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1. Introduction

The nuclear energy density functional (NEDF) method is a tool of choice [1] to treat the

many-body problem in the medium-heavy region of the nuclear mass chart. The form of

the energy functional to be used is not known a priori and there exists thus a great deal

of versatility regarding its parameterization. In practice, two families of non-relativistic

NEDF parameterizations are mainly used, the one derived from the local Skyrme [2, 3]

interaction and the one obtained from the non-local Gogny [4] one.

The very first applications of the Skyrme pseudo-potential for calculating ground

state properties of even-even nuclei was done by Brink and Vautherin [5] by means of

a self-consistent Hartree-Fock (HF) calculation [6]. In this case, the authors slightly

modified the form of the original Skyrme interaction [2, 3] to simplify the resulting HF

calculations. In particular the tensor and higher order momentum terms (i.e. D-wave)

were removed, and the contact three-body term was replaced with a density-dependent

two-body term. Hereafter, the Skyrme pseudo-potential assumed the standard form

that is widely used nowadays [7, 8], which can reproduce with a reasonable accuracy

several observables of both finite nuclei and infinite nuclear matter. From this pseudo-

potential it is possible to derive a functional [9], which is very useful in practical

calculations. The relation between functional and pseudo-potential is imposed by some

specific relations between the coupling constants of the functional itself [10].

Recently, a large scientific collaboration, named UNEDF [11, 12, 13], has studied

the optimization procedure used to determine the coupling constants of the Skyrme

functional [14, 15]. The authors have focused on the time even part of the standard

Skyrme fuctional [9] to discern whether or not its spectroscopic qualities could be

improved using the state of the art optimization procedure. In the latest article of

the UNEDF collaboration [16], the authors concluded that it is not possible to improve

the agreement between experimental observables and theoretical calculations based on

Skyrme functionals at single-reference level [17]. It is thus mandatory to go beyond

the standard form of Skyrme functionals. Two possible ways can be identified: (i)

following the spirit of the self-consistent mean field theory, where the major ingredient

is an effective pseudo-potential and where the correlations beyond mean-field are added

afterwards [1], (ii) using the NEDF theory, where the building block is the functional

which includes all correlations [18]. Concerning the first approach, it is worth mentioning

the recent works concerning the exploration of other additional tensor terms [19] or a

general three body contact term [20] into the Skyrme pseudo-potential. In the present

article, we continue this exploration of extra terms by investigating the role of gradient

terms in the central part of the pseudo-potential.

The study of higher-order terms has been systematically performed in Refs. [10, 21].

The idea behind the inclusion of higher derivative terms is to mimic the presence of a

finite range in the nuclear force. In its original article Skyrme introduced for the very

first time this concept [2], but he stopped the development at second order, although

in the same article he mentioned the possible importance of fourth order terms. To
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quantify the quality of this approximation, we refer to a very recent study [22] done by

Carlsson and collaborators within the context of Density Matrix Expansion (DME). It

has been shown that the inclusion of 4th order terms improves the agreement among the

calculations done with the complete finite range pseudo-potential (i.e. Gogny) and the

DME calculations by one order of magnitude going from an average difference of ≈ 10

MeV at 2nd order to ≈ 1MeV at 4th order. The inclusion of 6th order term improves

further the agreement, but the relative gain is not so important as in the previous case.

Following this motivation, we have investigated in ref. [23] the explicit form up

to the fourth-order of the Skyrme pseudo-potential in Cartesian basis, compatible

with Galilean and gauge invariance. It is important to notice that the original extra

term suggested by Skyrme [2] and called D-wave, does not satisfy the gauge-invariance

symmetry [24] and the resulting pseudo-potential violates the continuity equation [25].

Moreover it does not contribute to some important properties of infinite nuclear matter

as the equation of state (EoS). In contrast, the new terms deduced in [23] are gauge

invariant by construction and they do give non-zero contribution to the EoS of infinite

nuclear matter [26]. These terms are actually a mix of a S and D partial wave. In

this work, we continue our previous investigation by giving two important tools that

are required to incorporate the 4th order terms into a fitting procedure to fix its

coefficients. In particular we have noticed that the major modification come from the D-

wave coupling, while the S-wave term at 4th order does not introduce difficult changes.

For such a reason we will usually speak about D-wave terms only although to respect

gauge invariance we have been obliged to consider also 4th order terms in S-wave.

The article is organized as follows: in Sec. 2, we investigate the properties of the

functional derived from the 4-th order pseudo-potential, in particular we introduce all

the necessary fields in spherical symmetry to be injected into a Schrödinger equation

to solve HF equations. In Sec. 3, we derive the formalism of the Linear Response

(LR) theory for these extra terms and present in particular the general expression

of the inverse-eergy-weighted sum rule, which is the tool of choice to detect possible

instabilities. We present our main conclusions in Sec. 4.

2. Formalism

2.1. The energy density functional

The standard parameterization of the local Skyrme NEDF kernel reads as the sum of a

kinetic term, the Skyrme potential term that models the contribution from the strong

force in the particle-hole channel, a pairing term, the Coulomb term (calculated using

the Slater approximation [27]) and a correction term that approximately removes the

excitation energy from the spurious motion of the localized center of mass

E = Ekin + ESk + Epair + ECoul + Ecm . (1)

The Skyrme potential energy, ESk, can be parametrized directly [9] or derived as the

average value of an effective interaction in a Slater determinant state. The latter
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approach induces interrelations between the coupling constants entering the NEDF

kernel and thus reduces the number of free parameters as compared to the former [10].

The advantage of using a functional based on an effective interaction instead of a

general one is to avoid in a simple manner spurious instabilities in multi-reference

calculations [17, 28, 29, 30]. If one is interested in deriving both ESk and Epair from

the same effective interaction, one must compute their average values in a Bogoliubov

state.

