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We present a numerical tool that searches an optimal cross-section geometry of silicon-on-insulator waveguides
given a target dispersion profile. The approach is a gradient-based multidimensional method whose efficiency
resides on the simultaneous calculation of the propagation constant derivatives with respect to all geometrical
parameters of the structure by using the waveguide mode distribution. The algorithm is compatible with
regular mode solvers. As an illustrative example, using a silicon slot hybrid waveguide with 4 independent
degrees of freedom, our approach finds ultra-flattened (either normal or anomalous) dispersion over 350 nm
bandwidth in less than 10 iterations.

OCIS codes: (130.2035) Integrated optics. Dispersion compensation devices; (130.3120) Integrated
optics. Integrated optics devices; (130.4310) Integrated optics. Nonlinear.

1. Introduction
Chromatic dispersion is one of the most important prop-
erties that controlls the physical behavior of waveguides
in both the linear and nonlinear regimes. Its design is
key to achieve high performance in applications such
as dispersion compensation [1], parametric amplification
[2], wavelength conversion [3, 4], or supercontinuum gen-
eration [5, 6]. The waveguide dispersion does not only
depend on its constituent materials, but also displays
a high sensitivity to changes in the geometry (see e.g.
[7]). This is specially true for silicon-on-insulator (SOI)
waveguides [2–6, 8]. Here, there is a high-index contrast
between materials and exists the possibility to engineer
the design at the nanometer scale. These characteris-
tics enable an unprecedented control on the waveguide’s
dispersion properties.

Algorithms allowing for the optimization of the de-
sign are tools of great interest. The most widely spread
techniques rely on commercially available software that
calculates the dispersion profile given a certain struc-
ture. This favors direct optimization methods by trial
and error. For example, the zero dispersion can be tuned
within the C-band by adjusting the height and width
of a strip waveguide [4, 5, 9]. Notwithstanding, there
are advanced configurations with multiple geometrical
degrees of freedom that allow for a much finer control
of the dispersion curve [10–12]. The multidimensional
optimization renders impractical the application of the
direct methods.

Gradient-based algorithms (GBAs) [13] speed up the
convergence process with estimations of the direction in
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the parameter space (e.g. the cross-section geometries of
the waveguide) that lead to the largest improvement of
the magnitude to be optimized (e.g. dispersion). Topol-
ogy optimization is a particular GBA that defines some
feature (e.g. the refractive index) of all the sampling
points of the cross-section as free parameters. Hence it
can manage a great number of degrees of freedom [14].
It has been previously used in nanophotonics design [14]
and dispersion compensating fibers [15].

In [16], our group proposed an inverse dispersion en-
gineering approach based on a multi-dimensional gradi-
ent algorithm to calculate directly the derivatives of the
propagation constant with respect to all the structural
parameters of a waveguide in a full vectorial framework.
It is worth emphasizing that this result does not rely on
any particular technique for solving the wave equation.
Certainly, this approach circumvents one of the main
disadvantages of direct methods and, therefore, provides
results in just a few iterations. Previously, it was suc-
cesfully applied in the context of photonic crystal fibers
[16, 17]

In this work, we apply this technique to SOI waveg-
uides. Due to its intrinsic high index-contrast, we take
special care of the vectorial nature of the problem, since
the axial component in electric and magnetic fields can
be significant in these waveguides [18]. In the next
section, we explain our gradient-based algorithm, pay-
ing particular attention to the specific numerical issues
related to high-index-contrast waveguides. Section 3
is devoted to the numerical results computed through
our procedure, including optimizations under additional
constraints, and in section 4 we deal with an analysis of
the solutions achieved. Finally, the main conclusions are
drawn in section 5.
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2. Gradient-based optimization algorithm
Gradient-based algorithms are the first choice in mul-
tidimensional optimization when the derivatives of the
fitness function are available [13]. So, with the aim of
tackling the dispersion engineering of waveguides, a pro-
cedure based in the evaluation of the derivatives of the
propagation constant, β, with respect to the design pa-
rameters was proposed in [16]. In this section we present
a close expression for those derivatives well-functioning
even in the case of high-index-contrast waveguides and
include a detailed description of their implementation.

For dispersion engineering purposes, a simple defini-
tion for the merit function in the optimization procedure
is the mean squared of the difference between the group-
velocity dispersion (GVD), namely β2(ω) = d2β/dω2,
of a particular structure represented by p and a target
GVD,

χ2(p) =
1

Nω

Nω∑
k=1

(
β2(p;ωk)− βtarget

2 (ωk)
)2
, (1)

where p = (p1, . . . , pN ) is the set of parameters defining
the waveguide degrees of freedom. This expression cor-
responds to the variance of the dispersion with respect
to the target dispersion profile in the frequency range of
design, and the optimum configuration will correspond
to the minimum of χ2.

