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Abstract

In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Lan-

dau gauge, concentrating on contributions quadratic in the metric. We employ an approximation

scheme where “one-loop” diagrams are computed using fully dressed gluon and ghost propaga-

tors, and tree-level vertices. When a suitable kinematical configuration depending on a single

momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and

a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated

with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally

diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to

the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close

analogy to a similar effect established for the three-gluon vertex. However, in the case at hand,

and under the approximations employed, this particular divergence does not affect the form factor

proportional to the tree-level tensor, which remains finite in the entire range of momenta, and

deviates moderately from its naive tree-level value. It turns out that the kinematic configuration

chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green’s

function all one-particle reducible contributions, projecting out the genuine one-particle irreducible

vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement

of this quantity would compare to the results presented here, and the potential interference from an

additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
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I. INTRODUCTION

Of all elementary vertices that appear in the QCD Lagrangian, the four-gluon vertex is

the most poorly understood. From the point of view of continuum studies, this fact may

be regarded as a consequence of the enormous proliferation of allowed tensorial structures,

generated by the presence of four color and four Lorentz indices. This difficulty, in turn,

complicates considerably the extraction of reliable nonperturbative information from the

corresponding Schwinger-Dyson equation (SDE). In addition, even gauge-technique inspired

Ansätze [1–4] are extremely difficult to implement, due to the complicated structure of the

Slavnov-Taylor identity that this vertex satisfies in the linear covariant (Rξ) gauges (see,

e.g. [5]). Thus, the analytic studies dedicated to this vertex are very scarce, furnishing

information only at the level of one-loop perturbation theory [6, 7], or involving generic

constructions in the context of the pinch technique [8], or privileged quantization schemes,

such as the background field method [9, 10].

From the point of view of lattice simulations, the situation is simpler, in the sense that,

to the best of our knowledge, no simulations of the four-gluon vertex have been performed,

for any kinematic configuration. This is to be contrasted with the corresponding status of

all other vertices, namely the quark-gluon, the ghost-gluon, and three-gluon vertex, which

have been studied on the lattice, at least for some special choices of their momenta [11–16].

In the present work, we carry out a preliminary nonperturbative study of the one-particle

irreducible (1-PI) part of the four-gluon vertex, denoted by Γabcd
µνρσ, motivated by recent

developments in our understanding of the QCD nonperturbative dynamics of the two- and

three-point sectors in the Landau gauge. Specifically, a precise nonperturbative connection

between the masslessness of the ghost, the detailed shape of the gluon propagator in the

deep infrared (IR), and the IR divergences observed in certain kinematic limits of the three-

gluon vertex, has been put forth in [17] (see also [18, 19] for related contributions). This

detailed study led to the conjecture that any purely gluonic n-point function will display

the same kind of behavior, given that ghost loops1 appear in all of them (and, hence, the

associated IR logarithmic divergence in d = 4). Clearly, the confirmation of this expectation

1 We refer to ghost loops that exist already at the one-loop level. Ghost loops nested within gluon loops

do not produce this particular effect, because the additional integrations over virtual momenta soften the

IR divergence.
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at the level of the four-gluon vertex would put our understanding of this specific IR effect

on rather solid ground. In particular, it would be important to establish, even within

an approximate scheme, the type of tensorial structures that will be associated with this

particular divergence.

In order to simplify the calculation as much as possible without compromising its main

objective, we have chosen a particularly simple configuration of the external momenta, in

which a single momentum scale (p) appears, and the flow in the four legs is chosen to be

(p, p, p,−3p); this has the advantage of giving rise to loop integrals that are symmetric

under the crossing of external legs thus reducing the amount of diagrams one needs to

evaluate. We hasten to emphasize that the aforementioned momentum configuration has

been first considered in [20], in the context of the so-called “scaling” solutions [21]. Instead,

our analysis will be carried out using an IR finite gluon propagator ∆ and ghost dressing

function F , in conformity with the results obtained from a plethora of large-volume lattice

simulations [22–28], as well as a variety of analytic approaches [21, 29–50]. Specifically,

we will consider a simplified version of the so-called “one-loop dressed” approximation,

where one computes the one-loop diagrams with fully dressed gluon and ghost propagators,

but with tree-level (undressed) vertices (the case with dressed ghost-vertices only is also

presented).

Notice that this approach, although SDE-inspired, differs significantly from a typical SDE

study, mainly because it does not involve the solution of an integral equation for the unknown

form factors; instead, the form factors are simply extracted from the dressed diagrams

mentioned above. In that sense, it may be thought of as a “lowest order” SDE approximation,

where one simply substitutes tree-level values for all vertex form factors appearing inside

diagrams. This particular method (and variations thereof) has been employed in the context

of other vertices, furnishing results that compare favorably with the lattice [17, 51, 52]; of

course, its effectiveness can only be justified a-posteriori (i.e., comparing with the lattice),

given that there is no rigorous way of estimating the errors introduced by the omitted terms.

If one concentrates on the nonperturbative contributions that are quadratic in the metric,

in the case of SU(3) only two independent tensorial structures emerge: the one associated

with the tree-level four-gluon vertex (indicated by Γ
abcd(0)
µνρσ ), and a second one (denoted with

Gabcd
µνρσ) which is totally symmetric in both Lorentz as well color indices (and therefore orthog-

onal in both spaces to the tree-level term). It turns out that the aforementioned divergences
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are entirely proportional to this latter tensorial structure, with no contribution to the tree-

level tensor Γ(0). Therefore, one finds that within the one-loop dressed approximation we

employ, G will carry all the IR divergences, whilst Γ(0) contains all the ultraviolet (UV) di-

vergences, as required by the renormalizability of the theory. These findings clearly deviate

from the patterns observed in the case of the three-gluon vertex, where the form factors

proportional to the tree-level vertex, in addition to containing the UV divergences, were

also affected by this particular IR divergence (displaying the associated “zero crossing”).

In addition, the deviation of the form factor associated to the tree-level tensor Γ(0) from 1,

namely its tree-level value, is relatively modest. In particular, when the ingredients used

in its calculation are renormalized at µ = 4.3 GeV, its highest value, located at about 500

MeV, is 1.5.

The results obtained are further discussed in the specialized context of a possible future

lattice simulation of the connected part of this vertex, to be denoted by Cabcd
µνρσ. It turns out

that the momentum configuration (p, p, p,−3p) eliminates all contributions to C from one-

particle reducible (1-PR) graphs, thus isolating only Γabcd
µνρσ, without any “contamination”

from lower-order Green’s functions. In addition, an analysis based on Bose symmetry argu-

ments alone, reveals that a third tensor structure, denoted by X ′abcd
µνρσ , is in principle allowed;

evidently, the form factor associated with this tensor vanishes within the one-loop dressed

approximation that we employ. It is likely, however, that this particular property will not

persist in a complete nonperturbative computation, as the one provided by lattice simula-

tions. Therefore, under the assumption that such a structure might eventually emerge, we

describe how to express the complete set of form factors characterizing Γabcd
µνρσ in terms of the

standard lattice ratios R, used in studies of the three-gluon vertex [15, 16].

The article is organized as follows. In Sect. II we introduce our notation, review the

relevant tensor decomposition, and recall some identities particular to the SU(3) gauge

group. Next, in Sect. III we carry out the calculation of the one-loop dressed diagrams in

the simplified setting where all the external momenta are set to zero. This will prove to be a

very useful exercise, as it will allow to determine the tensorial structures that appear, and in

particular establish that the divergent part coming from ghost loops is entirely proportional

to the Gabcd
µνρσ tensor alone. Then, in Sect. IV we carry out the calculation in the (p, p, p,−3p)

momentum configuration. After manipulating all diagrams analytically (Sect. IVA), we

evaluate numerically all the contributions obtained, using (quenched) lattice results as input
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for the gluon and ghost two-point sectors (Sect. IVB). Finally, in Sect. IVC we show how

our results can be related to quantities customarily studied on the lattice. Specifically, we

prove that the special momentum configuration chosen for our study has the property of

isolating the 1-PI contribution to the connected four-gluon Green’s function. Then, assuming

the most general tensor decomposition of this vertex in terms of tensors allowed by Bose

symmetry, we show what would be the best choice of the ratios R. The paper ends with

Sect. V, where we draw our conclusions, and two Appendices. In the first, we carry out a

general analysis of the tensor structures (quadratic in the metric) that are allowed by Bose

symmetry, paying particular attention to the case (p, p, p,−3p). Finally, Appendix B collects

some lengthy expressions appearing in our analytical calculations.

II. GENERALITIES ON THE FOUR-GLUON VERTEX

The 1-PI four-gluon vertex will be denoted by the expression (all momenta entering)

ΓAa
µA

b
νA

c
ρA

d
σ
(p1, p2, p3, p4) = −ig2Γabcd

µνρσ(p1, p2, p3, p4). (2.1)

At tree-level one has

Γabcd(0)
µνρσ = fadrf cbr(gµρgνσ − gµνgρσ) + fabrf rdc(gµσgνρ − gµρgνσ)

+ facrf dbr(gµσgνρ − gµνgρσ), (2.2)

where fabc are the real and totally antisymmetric SU(N) structure constants, satisfying the

normalization condition

farsf brs = Nδab , (2.3)

so that the generators of the adjoint representation are given by

(Ta)bc = −ifabc. (2.4)

In Fig. 1 we show the conventions of momenta and Lorentz/color indices used throughout

this paper.