2.1.1. Skyrme interaction with D-wave term. The generalized Skyrme effective

interaction considered in this paper reads

vSk ≡ v(0) + v(2) + v(4) + vLS + vT + v3b , (2)

where the different terms v(0), v(2), v(4) corresponds to the different contribution order

by order to the central term [10, 23, 26]. They read

v(0) = t0 (1 + x0P̂σ) , (3)

v(2) =
1

2
t1 (1 + x1P̂σ)[k

′2 + k2] + t2 (1 + x2P̂σ)k
′ · k , (4)

v(4) =
1

4
t
(4)
1 (1 + x

(4)
1 Pσ)

[

(k2 + k′2)2 + 4(k′ · k)2
]

+ t
(4)
2 (1 + x

(4)
2 Pσ)(k

′ · k)(k2 + k′2) , (5)

where the definition of r, R, k, k′ and P̂σ is standard and can be found in the review

paper of Bender et al. [1]. In terms of partial waves the 0th order contains only S wave,

the 2nd order is a mixture of S and P waves, while the 4th order mixes S, P and D

waves. As already briefly explained in the introduction, the major modifications comes

from the D-wave coupling, while the role of the higher order S-wave is to satisfy the

gauge invariance. The spin-orbit term simply reads

vLS(r) = iW0 (σ1 + σ2) · [k
′ × δ(r) k] . (6)

The inclusion of higher order terms does not affect the spin-orbit term. In fact as already

discussed in ref. [23], this is the only possible gauge-invariant structure we can build. A

contribution to the spin-orbit term, which respects gauge invariance, could only come

from tensor terms vT [19, 23] which have been discarded here for simplicity. We refer

to the discussion in Ref. [23] for more details. Finally we have the three-body term v3b,

which has been recently investigated by Sadoudi et al. [20]. In the present article we

substitute it with a simple density dependent term as [5]

v3b(r) ≈ vDD(r) =
1

6
t3 (1 + x3P̂σ)ρ

α(R) δ(r) . (7)

This corresponds to taking only the simplest term composed by three Dirac delta in

the construction of the three-body potential [20]; for α = 1 there is in fact an equality

of their respective Hartree-Fock expectation values. The use of an integer power for

α (but not necessary 1) is required to avoid some of instabilities in multi-reference

calculations [31]. The inclusion of an explicit three body term would slightly change the
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equations presented in this article, but this would not represent a big effort compared

to the one of including the D-wave coupling. In this simplified version of the Skyrme

pseudo-potential in Eq. (2), we need to constrain 2 coefficients at 0th order, 4 at 2nd

order and 4 at 4th order, 1 spin-orbit parameter and 3 coefficients for the density

dependent term of Eq. (7). The total number of coefficients is thus 14. Using a

real three-body term and a first order tensor term would increase the parameters to

18. Although it is a large number compared to standard Skyrme pseudo-potential [7],

it is however smaller than the number of free parameters used in many DFT based

approaches [18, 32]. It is thus possible to determine a new fitting protocol to determine

these parameters.

2.1.2. Local densities and currents. Neutron (q = n) and proton (q = p) density

matrices are written in position⊗spin⊗isospin space according to

ρq(rσ, r
′σ′) =

1

2
ρq(r, r

′)δσσ′ +
1

2
sq(r, r

′) · 〈σ′|σ̂|σ〉 ,

where σ̂ denotes denotes the vector of spin Pauli matrices and

ρq(r, r
′) ≡

∑

σ

ρq(rσ, r
′σ) , (8a)

sq(r, r
′) ≡

∑

σσ′

ρq(rσ, r
′σ′) 〈σ′|σ̂|σ〉 . (8b)

Below, we not only make use of quantities labelled by q = n, p, but also of the associated

isoscalar (t = 0) and isovector (t = 1) quantities. The former (latter) are obtained by

taking the sum (difference) of corresponding neutron and proton quantities.

The standard Skyrme energy density functional (EDF) kernel derived from the

interaction defined through Eq. (2) can be expressed in terms of local densities and

currents, and we refer the reader to Refs. [1, 9, 19] for more details. These are

matter (scalar) density ρq(r), kinetic (scalar) density τq(r), current (vector) density

jq(r), spin (pseudo-vector) density sq(r), spin kinetic (pseudo-vector) density Tq(r),

spin-current (pseudo-tensor) density Jq,µν(r), and tensor-kinetic (pseudo-vector) density

Fq(r) densities. Densities ρq(r), τq(r) and Jq,µν(r) are even under time-reversal

transformation while sq(r), Tq(r), jq(r) and Fq(r) are odd and are defined as (to have

a better notation the q index is omitted in the following densities)

Jµν(r) =
1

2i

(

∇µ −∇′
µ

)

sν(r, r
′)|

r=r′
, (9a)

Tµ(r) = ∇ ·∇′sµ(r, r
′)|

r=r′
, (9b)

jµ(r) = −
i

2
(∇µ −∇′

µ) ρ(r, r
′)|

r=r′
, (9c)

Fµ(r) =
1

2
(∇µ∇

′
ν +∇′

µ∇ν) sν(r, r
′)|

r=r′
. (9d)

Note that for the density Fµ(r) written above, and for all formulas in this paper, the

convention of an implicit sum for repeated indices is used. The 4th order contribution
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to the Skyrme pseudo-potential (Eq. 5) requires the definition of new additional

densities [33]

τµν(r) = ∇µ∇
′
ν ρ(r, r

′)|
r=r′

, (10a)

Kµνκ(r) = ∇µ∇
′
ν sκ(r, r

′)|
r=r′

, (10b)

Πµ(r) = ∇ ·∇′jµ(r, r
′)|

r=r′

=
1

2i

(

∇µ −∇′
µ

)

τ(r, r′)|
r=r′

, (10c)

Vµν(r) = ∇ ·∇′Jµν(r, r
′)|

r=r′

=
1

2i

(

∇µ −∇′
µ

)

Tν(r, r
′)|

r=r′
, (10d)

Q(r) = ∆∆′ ρ(r, r′)|
r=r′

, (10e)

Sµ(r) = ∆∆′ sµ(r, r
′)|

r=r′
. (10f)

Similarly to the cartesian spin-current pseudo-tensor density Jq,µν(r), τq,µν(r) can be

decomposed into a pseudo-scalar, an anti-symmetric vector and a symmetric traceless

pseudo-tensor part as

τq,µν(r) =
1

3
δµν τ

(0)
q (r) +

1

2
ǫµνκ τ

(1)
q,κ(r) + τ (2)q,µν(r) , (11)

where δµν is the Kronecker symbol and ǫµνκ the Levi-Civita tensor. In terms of Cartesian

components, one has

τ (0)q (r) ≡ τµµ(r) , (12a)

τ (1)q,κ(r) ≡ ǫκµν τq,µν(r) , (12b)

τ (2)q,µν(r) ≡
1

2
[τq,µν(r) + τq,νµ(r)]−

1

3
δµντq,κκ(r) . (12c)

Contrary to Jq,µν(r), the vector part τ
(1)
q,κ(r) is the only vanishing contribution when

spherical symmetry is imposed. As we will see in the following section, the presence

of rank-2 tensor in spherical symmetry will introduce major modifications to the mean

field equations.

