodic array of nanowires made of a metal with dielectric con-
stant εm, distributed in a squared lattice, and hosted in a dielectric medium with
permittivity εd . The radius of the wires is r0 and the lattice period is a. Beam

propagation is driven along the wires axes, that is the z axis.

Note that a ≥ 2r0. Finally, the host medium has a dielectric constant ε . Also we

assume that monochromatic beam propagation is driven along the wires, that is

the z axis. If, additionally, the transverse waveform does not change at different

xy planes, except maybe by a phase-only term depending on z, we may impose

simultaneously that ∂zH = ikzH and ∂tH =−iωH, where kz is the on-axis spatial

frequency of the wave field. For convenience, the 3D magnetic field is written as

H = H⊥+Hzẑ, where H⊥ includes both transverse components and Hz consider

the on-axis component. Under these conditions, Hz satisfies the following wave

equation,

(εk2
0− k2

z +∇
2
⊥)Hz = ε(∇⊥ε

−1) · (ikzH⊥−∇⊥Hz). (6.7)

Here ∇⊥ = ∂xx̂+ ∂yŷ and ∇2
⊥ = ∂ 2

x + ∂ 2
y . In our system, a given wire axis is

parallel to the unit vector ẑ; therefore we set ε(x, y) = εd in the metallic rods and

ε(x, y) = εm in the host medium.

We may simplify our problem by considering the EMA. Under this approach, the
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structured medium is modeled as an anisotropic material. The EMA gives accu-

rate results provided that the wavelength is significantly greater than the lattice

period, λ0 � a. As a consequence, ε(x,y) in Eq. (6.7) is transformed into an

average constant parameter, ε⊥, which is given by

ε⊥ = εd

[
(1+ f )εm +(1− fm)εd

(1− fm)εm +(1+ fm)εd

]
, (6.8)

where the filling factor fm = πr2
0/a2. Here we use the expression for ε⊥ from the

Maxwell-Garnett theory [240]. Moreover, Eq. (6.7) is reduced to a 2D Helmholtz

equation, (k2
⊥+∇2

⊥)Hz = 0, where k⊥ =
√

k2
0ε⊥− k2

z provided that ε⊥ > 0 and

kz <
√

ε⊥k0. This is a wave equation corresponding to nondiffracting ordinary

waves propagating in a uniaxial crystal of permittivity
=
ε= ε⊥(x̂x̂+ ŷŷ) + ε‖ẑẑ.

Solutions using Bessel functions come out naturally by setting ∇2
⊥ in a cylindrical

coordinate system, that is, ∇2
⊥ = R2∂ 2

R +R∂R + ∂ϕ . Solving the Helmholtz wave

equation yields

Ho
z = exp(ikzz− iωt)

k⊥
kz

∞

∑
m=−∞

H o
m ψm(R,ϕ), (6.9)

where H o
m denotes a complex-valued constant, ψm = exp(imϕ)Jm(k⊥R) and Jm

is a Bessel function of the first kind. Equation (6.9) gives a complete solution

provided that Ho
z does no diverge at R = 0. In this case, the transverse components

of the magnetic field are written as

Ho
⊥ = exp(ikzz− iωt)

∞

∑
m=−∞

H o
m [(iψm+1− iψm−1)x̂+(ψm+1 +ψm−1)ŷ]. (6.10)

Let us point out that non-trivial solutions of Maxwell’s equations exist involving

He
z = 0. These solutions are associated with extraordinary waves, whose magnetic
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FIGURE 6.8: (a) Schematic illustration of the anisotropic medium that sub-
stitutes the wire plasmonic crystal of Fig. 6.7 by using the Maxwell-Garnett
model. (b) Variation of ε⊥ and ε‖ in terms of the filling factor, for silver wires

hosted by alumina at λ0 = 700 nm

field may be written as

He
⊥ = exp(ikzz− iωt)

∞

∑
m=−∞

H e
m [(iψm+1 + iψm−1)x̂+(ψm+1−ψm−1)ŷ], (6.11)

where H e
m stands for a complex-valued constant. Now the transverse spatial fre-

quency satisfies k2
⊥ = ε‖k2

0− k2
z ε‖/ε⊥, where [240]

ε‖ = fmεm +(1− fm)εd . (6.12)

Some general conclusions may be inferred assuming that εd < |εm| for visible and

infrared frequencies. For numerical purposes we will consider silver and alumina;

the permittivities of silver and alumina at the wavelength in vacuum λ0 = 700 nm

are εAg = −20.4 (neglecting losses) and εAl2O3 = 3.1, respectively, taken from

experimental data [241]. First of all, note that 0≤ fm≤ fmax provided that a≥ 2r0,

where fmax = π/4 ≈ 0.78. On the other hand, ε‖ > 0 for relatively low values of
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the filling factor,

0≤ fm <
εd

εd− εm
. (6.13)

With the considered, Eq. (6.13) yields 0 ≤ fm < 0.132. On the contrary, ε⊥ is

maintained positive for higher filling factors,

0≤ fm <
εm + εd

εm− εd
, (6.14)

which results 0≤ fm < 0.737 for our metal-dielectric composite. Figure 6.8 shows

that ε⊥ may take extremely-high positive values in the interval 0.132 ≤ fm <

0.737, where ε‖ is negative. Note that BBs driven by ordinary waves, which are

formulated in Eq. (6.10), cannot exist if kz >
√

ε⊥k0. At the same time, the hyper-

bolic dispersion of extraordinary waves leads to BBs that may have a propagation

constant of ideally any positive value, 0 ≤ kz < ∞. However, it depends strongly

on the sign of ε⊥. For instance, if ε‖ > 0 then kz <
√

ε⊥k0 for the existence of ex-

traordinary waves. On the contrary, solutions involving kz >
√

ε⊥k0 are consistent

with EMA provided ε‖ < 0 (and obviously ε⊥ > 0). Furthermore, for sufficiently

high values of kz we find that k⊥ � k0, since k⊥ ≈ kz

√
|ε‖|/ε⊥. Therefore the

spot size of the BB clearly surpasses the limit imposed by diffraction, leading to

subwavelength nondiffracting beams.