Note that, due to Bose symmetry, Γabcd
µνρσ(p1, p2, p3, p4) remains unchanged under the si-

multaneous interchange of a set of its indices and momenta (e.g. (a, µ, p1) ↔ (b, ν, p2), etc).

It is elementary to verify the validity of this symmetry for the tree-level vertex Γ
abcd(0)
µνρσ .
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FIG. 1: The 1-PI 4-gluon vertex; we display the momenta [note that p4 = −(p1+p2+p3)], together

with the Lorentz and color indices.

It is clear that the fully dressed Γabcd
µνρσ is characterized, in general, by a vast prolifera-

tion of the tensorial structures (138 for general kinematics [7]); of course, as we will see,

Bose symmetry imposes restrictions on the structure of the possible form factors composing

Γabcd
µνρσ(p1, p2, p3, p4).

At the level of the rank-4 Minkowski tensors, the structures allowed are terms quadratic

in the metric, linear in the metric and quadratic in the momenta, and quartic in momenta;

schematically one has then the structures

gg; gpq; pqrs. (2.5)

At the level of the rank-4 color tensors the situation is considerably more complex, since, in

addition to terms quadratic in f or δ, the real and totally symmetric tensors dabc will also

emerge. Thus, in principle one has 15 allowed structures of the schematic type

ff ; dd; fd; δδ. (2.6)

However, these tensors are related by a set of 6 identities [6], namely

fabrfcdr =
2

N
[δacδbd − δadδbc] + dacrddbr − dadrdbcr, (2.7)

fabrdcdr + facrddbr + fadrdbcr = 0, (2.8)

and two independent permutation for each, a fact that reduces the number of required

tensors down to 9.

Of course, due to practical limitations, one must restrict the present study to a consid-

erably more reduced (but physically relevant) subset of the full Lorentz and color tensorial

basis mentioned above. Specifically, as was done in [6], we only consider terms quadratic in

the metric tensor gµν , namely terms proportional to gµνgρσ, gµρgνσ , and gµσgνρ, neglecting
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terms quadratic and quartic in the momenta. Thus, a priori, for a general SU(N) gauge

group, one has 9 × 3 = 27 possible combinations. Furthermore, we will directly specialize

our analysis to the case N = 3, where the additional identity

δabδcd + δacδbd + δadδbc = 3[dabrdcdr + dacrdbdr + dadrdbcr] (2.9)

can be used, thus reducing the number of tensorial combinations down to 24.

However, it turns out that, within the one-loop dressed approximation and the kinemati-

cal configuration that we will employ (see Fig. 2 for the 18 diagrams appearing in this case),

the color tensors reduce finally to the two structures appearing in the conventional one-loop

calculation of this vertex (for N = 3), namely the tree-level tensor Γ(0) defined in Eq. (2.2),

and the totally symmetric (both in Minkowski and color space) tensor

Gabcd
µνρσ = (δabδcd + δacδbd + δadδbc) (gµνgρσ + gµρgνσ + gµσgνρ)︸ ︷︷ ︸

Rµνρσ

. (2.10)

In particular, notice that since the two tensors are orthogonal in both spaces

Γabcd(0)
µνρσ Gmnrs

µνρσ = 0; Γabcd(0)
µνρσ Gabcd

αβγδ = 0, (2.11)

the prefactors multiplying them can be unambiguously identified2.

Let us finally point out that, in SU(3), one has the additional useful formula

Γabcd(0)
µνρσ +Gabcd

µνρσ = 2Xabcd
µνρσ, (2.12)

where we have defined the combination

Xabcd
µνρσ =

(
δabδcd +

3

2
dabrdcdr

)
gµνgρσ +

(
δacδbd +

3

2
dacrdbdr

)
gµρgνσ

+

(
δadδbc +

3

2
dadrdbcr

)
gµσgνρ. (2.13)

Our analysis of the four-gluon vertex will be carried out in the Landau gauge, where

the study of the lower Green’s functions (such as gluon and ghost propagator, ghost-gluon

vertex and three-gluon vertex) has been traditionally carried out, both in the continuum as

well as on the lattice. In this particular gauge the full gluon propagator takes the form

i∆µν(q) = −iPµν(q)∆(q2); Pµν(q) = gµν − qµqν/q
2, (2.14)

2 As shown in Appendix A, Bose symmetry allows an additional tensor structure to appear; the consequences

of this fact will be briefly addressed in Sect. IVC.
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while the ghost propagator, D(q2), and its dressing function, F (q2), are related by

D(q2) =
F (q2)

q2
. (2.15)

Evidently, both ∆(q2) and D(q2) constitute crucial ingredients for the calculations of the

four-gluon vertex that follows. It is therefore useful to briefly review some of their IR features

that are most relevant to the present work. Specifically, both large-volume lattice simulations

and a plethora of continuous nonperturbative studies, carried out both in SU(2) and in

SU(3), converge to the conclusion that the function ∆(q2) reaches a finite (nonvanishing)

value in the IR. Moreover, the nonperturbative ghost propagator remains “massless”, and

displays no IR enhancement, since its dressing function F (q2) saturates in the deep IR to a

finite value. As we will see in what follows, the aforementioned features have far reaching

consequences for the IR behavior of the four-gluon vertex. Specifically, as happens with

the tree-gluon vertex, the masslessness of the ghost-loops contributing to Γabcd
µνρσ produces

a logarithmic IR divergence. What is, however, qualitatively distinct compared to the

three-gluon case, is that, at least within the approximation scheme that we employ, this

particular divergence does not manifest itself in the part proportional to Γ(0), but rather in

the orthogonal combination G.

III. VANISHING EXTERNAL MOMENTA

In this section we consider the simplest possible kinematic case, where all the momenta

of the external gluons are set to zero (p1 = p2 = p3 = p4 = 0).

A. The calculation

Since we do no consider the contribution of quark-loops (pure Yang-Mills theory), the

only representation that appears in our problem is the adjoint, whose explicit realization is

given in Eq. (2.4).

For the various integrals appearing in this calculation we will employ the standard text-
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FIG. 2: The 18 diagrams contributing to the four-gluon vertex in the one-loop dressed approxima-

tion. The fishnet diagrams (d) carry a statistical factor of 1/2. Lorentz, color and momentum flow

are as in Fig. 1.

book results

∫

k

f(k2)kµkν =
1

d
gµν

∫

k

k2f(k2)
∫

k

f(k2)kµkνkρkσ =
1

d(d+ 2)
Rµνρσ

∫

k

k4f(k2) (3.1)

where Rµνρσ has been defined in Eq. (2.10), and the integral measure is
∫
k
= µǫ

∫
ddk/(2π)d,

with d = 4− ǫ the space-time dimension3 and µ the ’t Hooft mass.

There are two particular tensorial structures that appear in a natural way in the calcu-

lations of the graphs shown in Fig. 2, namely

Qabcd
1 µνρσ ≡ Tradj[(T

aT bT cT d)gµρgνσ + (T aT cT bT d)gµνgρσ + (T aT bT dT c)gµσgνρ],

Qabcd
2 µνρσ ≡ Tradj[(T

aT bT cT d) + (T aT dT bT c) + (T aT cT dT b)]Rµνρσ. (3.2)

Then, using the relation4

Tradj(T
aT bT cT d) = δabδcd + δadδbc +

3

4
(dabrdcdr − dacrdbdr + dadrdbcr), (3.3)

3 Notice that we set d = 4− ǫ instead of d = 4 + 2ǫ used in [6].
4 Note also the particular property Tradj(T

aT bT cT d) = Tradj(T
aT dT cT b), which is a consequence of the

antisymmetric nature of the Ta in Eq. (2.4), and can be directly verified using Eq. (3.3)
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together with Eq. (2.12), it is straightforward to express these structures in terms of Γ(0)

and G,

Qabcd
1µνρσ = −1

2
Γabcd(0)
µνρσ +

3

4
Gabcd

µνρσ, Qabcd
2 µνρσ =

9

4
Gabcd

µνρσ. (3.4)

Turning to the explicit calculation of the one-loop dressed diagrams of Fig. 2, the (six)

ghost boxes give the result

6∑

i=1

(ai)
abcd
µνρσ = −2g2Tradj[(T

aT bT cT d) + (T aT dT bT c) + (T aT cT dT b)]

∫

k

kµkνkρkσD
4(k2),

(3.5)

which, with the aid of the formulas (3.4) introduced above, may be written in the simple

form

6∑

i=1

(ai)
abcd
µνρσ = g2Gabcd

µνρσA(0); A(0) = − 9

2d(d+ 2)

∫

k

F 4(k2)

k4
. (3.6)

Since the ghost dressing function F is known to saturate in the IR, the integral above

diverges logarithmically in the IR; however Eq. (3.6) shows that this divergence does not

contribute to the structures proportional to the tree-level tensor Γ(0). Even though this

result has been derived in a simplified setting, it will persist within the one-loop dressed

approximation employed here. Therefore, we arrive at the important conclusion that the IR

divergent terms originating from the ghost loops would be completely missed, if one were to

consider only the form factor proportional to the tree-level tensor Γ(0).