2.1.3. The Skyrme energy density functional. We write the Skyrme part of the NEDF

kernel in the more convenient form

ESk ≡ E
(0)
Sk + E

(2)
Sk + E

(4)
Sk + ELS

Sk + EDD
Sk

≡
∑

t=0,1

∫

dr
[

H
(0)
t (r) +H

(2)
t (r) +H

(4)
t (r) +HLS

t (r) +HDD
t (r)

]

,

where local energy densities have been introduced. Excluding E
(4)
Sk one gets the standard

Skyrme functional, and the explicit expressions for the energy densities can be found in

the literature [9, 19].
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The 4th order contribution to the functional kernel can be decomposed by analysing

the behaviour of τq,µν and Tq,µνκ under time-reversal [9]. One can thus distinguish

between the even part, that survives in time-reversal symmetric systems, and the odd

part, that is non-zero only in time-reversal symmetry breaking systems. Omitting the

dependence on the position vector, one has

H
(4)
t = [H

(4),even
t +H

(4),odd
t ] , (13a)

H
(4),even
t = C

(4)∆ρ
t (∆ρt)

2 + C
(4)Mρ
t M

even
t [ρt] + C

(4)Ms
t M

even
t [st] , (13b)

H
(4),odd
t = C

(4)∆s
t (∆st)

2 + C
(4)Mρ
t M

odd
t [ρt] + C

(4)Ms
t M

odd
t [st] , (13c)

where the relation between 4th order coupling constants and 4th order interaction

parameters are given in Appendix D. The t-index is omitted in the M expressions for

the sake of simplicity. All the indices are summed over the x, y, z coordinates.

M
even[ρ] =

1

8

{

ρQ + τ 2
}

+
1

4
[τµντµν − τµν∇µ∇νρ ] , (14a)

M
even[s] = −

1

8

{

(∇µJµν)
2 + 4JµνVµν

}

, (14b)

M
odd[ρ] = −

1

8

{

(∇ · j)2 + 4 j ·Π
}

, (14c)

M
odd[s] =

1

8

{

s · S + T2
}

+
1

4
(KµνκKµνκ − Kµνκ∇µ∇νsκ) . (14d)

Since in this section we focus on the ground state properties of even-even nuclei, we shall

consider only the time even part HD,even
t in the following. The time odd part HD,odd

t will

be explicitly taken into account in the section devoted to the properties of the Linear

Response theory for this functional.

2.1.4. The single-particle Hamiltonian. The isospin representation of the NEDF is

convenient for a discussion of its physical content. Many of available Hartree-Fock or

Hartree-Fock-Bogoliubov (HFB) codes use a proton-neutron representation [34] that is

better suited to the construction of the one-body potentials and the symmetries chosen

here. Thus, the total time-even part of the 4th order energy density is expressed as

H(4),even = C
(4)∆ρ
− (∆ρq)

2 + 2C
(4)∆ρ
1 (∆ρ0)

2

+
1

8
C

(4)Mρ
−

{

[

ρ0Q0 + τ 20
]

+ 2 [τ0,µντ0,µν − τ0,µν∇µ∇νρ0]
}

+
1

4
C

(4)Mρ
1

{

[

ρq Qq + τ 2q
]

+ 2 [τq,µντq,µν − τq,µν∇µ∇νρq]
}

−
1

8
C

(4)Ms
−

[

(∇µJ0,µν)
2 + 4J0,µνV0,µν

]

−
1

4
C

(4)Ms
1

[

(∇µJq,µν)
2 + 4Jq,µνVq,µν

]

, (15)

where we have introduced a shorthand notation CX
0 −CX

1 ≡ CX
− , being X = ∆ρ,Mρ, . . .

The equations of motion for proton and neutron single-particle states are obtained

through standard functional derivative techniques [1, 9] and read

ĥq(r)ψi(r) = εi ψi(r) . (16)
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The expression of the one-body hamiltonian ĥq(r) as obtained from the standard Skyrme

functional has been given in Ref. [34]. In the present case, the 4th order contribution

provides the effective mass with a tensor character (see Eq. (19)) such that the one-body

Hamiltonian must be generalized to the form

ĥq(r) = Uq(r) + ∆
(

Vq(r)∆
)

−∇µ · Bq,µν(r)∇ν −
i

2
[Wq,µν(r)∇µ +∇µWq,µν(r)] σ̂ν ,

with the following fields (we indicate explicitly here only the 4th order contribution)

V (4)
q (r) =

δE
(4)
Sk

δQq(r)
=

1

8
C

(4)Mρ
− ρ0 +

1

4
C

(4)Mρ
1 ρq , (17)

U (4)
q (r) =

δE
(4)
Sk

δρq(r)

= 2C
(4)∆ρ
− ∆∆ρ0 +

1

4
C

(4)Mρ
−

{ 1

2
Q0 −∇µ∇ντ0,µν

}

+ 4C
(4)∆ρ
1 ∆∆ρq +

1

2
C

(4)Mρ
1

{ 1

2
Qq −∇µ∇ντq,µν

}

, (18)

and for Bq,µν

Bq,µν ≡
δESk
δτµν(r)

=
{

~
2

2m
+ Cτ

−ρ0 + 2Cτ
1ρq +

1

4
C

(4)Mρ
− τ0 +

1

2
C

(4)Mρ
1 τq

}

δµν

+
1

4
C

(4)Mρ
− [2τ0,µν −∇µ∇νρ0] +

1

2
C

(4)Mρ
1 [2τq,µν −∇µ∇νρq]

−
1

2
C

(4)Ms
− J0,µν − C

(4)Ms
1 Jq,µν . (19)

The spin-orbit field Wq,µν(r) is also a tensor to which the 4th order contributes

W (4)
q,µν(r) =

δE
(4)
Sk

δJq,µν(r)

=
1

4
C

(4)Ms
− ∇µ∇κJ0,κν +

1

2
C

(4)Ms
1 ∇µ∇κJq,κν

−
1

2
C

(4)Ms
− V0,µν − C

(4)Ms
1 Vq,µν . (20)

We refer to Ref. [9] for the expressions of the fields at second order.

