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We provide an explicit expression for the renormalized expectation value of the stress-

energy tensor of a spin-1/2 field in a spatially flat Fridmann-Lemaitre-Robertson-Walker

universe. Its computation is based on the extension of the adiabatic regularization method

to fermion fields introduced recently in the literature. The tensor is given in terms of

UV-finite integrals in momentum space, which involve the mode functions that define the

quantum state. As illustrative examples of the method efficiency, we see how to compute

the renormalized energy density and pressure in two interesting cosmological scenarios: a

de Sitter spacetime and a radiation-dominated universe. In the second case, we explicitly

show that the late-time renormalized stress-energy tensor behaves as that of classical cold

matter. We also check that, if we obtain the adiabatic expansion of the scalar field mode

functions with a similar procedure to the one used for fermions, we recover the well-known

WKB-type expansion.
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I. INTRODUCTION

One of the most important consequences of combining quantum theory with general relativity

is the phenomenon of gravitational particle creation, as first discovered in [1, 2] (see also the

reviews [3, 4]). The generation and amplification of quantum field fluctuations is inevitable during

the expansion of the universe, and hence the creation of quanta. Only conformally invariant

fields in conformally invariant backgrounds are preserved from producing particles. Therefore,
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a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe necessarily produces scalar particles

(minimally coupled), massive fermions, tensorial perturbations (gravitational waves) and scalar

perturbations. In order to create a significant amount of these particles, waves, and perturbations,

we need rapid expansions, like those expected to happen in the very early universe [5]. This is

essentially the mechanism driving the generation of primordial inho mogeneities observed in the

large-scale structure of the universe and in the cosmic microwave background [6]. Moreover, the

recent results of the BICEP2 experiment [7], if confirmed, can offer the first evidence of gravitational

wave creation by the early expanding universe.

The gravitationally produced particles or perturbations contribute to the energy density and

pressure with new ultraviolet (UV) divergences, not present in the quantization of free fields in

Minkowski spacetime. Therefore, one needs to use a self-consistent regularization and renormal-

ization scheme in curved spacetime to subtract these divergences properly.

One of the most useful schemes in cosmological scenarios is the adiabatic regularization method.

It was originally designed to overcome the UV divergences of the particle number operator [1]. (For

a very nice historical account see [8].) Later, it was generalized and systematized to renormalize

the vacuum expectation value of the stress-energy tensor [9–11]. In the case of scalar fields, this

method is based on a WKB-type expansion of the field modes, which allows one to identify the

divergent terms of the tensor unequivocally and to subtract them from the bare expressions. More

specifically, each term in the momentum mode sum is compared with what would it be if the

expansion of the universe was slowed down. An adiabatic expansion of these terms is carried out

in terms of a “slowness parameter”, and the first three terms (adiabatic orders 0, 2 and 4) are

subtracted. The final quantity is hence renormalized . We remark that the adiabatic subtraction

provides as a final result finite integrals in momentum space, which means that the subtraction

is also playing the role of a regularization procedure. This is the reason for naming “adiabatic

regularization” to the whole process of renormalization. Moreover, as in the end one only needs to

evaluate these finite integrals, the method is computationally very powerful. On the other hand,

the subtracted terms can also be interpreted in terms of renormalization of coupling constants in

the gravitational action functional [10]. The renormalization scheme is therefore covariant, as a

consequence of the fact that adiabatic invariance is actually a covariant concept. The adiabatic

regularization scheme has also been used to scrutinize the power spectrum in inflationary cosmology

[12] and the inflationary completion of quantum gravity [13].

One of the main issues with the renormalization program in curved spacetime is that these

methods have been mainly developed for free scalar bosons, and less work has been done for other
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fields. In particular, an adiabatic regularization method for spin-1/2 fields in an expanding universe

was missing until very recently [14]. One of the main features of the extended method is that the

UV-divergent terms of the different physical quantities are not identified through a WKB-type

expansion of the field modes, but with a different expansion which was introduced in [14]. As a

nontrivial test of the new method, we worked out the conformal anomaly, recovering exactly the

results obtained by other renormalization prescriptions.