In order to reach that minimum, we follow a sequen-
tial linear programming (SLP) strategy for producing
a series of quadratic problems to be minimized. To be
more precise, given a point in the parameter space, p(m),
we can obtain the linear approximation of β2(p) around
it,

βlin
2 (p;ω) = β2(p(m);ω) +∂pβ2(p(m);ω) · (p−p(m)), (2)

and, accordingly, a local (quadratic) approximation of
the actual merit function,

χ2
loc(p) =

1

Nω

Nω∑
k=1

(
βlin
2 (p;ωk)− βtarget

2 (ωk)
)2
. (3)

Thus, if ∂pβ2 is known, χ2
loc can be built, and its min-

imum, p(m+1), can be easily determined with no addi-
tional computational effort. This new point is expected
to be closer to the target and can be used as the starting
point in a new iteration of the procedure.

In appendix A, we go one step further than [16] and
derive the following expression for the gradient of the
propagation constant in the parameter space,

∂pβ =
ε0ω

2

∫
S

(
−et · (∂pεtt)et + (∂pεzz)e

2
z

)
dS∫

S

(et × ht) · ẑdS

, (4)

where integrals extend to all the transverse domain
where fields are defined, S, and involve components of
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Fig. 1. (a) Outline of the slot waveguide under study [11].
Comparison of the derivatives of the effective refractive index
(b) and the group-velocity-dispersion parameter (c) with re-
spect to the geometrical parameters h, w, hs and ds, shown
in (a), calculated numerically (dashed curves) and by the
Eq. (5) (crosses).

the electromagnetic field and derivatives of the dielec-
tric tensor. The subscript t indicates transverse com-
ponents, ε0 is the permittivity of the vacuum and ω is
the light frequency. It is worth emphasizing a couple
of points around Eq. (4). On the one hand, (∂pεzz)e

2
z

is the explicit contribution of the vector nature of the
electromagnetic field and must be taken into account
for high-index-contrast waveguides [18]. On the other
hand, Eq. (4) enables the calculation of ∂pβ by means
of the mode fields of the waveguide at only one param-
eter configuration. This means that there is no need to
know the propagation constant at any other point p+δp
of the multidimensional parameter space to compute its
derivatives.

If we focus on geometrical parameters defining waveg-
uides composed by homogeneous materials, a smoothed
effective dielectric tensor, ε̂, should be used [19]. This
description of the material distribution allows us to eval-
uate these derivatives in an easy way, avoiding infinities
at the discontinuities, whereas derivatives are nonzero
only near interfaces. This tensor ε̂ must be defined at
each spatial sampling point, according to the effective-
medium theory [20], as explained in appendix B.
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Accurate calculations for high-index-contrast
waveguides

From the numerical point of view and taking into ac-
count the discretization of the integration domain, S,
the integral in the numerator of Eq. (4) can present a
considerable error in its evaluation owing to the strong
discontinuity around the interface of the normal compo-
nent of the electric field. That difficulty can be overcome
if we choose a local basis for the electric field defined by
the unit vectors (n̂, T̂, ẑ): the normal and the tangent

to the interface in the transverse plane, n̂ and T̂, and
the propagation direction, ẑ. In this basis, Eq. (4) can
be rewritten as

∂pβ =
ε0ω

2

∫
S

(
(∂pε

−1
nn)d2n − (∂pεTT )e2T + (∂pεzz)e

2
z

)
dS∫

S

(et × ht) · ẑdS

,

(5)
where dn is the component of the electric displacement
field normal to the interface and eT is the component
of the electric field tangent to the interface in the trans-
verse plane. It is worth remembering that the dielectric
tensor is diagonal in the new local basis since the ef-
fective medium around the interface corresponds to a
uniaxial anisotropic medium [19], and its extraordinary
axis is normal to the interface (parallel to n̂). Therefore,
Eq. (5) extends the applicability of Eq. (4) to high-index-
constrast waveguides.