2.2. Spherical symmetry

In this section, we enforce the spherical symmetry on the one-body Hamiltonian. This

is of particular interest to perform calculations of semi-magic nuclei. The single-particle

wave functions solutions of Eq. (16), from which the densities are built, are labelled

by (n, ℓ, j,m, q), where n denotes the principal quantum number, ℓ the orbital angular

momentum, j the total angular momentum, m the projection of the latter on the z-

axis, and q the isospin projection. Wave functions separate into radial, angular and spin
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parts, the latter two making up a spherical harmonic tensor Ωℓjm(r̂)

ψnℓjmq(r) = unℓjq(r) Ωℓjm(r̂) =
1

r
Rnℓjq(r) Ωℓjm(r̂) . (21)

After some tedious calculations, Eq. (16) can be solved to determine the radial part of

the wave function Rnℓjq(r) for each quantum number {nℓj} and it reads

A4R
(4)
nℓj + A3R

(3)
nℓj + A2R

(2)
nℓj + A1R

(1)
nℓj + A0Rnℓj = ǫnℓjRnℓj . (22a)

In the following equations a superindex (i) on a radial function represents its ith

derivative with respect to the radial coordinate r. The quantities An are defined as

A4 =
1

8
C

(4)Mρ
− ρ0 +

1

4
C

(4)Mρ
1 ρq (22b)

A3 =
1

4
C

(4)Mρ
− ρ

(1)
0 +

1

2
C

(4)Mρ
1 ρ(1)q (22c)

A2 = −
~
2

2m
− Cτ

− ρ0 + 2Cτ
1ρq −

1

4
C

(4)Mρ
−

[

3τ0R + τ0C −
3

2
ρ
(2)
0

]

(22d)

−
1

2
C

(4)Mρ
1

[

3τqR + τqC −
3

2
ρ(2)q

]

−
ℓ(ℓ+ 1)

r2

[

1

8
C

(4)Mρ
− ρ0 +

1

4
C

(4)Mρ
1 ρq

]

A1 = − Cτ
−ρ

(1)
0 − 2Cτ

1ρ
(1)
0

+
1

4
C

(4)Mρ
−

[

3τ
(1)
0R

+ τ
(1)
0C

− ρ
(3)
0

]

+
1

2
C

(4)Mρ
1

[

3τ (1)qR
+ τ (1)qC

− ρ(3)q

]

+
ℓ(ℓ+ 1)

r2

[

1

4
C

(4)Mρ
−

(

ρ
(1)
0 − 2

ρ0
r

)

+
1

2
C

(4)Mρ
1

(

ρ(1)q − 2
ρq
r

)

]

(22e)

A0 = Uq(r) +Wq(r)

+ Cτ
−

ρ
(1)
0

r
+ 2Cτ

1

ρ
(1)
q

r
+
ℓ(ℓ+ 1)

r2

[

−
~
2

2m
+ Cτ

−ρ0 + 2Cτ
1ρq

]

+
1

4
C

(4)Mρ
−

[

3
τ0R
r

−
ρ
(3)
0

r

]

+
1

2
C

(4)Mρ
1

[

3
τqR
r

−
ρ
(3)
q

r

]

−
ℓ(ℓ+ 1)

4r2
C

(4)Mρ
−

[

τ0R +
1

2
ρ
(2)
0 + 3

ρ
(1)
0

r
+ 3

ρ0
r2

]

−
ℓ(ℓ+ 1)

2r2
C

(4)Mρ
1

[

τqR +
1

2
ρ(2)q + 3

ρ
(1)
q

r
+ 3

ρq
r2

]

+
ℓ2(ℓ+ 1)2

8r4
C

(4)Mρ
− ρ0 +

l2(l + 1)2

4r4
C

(4)Mρ
1 ρq . (22f)

We recall that the two scalar fields used in previous expressions read

Uq(r) =
δESk
δρq(r)

(23)

= USk
q (r) + 2C

(4)∆ρ
− ∆∆ρ0 + 4C

(4)∆ρ
1 ∆∆ρq

+
1

4
C

(4)Mρ
−

{ 1

2
Q0 −∇µ∇ντ0,µν

}

+
1

2
C

(4)Mρ
1

{ 1

2
Qq −∇µ∇ντq,µν

}
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Wq(r) = W Sk
q (r) +

(

j(j + 1)− ℓ(ℓ+ 1)−
3

4

)[

3

4
C

(4)Ms
−

V0(r)

r
+

3

2
C

(4)Ms
1

Vq(r)

r

]

, (24)

where USk
q (r),W Sk

q (r) are the central and spin-orbit fields for the standard Skyrme

functional up to second order [7]. The local density are now expressed in spherical

symmetry as

ρq,0(r) =
∑

{α}

(2j + 1)

4π

[

u{α}(r)
]2

(25)

where {α} ≡ {nlj} ({nljq}) if the index of the density is q (0). The summation is

limited over {α} states below the Fermi energy, and u{α} ≡ R{α}/r. Furthermore, one

has (Xµ represent the usual cartesian coordinates)

τq,0,µν(r) =
1

2
τq,0,C δµν +

XµXν

r2

[

τq,0,R +
1

2
τq,0,C

]

, (26)

τq,0,R(r) =
∑

{α}

(2j + 1)

4π

[

u′{α}(r)
]2

, (27)

τq,0,C(r) =
∑

{α}

(2j + 1)

4π
ℓ(ℓ+ 1)

[

u{α}(r)
]2

r2
, (28)

Vq,0(r) =
∑

{α}

(2j + 1)

4π







[

u{α}(r)
]2

r3
[1− ℓ(ℓ+ 1)]−

[

u′{α}(r)
]2

r







[

j(j + 1)− ℓ(ℓ+ 1)−
3

4

]

Jq,0(r) =
∑

{α}

(2j + 1)

4π

[

j(j + 1)− ℓ(ℓ+ 1)−
3

4

]

[

u{α}(r)
]2

r
, (29)

Qq,0(r) =
∑

{α}

(2j + 1)

4π

[

∆u{α}(r)− ℓ(ℓ+ 1)
u{α}(r)

r2

]2

. (30)

Contrary to the standard Skyrme potential, the differential equation is now of fourth

order, but no particular other difficulty appears.