We next consider the (three) gluon boxes; as the adjoint traces will be the same as those

appearing in the ghost case above, we obtain that also the one-loop dressed gluon boxes do

not contribute to the tree-level tensor structure. In particular, we get

3∑

i=1

(bi)
abcd
µνρσ = g2Gabcd

µνρσB(0); B(0) =
36(d− 1)

d(d+ 2)

∫

k

k4∆4(k2). (3.7)

Notice that, unlike the case of the ghost boxes treated above, the integral appearing

in Eq. (3.7) is convergent in the IR, because the gluon propagator reaches a finite value

in that limit.

We now turn to the (six) triangle diagrams. After some straightforward algebraic manip-

ulations, one obtains

6∑

i=1

(ci)
abcd
µνρσ = 8g2

[
d− 2

d
Qabcd

1µνρσ −
1

d(d+ 2)
Qabcd

2 µνρσ

] ∫

k

k2∆3(k2), (3.8)
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Diagrams Integral 1
d
g2Γ

abcd(0)
µνρσ

1
d(d+2)g

2Gabcd
µνρσ

(a)
∫
k
F 4(k2)

k4
0 −9

2

(b)
∫
k
k4∆4(k2) 0 36(d − 1)

(c)
∫
k
k2∆3(k2) −4(d− 2) −12(d2 − 1)

(d)
∫
k
∆2(k2) 1

2 (d− 2)(d + 12) 3
2 (d

3 − 4d+ 3)

TABLE I: Contributions of the various class of diagrams to the four-gluon vertex in the one-loop

dressed approximation with all external momenta set to zero.

which, after using the identities (3.4), can be cast in the form

6∑

i=1

(ci)
abcd
µνρσ = g2Γabcd(0)

µνρσ C1(0) + g2Gabcd
µνρσC2(0), (3.9)

where

C1(0) = −4

d
(d− 2)

∫

k

k2∆3(k2); C2(0) = −12(d2 − 1)

∫

k

k2∆3(k2). (3.10)

Finally, we are left with the (three) fishnet diagrams. One finds, similarly to what happens

with the triangle diagrams,

3∑

i=1

(di)
abcd
µνρσ = g2

[
6(d− 2)

d
Γabcd(0)
µνρσ − (d− 2)Qabcd

1µνρσ +
d3 − 4d+ 2

d(d+ 2)
Qabcd

2 µνρσ

] ∫

k

∆2(k2). (3.11)

The identities (3.4) allow us to express the result in its final form, namely

3∑

i=1

(di)
abcd
µνρσ = g2Γabcd(0)

µνρσ D1(0) + g2Gabcd
µνρσD2(0), (3.12)

with

D1(0) =
(d− 2)(d+ 12)

2d

∫

k

∆2(k2); D2(0) =
3(d3 − 4d+ 3)

2d(d+ 2)

∫

k

∆2(k2). (3.13)

The results obtained are conveniently summarized in Table I.

B. Perturbative analysis

At this point one may explore the qualitative behavior of the two contributions obtained

above within a setting inspired by one-loop perturbation theory, but supplemented by a set
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of mass scales, which prevent the resulting expressions from diverging in the IR. Specifically,

if one were to simply set F (k2) and ∆(k2) to their strict perturbative values (1 and 1/k2,

respectively) the four integrals appearing in the second column of Table I reduce to a single

integral, namely
∫
k

1
k4
. At this point, it is easy to verify that, when d = 4, the total

contribution proportional to Gabcd
µνρσ vanishes, given that the sum of the coefficients appearing

on the fourth column adds up to zero.

However, given that the integral
∫
k

1
k4

is both IR and UV divergent, it is preferable to

introduce a distinction between the two type of divergences. To accomplish this, we proceed

as follows. Given that the (Euclidean) gluon propagator (in the Landau gauge) is known to

be finite in the IR (a feature that can be self-consistently explained through the dynamical

generation of an effective gluon mass), for the purposes of this simple calculation one may

approximate ∆(k2) by 1/(k2 + m2). This replacement makes the integrals
∫
k
k4∆4(k2),

∫
k
k2∆3(k2), and

∫
k
∆2(k2) of Table I IR finite; of course, they still diverge logarithmically in

the UV. Regarding the integral
∫
k

F 4(k2)
k4

, it is known that the ghost remains nonperturbatively

massless, a fact that leads to a genuine IR divergence; in order to control it, we will introduce

an artificial mass scale, denoted by λ2. Thus, the integral corresponding to
∫
k

F 4(k2)
k4

will

read
∫
k

1
(k2+λ2)2

.

Let us emphasize at this point that even though at the formal level both m2 and λ2 serve

as IR regulators, there is a profound physical difference between the two: m2 constitutes a

simplified realization of a true physical phenomenon, namely the IR saturation of the gluon

propagator, while λ2 is an artificial scale, introduced as a regulator of a quantity (the ghost

propagator) that is genuinely massless. Consequently, in order to recover the physically

relevant (albeit simplified) limits, m2 will be kept at some fixed nonvanishing value, while

λ2 will be sent to zero.

The above considerations motivate the introduction of a particular integral, namely

I(M2) ≡
∫

k

1

(k2 +M2)2

=
i

16π2

[(
2

ǫ
− γ

)
− ln(M2/µ2) +O(ǫ)

]
, (3.14)

where µ is the ’t Hooft mass, and γ the Euler-Mascheroni constant. Evidently, depending

on the case that one considers, M2 = m2 or M2 = λ2.

In particular, after the replacements mentioned above, the integrals in Table I can be
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expressed in terms of I(M2) as follows

∫

k

F 4(k2)

k4
→ I(λ2);

∫

k

∆2(k2) → I(m2);
∫

k

k4∆4(k2) → I(m2) + · · · ;
∫

k

k2∆3(k2) → I(m2) + · · · , (3.15)

where the ellipses in the last two expressions indicate linear combinations of the integrals5

m2
∫
k

1
(k2+m2)3

or m4
∫
k

1
(k2+m2)4

, which are convergent both in the IR and the UV.

At this point one may add up the corresponding contributions in the third and fourth

columns of Table I and obtain, within this perturbative scheme, the coefficients multiplying

Γ(0) and G, to be denoted by V
(1)

Γ(0)(0) and V
(1)
G (0), respectively. Specifically, setting d = 4

everywhere (but keeping ǫ 6= 0 in 2/ǫ), introducing αs ≡ g2/4π, factoring out a (−i) to

conform with the definition in Eq. (2.1), we find for the leading behavior

V
(1)

Γ(0)(0) = 2ig2I(m2) , (3.16)

which, after the inclusion of the tree-level term, and use of Eq. (3.14), becomes

VΓ(0)(0) = 1 + V
(1)

Γ(0)(0) = 1− αs

2π

[(
2

ǫ
− γ

)
− ln(m2/µ2)

]
, (3.17)

and

V
(1)
G (0) =

3

16
ig2
[
I(m2)− I(λ2)

]
=

3αs

64π
ln(m2/λ2). (3.18)

Evidently, all dependence on 1/ǫ is contained in the coefficient multiplying Γ(0), while the

coefficient of G is completely free of such terms, exactly as one would expect from the

renormalizability of the theory. Indeed, given that the term G does not appear in the

original Lagrangian, a divergence of this type could not be renormalized away. Instead, the

divergence proportional to Γ(0) will be reabsorbed in the standard way, namely through the

introduction of the appropriate vertex renormalization constant, to be denoted by Z4.

Specifically, one obtains the renormalized vertex ΓR from its unrenormalized counterpart

Γ0 through the condition (suppressing all indices)

ΓR(pi) = Z4Γ0(pi). (3.19)

5 These latter integrals appear simply through the elementary algebraic manipulation k2 = (k2 +m2)−m2

in the numerators, and the subsequent cancellation of some of the denominators.
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Of course, the exact form of the Z4 and the resulting ΓR depend on the renormalization

scheme chosen. In particular, in the minimal subtraction (MS) scheme one would simply

have

Z
(MS)
4 = 1 +

αs

2π

(
2

ǫ
− γ

)
, (3.20)

which, upon multiplication with the VΓ(0)(0) of Eq. (3.17) will give (keeping up to terms of

order αs) the finite result

V
(MS)

Γ(0) (0) = 1 +
αs

2π
ln(m2/µ2). (3.21)

Note that Z
(MS)
4 coincides with the part proportional to 1/ǫ of the corresponding expression

given in (3.10) of [6] (in the Landau gauge, and for N = 3).