In order to check the numerical precision of Eq. (5), we
consider a silicon strip waveguide with a horizontal sil-
ica slot proposed in [11] by Zhang et al., which is shown
in Fig. 1(a). These waveguides present four geometri-
cal degrees of freedom, which we define as the width of
the waveguide (w), the height of the waveguide (h), the
height of the slot (hs) and the position of the slot center
with respect to the waveguide center (ds). This is a com-
putationally demanding structure owing to the narrow
low-index layer in the middle of a high-index strongly-
confining waveguide, near the maximum of field density.
Indeed, the light-guiding mechanism of the transverse
magnetic (TM) mode (vertically polarized) of this kind
of waveguide induces a strong change on the normal com-
ponent of the electric field at the slot lower interface [11].
Let us consider the following arbitrary configuration:
w = 650 nm, h = 460 nm, hs = 50 nm and ds = 115 nm.
We calculate the propagation constant and the fields of
the TM mode using an iterative two-dimensional proce-
dure [21] within a squared sampling window of 1.8µm
long and a sampling distance of 6.25 nm. Furthermore,
if a sampling grid parallel to the structure were used, the
derivatives would then be highly sensitive to the position
of the sampling points around the slot horizontal inter-
faces. To deal with this numerical problem, we rotate
the structure slightly (1.5◦) with respect to the sampling
grid. In Fig. 1(b), we compare results from Eq. (5) with
those computed numerically (in particular, solving the
wave equation also for neighbor configurations by chang-

Table 1. Geometrical parameters and merit function after
convergence for the five dispersion targets shown in Fig. 2.

βtarget
2 (ps2m−1) iter. χ (ps2m−1) w (nm) h (nm) hs (nm) ds (nm)

(a) +0.0 4 0.018 788 504 42 110

(b) −0.2 8 0.011 634 547 42 114

(c) +0.2 8 0.012 840 599 40 108

(d) −0.8 6 0.052 665 537 51 129

(e) +0.8 9 0.042 887 518 39 93

ing the initial value of each parameter by ±0.5 nm and
±1.0 nm, fitting the results to a second order polinomial,
and calculating its derivative at the initial point). We
can observe that the analytical derivatives are in very
good agreement with the numerical calculations.

Equation (5) allows us to easily compute the first
derivatives of β and engineer magnitudes that depend al-
gebraically on β. Nevertheless, there is no closed expres-
sion for calculating higher-order derivatives in a straigh-
forward manner [21]. Despite this, if we are interested
in optimizing the chromatic dependency of a derivative
of β, we just need to evaluate Eq. (5) for different fre-
quencies, fit those data as a function of ω and perform
successive derivatives with respect to frequency. This
approach is fast and, as can be appreciated in Fig. 1(c),
keeps a high accuracy.

3. Numerical results

We illustrate our approach in Fig. 2, where we plot five
different examples of the optimization processes with
different flattened dispersion profiles over 350 nm, in
the range 1.55µm ≤ λ ≤ 1.90µm as target, namely,
β2(ω) = 0, ±0.2 and ±0.8 ps2m−1. For all five cases, we
start from the same waveguide configuration [11], hence
showing this choice is not particularly relevant. It corre-
sponds to the geometry used to test the accuracy of the
analytical derivatives in the previous section, whose dis-
persion is far from being flattened. In our simulations,
we describe the refractive index of silicon and silica using
the Sellmeier coefficients provided in [22]. In these ex-
amples, 6 wavelengths in the above range are considered
as the points used for evaluating the local approximation
of the merit function [Eq. (3)].

It is worth noting that the target curves are recov-
ered to different extent. In other words, the achiev-
able minimum of χ2 depends on the target curve and on
the waveguide’s degrees of freedom. In order to ensure
that the procedure converges properly, it is convenient to
moderate the speed of convergence. In Fig. 3, the evolu-
tion of the parameters at each step along the procedure
is shown, in which we have allowed variations up to 10 %
in each step and we consider the process has converged
when the difference of χ between two successive steps
is smaller than 0.001 ps2m−1. The specific designs ob-
tained after convergence are indicated in Table 1. Note
that, for the β2 = 0 case, the slot parameters, which
are the most sensitive ones [see Fig. 1(c)], are in close
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Fig. 2. Five examples of optimization starting from the same geometry (dotted black curve, see details in the text) and with
five different flattened dispersion profiles as a goal (solid blue line), namely, low and anomalous (a), low and normal (b), high
and anomalous (c) and high and normal (d). Dispersion profiles between the first iteration (dotted-dashed green curve) and
the last one (dashed red line) are omitted.

agreement with those reported in [12], where hs = 40 nm
and ds = 104 nm. We emphasize that curves close to the
target are found in a few steps (see Fig. 3). It illustrates
the efficiency of this approach compared to trial-and-
error methods.

Since Eq. (1) has been defined in this work for engi-
neering β2, other magnitudes can be altered during the
optimization process. In the cases shown in Fig. 2, for
instance, the effective refractive index grows as β2 ap-
proaches its target and, therefore, modes become more
confined. The effective index behavior is associated to
the fact of being positive its derivatives with respect to
the height of the waveguide and this parameter has been
increased along the processes [see Figs. 1(a) and 3].