3. Linear response for 4th order component

In a recent series of articles, we have presented the Linear Response formalism [35, 36,

37, 38] for a standard Skyrme functional in both symmetric nuclear matter (SNM) and

pure neutron matter (PNM). In particular, using the LR formalism we have studied the

presence of finite-size instabilities in the infinite medium. The presence of these modes

can be related to the presence of analogous instabilities in finite nuclei [39, 40, 41, 42].

In ref. [43], we have performed a systematic study, although limited to the scalar-

isovector channel, of these instabilities showing that they arise from a badly constrained

the coupling constant that multiplies gradient terms. In the same article, we have

also derived a quantitative criterion to detect these instabilities using the simple LR

formalism in the infinite medium. Due to its very low computational cost, the LR
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formalism can be directly included into the optimization procedure used to determine the

coupling constants of the functional so to avoid the exploration of regions of parameters

that can not produce stable functionals. In Ref. [44], we have presented for the first

time a new fitting procedure based on the LR formalism to produce stable Skyrme

functionals.

In the present section, we extend the LR formalism for a standard Skyrme

functional in SNM to include 4th order terms. Since we want to focus here mainly

on the role of these higher order terms, we will neglect the explicit tensor contribution.

Before discussing the details of the response function, we have to briefly mention the

modifications induced by these extra terms into the effective mass, which is defined

as [45]

1

m∗(k)
=

1

k

dU(k)

dk
, (31)

where U(k) is the mean-field potential and k is the impulsion of the particle. Using the

expression of the complete Skyrme functional including higher order terms, we have
( m

m∗

)

(0,0)
= 1 +

2m

~2
ρ0

[

Cτ
0 +

1

4
(k2F + k2)C

(4)Mρ
0

]

. (32)

For Skyrme’s original pseudo-potential, i.e. up to 2nd order, there is no explicit

momentum dependence. In fact, the highest order contribution is in k2: the derivative

together with the factor 1/k eliminates all momentum dependence. When 4th order is

added, we find terms in k4 and things are thus differents.

We already mentioned that this 4th order pseudo-potential has actually to be

considered as a polynomial expansion in terms of gradients of a finite-range potential.

It is thus not surprising to recover one fundamental aspect of any finite range pseudo-

potential, that is the momentum dependence of the effective mass. In nuclear physics,

since all energy scales are below the Fermi energy, it is traditional to take k = kF
in the above equation [46]. Eq.(32), can be re-expressed in terms of pseudo-potential

coefficients as
( m

m∗

)

(0,0)
= 1+

2m

~2
ρ0

[

1

16
(3t1 + t2(5 + 4x2)) +

1

16
(k2F + k2)(3t

(4)
1 + t

(4)
2 (5 + 4x

(4)
2 ))

]

.(33)

Qualitatively, it has been noticed in Ref. [26], that the interaction parameters is

one order of magnitude smaller between two orders (see also discussion in Ref. [47]).

For simplicity we will therefore consider t
(4)
1 ≃ t1/(10k

2
F ) and the same for the other

parameters. Thus, replacing k by kF is a good approximation only when

(k2F + k2)/(10k2F ) ≪ 1 , (34)

that is k ≃ 3kF . In the following we will present explicitly an illustration of the effect

of our approximation through the energy-weighted sum rule (EWSR).

The advantage of this approximation is that we can strongly simplify the expressions

of particle-hole (ph) propagators. With this proviso in mind, we can then generalize

our formalism in a straightforward way. All the ingredients and formulas are given
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in Appendix B, in particular the generalized Linhardht functions as well as the βi(q, ω)

functions (notations and conventions are those of Ref. [36, 37, 38, 48]) entering in the

resolution of Bethe-Salpeter equations are given explicitly.

Solving the the Bethe-Salpeter [35] equations in SNM, we obtain the response

function χ(α)(q, ω) of the system in each channel α, where α = (S,M, I) is a shorthand

notation for the quantum number of the system: S(I) is the total spin (isospin) and M

is the spin projection along the z-axis.

Since the number of coupled equations has largely increased as compared to the

case shown in Refs.[36, 37, 38, 35], we have decided to express the system of coupled

equations in matrix form as done in Ref. [48] and to solve them numerically to obtain

the response function of the system χ(α)(q, ω). The instabilities in SNM can thus be

found as the numerical solutions of

1/χ(α)(ω = 0, q) = 0 . (35)

From the matrix form, it is also possible to take explicitly the limit ω → ∞ and

get the energy-weighted sum rule M1. The explicit expression reads

M
(S,M,I)
1 /N =

q2

2m∗

[

1−
m∗ρ

2

(

W
(S)
2 +

[

4k2F + q2
]

W
(S)
4

)

]

. (36)

0 1 2 3 4

q [fm
-1

]

0

100

200

300

M
1(0

,0
) (q

)/
N

 [
M

eV
]

Numeric
Analytic

q
2
/2m

10% 20%

Figure 1. (Color online) The EWSR in the (0,0) channel at ρ = 0.16 fm−3 for the

modified version of SLy5, see text for details. The solid and dashed line correspond

to the numerical and analytical calculations of the M
(0,0)
1 using the LR formalism.

The symbols represent the result obtained with double commutator techniques. The

vertical dashed lines represent the deviation between the two methods.

In Fig.1, we show the EWSR at ρ = 0.16 fm−3 obtained in our LR code either

using the numerical integration or the analytic expansion (see Ref. [35] for more details)

in the (0,0) channel. Since there are no available parameterizations of the N2LO

functional obtained from a consistent fitting procedure, we have taken the SLy5 Skyrme
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functional [7, 8] and for the fourth order term we have taken 1/10 of the second order

value (no change in the x
(4)
i=1,2) parameters.