In Fig. 6.9(a) we plot He
x taken from Eq. (6.11) and in Fig. 6.9(b) and (c) we

represent Ho
x from Eq. (6.10) for BBs propagating with kz = 0.8k0, that is kz =

7.18 µm−1. For Figs. (a) and (b) we consider a silver-alumina composite with

a filling factor fm = 0.1; in this case the Maxwell-Garnett model provides the

permittivities ε⊥ = 4.07 and ε‖ = 0.75. Since both permittivities are positive,

dispersion associated with extraordinary waves is ellipsoidal. To evaluate He
x

we use H e
1 = −i/2 = H e

−1, leading to BBs with transverse spatial frequency
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FIGURE 6.9: x-component of the magnetic field H for BBs associated with
(a) extraordinary and (b) ordinary waves propagating in a silver-wire medium
hosted by alumina ( f = 0.1) for kz = 0.8k0. We represent the instantaneous
fields He

x for H e
1 =−i/2 = H e

−1 and Ho
x for H o

1 = i/2 =−H o
−1 at (x,y,z) =

(0,0,0). In (c) we plot Ho
x for f = 0.5. Boxes dimensions of the contour plots

are 2 µm×2µm.

k⊥ = 7.12 µm−1. This fact results in a central hot spot whose FWHM is 622 nm

along the x axis. On the other hand, the amplitudes H o
1 = i/2 =−H o

−1 are set for

Ho
x . In this case k⊥ = 16.6 µm−1 leading to superresolving hot spots of 146 nm-

FWHM on the x direction. However, this effect is slightly weaker along the y axis,

as shown in Fig. 6.9(b). If now we increase the filling factor up to f = 0.5, but

maintaining the propagation constant kz fixed, we observe that no extraordinary

waves may be found. It is caused by the negative value of ε‖ = −8.67. In con-

trast, ordinary waves with extremely-high spatial frequency k⊥ = 35.4 µm−1 are

obtained in virtue of the giant (and positive) value of ε⊥ = 16.2. Figure 6.9(c)

depicts Ho
x in this case, providing a central peak whose FWHM is 69 nm along

the x axis. This fact demonstrates that our BB clearly features a subwavelength

hot spot.

Now we will compare the above analytical approach obtained from the EMA for

the periodic squared array of nanowires with the results of solving numerically

the Maxwell’s equations. According to the Floquet-Bloch theorem, the magnetic

field of a wave mode in a 2D periodic medium with invariant spatial frequency kz
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along the z axis may be written in the form

H = H Bloch
m (x,y)exp(ikzz− iωt)exp(ik⊥m ·R), (6.15)

where H Bloch
m (x,y) is a field with the same periodicity of the medium associate to

a plane wave with k⊥m. Nondiffracting beams propagating in wire media may be

expressed as a linear combination of the wave modes given in Eq (6.15). There-

fore we focus on solving the Maxwell’s equations to find all k⊥m and H Bloch
m

provided that the propagation constant kz is a parameter in our problem. For that

purpose we used a commercial finite-element package (COMSOL Multiphysics).

In particular, a routine was programmed in the COMSOL RF module that allows

to obtain every Bloch mode for a fixed value of kz. In other words, we found the

complete set of pairs (kx,ky), and the corresponding functions H Bloch
m , which sat-

isfies Maxwell’s equations for the prefixed kz. This procedure let us to depict the

spatial spectrum in the kxky-plane, which is also known as the isofrequency curve,

provided a given on-axis frequency kz.

In order to verify the validity of our previous analytical results, we start by consid-

ering a silver-alumina wire medium with fm = 0.1 and metallic wires of diameter

2r0 = 5 nm. In this case, the lattice period is a = 14.01 nm. With these values,

λ0� a, thus we have a configuration where the EMA is expected to give accurate

results. Using our routine based on the FEM for kz = 0.8k0 we obtained the isofre-

quency curve shown in Fig. 6.10(a). In this case, the isofrequency curve has two

branches approaching circles of radius k⊥m = 7.16 µm−1 and k⊥m = 16.6 µm−1.

The variations of the radius are very small within its corresponding branch. Fur-

thermore, these values of the modulus of k⊥ are very near the values of k⊥m pre-

dicted by the EMA for the ordinary wave and the extraordinary wave. In view of
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FIGURE 6.10: (a) Isofrequency curve for the silver wire medium hosted by
alumina ( fm = 0.1) for kz = 0.8k0. Absolute value of the x-component of the
magnetic field for nondiffracting beams associated with (b) extraordinary waves

and (c) ordinary waves.

these results we expected to obtain nondiffracting beams with waveforms similar

to those shown in Figs. 6.9(a) and (b).

In the periodic wire medium, Bloch modes will play, in some sense, the role of

the plane waves in the anisotropic effective medium. Taking the results shown in

Fig. 6.9(a), we would obtain an equivalent waveform by superposing properly the

set of Bloch modes with in-plane k-vectors lying on the quasi-circular branch of

radius k⊥ = 7.16 µm−1. Note that this set contains an infinite number of modes.