If one were instead to renormalize in the minimal subtraction (MOM) scheme, as is

customary in lattice simulations and SDE studies, one would need to introduce a renormal-

ization point, µR, and demand that at that point the value of the renormalized vertex reduces

to its tree-level value. For instance, as in [6], the completely symmetric choice p2i = µ2
R and

pi · pj = −µ2
R
/3 may be employed; then, the corresponding Z

(MOM)
4 would read (in general)

Z
(MOM)
4 = 1− V

(1)

Γ(0)(µ
2
R), (3.22)

such that (schematically)

V
(MOM)

Γ(0) (p2i ) = 1 + [V
(1)

Γ(0)(p
2
i )− V

(1)

Γ(0)(µ
2
R
)]. (3.23)

Of course, for the case at hand, since the vertex has been computed only for vanishing

momenta, one cannot implement a MOM-type scheme. However, in order to get a sense of

the general trend that one might expect from a general calculation, we may assume that the

subtraction point lies sufficiently far in the UV. Then, for a representative large Euclidean

momentum P , the qualitative behaviour of the form factor may be approximated by

VΓ(0)(P 2) ≈ 1− αs

2π

[(
2

ǫ
− γ

)
− ln(P 2/µ2)

]
, (3.24)

so that, at P 2 = µ2
R one obtains

Z
(MOM)
4 ≈ 1 +

αs

2π

[(
2

ǫ
− γ

)
− ln(µ2

R/µ
2)

]
, (3.25)

and therefore, the value of VΓ(0)(0) gets renormalized to

V
(MOM)

Γ(0) (0) ≈ 1 +
αs

2π
ln(m2/µ2

R
). (3.26)
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As happens typically, in the finite result the ’t Hooft scale µ has been replaced by the

renormalization scale µR.

It is obvious at this point, that the above approximations require that µ2
R > m2, and,

consequently, since the logarithm becomes negative, V
(MOM)

Γ(0) (0) < 1. To obtain a quantitative

notion of the effect, we will use lattice-inspired values for m2 and µ2
R
; specifically, if we

identify the saturation point of the gluon propagator on the lattice with 1/m2, we know

that, for µR = 4.3 GeV we have that m = 375 MeV. Then, using that, for this particular

µR, αs ≈ 0.22, we finally find

V
(MOM)

Γ(0) (0) ≈ 0.83. (3.27)

Quite interestingly, this apparent tendency of the quantum corrections to reduce the tree-

level value persists in the full one-loop dressed calculation; in fact, the value quoted in

Eq. (3.27) is fairly close to the one found in the next section.

Turning to the V
(1)
G (0) in Eq. (3.18), we notice that, when the artificial IR cutoff λ is taken

to zero, while the physical gluon mass is kept at a nonvanishing value, the logarithm diverges

to +∞. Again, this coincides with the behavior found in the more complete calculation of

the next section. Of course, the slope of the logarithm found in Eq. (3.18) is numerically

rather suppressed when compared to the result found in the next section; however, this is to

be expected, given that the function F (k2), which in Eq. (3.6) is raised to the fourth power,

is considerably different from 1 in the IR and intermediate momenta.

IV. THE SPECIAL MOMENTUM CONFIGURATION (p, p, p,−3p)

Even within the one-loop dressed approximation we are employing, the calculation of the

four-gluon vertex for a generic external momenta configuration (such as the one depicted

in Fig. 1) is still a complex task. In addition, it is not the most expeditious way to obtain

information about the IR dynamics of this vertex that could be easily contrasted with lattice

simulations.

Thus, we will study a relatively simple kinematic configuration, which is obtained choos-

ing a single momentum scale p and identifying the momentum flow (see Fig. 1) with

p1 = p2 = p3 = p (and hence p4 = −3p). This kinematic configuration gives rise to

loop integrals that are fully symmetric under the crossing of external legs; therefore, the

crossed diagrams may be obtained from the original ones through simple permutations of
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the color and Lorentz indices.

As before, we will only consider terms that are quadratic in the metric gg. This choice,

in addition to simplifying the algebraic structures considerably, corresponds precisely to

the contributions that would survive on the lattice, if one were to consider the standard

quantities employed in the simulations of vertices [15, 16] (we will return to this point in

Sect. IVC).

A. Analytical results

Consider the contribution of the ghost boxes. The aforementioned crossing property

implies that the six different diagrams are proportional to the same integral. As a result,

one obtains, similarly to what happens in the p = 0 case,

6∑

i=1

(ai)
abcd
µνρσ

∣∣
gg

= g2Gabcd
µνρσA(p

2), (4.1)

where now

A(p2) = −9

2

1

d2 − 1

∫

k

k2

[
1− (k ·p)2

k2p2

]2
F (k)F (k + p)F (k + 2p)F (k + 3p)

(k + p)2(k + 2p)2(k + 3p)2
. (4.2)

It can be easily checked that as p → 0, A(p2) above reduces to the A(0) of Eq. (3.6); therefore

we expect that the Gabcd
µνρσ form factor will develop a (logarithmic) divergence in the deep IR.

Next, we consider the gluon boxes. The uncrossed diagram shown in Fig. 2, yields the

general expression

(b1)
abcd
µνρσ

∣∣
gg

= 16g2Tradj(T
aT bT cT d)Iµνρσ(p

2),

Iµνρσ(p
2) = I1(p

2)gµνgρσ + I2(p
2)gµρgνσ + I3(p

2)gµσgνρ + I4(p
2)Rµνρσ, (4.3)

where the integrals Ii(p
2) are not needed for the moment. Crossed diagrams are then ob-

tained from the above expression through the replacements (µνρσ) → (µρνσ), (abcd) →
(acbd) and (µνρσ) → (νµρσ), (abcd) → (bacd). In addition, it turns out that the integrals

I1 and I3 are equal6 upon the momentum shifting k + 3p → −k, so that Iµνρσ can be cast

6 Notice that without this equality the gluon box contributions would lie outside the subset of all possible

color and Lorentz tensor structures spanned by Γ
abcd(0)
µνρσ and Gabcd

µνρσ . Moreover, observe that the realization

of this equality requires shifts of the integration variable of the type k → k+p; of course, since only terms

quadratic in the metric are kept, one consistently drops in the numerators terms produced by these shifts

that are proportional to p and carry Lorentz indices of the external legs.
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FIG. 3: The 6 one-loop dressed triangle diagrams subdivided in two classes, containing three

diagrams each, proportional to independent momentum integrals.

in the form

Iµνρσ(p
2) = [I2(p

2)− I1(p
2)]gµρgνσ + [I1(p

2) + I4(p
2)]Rµνρσ. (4.4)

Thus, adding the three diagrams, one obtains

3∑

i=1

(bi)
abcd
µνρσ

∣∣
gg

= g2Γabcd(0)
µνρσ B1(p

2) + g2Gabcd
µνρσB2(p

2), (4.5)

where

Bi(p
2) =

∫

k

fi(k, p)
∆(k)∆(k + p)∆(k + 2p)∆(k + 3p)

k2(k + p)2(k + 2p)2(k + 3p)2
, (4.6)

and the functions fi(k, p) are reported in Eq. (B1).

We next consider the triangle diagrams. In this case the six graphs can be divided in two

separate classes (see Fig. 3), proportional to two independent momentum integrals, namely

∆(k)∆(k+p)∆(k+2p) [class (cA)] and ∆(k)∆(k−p)∆(k+2p) [class (cB)]. Let us then start

from the first diagram of the (cA) class (see again Fig. 3); one obtains the general result

(cA1 )
abcd
µνρσ

∣∣
gg

= 6g2fadxf bcxJµνρσ(p
2)− 4g2Tradj(T

aT bT cT d)Kµνρσ(p
2)

− 4g2Tradj(T
aT dT bT c)Kµρνσ(p

2), (4.7)

where

Jµνρσ(p
2) = J1(p

2)(gµνgρσ − gµρgνσ),

Kµνρσ(p
2) = K1(p

2)gµσgνρ +K2(p
2)gµρgνσ +K3(p

2)gµνgρσ +K4(p
2)Rµνρσ, (4.8)
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where again Ji(p
2) and Ki(p

2) are integrals whose explicit expression is not needed at this

point.

Within this class, the remaining diagrams are then obtained through the replacements

(µνρσ) → (σµνρ), (abcd) → (dabc) and (µνρσ) → (σµρν), (abcd) → (dabc). Thus, summing

up all the (cA) graphs, one obtains, similarly to the zero external momentum case Eq. (3.9),

the result
3∑

i=1

(cAi )
abcd
µνρσ

∣∣
gg

= g2Γabcd(0)
µνρσ C1(p

2) + g2Gabcd
µνρσC2(p

2), (4.9)

where

Ci(p
2) =

∫

k

gi(k, p)
∆(k)∆(k + p)∆(k + 2p)

k2(k + p)2(k + 2p)2
, (4.10)

with the gi(k, p) functions given in Eq. (B2).

Similarly, for the (cB) class we obtain

3∑

i=1

(cBi )
abcd
µνρσ

∣∣
gg

= g2Γabcd(0)
µνρσ C ′

1(p
2) + g2Gabcd

µνρσC
′

2(p
2), (4.11)

where now

C ′

i(p
2) =

∫

k

g′i(k, p)
∆(k)∆(k − p)∆(k + 2p)

k2(k − p)2(k + 2p)2
, (4.12)

and the g′i(k, p) functions given in Eq. (B3).