In this paper, we apply the adiabatic regularization method to obtain a general and explicit

expression for the renormalized stress-energy tensor of a spin-1/2 field in a FLRW universe. This

result, given in Eqs. (65), (68) and (69), is written in terms of UV-convergent momentum integrals

involving the field modes. This is a necessary and unavoidable step to prepare the method to be

used for numerical computations in cosmology. As illustrative examples, we study the renormalized

stress-energy tensor in de Sitter space and in a radiation-dominated universe. In both examples,

we need to specify appropriate initial conditions in order to ensure the renormalizability properties

of the tensor. We also prove here that the same procedure used in [14] to obtain the adiabatic

expansion of the fermionic field modes leads to the well-known WKB-type expansion when the

algorithm is applied for scalar modes. This confirms definitely the appropr iateness of the fermionic

adiabatic regularization method.

The content of the present work is organized as follows: In Sec. II, we introduce the basic

equations in a FLRW metric and the adiabatic regularization method for spin-1/2 fields. In Sec.

III, we prove that the adiabatic expansion for fermion fields recovers the WKB-type expansion

when applied to scalar fields. In Sec. IV, we work out explicitly the expressions of the vacuum

expectation values of the different components of the fermion stress-energy tensor. We renormalize

these components and prove that the stress-energy tensor in conserved. In Sec. V, we apply the

method to two specific examples: de Sitter spacetime and radiation-dominated universe. In the

second case, we confirm that the late-time behavior of the created particles recovers the state

equation of cold matter. Finally, Sec. VI contains our main conclusions. We use units c = ~ = 1,

and the conventions in [3, 4]. In particular, the metric signature is (+,−,−,−).

II. QUANTIZED SPIN-1/2 FIELDS AND THE ADIABATIC EXPANSION

A spin-1/2 field ψ of mass m in curved spacetime is described by the Dirac equation

(iγµ∇µ −m)ψ = 0 , (1)
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where γµ(x) are the spacetime-dependent Dirac matrices satisfying the anticommutation relations

{γµ, γν} = 2gµν , and ∇µ ≡ ∂µ − Γµ is the covariant derivative associated to the spin connection

Γµ.

In a spatially flat FLRW universe, ds2 = dt2 − a2(t)d~x2, the matrices γµ(t) are related with

the constant Minkowskian matrices γα (which satisfy the relation {γα, γβ} = 2ηαβ) by γ0(t) = γ0

and γi(t) = γi/a(t). On the other hand, the spin connections are in this metric Γ0 = 0 and

Γi = (ȧ/2)γ0γi. Therefore, γ
µΓµ = −(3ȧ/2a)γ0, and the differential equation (1) can be written as

(

iγ0∂0 +
3i

2

ȧ

a
γ0 +

i

a
~γ · ~∇−m

)

ψ = 0 , (2)

where ~γ = (γ1, γ2, γ3). Throughout this paper we shall work with the Dirac-Pauli representation

for the Dirac matrices

γ0 =





I 0

0 −I



 , ~γ =





0 ~σ

−~σ 0



 , (3)

where ~σ = (σ1, σ2, σ3) are the usual Pauli matrices. By extending the quantization procedure in

Minkowski space one can construct, for a given ~k, two independent spinor solutions as

u~kλ(x) = u~kλ(t)e
i~k·~x =

ei
~k·~x

√

(2π)3a3





hIk(t)ξλ(
~k)

hIIk (t)~σ·
~k
k ξλ(

~k)



 , (4)

where k ≡ |~k| and ξλ is a constant and normalized two-component spinor ξ†λξλ′ = δλ′λ. In this de-

composition, hIk and hIIk are two particular time-dependent functions obeying from (2) the following

coupled differential equations,

hIIk =
ia

k
(∂t + im)hIk , hIk =

ia

k
(∂t − im)hIIk , (5)

and the following two uncoupled second order differential equations,

(

∂2t +
ȧ

a
∂t + im

ȧ

a
+m2 +

k2

a2

)

hIk = 0 , (6)

(

∂2t +
ȧ

a
∂t − im

ȧ

a
+m2 +

k2

a2

)

hIIk = 0 . (7)

For our purposes, it is convenient to use helicity eigenstates ξλ(~k), which follow the property