For numerical purposes, we have selected a finite subset of modes that are evenly

spaced in the angular coordinate ϕ . Finally, in order to have a localized wave

field around a predetermined point (x0, y0), which is simply the focus of the non-

diffracting beam, we set in-phase the x-component of every function H Bloch
m at

such point. In our numerical simulations we have set (x0,y0) = (0,0).

In Fig. 6.10(b) and (c) we plot |Hx| that results from the corresponding super-

position of Bloch modes. The aspect of the fields is in a good agreement with

that from our analytical approach shown in Fig. 6.9(a) and (b). From Fig. 6.10(b)

we estimate the FWHM along the x axis as 536 nm that is near 622 nm [from
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FIGURE 6.11: Isofrequency curve for a metallic compound of fm = 0.5. (b)
Wave field |Hx| corresponding to a nondiffracting beam of kz = 0.8k0 associated

with ordinary waves of the effective medium.

Fig. 6.9(a)]. Also, the FWHM is 156 nm evaluated from Fig. 6.10(c), comparable

with 146 nm [from Fig. 6.9(b)].

Finally, we considered an increase of the filling factor up to fm = 0.5, maintain-

ing the propagation constant kz = 0.8k0 and the diameter 2r0 = 5 nm. Now, the

lattice period is a = 6.27 nm. From our numerical FEM simulations, shown in

Fig. 6.11(a), we observe that only a single ring of radius k⊥ = 37.2 µm−1 re-

mains, which is in good agreement with estimations given by the EMA (k⊥ =

35.4 µm−1). Again the variation of the radius is small, however, it is one order of

magnitude greater than that observed for fm = 0.1. The FWHM of the central hot

spot measured along the x axis is 70 nm [see Fig. 6.11(b)] that is close to 69 nm

measured from Fig. 6.11(c).

6.3 Introduction to Airy Beams

In 1979 Berry and Balazs theoretically demonstrated within the context of quan-

tum mechanics that the Schrödinger equation describing a free particle can ex-

hibit a nonspreading Airy wave packet solution [242]. The envelope of these
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wavepackets is described by the one-coordinate Airy functions, centered around

a parabolic trajectory in space. This Airy packet happens to be unique, e.g., it is

the only nontrivial solution (apart from a plane wave) that remains invariant with

time [242, 243].

Optical Airy beams were introduced in [244], followed soon by their first exper-

imental observation [245]. Thus, the Airy beam is essentially flat. In contrast,

other types of non-diffracting solutions such as the BBs [194], Mathieu beams

[246], Weber beams, are essentially functions of two coordinates, and they cannot

be projected to the planar geometry. The study of Airy beams is interesting from

the viewpoint of fundamental science since its intensity maxima propagate along

a curved (parabolic) trajectory in a homogeneous medium, not being guided by

any refractive-index gradient. The ballistic dynamics of the Airy beams, together

with their facility to bypass obstacles, had been also examined [247]. Their spe-

cial self-healing properties, that is, self-restoration of their canonical form after

passing small obstacles, have been theoretically and experimentally demonstrated

[248, 249]. It has also been shown that the linear and angular momentum of these

beams change during propagation, and the total momentum and energy are con-

served [250]. All these properties lead to a variety of applications for Airy beams

including trapping, guiding, sorting of micro-objects [248, 251, 252], and even

signal processing [253].

6.3.1 Plasmonic Airy Beams

One of the most prominent examples of a planar physical system is the evolution

of waves at a metal–dielectric interface. SPPs supported by metal-dielectric inter-

faces can be employed to generate two-dimensional Airy beams. The plasmonic
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FIGURE 6.12: (a) Scanning near-field optical microscope detection of an
Airy plasmon excited by a diffraction pattern at a gold–air interface (λ =
0.784 µm,x0 = 0.7 µm). (b) SNOM image of the Airy plasmon superimposed

with a micrograph of the diffraction pattern. Reprinted from [258].

field is tightly confined to the interface, and it decays exponentially away from

it. That forms an effectively planar system with a strong subwavelength confine-

ment [254, 255], which is very attractive for flat-land photonic applications. We

note that other examples of low-dimensional systems where Airy beams can be

realized include graphene [256] and thin magnetic films [257].

However, even for the near-infrared-frequency range, the propagation length of

Airy plasmons at a gold–air interface is only a few tens of microns, due to the

strong losses in metal. The short propagation of the SPPs presents a significant

challenge for the observation and the implementation of Airy SPP beams. Nev-

ertheless, experimental demonstrations of Airy plasmons utilizing different exci-

tation methods were presented almost simultaneously by three different research

groups [258–260]. One such experimental setups is reprinted from [258] in Fig.

6.12. Since then the research has moved into the observation of other phenomena

incorporating multiple Airy beams. In this regard bottle-beams have been pro-

duced [261]. The interference of two Airy waves was also studied [262] pointing
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to practical application for hot-spot creation. A hot-spot dynamically controlled

by the illumination beam have been produced with the suggested set up. Dynamic

control of the plasmonic Airy beams has also been explored [263–265] creating

non straight propagating SPP.

For Airy plasmons a two-dimensional analogue of autofocusing was studied through

the interference of two Airy waves [262], and we discuss this effect below in more

detail. Further, the control of Airy plasmon trajectories was also proposed [266]

and demonstrated [267] by using a linear plasmonic potential, similar to propos-

als for surface plasmon control using graded index elements (Luneburg and Eaton

lenses) [268] as well as for free-space Airy beam manipulation [269].

In some cases it should be desirable to push the Airy plasmons to the non-paraxial

regime in order to achieve a highly bent trajectory. However, the main features of

non-paraxial Airy beams in free space, studied in detail in Ref. [270], are identical

to what can be observed with SPPs [258].