We are finally left with the fishnet diagrams. The uncrossed diagram of Fig. 2 yields

(d1)
abcd
µνρσ

∣∣
gg

= 6g2fadxf bcxHµνρσ(p
2) + g2Tradj(T

aT bT cT d)Lµνρσ(p
2)

+ g2Tradj(T
aT dT bT c)Lµρνσ(p

2), (4.13)

where

Hµνρσ(p
2) = H1(p

2)(gµνgρσ − gµρgνσ),

Lµνρσ(p
2) = L1(p

2)gµσgνρ + L2(p
2)gµνgρσ + L3(p

2)Rµνρσ. (4.14)

The crossed diagrams are next obtained from the above result through the replacement

rules (µνρσ) → (µνσρ), (abcd) → (adcb) and (µνρσ) → (µσρν), (abcd) → (dabc). Then,

summing up all diagrams, one obtains

3∑

i=1

(di)
abcd
µνρσ

∣∣
gg

= g2Γabcd(0)
µνρσ D1(p

2) + g2Gabcd
µνρσD2(p

2), (4.15)
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FIG. 4: (color online). The SU(3) gluon propagator (left) and ghost dressing function (right)

evaluated on the lattice [25] and the corresponding physically motivated fits we use [53]. In the

case of the gluon propagator the dashed curve shows a fit featuring an inflection point the origin of

which is linked to the presence of ghost loops [17]. All functions are renormalized at µ = 4.3 GeV.

where now

Di(p
2) =

∫

k

hi(k, p)
∆(k)∆(k + 2p)

k2(k + 2p)2
, (4.16)

where the hi(k, p) functions are given in Eq. (B4).

At this point, using the above results, and taking into account the definition (2.1), one

has that the four-gluon vertex can be cast in the form

Γabcd
µνρσ(p, p, p,−3p)

∣∣
gg

= VΓ(0)(p2)Γabcd(0)
µνρσ + VG(p

2)Gabcd
µνρσ, (4.17)

with

VΓ(0)(p2) = 1 + 4πiαs[B1(p
2) + C1(p

2) + C ′

1(p
2) +D1(p

2)],

VG(p
2) = 4πiαs

[
A(p2) +B2(p

2) + C2(p
2) + C ′

2(p
2) +D2(p

2)
]
, (4.18)

where the “1” in VΓ(0)(p2) represents the tree-level contribution.

B. Numerical results

In order to study numerically the various one-loop dressed contributions to the four-gluon

vertex, let us first pass to Euclidean space by defining k0 → ikE
4 and kj → −kE

j , from which
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FIG. 5: (color online). Individual one-loop dressed contributions to the tensor structure Γ
abcd(0)
µνρσ .

The black line coincides with the coefficient VΓ(0) of Eq. (4.18).

the replacement rules d4k → id4kE, k ·q → −kE ·qE and k2 → −k2
E
follow. Next, we introduce

spherical coordinates, setting

x = p2; y = k2; zn = (k + np)2 = n2x+ y + 2n
√
xy cos θ;

∫

kE

=
1

(2π)3

∫ π

0

dθ sin2 θ

∫
∞

0

dy y. (4.19)

At this point, all the integrals derived in our analytical calculation may be evaluated by

standard integration techniques, provided that we supply as input the gluon propagator ∆

and the ghost dressing function F .

To this end, we use physically motivated fits to the lattice data of [54], whose explicit

functional form can be found in [53]. The agreement of these fits with the corresponding

lattice data at the renormalization scale µ = 4.3 GeV is shown in Fig. 4. For the case of the

gluon propagator we also show a fit displaying the inflection point that must appear due to

the presence of divergent ghost loops [17]; the results obtained are practically independent

from the implementation of this feature in the gluon propagator.

In Fig. 5 and Fig. 6 we plot, respectively, the contributions of the various diagrams to VΓ(0)

and VG, together with their total sum (in the former case, all terms have been subtractively

renormalized within the MOM scheme, at µ = 4.3 GeV, in accordance with Eq. (3.23)).
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FIG. 6: (color online). Individual one-loop dressed contributions to the tensor structure Gabcd
µνρσ .

The black line coincides with the coefficient VG of Eq. (4.18).

As already mentioned, ghost boxes will not contribute to VΓ(0), which is entirely made up

of gluonic contributions, all of them saturating in the IR (see Fig. 5, again). The contribution

of the gluon boxes is negligible; indeed, as p → 0 it vanishes, as we know it should from the

zero external momenta case (see Table I). The triangle terms feature a bump of opposite

sign, while the fishnet is negative. Adding everything up, one obtains the shape shown by

the black line of Fig. 5. Notice that at zero momentum we obtain the value V
(MOM)

Γ(0) = 0.95,

which compares rather well with the perturbative estimate of Eq. (3.27).

In the case of VG the situation is completely different (Fig. 6). Gluon contributions

are again saturating in the IR; however, in this case, the ghost boxes take over below few

hundreds MeV2, driving VG to an IR logarithmic divergence. In fact, the IR behavior is

perfectly described by the function a log x + b with a = −0.187 and b = −1.989. As far as

the remaining diagrams are concerned, gluon boxes are negative in this case; in addition,

they are almost perfectly cancelled by the two triangle contributions, which (contrary to the

previous case) have now the same sign. When the negative contribution from the fishnet

diagrams is finally added, one obtains the shape shown by the black line of Fig. 6.

It is important to notice that VG displays a zero crossing, a feature that is also present

in the R ratio defined in the case of the three-gluon vertex [17–19]. The location of the
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FIG. 7: (color online). Left panel. The ghost vertex form factor A in the soft gluon limit calculated

in the continuum and on the lattice. Right panel. The ghost contribution to VG, together with the

total VG, when ghost vertex corrections are included. The gray lines represent the same quantities

evaluated with tree-level vertices: the shift of the zero crossing towards the right is evident.

crossing appears to be very deep in the IR (around a few MeV); recall, however, that the

VG displayed in Fig. 6 has been evaluated without dressing the various vertices. In order to

obtain an estimate of the possible impact that vertex corrections might have on the behavior

of VG, let us consider what happens when the ghost vertices, appearing in the ghost box

diagrams (a), are dressed.

Writing for the ghost vertex (all momenta entering)

iΓcnAa
αc̄

m(k − p, p,−k) = gfamnΓα(k − p, p,−k), (4.20)

the most general tensorial structure decomposition of Γα is given by

Γα(k − p, p,−k) = A(k − p, p,−k)kα + B(k − p, p,−k)pα. (4.21)

Evidently, at tree-level, one has A(0) = 1 and B(0) = 0.

To be sure, the form factors A, B are not known for arbitrary momenta. However, in the

soft gluon limit (p → 0), which is the most relevant to our purposes, Eq. (4.21) reduces to

Γα(k, 0,−k) = A(k2)kα; A(k2) = A(k, 0,−k), (4.22)

and the form factor A(k2) has been studied both in the continuum [51, 55, 56] and on the

lattice, both for SU(2) [13] and SU(3) [14]; the results obtained in [51] and [14] are shown
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in the left panel of Fig. 7. As can be seen, in this limit A develops a sizeable peak around

800 MeV, approaching its tree-level value for both IR as well as UV momenta.

The idea is then to replace all ghost-gluon vertices appearing in a generic ghost box

diagram by Eq. (4.22); this amounts to effectively multiplying the integrand in Eq. (4.2)

by A4(k2). Obviously this operation constitutes an approximation, which is, nevertheless,

reliable in the IR momentum region. The resulting modification of the ghost box contribution

to VG, as well as the total VG, are then shown on the right panel of Fig. 7. The inclusion of

vertex corrections causes a change in the logarithmic IR running (with now a = −0.191 and

b = −1.858) of the ghost contribution, to which corresponds a shift of the zero crossing point

of VG towards higher momentum (one gets twice the value obtained with tree-level ghost

vertices). It remains to be seen if the addition of vertex corrections to all other diagrams will

produce a further shift of the point of the zero crossing towards the moderate momentum

region, of say p ∼ 0.1 ÷ 1 GeV, where the onset of nonperturbative effects appears to take

place in all previously studied SU(3) Green’s functions.

C. Lattice quantities

We conclude this section by commenting on certain issues that appear when the quantities

defined on the lattice for studying vertices [15, 16] (to date, only three-point functions) are

extended to the case of the four-gluon vertex.

Lattice simulations of the four gluon vertex would be challenging for the following two

reasons. On the one hand, simulations of multi-gluons correlation functions are noisy, there-

fore requiring the sampling of a very large number of gauge configurations. On the other

hand, lattice calculations are bound to probe the connected Green’s functions C rather than

the 1-PI functions Γ. In the four gluon case addressed in this paper, the two functions are

related by (see also Fig. 8)

Cabcd
µνρσ(p1, p2, p3, p4) = ∆µα(p1)∆

νβ(p2)∆
ργ(p3)∆

σδ(p4)Γ
abcd
αβγδ(p1, p2, p3, p4)− i∆µα(p1)∆

σδ(p4)×

× Γmad
εαδ (p1 + p4, p1, p4)∆

εε′(p1 + p4)Γ
mbc
ε′βγ(p2 + p3, p2, p3)∆

νβ(p2)∆
ργ(p3)

+ crossing terms, (4.23)

and we see that 1-PR diagrams constructed from lower order functions will spoil in general

the possibility of isolating the genuine 1-PI contribution to C.
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FIG. 8: Schematic decomposition of a four-point connected Green’s function into its 1-PI and 1-

PR contributions. The factor of 3 takes into account crossed diagrams. White (respectively, gray)

boxes/blobs represent connected (respectively 1-PI) functions.

