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NYU{TH{94/10/03October 1994The heavy quark decomposition of the S-matrixand its relation to the pinch technique.Joannis Papavassiliou, Kostas PhilippidesandMartin SchadenDepartment of Physics, New York University, 4 Washington Place,New York, NY 10003, USA.ABSTRACTWe propose a decomposition of the S-matrix into individually gauge invariant sub-ampli-tudes, which are kinematically akin to propagators, vertices, boxes, etc. This decompsitionis obtained by considering limits of the S-matrix when some or all of the external particleshave masses larger than any other physical scale. We show at the one-loop level thatthe e�ective gluon self-energy so de�ned is physically equivalent to the correspondinggauge independent self-energy obtained in the framework of the pinch technique. Thegeneralization of this procedure to arbitrary gluonic n-point functions is brie
y discussed.
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1The pinch technique (PT) [1] is an algorithm that allows the construction of modi�edgauge invariant (g.i.) n-point functions, through the order by order rearrangement of theFeynman graphs contributing to a certain physical, and therefore ostensibly g.i. amplitude(such as an S-matrix element, or a Wilson loop). Even though the most recent applicationsof the PT are inspired by Standard Model phenomenology [2-7], it was originally intro-duced in the context of QCD, as a �rst step toward the construction of Schwinger-Dysonequations, which would respect the crucial property of gauge invariance, even in their one-loop dressed truncated version [8-9]. The simplest example that demonstrates how thePT works is the gluon two point function (propagator). Consider the S-matrix elementT for an elastic scattering process such as q1�q2 ! q1�q2, where q1,q2 are two on-shell testquarks with masses m1 and m2. To any order in perturbation theory T is independentof the gauge �xing parameter �. On the other hand, as an explicit calculation shows, theconventionally de�ned proper self-energy [collectively depicted in graph 1(a)] depends on�. At the one loop level this dependence is canceled by contributions from other graphs,such as 1(b), 1(c), 1(d), and 1(e) which, at �rst glance, do not seem to be propagator-like.That this cancellation must occur and can be employed to de�ne a g.i. self-energy, isevident from the decomposition:T (s; t;m1;m2) = T0(t; �) + T1(t;m1; �) + T2(t;m2; �) + T3(s; t;m1;m2; �) ; (1)where the function T0(t; �) depends kinematically only on the Mandelstam variable t =�(p̂1 � p1)2 = �q2, and not on s = (p1 + p2)2 or on the external masses. Typically, self-energy, vertex, and box diagrams contribute to T0, T1 and T2, and T3, respectively. Suchcontributions are � dependent, in general. However, as the sum T (s; t;m1;m2) is g.i., it iseasy to show that Eq. (1) can be recast in the formT (s; t;m1;m2) = T̂0(t) + T̂1(t;m1) + T̂2(t;m2) + T̂3(s; t;m1;m2) ; (2)where the T̂i (i = 0; 1; 2; 3) are individually �-independent. The propagator-like parts 1(f),1(g), 1(h), and 1(i), stemming from graphs 1(b), 1(c), 1(d), and 1(e), respectively, enforce



2the gauge independence of T0(t), and are called "pinch parts". They emerge every time agluon propagator or an elementary three-gluon vertex contributes a longitudinal k� to theoriginal graph's numerator. The action of such a term is to trigger an elementary Wardidentity of the form /k = (/p+/k�m)�(/p�m) when it gets contracted with a 
 matrix. The�rst term removes the internal fermion propagator (e.g. it produces a "pinch"), whereasthe second vanishes on shell. From the g.i. functions T̂i (i = 1; 2; 3) one may now extracta g.i. e�ective gluon (G) self-energy �̂��(q), g.i. Gqi�qi vertices �̂(i)� , and a g.i. box B̂, inthe following way: T̂0 = g2�u1
�u1[( 1q2 )�̂�� (q)( 1q2 )]�u2
�u2T̂1 = g2�u1�̂(1)� u1( 1q2 )�u2
�u2T̂2 = g2�u1
�u1( 1q2 )�u2�̂(2)� u2T̂3 = B̂ (3)where ui are the external spinors, and g is the gauge coupling. Since all hatted quantitiesin the above formula are g.i., their explicit form may be calculated using any value of thegauge-�xing parameter �, as long as one properly identi�es and allots all relevant pinchcontributions. The choice � = 1 simpli�es the calculations signi�cantly, since it eliminatesthe longitudinal part of the gluon propagator. Therefore, for � = 1 the pinch contributionsoriginate only from momenta carried by the elementary three-gluon vertex of graph 1(b)(and its mirror graph, not shown). The one-loop expressions of �̂��(q) and �̂(i)� are givenby [2], [9]: �̂��(q) = �(�=1)�� (q) + t���P (q) (4)with t�� = q2g�� � q�q� , and�P (q) = �2icag2 Zn 1k2(k + q)2= 2ca( g216�2 )[CUV � ln(�q2�2 ) + 2] (5)