To couple radiation to the surface waves several special techniques have been de-

veloped. One of them is prism coupling where evanescent waves are transformed

to SPPs at the metal film due to a frustrated total internal reflection process. An-

other technique is grating coupling where the grating vector corrects the k-vector

mismatch between radiation in free space and SPPs.

6.3.2 Finite-Energy Airy Beams in the Paraxial Approximation

Let us consider a (1+1)D wave field u · exp(ik0z) which evolves along the z axis

with a carrier spatial frequency k0. In the case that we consider plasmonic Airy
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beams, k0 should be substituted by kSPP given in Eq. (2.14). Thus the wave func-

tion u satisfies the paraxial wave equation 2i∂ζ u+∂ssu = 0 expressed in terms of

the normalized spatial coordinates s = x/w0 and ζ = z/zR. Here w0 is the beam

width and zR = k0w2
0 denotes the propagation distance. Specifically, an AiB may

be written as [244]

u(s,ζ ) = Ai(s−ζ
2/4+ iaζ )exp(as−aζ

2/2)

×exp(isζ/2+ ia2
ζ/2− iζ 3/12), (6.16)

where Ai denotes the Airy function. Note that

|u(s,ζ )|2 = Ai2(s−ζ
2/4), (6.17)

provided that a = 0, and therefore the transverse intensity profile is conserved

along the propagation ζ -axis. The parameter 0 < a≤ 1 is introduced in the wave

function in order to provide
∫ |u|2ds < ∞ allowing the paraxial beam to carry a

finite energy, and concurrently conserving a central lobe with parabolic shape.

Topologic attributes of AiBs may be drawn without difficulty from its transverse

spatial frequency

ũ(k) = exp(−ak2 +a3/3− ia2k+ ik3/3). (6.18)

Equation (6.16) is directly derived from the Fresnel-Kirchhoff (FK) diffraction

integral u = (2π)−1 ∫ ũ(k)exp(iψ)dk, being ψ = ks− k2ζ/2 the phase distribu-

tion of a plane-wave spectral component with transverse spatial frequency k. The

phase φ̃ +ψ of the integrand is highly oscillating, where φ̃ = arg(ũ). However it
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reaches a stationary point, that is ∂k[φ̃ +ψ] = 0, for two frequencies k± satisfying

k2− kζ + s−a2 = 0. (6.19)

The principle of stationary phase [146] establishes that the FK diffraction integral

has a predominant contribution of frequencies in the vicinities of k±. Inside the

geometrical shadow s > a2+ζ 2/4 no stationary points may be found. In the light

area, constructive interference is attained if the phase φ̃ +ψ at frequencies k+ and

k− differs by an amount 2πm, where m is an integer. This condition provides the

locus of points with peaks in intensity, which leads to

s = a2− (3πm/2)2/3 +(ζ/2)2, for m≥ 0. (6.20)

These curves describe perfect parabolas.

From geometrical grounds, the parameter k represents a particular light “ray” with

linear trajectory (6.19) in the sζ -plane. The envelope (caustic) of this family of

rays results from the solution given in Eq. (6.20) for m = 0, providing the ballistic

signature of an AiB.

In Fig. 6.13 we show the spatial distribution of the magnitude |u| and the phase

φ = arg(u) of the wave function given in Eq. (6.16) corresponding to an AiB of

a = 0.1. The accelerating behavior of the AiB is limited, and out of the near field

the interference-driven parabolic peaks fade away. To establish the boundaries of

the near field, we point out that |ũ| falls off less than a half of its maximum in

the interval k2 < k2
max = ln(2)/a, which represents the effective bandwidth of the

AiB. Moreover, kmax is no more than the far field beam angle in the normalized

coordinates, and kmax = 2.6 in Fig. 6.13. As a consequence, the length of the
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FIGURE 6.13: (a) |u| and (c) φ for an AiB with a = 0.1. The parabolic curves
Eq. (6.20) are drawn in the near field (b) and (d) in dashed lines. In the far field,

the numbered straight trajectories of light rays satisfy Eq. (6.19)

caustic is finite and it is observed in |ζ |< 2kmax. Along the beam waist ζ = 0 the

energy is mostly localized in the region a2− k2
max ≤ s ≤ a2. In Fig. 6.13 the near

field is bounded within the region |ζ | < 5.2 and |s| < 6.9, where 4 interference

peaks are clearly formed.

We point out that the maximum of intensity is not placed exactly at points that

belong to the curves (6.20) but they are slightly shifted to lower values of the

transverse spatial coordinate s. This effect is not caused by the finite energy of the

beam since it is observed for a = 0, but it occurs by a non-even symmetry of its

spatial spectrum (6.18).

In the far field, however, the behavior of the AiB is completely different. Applying

the principle of stationary phase, no more than one spatial frequency k is of rel-

evance. The resultant Fraunhofer pattern is u→ (2πiζ )−1/2ũ(k)uPW (s,ζ ), valid

in the limit |ζ | � kmax for points of the contour C ≡ s = kζ +a2− k2 taken from
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Eq. (6.19). Note that the paraxial wave field uPW = exp(iks− ik2ζ/2) corresponds

to a non-truncated plane wave.