In order to address the second problem, observe that, in the Landau gauge, the only

rank-2 Minkowski tensor allowed is the transverse projector, while, in general, the allowed

rank-3 tensors for the three-gluon vertex are either linear in both the metric and momenta

(gp), or cubic in momenta (pqr). This means, in turn, that in the momentum configuration

(p1, p2, p3, p4) = (p, p, p,−3p), each propagator appearing in the decomposition Eq. (4.23)

will have an accompanying projector P (p); as a result, all 1-PR contributions will vanish,

and one is left with

Cabcd
µνρσ(p, p, p,−3p) = ∆3(p2)∆(9p2)P µα(p)P νβ(p)P ργ(p)P σδ(p) Γabcd

αβγδ(p, p, p,−3p)
∣∣
gg
.

(4.24)

Therefore, we arrive at the important conclusion that the momentum configuration

(p, p, p,−3p) allows the study of the (projected) 1-PI component of the four-gluon connected

Green’s function in isolation.

At this point, the scalar factors ∆ can be factored out by defining the lattice R ratio in

the standard way [15, 16], namely projecting C on a suitable tensor T abcd
µνρσ, and normalizing

the resulting expression. Specifically, one writes

RT (p
2) =

T abcd
µνρσC

µνρσ

abcd

T abcd
µνρσP

µαP νβP ργP σδT abcd
αβγδ

=
T abcd
µνρσP

µαP νβP ργP σδ Γabcd
αβγδ

∣∣
gg

T abcd
µνρσP

µαP νβP ργP σδT abcd
αβγδ

. (4.25)

One then usually chooses T to coincide with the tree-level vertex Γ(0), so that any deviation

of R from 1 signals the onset of quantum (nonperturbative) effects.

For the case of the four gluon vertex, however, additional care is needed, depending on

the particular property that one attempts to expose7. Indeed, the general analysis based on

7 In particular, if one wants to capture the aforementioned logarithmic IR divergence attributed to the

massless ghost loops, the orthogonality relations (2.11) implies that T 6= Γ(0).
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Bose symmetry of Appendix A, reveals that in the momentum configuration under scrutiny

there are at most three possible tensor structures (proportional to gg) contributing to the

full four-gluon vertex, i.e., one has8

Γabcd
µνρσ(p, p, p,−3p)

∣∣
gg

= VΓ(0)(p2)Γabcd(0)
µνρσ + VG(p

2)Gabcd
µνρσ + VX′(p2)X

′abcd
µνρσ . (4.26)

Thus, the complete structure of the four gluon vertex can be obtained by defining the three

different ratios corresponding to setting T = Γ(0), G and X ′ in the definition (4.25).

In addition, as explained in Appendix A, Bose symmetry alone does not unambiguously

fix the tensor X ′, whose exact form depends on the choice of the “basis” that spans this

particular space. The various possible choices are conveniently parametrized by means of a

parameter s [see Eq. (A14)].

Ideally one would like to fix s in a way such that the resulting X ′ be orthogonal to both

Γ(0) and G, that is by requiring

Γabcd(0)
µνρσ P µα(p)P νβ(p)P ργ(p)P σδ(p)X

′abcd
αβργ = Gabcd

µνρσP
µα(p)P νβ(p)P ργ(p)P σδ(p)X

′abcd
αβργ = 0.

(4.27)

This is however not possible, as X ′ can be rendered orthogonal to either Γ(0) (for s = 0) or

G (for s = 1/3), but not both. In these cases one has

s = 0 : RΓ(0) = VΓ(0); RG = VG +
1

9
VX′; RX′ = VX′ +

3

13
VG,

s =
1

3
: RΓ(0) = VΓ(0) +

1

81
VX′; RG = VG; RX′ = VX′ +

9

164
VΓ(0). (4.28)

There are at least two reasons to prefer the second choice over the first. To begin with,

recall that, according to our general analysis, the origin of the divergence in the vertex form

factors is clearly associated with the masslessness of the full ghost propagator; consequently,

VG will continue to be divergent even in the full nonperturbative setting provided by a lattice

calculation. At the same time, we expect VΓ(0) to be finite, as the diagrams contributing to

it are “protected” by the effective gluon mass; this means, in turn, that in the s = 0 basis

both RG and RX′ will diverge, even in the case of a finite VX′. In the s = 1/3 basis, a lattice

calculation would instead find that the only IR divergent ratio would be RG, immediately

signalling a finite VΓ(0) and VX′ form factors. In addition, observe that Eq. (4.28) implies

8 Obviously, within the one-loop approximation that we have employed in our calculations, one has VX′ = 0,

so that Eq. (2.11) implies the identifications VΓ(0) = RΓ(0) and VG = RG (RX′ is redundant in this case).
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that the vectors Γ(0) and X ′ are very close to be orthogonal for the s = 1/3 case; for example,

when projecting the full vertex along Γ(0), the X ′ component is two orders of magnitude

smaller than the Γ(0) one, and vice-versa.

A lattice measurement of the ratios RT in the s = 1/3 basis will finally yield the complete

vertex form factors VT , through the formulas

VΓ(0) =
164

13275
(81RΓ(0) −RX′) ; VG = RG; VX′ =

9

1475
(164RX′ − 9RΓ(0)) . (4.29)

V. CONCLUSIONS

In this paper we have explored certain nonperturbative features of the SU(3) four-gluon

vertex in the Landau gauge. In particular, of the set of all possible quantum corrections,

we have considered the subset corresponding to the one-loop dressed diagrams, in which

vertices are kept at tree-level while propagators are fully dressed. If only terms quadratic in

the metric are kept, and the kinematical configuration (p, p, p,−3p) is chosen, we have found

that, within this class of diagrams, only two orthogonal Lorentz and color tensor structures

can emerge: the tree-level vertex Γ(0), and the tensor G.

It turns out that ghost boxes can contribute only to the latter structure, while all the re-

maining diagrams (gluon boxes, triangle, and fishnet diagrams) contributes to both. Then, as

massless ghost loops invariably lead to the presence of an IR divergence in the corresponding

diagram [17], one expects the form factor VG (respectively, VΓ(0)) to be IR divergent (respec-

tively, finite). A numerical study performed, using as input the available lattice data for the

gluon propagator and ghost dressing function, confirms these expectations. In addition, one

finds that VG shows a zero crossing before the form factor diverges logarithmically to +∞.

It would certainly be interesting to scrutinize this issue further, and reach a definite

conclusion on the way that this particular IR divergence manifests itself at the level of the

four-gluon vertex. One possible direction has already been pursued here to some limited

extent, namely the dressing of the ghost vertices appearing in the one-loop dressed diagrams.

One may attempt to complete this task, by also dressing the three-gluon vertices; to be

sure, the tensorial structure of the three-gluon vertices is bound to lead to a proliferation

of terms, which, however, may become manageable in the limit of interest, namely as all

external momenta tend to zero. Even if this approach would not exhaust all the possible

vertex dressing (the real problem in this context being the dressing of the four-gluon vertices
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appearing in the triangle diagrams), the importance of accomplishing this step would be

twofold: on the one hand, one would see if the zero crossing gets pushed towards the more

“favorable” momentum region p ∼ 0.1 ÷ 1 GeV, as the ghost vertex corrections seem to

suggest; on the other hand, it might be possible to detect the appearance of the form factor

associated to the X
′

tensor allowed by Bose symmetry, and address its IR properties (or

confirm its vanishing).

Of course, the lattice could be instrumental in addressing all the aforementioned issues.

Indeed, our analysis reveals that the (p, p, p,−3p) configuration would permit the study of

the 1-PI part of the connected four gluon function alone, and that the full structure of the

vertex can be then reconstructed from the measurements of the standard ratios RΓ(0) , RG

and RX′ . In that sense, the main remaining difficulty to overcome is to average over a large

sample of gauge configurations, in order to tame the statistical fluctuations.
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Appendix A: Bose symmetry

In this Appendix we use the Bose symmetry of the four external gluon legs in order to

constrain the number of the possible tensors that can appear in the gg part of the four-gluon

vertex, specializing to the kinematic configuration (p1, p2, p3, p4) = (p, p, p,−3p)

To begin with, let us classify the possible color structures into three subsets

{A} = {δabδcd, δacδdb, δadδbc},

{B} = {dabrdcdr, dacrddbr, dadrdbcr},

{C} = {dabrf cdr, dacrf dbr, dadrf bcr}, (A1)

denoting the corresponding elements by Aabcd
j , Babcd

j , and Cabcd
j , with j = 1, 2, 3. The reason

for this particular separation is that the elements of different subsets do not mix when one

applies the permutations dictated by the Bose symmetry of the four-gluon vertex, as we will

do below.
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In particular, the three basic structures that emerge when one considers only terms

quadratic in the metric assume the general form

(V1)
abcd
µνρσ = gµνgρσ[a1jA

abcd
j + b1jB

abcd
j + c1jC

abcd
j ],

(V2)
abcd
µνρσ = gµρgνσ[a2jA

abcd
j + b2jB

abcd
j + c2jC

abcd
j ],

(V3)
abcd
µνρσ = gµσgνρ[a3jA

abcd
j + b3jB

abcd
j + c3jC

abcd
j ]. (A2)

and the vertex may be written as

Γabcd
µνρσ =

3∑

i=1

(Vi)
abcd
µνρσ. (A3)

The coefficients (form factors) aij , bij , and cij are functions of the incoming momenta,

namely aij = aij(p1, p2, p3, p4), etc. Of course, the Bose symmetry of the four-gluon vertex

imposes constraints on their behavior, allowing one to express some of them in terms of

others (with their arguments permuted), thus reducing the number of unknown functions.