We notice that the analytic expansion and the numerical integration stay on top

of each other as expected, demonstrating the validity of our calculations. The EWSR

can also be calculated using double commutator techniques [49] as already explained in

Ref. [37]. The calculation with this method in the channel (0,0) is particularly simple.

In this case, the excitation operator is actually the plane wave eiqr. From the physical

point of view such operator represent a translation. Since our pseudo-potential is by

construction Galilean invariant [23], it commutes with this operator. As a result we are

left with the kinetic operator only and the EWSR reads M
(0,0)
1 = q2/2m. The result

is shown in Fig.1. We notice that the approximation on the momentum dependence of

the effective mass m∗(k = kF ) leads to a discrepancy less of 10% up to q ≈ 2 fm−1,

while at around q ≈3 fm−1 the relative error grows up to 20%. Since the EWSR can be

calculated analytically we can show that the discrepancy arises from the term

M
(0,0)
1 /N −

q2

2m
= −

1

8
C

(4)Mρ
0 q4ρ , (37)

where M
(0,0)
1 has been defined in Eq.36. We immediately observe that the differences

between the two approaches grows as q4.

4. Summary and conclusions

We have discussed the contribution of 4th order terms to standard Skyrme pseudo-

potential. In particular, we have studied how the corresponding single-particle equations

are modified by the presence of these higher derivative terms. The functional formalism

have been worked out at first in Cartesian basis and then specialized for the case of

spherical symmetry in view of a future fit. We have also presented the extension of

the formalism of the Linear Response theory in symmetric nuclear matter to take into

account these extra terms. The LR formalism has been shown [43] to be very useful to

detect finite-size instabilities and it can be also included directly into the optimization

procedure used to determine coupling constants [44]. With the tools presented in the

present article together with some important ground state properties of the infinite

medium already discussed in Refs. [23, 26], it is now possible to fit the coupling constants

of the functionals.
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Appendix A. Coupling constants of the fourth-order part of the Skyrme

EDF

The 4th order coupling constants of the Skyrme functional can be expressed in terms of

the parameters of the corresponding pseudo-potential by

Table A1. Coefficients of the normal part of the fourth order functional, Eq. (5), as

a function of the parameters of the pseudo-potential of Eq. (15). Missing entries are

zero.

t
(4)
1 t

(4)
1 x

(4)
1 t

(4)
2 t

(4)
2 x

(4)
2

C
(4)∆ρ
0 = + 9

128
− 5

128
− 1

32

C
(4)∆ρ
1 = − 3

128
− 3

64
− 1

128
− 1

64

C
(4)Mρ
0 = +3

4
+5

4
1

C
(4)Mρ
1 = −1

4
−1

2
+1

4
+1

2

C
(4)∆s
0 = − 3

128
+ 3

64
− 1

128
− 1

64

C
(4)∆s
1 = − 3

128
− 1

128

C
(4)Ms
0 = −1

4
1
2

+1
4

+1
2

C
(4)Ms
1 = −1

4
+1

4

Appendix B. Beta functions

The 4th order pseudo-potential requires extra βi(q, ω) functions for the calculation of

the response function of the infinite medium. In the following we give the expressions

of these new functions. The notations are those of Ref.[35].

βi=9,14(q, ω) =

∫

d3k

(2π)3
GHF (k,q, ω)Fi=9,14(k,q) (B.1)

with

Fi=9,14(k,q) ≡
k6

q6
,
k8

q8
,
k4(k · q)

q6
,
k4(k · q)2

q8
,
k2(k · q)3

q8
,
k6(k · q)

q8
. (B.2)

To do this calculations we have to introduce higher generalized Lindhardt functions

Π6 = −
mk2F
16π2

[

7 + k6 − ν2 − ν4 − ν6 +
257

3
k4 + 29ν2k4 +

167

3
k2 +

290

3
k2ν2 − 29ν4k2

+ (1 + (k − ν)2)(1 + k4 − 4kν + 30k2ν2 + ν4)A+(k, ν)

+ (1 + (k + ν)2)(1 + k4 + 4kν + 30k2ν2 + ν4)A−(k, ν)
]

, (B.3)

Π8 = −
mk2F
20π2

{

9 +
389

3
k2 +

2561

5
k4 + 427k6 + k8 − ν2 + 268k2ν2 +

1331

3
k4ν2

+ 46k6ν2 − ν4 −
145

3
k2ν4 + 256k4ν4 − ν6 − 46k2ν6 − ν8
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+
[

k8 − 2k7ν + 48k6ν2 + k6 − 94k5ν3 − 4k5ν + 350k4ν4

+ 55k4ν2 + k4 − 94k3ν5 − 200k3ν3 − 6k3ν + 48k2ν6 + 55k2ν4 + 66k2ν2 + k2 − 2kν7

− 4kν5 − 6kν3 − 8kν + ν8 + ν6 + ν4 + ν2 + 1
]

A+(k, ν)

+
[

k8 + 2k7ν + 48k6ν2 + k6 + 94k5ν3 + 4k5ν + 350k4ν4

+ 55k4ν2 + k4 + 94k3ν5 + 200k3ν3 + 6k3ν + 48k2ν6 + 55k2ν4 + 66k2ν2 + k2 + 2kν7

+ 4kν5 + 6kν3 + 8kν + ν8 + ν6 + ν4 + ν2 + 1
]

A−(k, ν)
}

, (B.4)

from which we can deduce

β9 =
1

64k6

[

Π6 − 6kνΠ4 + 16k3ν3Π0 −
8k3m∗kFν

3π2

]

β10 =
1

256k8

[

Π8 − 8kνΠ6 + 64k3ν3Π2 −
32k3kFm

∗ν

3π2
(1 + 2k2)

]

β11 =
1

32k5

[

4kν(k − ν)Π2 + (ν − k)Π4 +
2k(1 + 2k2)m∗kF

3π2

]

β12 =
1

64k6

[

(ν − k)2Π4 − 4kν(ν − k)2Π2 +
kFm

∗(−5− 76k2 − 120k4 + 20kν + 40k3ν)

30π2

]

β13 =
1

32k5

[

2kν(k − ν)3Π0 − (k − ν)3Π2 +
kFm

∗

30π2
(−5ν + 21k + 70k3 − 40k2ν + 10kν2)

]

β14 =
1

128k7
[

(ν − k)Π6 + 6kν(k − ν)Π4 + 16k3ν3(ν − k)Π0

+
kkFm

∗

15π2

(

15 + 84k2 + 80k4 + 40k3ν − 40k2ν2
)

]

. (B.5)

Appendix C. System of equations in each spin-isospin channel

Since the residual interaction is diagonal in isospin, all the Bethe-Salpeter equations are

decoupled with respect to this quantum number. Notice that in the S = 0 channel we

have just only one spin projectionM , thus we can neglect this index in this case in favor

of a lighter notation.