Inclusion of feasibility restrictions

The manufacturing of integrated waveguides is, of
course, constrained to the limitations of the fabrication
method. Therefore, any realistic design procedure must

include this kind of additional requirements. Our algo-
rithm also allows us to deal with these fabrication re-
strictions. They are implemented as constraints in the
variables of the local merit function, χloc, i.e., limiting
the possible values of p or bounding them.

The dispersion profile is more sensitive to those pa-
rameters related to the slot [see Fig. 1(c)]. So, to illus-
trate the possibility of including some constraints in our
algorithm, we have imposed a lower boundary of 45 nm
to the slot height in the optimization processes of Fig. 2.
The dispersion profiles obtained under such a condition
are shown in Fig. 4. Of course, the impact of this con-
straint depends on each case. In our examples, it affects
the two cases of normal dispersion in a greater extent
(see results in Fig. 4), since such cases show the narrow-
est slots in the unrestricted optimization (see Table 1).

4. Analysis of tolerances
In this work, we have engineered the dispersion profile
of SOI waveguides in an efficient way, implementing a
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Fig. 3. Plot of the evolution of the geometrical parameters during the optimization procedure of the same five examples shown
in Fig. 2, normalized to its starting values (solid colored curves, left-hand axis). Dashed black curves represent the evolution
of the square root of the merit function, the standard deviation of β2 with respect to the target in the design frequency range
(right-hand axis).

powerful differential tool that allows us to evaluate, with
no additional computational effort, the gradient of the
propagation constant in the parameter space. We used a
kind of slot waveguide proposed by Zhang et al. [11, 12]
to illustrate our inverse dispersion engineering proposal.
Nonetheless, we cannot omit the practical interest of the
specific structures obtained applying our tool. For exam-
ple, the cross-section designs that provide the dispersion
curves of Figs. 2(a–c) could have applications for soliton
formation in optical microresonators [23] or coherent ul-
traflat supercontinuum generation [12, 17], whereas the
dispersion profiles shown in Figs. 2(d,e) could be used for
dispersion compesation of ultrashort pulses [1]. In this
sense, a crucial point to test the feasibility of any design
is to know how it performs facing inevitable changes with
respect to the optimized structure. To this end, and for
the sake of completeness, we characterize in this section
the sensitivity of the waveguides shown in Fig. 3 to fab-
rication tolerances. In addition, note that our approach

also allows to analytically evaluate the uncertainty of the
effective index or the dispersion due to the fabrication
tolerances by using the standard technique of propaga-
tion of errors (see e.g. [16]).

In Fig. 5 the effect of small perturbations of the geo-
metrical parameters on dispersion curves is represented.
We take the geometry obtained by means of the opti-
mization process shown in Fig. 2(b) as reference. Since
current integrated waveguides can be fabricated with
typical tolerances of a few nanometers [24], we have in-
creased and decreased by 2 nm the parameters of that
structure. As expected from Fig. 1(c), the GVD is more
sensitive to changes that affect the slot compared to per-
turbations of the strip.

5. Summary
The physical properties of subwavelength waveguides are
highly dependent on its geometry due to their small di-
mensions and high index contrasts. This feature be-
comes an advantage as long as their cross section can be
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suitably designed. Usually, optimum waveguide designs
are found by varying separately the geometrical degrees
of freedom in their transverse planes. Consequently, this
trial-and-error procedure becomes much more challeng-
ing when one considers advanced designs containing mul-
tiple degrees of freedom.

In this work, we overcome this issue by means of an
inverse dispersion engineering approach. Given a target
for the dispersion curve, we can simultaneously mod-
ify all geometrical parameters of the waveguide towards
new values where the structure shows dispersion profiles
closer to the target. In this way, in a few iterations we
find specific structures with dispersion curves matching,
as much as possible, the target. The key fact is the
possibility of computing the gradient of the propagation
constant with respect to all the geometrical parameters
by means of the information provided by the analysis of
only one geometry. In addition, our algorithm is com-
patible with any wave equation solver, since it only needs
the information of the mode fields.