The 24 possible permutations correspond to all possible rearrangements of the set (abcd).

1. The case of vanishing momenta

As a warm up exercise, let us first see what happens to the Vi when all incoming momenta

vanish, (p1, p2, p3, p4) = (0, 0, 0, 0). In that case, of course, all coefficients aij , bij and cij are

simply constants.

Let us first consider the contributions to Vi coming from the first subset, to be denoted

by V A

i . In particular, we have

(V A

1 )abcdµνρσ = gµνgρσ[a11δ
abδcd + a12δ

acδbd + a13δ
adδbc],

(V A

2 )abcdµνρσ = gµρgνσ[a21δ
abδcd + a22δ

acδbd + a23δ
adδbc],

(V A

3 )abcdµνρσ = gµσgνρ[a31δ
abδcd + a32δ

acδbd + a33δ
adδbc]. (A4)

At this point, the requirement of Bose symmetry under (a, µ ↔ b, ν) forces (V A

1 )abcdµνρσ to

transform into itself, and as a result we must have a12 = a13. Similarly, the requirement of

symmetry under (a, µ ↔ c, ρ) forces a21 = a23, whilst symmetry under (a, µ ↔ d, σ) leads
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to a31 = a32. Thus, the (V A

i )abcdµνρσ of Eq. (A4) reduce to the form

(V A

1 )abcdµνρσ = gµνgρσ[a11δ
abδcd + a12(δ

acδbd + δadδbc)],

(V A

2 )abcdµνρσ = gµρgνσ[a22δ
acδbd + a23(δ

abδcd + δadδbc)],

(V A

3 )abcdµνρσ = gµσgνρ[a33δ
adδbc + a31(δ

abδcd + δacδbd)]. (A5)

Note that if one carries out the second obvious set of permutations, namely (c, ρ ↔ d, σ),

(b, ν ↔ d, σ), and (c, ν ↔ b, ρ), the V A

1 , V A

2 , and V A

3 , respectively, are automatically sym-

metric.

Of course, when the permutation is such that one particular V A

i must transform into

itself, the other two must transform one into the other. For example, when (a, µ ↔ b, ν), we

have that V A

1 → V A

1 , whereas

(V A

2 )abcdµνρσ → gµσgνρ[a22δ
adδbc + a23(δ

abδcd + δacδbd)],

(V A

3 )abcdµνρσ → gµρgνσ[a33δ
acδbd + a31(δ

abδcd + δadδbc)]. (A6)

Then, Bose symmetry requires that the transformed V A

2 must coincide with the original V A

3 ,

and vice-versa, and therefore we must have that a22 = a33, and a23 = a31. The repetition of

this arguments leads to the conclusion that a11 = a22 = a33 ≡ â, and a12 = a23 = a31 ≡ ã;

thus, finally, after setting a ≡ â− ã, we have that

(V A

1 )abcdµνρσ = gµνgρσ[aδ
abδcd + ã(δabδcd + δacδbd + δadδbc)],

(V A

2 )abcdµνρσ = gµρgνσ[aδ
acδbd + ã(δabδcd + δacδbd + δadδbc)],

(V A

3 )abcdµνρσ = gµσgνρ[aδ
adδbc + ã(δabδcd + δacδbd + δadδbc)]. (A7)

Note that past this point, use of the remaining possible permutations imposes no further

restrictions on the coefficients a and ã.

A completely similar procedure may be applied to the parts of the (Vi) related to the

subset {B}. In particular, one reaches the conclusion that

(V B

1 )abcdµνρσ = gµνgρσ[bd
abrdcdr + b̃(dabrdcdr + dacrdbdr + dadrdbcr)],

(V B

2 )abcdµνρσ = gµρgνσ[bd
acrdbdr + b̃(dabrdcdr + dacrdbdr + dadrdbcr)],

(V B

3 )abcdµνρσ = gµσgνρ[bd
adrdbcr + b̃(dabrdcdr + dacrdbdr + dadrdbcr)]. (A8)

Turning to the subset {C}, it is relatively straightforward to establish that it does not

contribute to the (Vi). To see this, let us choose any of the (Vi), say (V1), and consider the
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general form of its component (V C

1 ), given by

(V C

1 )abcdµνρσ = gµνgρσ[c11d
abrf cdr + c12d

acrf dbr + c13d
adrf bcr]. (A9)

Let us now implement the permutation (c, ρ ↔ d, σ), under which

(V C

1 )abcdµνρσ → gµνgρσ[−c11d
abrf cdr − c12d

adrf bcr − c13d
acrf dbr], (A10)

and since the transformed (V C

1 ) must coincide with the original one, we have that c11 = −c11

and c12 = −c13, and so

(V C

1 )abcdµνρσ = gµνgρσc13[d
acrf bdr + dadrf bcr]

= gµνgρσc13d
cdrfabr, (A11)

where we have used the second identity of Eq. (2.8). But this last expression must remain

invariant under the additional permutation (a, µ ↔ b, ν), which implies that c13 = 0.

A this point one may specialize to the case N = 3, and use Eq. (2.9) into Eq. (A8), to

write the vertex in the form

Γabcd
µνρσ(0, 0, 0, 0) =

(
ã+

b̃

3

)
Gabcd

µνρσ + Labcd
µνρσ, (A12)

with

Labcd
µνρσ = aEabcd

µνρσ + bE
′abcd
µνρσ ,

Eabcd
µνρσ = gµνgρσδ

abδcd + gµρgνσδ
acδbd + gµσgνρδ

adδbc,

E
′abcd
µνρσ = gµνgρσd

abrdcdr + gµρgνσd
acrdbdr + gµσgνρd

adrdbcr. (A13)

The term L may be further manipulated, by noticing that if the condition a = 2b
3

were

satisfied, then we would have that Labcd
µνρσ = 2b

3
Xabcd

µνρσ = b
3
[Gabcd

µνρσ + Γ
abcd(0)
µνρσ ] [see Eq. (2.12)].

Therefore, the most general way to rearrange this term is

Labcd
µνρσ = (a− cs)Xabcd

µνρσ + cX
′abcd
µνρσ ; X

′abcd
µνρσ = sEabcd

µνρσ +
3

2
(s− 1)E

′abcd
µνρσ , (A14)

where we have set a = 2b
3
+ c, and s represents a freely adjustable parameter that controls

the weights with which the tensors E and E ′ enters the definition of the vector X ′. Then,

Γabcd
µνρσ(0, 0, 0, 0) may be decomposed in terms of the color and Lorentz vectors Γ

abcd(0)
µνρσ , Gabcd

µνρσ

and X
′abcd
µνρσ as follows

Γabcd
µνρσ(0, 0, 0, 0) =

a− cs

2
Γabcd(0)
µνρσ +

(
ã +

a

2
+

b̃

3
− cs

2

)
Gabcd

µνρσ + cX
′abcd
µνρσ . (A15)

Evidently, within the one-loop dressed approximation one has c = 0.
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2. The case (p, p, p,−3p)

We next turn to the case (p1, p2, p3, p4) = (p, p, p,−3p). In this case, the general form of

the Vi given Eq. (A2) remains the same, but now the form factors are functions of the only

available momentum scale, namely p2, so that aij → aij(p
2), bij → bij(p

2) and cij → cij(p
2).

In general, the presence of momenta makes the implementation of Bose symmetry more

complicated, because it involves additional permutations of (p1, p2, p3, p4). However, for

the particular case at hand, the fact that the form factors can only depend on p2, makes

these momentum permutations “inert”. As a result, one arrives at exactly the same form for

Γabcd
µνρσ(p, p, p,−3p) as the one given in Eq. (A12), with all coefficients converted into functions

of p2.

To see how this statement emerges from a more complete analysis, let us then focus, as

before, on the V A

i terms. Carrying out the same set of permutations as in the previous case,

one may cast the V A

i in the form

(V A

1 )abcdµνρσ = gµνgρσ[â(p2, p3, p1, p4)δ
abδcd + ã(p1, p3, p2, p4)δ

acδbd + ã(p2, p3, p1, p4)δ
adδbc],

(V A

2 )abcdµνρσ = gµρgνσ[ã(p1, p2, p3, p4)δ
abδcd + â(p1, p2, p3, p4)δ

acδbd + ã(p3, p2, p1, p4)δ
adδbc],

(V A

3 )abcdµνρσ = gµσgνρ[ã(p2, p1, p3, p4)δ
abδcd + ã(p3, p2, p1, p4)δ

acδbd + â(p2, p1, p3, p4)δ
adδbc].