3where CUV = 2� � 
 + ln(4�), � = n� 4 ,
 = 0:577::: is the Euler constant, Rn � R dnk(2�)nis the dimensionally regularized loop integral. Similarly, for the vertex we have:[�̂�](i) =ig2"(ca2 )Zn 
�Si(pi � k)
��F���k2(k + q)2 + (ca2 � cf )Zn 
�Si(p̂i � k)
�Si(pi � k)
�k2 #+ i"
� 1/pi �mi �̂i(p) + �̂i(p̂i) 1/̂pi �mi 
�# ;(6)where �F��� = 2q�g�� � 2q�g�� � (2k + q)�g�� [10], cf is the Casimir eigenvalue of thefermion representation, p̂i = pi + q, and�̂i(p) = g2cf Zn 1k2 
� 1/k + /p�mi 
� = �(�=1)i (p) (7)is the one loop g.i. quark propagator, derived in [11]In principle, this procedure can be generalized to an arbitrary n-point function. Inparticular, the g.i. three and four point functions �̂��� and �̂���� have been derivedin [9] and [12] The Green's functions obtained via the PT, in addition to being g.i.,are endowed with several characteristic properties. Most noticeably, the gluon n-pointfunctions computed thus far [�̂�� = t���̂, �̂���, �̂���� (n = 2; 3; 4)] satisfy the followingsimple QED-like Ward identities:q�1 �̂���(q1; q2; q3) = t��(q2)d̂�1(q2) � t��(q3)d̂�1(q3)q�1 �̂abcd���� = fabp�̂cdp���(q1 + q2; q3; q4) + c:p: ; (8)where d̂�1(q) = q2 � �̂(q), fabc are the structure constants of the gauge group, and theabbreviation c.p. in the rhs stands for "cyclic permutations". In addition, the gluon-quarkvertices [�̂a�](i) of Eq. (6) are ultra-violet �nite.Regardless of any such properties, however, an ambiguity is associated with the con-struction of Green's functions via the PT. It is obvious for instance that, after a g.i. gluonself-energy and gluon-quark vertex has been constructed via the PT, one still has thefreedom to add an arbitrary term of the form (q2g�� � q�q�)f(q2) to the self-energy, and



4subtract it from the vertex. As long as the function f(q2) is g.i., such an operation satis�esthe criterion of individual gauge invariance for the self-energy and vertex, respects theirWard identities, and preserves the uniqueness of the S-matrix. It is therefore desirable tohave a physical prescription which eliminates this ambiguity. In this paper we propose analternative, physically motivated prescription for extracting g.i. sub-amplitudes of the S-matrix, that are kinematically akin to self-energies, vertices and boxes. In this framework,the e�ective one-loop gluon self-energy is de�ned to be the limit of the S-matrix as bothexternal fermion masses m1 and m2 are taken to be larger than any other mass scale inthe process (they are however comparable to each other, e.g. m1 � m2). To one loop weshow that this limit coincides with the static quark-antiquark potential for very massivequarks [13-14], and is physically equivalent to the PT result of Eq. (5).Any reasonable e�ective propagator should only depend on the momentum transfert but not on kinematical details such as masses or total momentum s of the incoming oroutgoing particles. Similarly, any viable de�nition of a Gqi�qi vertex should only dependon t and the quark mass mi [15] and no other kinematical details. This reasoning canobviously be generalized to higher n-point functions. Motivated by these observations,we propose to de�ne propagator and vertex-like sub-amplitudes by taking appropriatekinematical limits of the S-matrix.For the simple case of a four-quark on shell amplitude T (Fig.1) we de�ne the followingthree limits L0(t) = T (s; t;m1 =M;m2 =M)L1(t;m1) = T (s; t;m1;m2 =M)L2(t;m2) = T (s; t;m1 =M;m2) (9)where the mass M is assumed to be larger than any other mass scale appearing in theprocess, except for any cuto�s introduced in intermediate calculations in order to regularizeultra-violet divergences. Note however that, since the external particles are on shell, s =(p1 + p2)2 � (m1 +m2)2 is also of the order of M2, in any of these limits [16]. Each of