6.4 The Gouy Phase in Airy Beams

It is well-known that finite-energy 2D wave fields propagating in free space un-

dergo an overall phase shift of π/2 rads (π rads for 3D waves) if they are compared

with the transit of untruncated plane waves. For aberration-free focused waves,

Gouy first realized that the phase is delayed within its focal region [271]. The

origin of the Gouy phase (GP) shift is ascribed to the spatial confinement of the

optical beam [272, 273], which leads to deviations in the wave front and, there-

fore, local alterations of the wavenumber in the near field [274, 275]. The interest

in the analysis this effect persists nowadays because of its implication in many

ultrafast phenomena that are dependent directly on the electric field rather than

the pulse envelope such as electron emission from ionized atoms [276] and metal

surfaces [277].

Recently Pang et al. studied the phase behavior of Airy beams (AiBs) [278].

Because of its curved trajectory [244, 279], they defined the GP of an AiB as the

difference between its phase and that of a diverging cylindrical wave, the latter

considered a suitable reference field. A physical interpretation of the GP can be

given in terms of the local phase velocity and the Poynting vector streamlines of

AiBs.

Let us evaluate the GP in AiBs. The GP ϕG(ζ ) is commonly estimated as the

cumulative phase difference between a given paraxial field and a plane wave also

traveling in the +z direction [274]. Considering a centrosymmetric distribution of
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FIGURE 6.14: (a) GP for k = {0,±0.41 ± 1.00,±1.52}. The curves are dis-
placed by π/2 from one to another, with increasing k down upward. The num-
bers code agrees with that applied in Fig. 6.13. (b) Geometrical interpretation
of the GP in terms of the local wave vector kPW of a plane wave and that ki of

a paraxial beam.

u around s = 0, the dephase ϕG(ζ ) may be derived analytically as the difference

φ(ζ )− limζ→−∞ φ evaluated along the beam axis. Due to the particular accelera-

tion of the AiB, however, one cannot encounter a beam axis in this case.

In a more general approach, the GP might account for dephasing between the

wave field u given in (6.16) and a plane wave uPW = exp(iψ) with a given tilt k 6=
0. Following the discussion given above, the phase fronts of u and uPW become

parallel in the far field around the light ray (6.19). In order to obtain ϕG(ζ ) for

the normalized angle k we employ φ − ks+ k2ζ/2 instead of φ , which is now

evaluated at points of the contour C. In Fig. 6.14(a) we plot ϕG(ζ ) for different

values of the zenith angle k. As expected, the value of the GP varies rapidly in

the near field. Well beyond the near field, in the limit ζ → +∞, the GP shift

approaches −π/2.

Let us give a physical interpretation of our approach, which in principle may be

applied to any finite-energy wave field that lacks a beam axis. For that purpose, it
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is illustrative to rewrite the GP as the line integral

ϕG(ζ ) =
∫

C
∆k ·dr, (6.21)

where ∆k = ∇φ −∇ψ and C represents a contour of integration (6.19) with start

point at ζ → −∞. The form is exactly the same as that encountered when we

calculate the work done by a resultant force ∆k that varies along the path C. Here

∆k is understood as the difference of the local wave vector ki = k0ẑ+∇φ of the

AiB and that corresponding to the reference plane wave, kPW = k0ẑ+∇ψ . Note

that kPW approaches k0ẑ+(k/w0)x̂ to order k, and that kPW is parallel to dr over

the contour C. This is relevant since many physical processes, like the generation

of curved plasma channels [280] and the optical manipulation of microparticles

[281], depends openly on k j, which is in direct proportion to the EM momentum

and the time-averaged flux of energy [250].

Going from r to r + dr over C leads to a nonnegative contribution of the line

integral (6.21) if (a) the wave vectors kPW and ki are nonparallel, and if (b) the

wavenumber k0 of the reference plane wave and that k j = |ki| of the field u are

different. This is illustrated in Fig. 6.14(b). For a Gaussian beam ϕG = −π/4−
arctan(ζ )/2 at k = 0, where ki is parallel to kPW but k j < k0. In AiBs, however,

both angular and modular detuning of ki are produced.

To examine the angular detuning, it is illustrative to represent ki graphically by

means of the Poynting vector streamlines (PSLs). Commonly employed with vec-

tor fields, the PSLs are tangent to the vector ki and consequently they satisfy the

differential equation ki× dr = 0, that is dx/dz = (ki · x̂)/(ki · ẑ). The PSLs indi-

cate the direction of wave propagation since they are perpendicular to the phase

fronts. Under the paraxial approximation the equation for the PSLs reduces to
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FIGURE 6.15: Spatial distribution of κ and several PSLs for the AiB of
Fig. 6.13(c). Plots of κ over the numbered contours also representing asymp-

totes of the PSLs.

ds/dζ = ∂sφ in normalized coordinates. For an AiB we finally have

ds
dζ

=
ζ

2
+ Im

[
Ai′(s−ζ 2/4+ iaζ )

Ai(s−ζ 2/4+ iaζ )

]
, (6.22)

where Ai′(α) = ∂αAi(α). The exact solution s = s0 +ζ 2/4 is obtained for a = 0.

Some PSLs of our AiB are drawn in solid lines in Fig. 6.15(a) and Fig. 6.15(b).

In contrast with the trajectories C of light rays (dashed lines), the PSLs hold

ds/dζ = 0 at ζ = 0. Therefore, PSLs approach a parabola s = s0 + s′′0ζ 2/2 in

the neighborhood of the beam waist, where s′′0 = as0−aAi′(s0)
2/Ai(s0)

2+1/2. If

a� 1 and s0 ≥ 0 then s′′0 ≈ 1/2 featuring a regular parabolic trajectory. However
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for sufficiently large values of −s0� 1 then s′′0 < 0 revealing a concavity inver-

sion along the semi-axis. Moreover, in the far field ds/dζ → k leading to exact

solutions in the form of Eq. (6.19) as |ζ | → ∞. These straight lines represent the

asymptotes of the PSLs.