Appendix C.1. Channel (S, I) = (0, I)

The unknown quantities entering in the system of equations are

X0 = 〈G
(0,I)
RPA〉 X1 = 〈k2G

(0,I)
RPA〉

X2 =
√

4π
3
〈kY10G

(0,I)
RPA〉 X3 = 〈k4G

(0,I)
RPA〉

X4 =
√

4π
3
〈k3Y10G

(0,I)
RPA〉 X5 =

4π
3
〈k2Y 2

10G
(0,I)
RPA〉

Y1 =
√

4π
3

∑

M ′ M ′〈kY1M ′G
(1,M ′,I)
RPA 〉 Y2 =

√

4π
3

∑

M ′ M ′〈k3Y1M ′G
(1,M ′,I)
RPA 〉

Y3 =
4π
3

∑

M ′ M ′〈k2Y1M ′Y10G
(1,M ′,I)
RPA 〉
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which form together the vector denoted as X(0,I) in the following. From the Bethe-

Salpeter equation, one can obtained after some straightforward calculations a system

written in a matrix form as A(0,I)X(0,I) = B(0,I). For the sake of clarity, we decompose

the matrix A(0,I) as 2 columns matrix of size 3 × 9 and 6 × 9 respectively A(0,I) =

(A1 , A2) + I9, where I9 is the 9× 9 identity matrix. The matrices A1 and A2 read

































































−β0W
(0,I)
1 − q2β2W

(0,I)
2 − q4β5W

(0,I)
4 −β0W

(0,I)
2 − 2W

(0,I)
4 q2(2β2 − β3) 2W

(0,I)
2 qβ1 + 4W

(0,I)
4 q3β4

−q2β2W
(0,I)
1 − q4β5W

(0,I)
2 − q6β9W

(0,I)
4 −q2β2W

(0,I)
2 − 2W

(0,I)
4 q4(2β5 − β8) 2W

(0,I)
2 q3β4 + 4W

(0,I)
4 q5β11

−qβ1W
(0,I)
1 − q3β4W

(0,I)
2 − q5β11W

(0,I)
4 −qβ1W

(0,I)
2 − 2W

(0,I)
4 q3(2β4 − β6) 2W

(0,I)
2 q2β3 + 4W

(0,I)
4 q4β8

−q4β5W
(0,I)
1 − q6β9W

(0,I)
2 − q8β10W

(0,I)
4 −q4β5W

(0,I)
2 − 2W

(0,I)
4 q6(2β9 − β12) 2W

(0,I)
2 q5β11 + 4W

(0,I)
4 q7β14

−q3β4W
(0,I)
1 − q5β11W

(0,I)
2 − q7β14W

(0,I)
4 −q3β4W

(0,I)
2 − 2W

(0,I)
4 q5(2β11 − β13) 2W

(0,I)
2 q4β8 + 4W

(0,I)
4 q6β12

−q2β3W
(0,I)
1 − q4β8W

(0,I)
2 − q6β12W

(0,I)
4 −q2β3W

(0,I)
2 − 2W

(0,I)
4 q4(2β8 − β7) 2W

(0,I)
2 q3β6 + 4W

(0,I)
4 q5β13

4q3(β2 − β3)C∇J
I 0 0

4q5(β5 − β8)C∇J
I 0 0

4q4(β4 − β6)C∇J
I 0 0

































































(C.1)

















































































−β0W
(0,I)
4 4W

(0,I)
4 qβ1 2W

(0,I)
4 q2(β2 − 3β3) 4qβ0C

∇J
I 0 0

−q2β2W
(0,I)
4 4W

(0,I)
4 q3β4 2W

(0,I)
4 q4(β5 − 3β8) 4q3β2C

∇J
I

0 0

−qβ1W
(0,I)
4 4W

(0,I)
4 q2β3 2W

(0,I)
4 q3(β4 − 3β6) 4q2β1C

∇J
I

0 0

−q4β5W
(0,I)
4 4W

(0,I)
4 q5β11 2W

(0,I)
4 q6(β9 − 3β12) 4q5β5C

∇J
I 0 0

−q3β4W
(0,I)
4 4W

(0,I)
4 q4β8 2W

(0,I)
4 q5(β11 − 3β13) 4q4β4C

∇J
I 0 0

−q2β3W
(0,I)
4 4W

(0,I)
4 q3β6 2W

(0,I)
4 q4(β8 − 3β7) 4q3β3C

∇J
I

0 0

0 0 0 W
(1,I)
2 q2(β2 − β3) 2W

(1,I)
4 q2(β2 − β3) 4W

(1,I)
4 q3(β6 − β4)

+2W
(1,I)
4 q4(β5 − β8)

0 0 0 +W
(1,I)
2 q4(β5 − β8) 2W

(1,I)
4 q4(β5 − β8) 4W

(1,I)
4 q5(β13 − β11)

+2W
(1,I)
4 q6(β9 − β12)

0 0 0 W
(1,I)
2 q3(β4 − β6) 2W

(1,I)
4 q3(β4 − β6) 4W

(1,I)
4 q4(β7 − β8)

+2W
(1,I)
4 q5(β11 − β13)

















































































(C.2)

Finally, the column matrix B(0,I) reads B(0,I) = (β0, q
2β2, qβ1, q

4β5, q
3β4, q

2β3, 0, 0, 0).