Appendix A: Derivative of the propagation constant
Let us write the two-dimensional wave equation for the
transverse components of the magnetic field of a mode
in a waveguide [16],

Lht =

{
∇t∇T

t + ηεttη
Tω

2

c2
− ηεtt∇t

[
ε−1zz ∇T

t η
]}

ht

= β2ht, (A1)

where the subscript t indicates transverse components,
the superscript T refers to the transpose of a matrix
or vector, ε is the — effective — dielectric tensor [19],
and η represents the completely antisymmetric tensor
in two dimensions, [(0,+1), (−1, 0)]. The above equa-
tion can be recognized as an eigenproblem and therefore
the Hellmann-Feynman theorem [25] could be used for
calculating derivatives of its eigenvalues. This strategy
has been applied in solving electromagnetic problems in
cavities, where eigenvalues are the resonant frequencies
[14, 26]. However, as the operator L defined by the left-
hand side of Eq. (A1) is non-self-adjoint (cf. [15], where
polarization effects are discarded, and L becomes self-
adjoint), a generalization based on biorthogonality [27]
must be used. The general expression for this mathe-
matical problem turns out to be [16]

∂(β2)

∂p
=
〈h̃t|(∂pL)ht〉
〈h̃t|ht〉

, (A2)

where p = (p1, . . . , pN ) are the parameters defining the

waveguide, h̃t is the eigenvector of the adjoint operator
of L whose eigenvalue is the complex conjugate of β2

[i.e., L†h̃t = (β2)∗h̃t] and therefore h̃t = ηe∗t , being
et the transverse components of the electric field of the
considered waveguide mode [27]. 〈◦|◦〉 stands for the
standard scalar product for complex vector functions.
It is worth recalling that only the elements explicitly
dependent on any pk contribute to the derivation of L.

In order to derive Eq. (4) from Eq. (A2), first we ex-
plicitly write the numerator on the right-hand side in
Eq. (A2),

〈h̃t|(∂pL)ht〉 =

∫
S

dS

(
ω2

c2
eTt (∂pεtt)η

Tht

− eTt (∂pεtt)∇t

[
ε−1zz ∇T

t ηht

]
− eTt εtt∇t

[
(∂pε

−1
zz )∇T

t ηht

])
. (A3)

Let us consider now the following Maxwell equations

∇×H = −i
√
ε0
µ0

ω

c
εE, (A4)

∇×E = i

√
µ0

ε0

ω

c
H, (A5)

∇ ·D = 0. (A6)

If we separate the transverse and longitudinal fields com-
ponents, E = (et + ez ẑ) exp (iβz) and H = (ht +
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hz ẑ) exp (iβz), we obtain

∇T
t ηht = −i

√
ε0
µ0

ω

c
εzzez, (A7)

∇tez = −i
√
µ0

ε0

ω

c
ηht + iβet, (A8)

∇T
t (εttet) = −iβεzzez, (A9)

from Eqs. (A4), (A5) and (A6), respectively. If we take
into account Eqs. (A7) and (A8), we can simplify the
second term on the right-hand side in Eq. (A3),

−
∫
S

dS eTt (∂pεtt)∇t

[
ε−1zz ∇T

t ηht

]
= −

∫
S

dS eTt (∂pεtt)

[
−ω

2

c2
ηht + ε0ωβet

]
. (A10)

Next, by using Eqs. (A7) and (A9) and integrate by
parts the third term on the right-hand side in Eq. (A3),
we find

−
∫
S

dS eTt εtt∇t

[
(∂pε

−1
zz )∇T

t ηht

]
= ε0ωβ

∫
S

dS (∂pεzz)e
2
z. (A11)

Finally, Eq. (4) is directly derived using Eqs. (A10) and
(A11).

Appendix B: Effective dielectric tensor
Permittivity is a space averaged magnitude involving mi-
croscopic parameters [28]. At the interface the averages
only change softly, ensuring smooth transitions between
media [20]. This description avoids unphysical disconti-
nuities that would otherwise be detrimental for the nu-
merical algorithms [19].

Following [19, 20], let us consider an interface between
two homogeneous media of permittivities ε1 and ε2. On
the one hand, components of the dielectric tensor af-
fecting the electric field parallel to the interface must
be calculated as a weighted average of the permittiv-
ities, 〈ε〉 = f1ε1 + f2ε2. On the other hand, compo-
nents of the dielectric tensor acting on the electric field
normal to the interface must be computed as the in-
verse of a weighted average of the inverse permittivities,
〈1/ε〉 = f1/ε1 + f2/ε2. The weight functions fa at each
sampling point are evaluated in this work as the rela-
tive volume occupied by the ath material in a sphere of
radius equal to the sampling distance centered at each
sampling point. Finally, the effective dielectric tensor
can be written as [19]

ε̂ =
1

〈1/ε〉
P + 〈ε〉(I − P ), (B1)

where I is the identity matrix, and P is the projection
matrix onto the normal to the interface, n̂, i.e., Pij =
n̂in̂j . It is worth noting that, far from the interfaces, ε̂ is
a multiple of the identity, recovering the original values
for the permittivities, ε1 or ε2.
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