Finally we analyze the modular detuning of the local wavenumber with respect to

k0. In fact, modular detuning of ki implies a local deviation of the phase velocity,

vp with respect to c [146]. Taking into account the paraxial regime, the local

wavenumber is given by k j = k0 +κ/zR, where

κ = ∂ζ φ +(∂sφ)
2/2. (6.23)

Moreover we may obtain a simple expression for vp by using ∆v/c ≈ −∆k/k0 =

−κ/k0zR, where ∆v = vp− c and ∆k = ki− k0. In Fig. 6.15 we plot the parameter

κ operating as a trend indicator of the spatial variation of the phase velocity of the

AiB depicted in Fig. 6.15. In the far field κ vanishes leading to a wave field with

wavenumber ki = k0 and phase velocity vp = c.

However κ presents a more complex behavior in the near field. Out of the ge-

ometrical shadow, κ < 0 and it drops near the peaks of intensity. This effect

is associated with superluminality, which is well known in Gaussian beams and

other kind of focused beams [282, 283]. Over the caustic of the AiB, however,

κ ≈ 0 and it strictly vanishes if a = 0. On the contrary, κ grows sharply around

the valleys of intensity, and for a = 0 it diverges due to the presence of phase

singularities. We reported the results of this Section in Ref. [284].





Chapter 7

Conclusions

In this Thesis, the image formation with plasmonic nanostructures and NIMs is

studied. First, we analyze the 3D diffraction pattern resulting when a NIM planar

lens produces an image of a point source. This pattern is the 3D Fourier trans-

form of a function that we called here the generalized ATF. The generalized ATF

includes two different sheets: one, having a spherical shape, contains information

of the far field, whereas the evanescent components of the wave are associated

with the hyperboloidal sheet of the ATF. Particularly, subwavelength resolution

is mostly determined by the modulation of the generalized ATF on the hyper-

boloidal sheet. In connection with this result, we have understood that increasing

transverse resolution within the near-field regime may be produced at the cost of

loss in depth discrimination.

The image formation with asymmetric NIM superlenses is also evaluated focus-

ing on primary aberrations and backscattering effects. Both are unwanted effects

derived from impedance mismatch at boundaries. We propose an antireflection
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coating condition that minimizes backscattered light. To avoid primary spherical

aberration, we show that the object plane will be placed at an appropriate distance

from the front interface of the superlens. Nevertheless residual aberrations come

out in the Gaussian conjugate plane, especially for slabs with a subwavelength

width. Balancing residual aberrations may lead to achieve an impulse response of

least spot size.

Considering again symmetric superlenses, it is well known that its resolution can

be improved by exfoliating the NIM into layers. However, we show that the depth

of field and the ability to observe images out of the geometrical image plane is

reduced in exchange. A trade-off between the required resolution power and its

limitations in the process of recording an image in volume should be considered

during the design of a NIM multilayer.

The metal superlens is also revised in this Thesis. Surface plasmons can be excited

on these superlenses providing access to an enormous phase space of refractive in-

dex and propagation constants that can be readily tuned through variation of ma-

terial, dimension, or geometry. Specifically, we can tune a MD medium to match

a permittivity close to zero. Regarding this subject, we highlight that uniaxial

ENZ PLM have a plain dispersion curve that sustains high-k modes, i.e., works

in the canalization regimen. The coupling of this structure with the evanescent

modes of the source give rise to superlensing along the optical axis of the homog-

enized metamaterial that is clearly enhanced in the limit Re(εm)→−εd . When

εd � −Re(εm), we have developed a simple curve-fitting method that helps to

recover the high-k plasmonic modes that are lost in the standard EMA model.

We also present the generalized refraction law that describes double refraction of

TM-polarized waves, conventional positive and negative, observed in the same
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metamaterials. The modal coupling of plasmonic lattice resonances and nonlo-

cality induced by partial screening across the nanolayer length are responsible for

this effect. An analysis has been undertaken on the energy balance between this

twin beams as a function of the PLM incidence angle.

Furthermore, a MD device capable to produce superresolving images out of the

canalization regimen is demonstrated. A first MD superlattice with strong anisotropy

converts evanescent fields into propagating Bloch modes. Beam spreading is com-

pensated by means of negative refraction. For that purpose, a second MD superlat-

tice with an isofrequency curve of opposite curvature collects the wide spectrum

of Bloch waves and, subsequently, they are suitably focused just at the output

plane of the superlensing device.

Major results presented in this Thesis are sustained in the PSF analysis. While this

function is helpful in the image formation analysis, it is technically complicated

to measure. We propose a version of the blind deconvolution algorithm includ-

ing particular PLM thresholds that recovers the PSF throughout the experimental

measures of the intensity at the superlens output interface. While standard blind

deconvolution algorithm only recovers the PSF modulus, the version introduced

in this Thesis is also able to recover the phase.

In addition to the canalization of evanescent waves in plasmonic-crystal super-

lenses enabling subwavelength-resolved images, we demonstrate the existence of

auto-focused optical beams with subwavelength size propagating in more general

photonic nanostructures. Specifically subwavelength BBs are analyzed in MD

layered media and wire media. The origin of this interesting phenomenon lies in

the phase-matched excitation of high-order SPPs in the superlattice. Dissipative

effects in silver leads to a diffraction-free regime limited by its energy attenuation
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length. Nevertheless, localization about the beam axis is maintained along a range

which is higher than the energy attenuation length by more than one order of mag-

nitude. The possibility to excite multiple BBs in these nanostructures opens the

way for imaging formation with this kind of wave fields.