Appendix C.2. Case S=1 M=0

Similarly to the previous subsection, we can build a vector X(1,0,I) whose components

are
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X0 = 〈G
(1,0,I)
RPA 〉 X1 = 〈k2G

(1,0,I)
RPA 〉

X2 =
√

4π
3
〈kY10G

(1,0,I)
RPA 〉 X3 = 〈k4G

(1,0,I)
RPA 〉

X4 =
√

4π
3
〈k3Y10G

(1,0,I)
RPA 〉 X5 =

4π
3
〈k2Y 2

10G
(1,0,I)
RPA 〉

Since the spin-orbit does not contribute in this channel, a closed system of equations

can be obtained with only six unknown quantities. The matrix A(1,0,I) can be deduced

from A(0,I) by taking C∇J
I = 0 and by substituting W

(0,I)
1,2,4 by W

(1,I)
1,2,4 .

The matrix B(1,0,I) reads B(1,0,I) = (β0, q
2β2, qβ1, q

4β5, q
3β4, q

2β3).

Appendix C.3. Case S=1 M=1

This channel is very close to (0, I) ones. The vector of unknown quantities X(1,1,I) has

the following components

X0 = 〈G
(1,1,I)
RPA 〉 X1 = 〈k2G

(1,1,I)
RPA 〉

X2 =
√

4π
3
〈kY10G

(1,1,I)
RPA 〉 X3 = 〈k4G

(1,1,I)
RPA 〉

X4 =
√

4π
3
〈k3Y10G

(1,1,I)
RPA 〉 X5 =

4π
3
〈k2Y 2

10G
(1,1,I)
RPA 〉

Y1 =
√

4π
3

∑

M ′ M ′〈kY1M ′G
(0,I)
RPA〉 Y2 =

√

4π
3

∑

M ′ M ′〈k3Y1M ′G
(0,I)
RPA〉

Y3 =
4π
3

∑

M ′ M ′〈k2Y1M ′Y10G
(0,I)
RPA〉

The matrix A(1,1,I) can be deduced from A(0,I) by simply substituting W
(0,I)
1,2,4 by W

(1,I)
1,2,4 .

Moreover, we have B(0,I) = B(1,1,I).

Appendix D. Expressions of W
(S,I)
i=1,4

The W
(S,I)
i=1,4 coefficients expressions entering in the response functions in Appendix C

can be expressed with respect to 4th order coupling constants of the Skyrme functional

as indicated in the table below. Note that only the 4th order contribution is written:

W
(S,I)
1 also receive other contributions from the usual Skyrme functional that are not

given here (see [37] for explicit expressions).
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Table D1. Coefficients of the normal part of the fourth order EDF, Eq. (13a), as

a function of the parameters of the pseudo-potential of Eq. (15). Missing entries are

zero.

C
(4)∆ρ
0 C

(4)∆ρ
1 C

(4)Mρ
0 C

(4)Mρ
1 C

(4)∆s
0 C

(4)∆s
1 C

(4)Ms
0 C

(4)Ms
1

W
(0,0)
1 8q4 −1

4
q4

W
(0,1)
1 8q4 −1

4
q4

W
(1,0)
1 8q4 −1

4
q4

W
(1,1)
1 8q4 −1

4
q4

W
(0,0)
4

1
2

W
(0,1)
4

1
2

W
(1,0)
4

1
2

W
(1,1)
4

1
2
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[35] C. Garćıa-Recio and J. Navarro and Nguyen Van Giai and Salcedo, L. L., Ann. Phys. (N.-Y.) 214

(1992) 214.

[36] Davesne, D., Martini, M., Bennaceur, K., and Meyer, J., Phys. Rev. C 80 (2009) 024314.

[37] A. Pastore, D. Davesne, Y. Lallouet, M. Martini, K. Bennaceur, and J. Meyer, Phys. Rev. C 85

(2012) 054317.

[38] A. Pastore, M. Martini, V. Buridon, D. Davesne, K. Bennaceur, and J. Meyer, Phys. Rev. C 86

(2012) 044308.

[39] Lesinski, T., Bennaceur, K., Duguet, T., and Meyer, J., Phys. Rev. C 74 (2006) 044315.

[40] Pastore, A., Bennaceur, K., Davesne, D., and Meyer, J., J. Mod. Phys. E 5 (2012) 1250041.

[41] Hellemans, V., Heenen, P.-H., and Bender, M., Phys. Rev. C 85 (2012) 014326.

[42] Schunck, N. et al., Phys. Rev. C 81 (2010) 024316.

[43] Hellemans, V. et al., Phys. Rev. C 88 (2013) 064323.

[44] Pastore, A., Davesne, D., Bennaceur, K., Meyer, J., and Hellemans, V., Physica Scripta 2013

(2013) 014014.

[45] Fetter, A. L. and Walecka, J. D., Quantum Theory of Many-Particle Systems, McGraw-Hill, New

York, 1971.

[46] Hebeler, K., Duguet, T., Lesinski, T., and Schwenk, A., Phys. Rev. C 80 (2009) 044321.

[47] M. Kortelainen, R. J. Furnstahl, W. Nazarewicz, and M. V. Stoitsov, Phys. Rev. C 82, 011304(R)

(2010).

[48] Pastore, A., Davesne, D., and Navarro, J., J.Phys. G: Nucl. Part. Phys. G41 (2014) 055103.

[49] Bohigas, O. and Lane, A.M. and Martorell, J., Phys. Rep. 51 (1979) 267.


	1 Introduction
	2 Formalism
	2.1 The energy density functional
	2.1.1 Skyrme interaction with D-wave term.
	2.1.2 Local densities and currents.
	2.1.3 The Skyrme energy density functional.
	2.1.4 The single-particle Hamiltonian.

	2.2 Spherical symmetry

	3 Linear response for 4th order component
	4 Summary and conclusions
	Appendix A Coupling constants of the fourth-order part of the Skyrme EDF
	Appendix B Beta functions
	Appendix C System of equations in each spin-isospin channel
	Appendix C.1 Channel (S,I)=(0,I)
	Appendix C.2 Case S=1 M=0
	Appendix C.3 Case S=1 M=1

	Appendix D Expressions of W(S,I)i=1,4