5the above quantities is g.i., since it corresponds to a particular limit of the g.i. S-matrixelement T . They can be systematically computed by expanding the S-matrix in powers of(�0M ), where �0 is any of the remaining mass scales. The limits considered above correspondto well-de�ned physical situations. L0, for example, is the dominant contribution to theS-matrix when the momentum transfer t is considerably smaller than the masses of all thescattered particles, e.g. t = �q2 � m1;m2.We can de�ne the following linear combinations:~T0(t) = L0~Ti(t;mi) = (Li � L0) (i = 1; 2)~T3(s; t;m1;m2) = T (s; t;m1;m2)� L0 � [(L1 � L0) + (L2 � L0)] (10)We have thus arrived at a decomposition of the S-matrix into individually g.i. and kine-matically distinct sub-amplitudes, which we can identify as e�ective self-energy ~T0(t),vertices ~T1(t;m1) and ~T2(t;m2), and boxes ~T3(s; t;m1;m2). Clearly, the sum of thesesub-amplitudes is the original S-matrix, e.g.T (s; t;m1;m2) = ~T0(t) + ~T1(t;m1) + ~T2(t;m2) + ~T3(s; t;m1;m2) ; (11)The above decomposition of the S-matrix into individually g.i. and kinematically distinctsub-amplitudes, relies on a procedure di�erent from the PT. The question that naturallyarises is how the individual terms of Eq. (2) and Eq. (11) are related. As we will show byan explicit one-loop calculation, T̂0 of Eq. (2) and ~T0 of Eq. (10) are related as follows:~T0(t) = T̂0(t) + g2�u1
�u1( 1q2 )[Ct��]( 1q2 )�u2
�u2 : (12)In Eq. (12) C is a g.i. �nite numerical constant. Thus the g.i. self-energy ~���(q) extractedfrom ~T0(t) , and the T̂0 obtained form Eq. (2) satisfy:~��� (q) = �̂��(q) + Ct�� (13)



6Clearly, the term proportional to C in the r.h.s. of Eq. (13) can be removed by a �nitecounterterm, or, equivalently, absorbed in the �nal normalization of the S-matrix.To compute the leading one-loop contribution to ~T0(t) (or equivalently L0) we evaluatethe S-matrix in the limitm1 � m2 !M , whereM � �q2. [17] For simplicity we considerelastic scattering, so that q2 < 0. As a consequence, there are no imaginary parts in theFeynman graphs. We de�ne the Euclidean momentum Q2 = �q2 > 0. Throughout thecalculation we use dimensional regularization, where the UV cuto� is set by the usual pole1� . In addition, the t'Hooft mass � has to be introduced. The infrared divergences areregulated by introducing an infrared gluon mass � in the intermediate calculations. [18]We then compute all one-loop Feynman graphs contributing to the process, neglectingterms proportional to any of the ratios ( QM ), ( �M ), and ( �M ), (or higher powers of suchratios), and retaining only logarithmic and constant terms. We emphasize that the aboveexpansion is carried out after the integration over the loop momenta has been performedin dimensional regularization. E�ectively this means that M is always much smaller thanthe cuto� � [e.g. 1� ! ln(�� )� ln(M� )]. In this calculation all choices for � are equivalent,since the S-matrix element is �-independent; we choose � = 1 for convenience.The most involved part of the calculation are the box diagrams. It is important torecognize that both the direct and the crossed graph must be appropriately combinedin order to obtain the correct color structure. It is also interesting to notice that theexpressions that survive the large M limit are of non-Abelian nature only, namely pro-portional to ca. If we call Bdir the total contribution of the direct graph and Bcr therespective contribution from the crossed, we have that Bdir = (RaRb)1(RaRb)2Sdir andBcr = (RaRb)1(RbRa)2Scr where Sdir and Scr are the remainders of the boxes, after thecolor structure has been factored out. The important step is to show that in the large Mlimit we have Sdir = �Scr. Thus, the total box contribution ~B becomes:~B = (RaRb)1[Ra; Rb]2Sdir= 12ca(Rc)1(Rc)2Sdir (14)