Finally, we consider a new family of non diffractive wave field, the Airy beam. In

particular we have expressed the Gouy phase that can be measured on this sort of

fields as a line integral. The equations describing the Poynting vector streamlines

and the spatial variation of the phase velocity for these beams provide a general

platform for exploring the flow of electromagnetic energy. This general analysis

can be applied either to plasmon-assisted and free-space Airy beams.

7.1 Future lines

The results of this Thesis indicate the accessibility of tunable optical properties of

nanomaterials. Combined with other existing photonic materials these structures

facilitate the design of new materials classes with extraordinary applications. The

following discussion highlights just a few potential avenues for future exploration

including interaction between PLM and low dimensional systems, tunability with

topological insulator and the design of resonant cavities which can operate in the

canalization regime.

Quantum dots and nanowires are in state of art low dimensional systems enabling

new optical and electronic capabilities. The possibilities of interaction between

these elements and the superlenses studied in this Thesis may tailor electromag-

netic properties. For instance, the use of metal in a PLM makes it lossy. Inserting

quantum dots on it may provide some gain inside this structure [14, 17]. This
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approach uses quantum degrees of freedom not to modify the effective properties,

but to compensate the losses. Alternatively, doping a layered medium with quan-

tum dots opens the way to tune the anisotropic effective permittivity tensor of this

medium [285].

It is also interesting to consider the addition of alternative plasmonic materials as

metallic alloys, metallic compounds, and graphene to superlenses. This materials

are known to contain abundant free carriers. The oscillation of free electrons,

when properly driven by electromagnetic waves, would excite SPPs in the vicinity

of this surfaces same as in metals, resulting in extreme light confinement. It is

likely that new PLM designs with improved properties can be done by tuning

regular MD multilayers with this new materials.

Yet another possibility that we want to suggest comes by considering a multi-

layer in the periodicity direction as an open resonator, in which some modes exist

[286]. Designing properly the band structure and bounding this piece of mater

with reflector will make it a resonant cavity.

Finally, a challenging task that remains unaccomplished is the image formation

by means of AiBs. For that purpose, an array of subwavelength nondiffracting

beams may be excited on a metallic surface. Each beam will act as a pixel in a

1D image. This idea can be extended to two-dimensional images by using BBs

propagating in multilayered metamaterials or wire media.





Appendix A

Propagation Matrix Method

The relationship between the tangential components of the vectorial field, E, in a

layered medium is linear. In this Appendix we introduce the propagation matrix

method: a useful tool to calculate the linear relations between the field amplitudes

in a layered media.

Let us consider the multilayer structure from Fig. A.1, composed of two semi-

infinite media sandwiching J − 1 media. For simplicity we assume that each

zJzj-1z1

AJ+1

BJ+1

CJ

DJ

Aj+1

Bj+1

Cj

Dj

Aj

Bj

Cj-1

Dj-1

A2

B2

C1

D1

zj

... ...
ŷ

ẑx̂

FIGURE A.1: Electric field amplitudes within an arbitrary multilayer. A j and
C j (B j and D j) represents the right-going (left-going) waves. A j and B j are used
for waves at the right-hand side of the interfaces, whereas C j and D j are used

for waves at the left-hand side of the interface.
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medium has a real permittivity, ε j, and permeability, µ j. We set a TE electric

field in the direction of the unitary vector x̂. The field is a superposition of prop-

agating and counterpropagating plane waves defined by the ky components of the

wave vector. Complex amplitude A j and C j goes for the right-going waves while

the B j and D j describes the left-going waves. A j and B j implies waves at the

right-hand side of an interface, whereas C j and D j implies waves at the left-hand

side of an interface. Finally, the field amplitudes subscripts indicate the medium.

The electric field at the jth layer (z j−1 < z < z j) has a time-harmonic dependence

exp(−iωt) and a spatial dependence

E j(y,z) =
[
A jeikz j(z−z j−1)+B je−ikz j(z−z j−1)

]
eikyyx̂ =

=
[
C jeikz j(z−z j)+D je−ikz j(z−z j)

]
eikyyx̂, (A.1)

where the z component of the wave vector satisfies k2
z j = k2

0ε jµ j− k2
y .

By simple inspection of Eq. (A.1) we conclude that the constant amplitudes of the

jth layer at z j−1 and z j are related by

 A j

B j

=
=
P j

 C j

D j

 , (A.2)

were we introduce the unimodular propagation matrix

=
P j=

 eikz j(z j−1−z j) 0

0 e−ikz j(z j−1−z j)

 . (A.3)
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The magnetic field can be derived applying the Maxwell curl equation ∇×E j =

iµ jµ0ωH j to Eq. (A.1) in each medium

H j(y,z) = 1
ωµ jµ0

[
kz j
(
C jeikz j(z−z j)−D je−ikz j(z−z j)

)
ŷ+

−ky
(
C jeikz j(z−z j)+D je−ikz j(z−z j)

)
ẑ
]

eikyy. (A.4)

In absence of surface currents and charges, the boundary conditions at z j are

x̂ · [E j(y,z j)−E j+1(y,z j)] = 0, (A.5a)

ŷ · [H j(y,z j)−H j+1(y,z j)] = 0. (A.5b)

If we substitute (A.1) and (A.4) in (A.5) then, the boundary conditions for the

electric field amplitude are

C j +D j = A j+1 +B j+1, (A.6a)

kz j

µ j
(C j−D j) =

kz j+1

µ j+1
(A j+1−B j+1) . (A.6b)