(A16)

At this point it is clear that if we choose the kinematics p1 = p2 = p3 = p and p4 = −3p,

and since p4 appears always last in all the arguments of the form factors, after setting

â(p, p, p,−3p) ≡ â(p2) and ã(p, p, p,−3p) ≡ ã(p2), the above expressions reduce to

(V A

1 )abcdµνρσ = gµνgρσ[â(p
2)δabδcd + ã(p2)δacδbd + ã(p2)δadδbc],

(V A

2 )abcdµνρσ = gµρgνσ[ã(p
2)δabδcd + â(p2)δacδbd + ã(p2)δadδbc],

(V A

3 )abcdµνρσ = gµσgνρ[ã(p
2)δabδcd + ã(p2)δacδbd + â(p2)δadδbc].

(A17)

Thus, after the definition a(p2) ≡ â(p2)− ã(p2), one arrives at exactly the same expression

as in Eq. (A7), with the only difference that the coefficients are now functions of p2. The

same conclusions are reached for the V B

i , where b → b(p2) and b̃ → b̃(p2), while V C

i vanishes

as before.
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At this point it may seem that the above construction hinges on the fact that the per-

mutations chosen are such that p4 appears always last. This is, however, not so; indeed,

one may carry out all 24 possible permutations (which inevitably place p4 in all possible

positions), imposing every time the requirement of Bose symmetry, arriving at the following

exhaustive set of conditions:

ã(p1, p2, p3, p4) = ã(p3, p2, p1, p4) = ã(p2, p1, p4, p3) = ã(p4, p1, p2, p3) =

ã(p1, p4, p3, p2) = ã(p3, p4, p1, p2) = ã(p2, p3, p4, p1) = ã(p4, p3, p2, p1),

ã(p2, p3, p1, p4) = ã(p1, p3, p2, p4) = ã(p2, p4, p1, p3) = ã(p1, p4, p2, p3) =

ã(p4, p1, p3, p2) = ã(p3, p1, p4, p2) = ã(p4, p2, p3, p1) = ã(p3, p2, p4, p1),

ã(p2, p1, p3, p4) = ã(p3, p1, p2, p4) = ã(p1, p2, p4, p3) = ã(p4, p2, p1, p3) =

ã(p4, p3, p1, p2) = ã(p1, p3, p4, p2) = ã(p2, p4, p3, p1) = ã(p3, p4, p2, p1), (A18)

and

â(p1, p2, p3, p4) = â(p2, p1, p4, p3) = â(p3, p4, p1, p2) = â(p4, p3, p2, p1),

â(p1, p3, p2, p4) = â(p2, p4, p1, p3) = â(p3, p1, p4, p2) = â(p4, p2, p3, p1),

â(p2, p3, p1, p4) = â(p1, p4, p2, p3) = â(p4, p1, p3, p2) = â(p3, p2, p4, p1),

â(p3, p2, p1, p4) = â(p4, p1, p2, p3) = â(p1, p4, p3, p2) = â(p2, p3, p4, p1),

â(p2, p1, p3, p4) = â(p1, p2, p4, p3) = â(p4, p3, p1, p2) = â(p3, p4, p2, p1),

â(p3, p1, p2, p4) = â(p4, p2, p1, p3) = â(p1, p3, p4, p2) = â(p2, p4, p3, p1). (A19)

Evidently, for the choice p1 = p2 = p3 = p and p4 = −3p, each set of conditions listed in

Eq. (A18) reduces, as anticipated, to the statement of complete equality,

ã(p, p, p,−3p) = ã(p, p,−3p, p) = ã(p,−3p, p, p) = ã(−3p, p, p, p), (A20)

and similarly from Eq. (A19)

â(p, p, p,−3p) = â(p, p,−3p, p) = â(p,−3p, p, p) = â(−3p, p, p, p). (A21)

Appendix B: Scalar integral functions

In this Appendix we report the closed expressions for the various functions appearing in

the calculations of Sect. IV.
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1. Gluon boxes

For the gluon boxes one has

f1(k, p) = −8
[(k ·p)2 − k2p2]2

(d− 1)p2
{[6(6d− 1)p2 + 38k2](k ·p)2 + [(3d+ 7)k4 + 6(5d− 2)k2p2

+ 27(d− 1)p4]p2 + 8[(3d+ 5)k2p2 + 9(d− 1)p4 + k4](k ·p) + 24(k ·p)3},

f2(k, p) = 12
[(k ·p)2 − k2p2]2

(d2 − 1)p4
{3(d− 1)k8 + 6k6[6(d− 1)(k ·p) + (9d− 8)p2]

+ k4[76(5d− 4)p2(k ·p) + 6(22d− 19)(k ·p)2 + (247d− 6d2 − 152)p4]

+ 4k2[(202d− 12d2 − 47)p4(k ·p) + (155d− 67)p2(k ·p)2 + 9(4d− 1)(k ·p)3

+ 3(29d− 5d2 + 7)p6] + 3[24(7d− 2d2 + 9)p6(k ·p) + 4(31d− 6d2 + 46)p4(k ·p)2

+ 4(8d+ 29)p2(k ·p)3 − 18(d− 5)(d+ 1)p8 + 45(k ·p)4]}. (B1)

2. Triangle diagrams

For the class (cA) graphs one has

g1(k, p) = −2
(k ·p)2 − k2p2

(d− 1)p2
{−(d− 2)k6 + k4[2(d− 3)p2 − 6(d− 2)(k ·p)]

+ k2[4(4d− 9)p2(k ·p) + (18− 8d)(k ·p)2 + 3(7d− 13)p4] + (k ·p)[(4d− 17)p2(k ·p)

+ 2(d− 8)p4 + 4(k ·p)2]},

g2(k, p) = −6
(k ·p)2 − k2p2

(d2 − 1)p4
{(−d2 + d− 1)k6p2 + k2[2

(
−4d2 + 2d+ 3

)
p4(k ·p)

+ (−8d2 + 10d+ 15)p2(k ·p)2 − 3(d2 − 1)p6 + 12(k ·p)3] + (k ·p)[(4d2 − d− 5)p4(k ·p)

+ 2(d2 − d− 2)p6 + 2(2d+ 5)p2(k ·p)2 + 9(k ·p)3] + k4[−6d(d− 1)p2(k ·p)

+ 2d(1− 2d)p4 + 3(k ·p)2]}. (B2)

33



The class (cB) diagrams yields instead

g′1(k, p) = 2
(k ·p)2 − k2p2

(d− 1)p2
{(d− 2)k6 + 2k4[(d+ 16)(k ·p) + (13d− 15)p2]

+ k2[4(17d− 21)p2(k ·p) + (54− 8d)(k ·p)2 + (79d− 121)p4]

+ (k ·p)[(5− 12d)p2(k ·p) + 6(d+ 12)p4 − 88(k ·p)2]},

g′2(k, p) = 6
(k ·p)2 − k2p2

(d2 − 1)p4
{k2p2[(d2 − d+ 1)k4 + 2(4d2 + d− 6)k2p2 + 7(d2 − 1)p4]

+ [(−8d2 − 2d+ 9)k2p2 + (−12d2 + 5d+ 17)p4 − 3k4](k ·p)2 + 2p2[(d2 − d− 2)k4

+ (−2d2 − 2d+ 3)k2p2 + 3(d2 − d− 2)p4](k ·p) + 2(4d+ 1)p2(k ·p)3 + 3(k ·p)4}.
(B3)

3. Fishnet diagrams

Finally, for the fishnet diagrams one gets

h1(k, p) =
1

2(d− 1)p2
{(d2 + 9d− 34)k4p2 + 4k2[(d2 + 9d− 35)p2(k ·p)

+ (d2 + 8d− 33)p4 + 6(k ·p)2] + 4(k ·p)2[(d+ 23)p2 + 25(k ·p)]},

h2(k, p) =
3

2(d2 − 1)p4
{[4
(
d2 − 1

)
p4 − 6k2p2](k ·p)2 + 4(d3 − 2d2 − 2d+ 1)k2p4(k ·p)

+ k2p4[(d3 − 2d2 − d+ 5)k2 + 4(d3 − 3d2 − d+ 3)p2] + 4(d+ 1)p2(k ·p)3 + 3(k ·p)4.
(B4)

It is straightforward but tedious to verify that, in the limit p → 0, the above expressions

reduce to the corresponding results found in Sect. III.
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[52] A. Aguilar, D. Binosi, D. Ibañez, and J. Papavassiliou (2014), 1405.3506.

[53] A. Aguilar, D. Binosi, and J. Papavassiliou, JHEP 1007, 002 (2010), 1004.1105.

[54] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck (2007),

arXiv:0710.1968 [hep-lat].

[55] P. Boucaud, D. Dudal, J. Leroy, O. Pene, and J. Rodriguez-Quintero, JHEP 1112, 018 (2011),

1109.3803.

[56] D. Dudal, O. Oliveira, and J. Rodriguez-Quintero, Phys.Rev. D86, 105005 (2012), 1207.5118.

36


	I Introduction
	II Generalities on the four-gluon vertex
	III Vanishing external momenta
	A  The calculation
	B  Perturbative analysis

	IV The special momentum configuration (p,p,p,-3p)
	A  Analytical results
	B Numerical results
	C Lattice quantities

	V Conclusions
	 Acknowledgments
	A Bose symmetry
	1 The case of vanishing momenta
	2 The case (p,p,p,-3p)

	B Scalar integral functions
	1 Gluon boxes
	2 Triangle diagrams
	3 Fishnet diagrams

	 References