7The result for the individual Feynman graphs are: (we omit external spinors and an overallfactor of g2Q2 ) [(a)] = �(�=1)��[(b) + (b)mirror ] = g216�2 ca"3CUV + 4 + 3 ln( �2M2 )#g�� + :::[(c) + (c)mirror ] = g216�2 (2cf � ca)"CUV + 4 + 2 ln(�2�2 ) + 3 ln( �2M2 )#g�� + :::[(d) + (d)mirror ] =� 2 g216�2 cf"CUV + 4 + 2 ln(�2�2 ) + 3 ln( �2M2 )#g�� + :::[(e) + (e)crossed)] =2 g216�2 ca ln( �2Q2 )g�� + ::: (15)where the ellipsis denote terms of order O( 1M ) or higher. We notice that the sum of allvertex and box graphs listed in Eq. (15) is equal to 2 g2ca16�2 [CUV � ln(Q2�2 )], which is, up to aphysically irrelevant constant, the pinch contribution to the self-energy, given in Eq. (5).The total contribution to ~T0 reads:~T0 = g2�u1
�u1( 1q2 )"�(�=1)�� + 2( g2ca16�2 )[CUV � ln(�q2�2 )]t�� ( 1q2 )#�u2
�u2= g2�u1
�u1( 1q2 )"�(�=1)�� +�P (q) � 4( g2ca16�2 )t��#( 1q2 )�u2
�u2= T̂0 � g2�u1
�u1( 1q2 )[4( g2ca16�2 )t�� ]( 1q2 )�u2
�u2 (16)which is the advertised result in the �rst line of Eq. (12), with C = �4( g2ca16�2 ). The �rstrelation of Eq. (13) follows immediately from Eq. (16), namely~���(q) = �̂�� (q)� 4( g2ca16�2 )t�� (17)Adding the tree-level contribution to ~T0 of Eq. (16), and using the standard result�(�=1)�� = g2ca16�2"53 [CUV � ln(�q2�2 )] + 319 #t�� (18)



8together with Eq. (5), we �nd that ~T0 is identical to the Fourier transform of the un-renormalized one-loop static potential V (Q2) for a heavy quark-antiquark system ( [13]),namely (we omit the external spinors),~T0 = V (Q2) = �g2caQ2 "1 + g2ca16�2 f�113 CUV + 113 ln(Q2�2 ) + 319 g# (19)where the factor (113 ) ca16�2 is the coe�cient b0 in front of �g3 in the one loop � function. Thecontribution ~T0 of Eq. (16) or Eq. (19) to the S-matrix is infrared �nite. The decompositionof Eq. (9), together with Eq. (16), implies that the PT result for the self-energy gives thedominant contribution to the physical S-matrix, when the scattered particles are heavycompared to other mass scales. We have thus arrived at a physical interpretation of this PTsub-amplitude. In that sense, the mathematical ambiguity in de�ning a g.i. propagator-like sub-amplitude of the S-matrix, which we discussed previously, can be eliminated byimposing a physically motivated boundary condition, i.e. that the e�ective self-energyshould reproduce the S-matrix for the scattering of su�ciently heavy external quarks.Since perturbation theory in QCD is reliable only for momentum transfers beyond a fewGeV, in practice this sub-amplitude will provide the dominant contribution to the S-matrixonly for top and bottom scattering. Nevertheless, it makes sense to de�ne this g.i. sub-amplitude also for considerably lighter systems, although in such a case it will generallynot give the dominant contribution to the S-matrix.It would clearly be of interest to extend this analysis to the vertex-like sub-amplitudes.Of course, in a theory with massless gauge bosons such sub-amplitudes are in generalinfrared divergent; they can therefore not be directly related to a physical process, withoutincluding bremsstrahlung. One could nevertheless compare the g.i. vertex-like amplitudesT̂i and ~Ti, i = 1; 2, of the two schemes, as long as the infra-red singularities are regulatedin a gauge invariant manner, such as dimensional infra-red regularization [19-20]. Thisgoes however beyond the scope of the present communication.



9The previous considerations can be generalized to the case of multi-quark scattering.In particular, from a 2n-quark amplitude one can de�ne a g.i. gluon n-point functions~�(n)(q1; :::; qn) with all incoming momenta qi, i = 1; ::n o�-shell. To that end one has toconsider the limit of the amplitude as all external fermion masses become large (mi !M ,i = 1; ::; n). It would be very interesting to determine if the g.i. n-point functions soobtained are physically equivalent to those obtained with the PT, especially for n = 3; 4.It would be also interesting to generalize the previous arguments to the case of theories withspontaneous symmetry breaking in general, and the electro-weak sector of the StandardModel, in particular.1. AcknowledgmentThe authors thank A. Sirlin for helpful discussions. This work was supported by theNational Science Foundation under Grant No.PHY-9017585. K.P. acknowledges supportfrom the E.C. network ERB-CHRXT 930319. The work of M.S. was supported by DeutscheForschungsgemeinschaft under Grant No.Scha/1-1.
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