This linear system of equations can be rewritten as

=
Ds j

 C j

D j

=
=
Ds j+1

 A j+1

B j+1

 , (A.7)

being the unimodular dynamical matrix elements

=
Ds j=

 1 1
kz j
µ j
− kz j

µ j

 . (A.8)

The product
=
D−1

s j
=
Ds j+1 transforms the complex amplitudes at the exit of the jth
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Dual quantities
E j H j

H j −E j

ε j µ j

µ j ε j

TABLE A.1: Dual quantities for electric and magnetic current sources. Mag-
nitudes in the left column have an analogous, or dual expression in the right

column.

interface into the input amplitudes at the ( j+1)th interface. The repeated appli-

cation of the above transmission and propagation transformations for the J− 1

layers leads to:  C1

D1

=
=
Ms

 AJ+1

BJ+1

 , (A.9)

=
Ms being a product of matrices 2×2 called the transfer matrix,

=
Ms=

 M11 M12

M21 M22

=
=
D−1

s1

[
J

∏
j=2

=
Ds j

=
P j

=
D−1

s j

]
=
DsJ+1 . (A.10)

If there is no source at the outside of a multilayer, then there are no left-going

waves in the last media, BJ+1 = 0. As a consequence, the matrix components

M11 and M21 determine the multilayer transmission coefficient, T = AJ+1/C1, and

reflection coefficient, R = D1/C1,

T =
1

M11
, (A.11a)

R =
M21

M11
. (A.11b)

The TE-modes amplitudes along parallel surfaces have been connected by the

transfer matrix formulation. It is possible to repeat this process for TM-modes
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by following an analogous procedure. Alternatively, expressions for TM-modes

can be infer applying the duality theorem [287] on the earlier deduced TE-modes

expressions. Theorem applies to a set of equations with null electric current den-

sity, |J|= 0, or magnetic current density, |M|= 0. A new set of equations for TM

modes can be produce by substituting the EM parameters and fields for its dual

quantities following the correspondences shown on Table A.1. Thus, the dynamic

matrix for TM-modes

=
Dp j =

 1 1
kz j
ε j
− kz j

ε j

 , (A.12)

could be inferred from Eq. (A.7).

In this Appendix we have considered that the electric field, E, is linearly polarized

along the x axis. However, provided a s-polarization, this field can be oriented in

other direction within the plane xy. In such a case it may also be used a new

Cartesian coordinate system, (x′,y′,z), were the electric field points along the x′

axis. In particular, the transverse wave vector k⊥ =
√

k2
x + k2

y might be referred

as ky′ in this new coordinate system. After this transformation we may follow the

transfer matrix formulation given above.
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[166] R. Kotyński, T.J. Antosiewicz, K. Król, and K. Panajotov. Two-

dimensional point spread matrix of layered metal-dielectric imaging ele-

ments. J. Opt. Soc. Am. A, 28(2):111, 2011.

[167] J.B. Pendry and S.A. Ramakrishna. Refining the perfect lens. Phys. B

Cond. Matter, 338(1):329, 2003.



186 Bibliography

[168] M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M. Bowden, and

A.S. Manka. Transparent, metallo-dielectric, one-dimensional, photonic

band-gap structures. J. Appl. Phys., 83(5):2377, 1998.

[169] A. Yariv and P. Yeh. Electromagnetic propagation in periodic stratified

media. II. Birefringence, phase matching, and X-ray lasers. J. Opt. Soc.

Am. A, 67(4):438, 1977.

[170] R.W. Ziolkowski. Propagation in and scattering from a matched metama-

terial having a zero index of refraction. Phys. Rev. E, 70(4):046608, 2004.

[171] M. Silveirinha and N. Engheta. Tunneling of electromagnetic energy

through subwavelength channels and bends using ε-near-zero materials.

Phys. Rev Lett., 97(15):157403, 2006.

[172] V. Torres, V. Pacheco-Peña, P. Rodríguez-Ulibarri, M. Navarro-Cía,

M. Beruete, M. Sorolla, and N. Engheta. Terahertz epsilon-near-zero

graded-index lens. Opt. Express, 21(7):9156, 2013.

[173] P.A. Belov, C.R. Simovski, P. Ikonen, M.G. Silveirinha, and Y. Hao. Image

transmission with the subwavelength resolution in microwave, terahertz,

and optical frequency bands. J. Commun. Technol. El+, 52(9):1009, 2007.

[174] H. Liu, Shivanand, and K.J. Webb. Subwavelength imaging opportunities

with planar uniaxial anisotropic lenses. Opt. Lett., 33(21):2568, 2008.

[175] J. Elser, V.A. Podolskiy, I. Salakhutdinov, and I. Avrutsky. Nonlocal effects

in effective-medium response of nanolayered metamaterials. Appl. Phys.

Lett., 90(19):191109, 2007.



187

[176] A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar. Complex band structure of

nanostructured metal-dielectric metamaterials. Opt. Express, 21(2):1593,

2013.

[177] J. Luo, H. Chen, B. Hou, P. Xu, and Y. Lai. Nonlocality-induced negative

refraction and subwavelength imaging by parabolic dispersions in metal-

dielectric multilayered structures with effective zero permittivity. Plas-

monics, 8(2):1095, 2013.

[178] J.B. Theeten, D.E. Aspnes, and R.P.H. Chang. A new resonant ellipsomet-

ric technique for characterizing the interface between GaAs and its plasma-

grown oxide. J. Appl. Phys., 49(12):6097, 1978.

[179] J.T. Shen and P.M. Platzman. Near field imaging with negative dielectric

constant lenses. Appl. Phys. Lett., 80(18):3286, 2002.
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