~σ~k
2k ξλ(

~k) = (λ/2)ξλ(~k), where λ/2 = ±1/2 represent the eigenvalues for the helicity. Their explicit

form is (~k = (k1, k2, k3))

ξ+1(~k) =
1

√

2k(k + k3)





k + k3

k1 + ik2



 , ξ−1(~k) =
1

√

2k(k + k3)





−k1 + ik2

k + k3



 . (8)
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Given a particular solution (hIk(t), h
II
k (t)) to Eq. (5), one can naturally construct a new solution

to the same equations (−hII∗k (t), hI∗k (t)). In Minkowski space, this is equivalent to jumping from

a positive frequency solution to a negative frequency one. Therefore, one can construct two more

independent and orthogonal solutions as

v~kλ(x) =
e−i~k·~x

√

(2π)3a3





−hII∗k (t)ξ−λ(~k)

−hI∗k (t)~σ·
~k
k ξ−λ(~k)



 . (9)

Using this approach, the v~kλ(x) modes are obtained by the charge conjugation operation: v~kλ =

uc~kλ
≡ C

[

ū~kλ
]T

= iγ2u∗~kλ
. Note that −iσ2ξ∗λ(~k) = λξ−λ(~k). It is easy to check that u†~kλ

v
−~kλ′ = 0

and (u~kλ, v~k ′λ′) = 0, where the Dirac scalar product is given by

(ψ1, ψ2) =

∫

d3xa3ψ†
1ψ2 . (10)

The normalization condition for the four-spinors, (u~kλ, u~k ′λ′) = (v~kλ, v~k ′λ′) = δλλ′δ(3)(~k−~k ′) leads

to

|hIk(t)|2 + |hIIk (t)|2 = 1 . (11)

This condition guarantees the standard anticommutation relations for the creation and annihilation

operators B~kλ
and D~kλ

, defined by the expansion of the Dirac field in terms of the spinors defined

above

ψ(x) =

∫

d3~k
∑

λ

[

B~kλ
u~kλ(x) +D†

~kλ
v~kλ(x)

]

. (12)

A. Adiabatic expansion

The adiabatic regularization method for spin-1/2 fields, introduced in [14], is based on the

following ansatz for the field modes:

hIk(t) ∼
√

ω +m

2ω
e−i

∫ t′ Ω(t′)dt′F (t) , hIIk (t) ∼
√

ω −m
2ω

e−i
∫ t′ Ω(t′)dt′G(t) , (13)

where ω ≡
√

(k/a(t))2 +m2 is the frequency of the mode and the time-dependent functions Ω(t),

F (t) and G(t) are expanded adiabatically as

Ω(t) = ω + ω(1) + ω(2) + ω(3) + ω(4) + . . . ,

F (t) = 1 + F (1) + F (2) + F (3) + F (4) + . . . ,

G(t) = 1 +G(1) +G(2) +G(3) +G(4) + . . . . (14)
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Here, ω(n), F (n) and G(n) are functions of adiabatic order n, which means that they contain n

derivatives of the scale factor (for example, ȧ is of adiabatic order 1 and äȧ2 is of adiabatic order

4). In the expansions above, we impose F (0) = G(0) ≡ 1 and ω(0) ≡ ω to recover the Minkowskian

solutions in the adiabatic regime.

In order to obtain the different terms of (14), we substitute (13) into the Dirac equations (5)

and the normalization condition (11). We have then the following system of three equations:

ΩF + iḞ + i
F

2

dω

dt

[

1

ω +m
− 1

ω

]

−mF = (ω −m)G ,

ΩG+ iĠ+ i
G

2

dω

dt

[

1

ω −m −
1

ω

]

+mG = (ω +m)F ,

(ω +m)FF ∗ + (ω −m)GG∗ = 2ω . (15)

We can obtain expressions for F (n), G(n) and ω(n) by substituting (14) into (15) and solving the

system order by order. In this process, we need to treat independently the real and imaginary parts

of F (n) and G(n). This is done in detail in [14]. The expressions obtained contain ambiguities,

which do not appear in the final renormalized physical quantities 〈ψ̄ψ〉 and 〈Tµν〉. For the sake of

simplicity, one can impose order by order the additional simplifying condition F (n)(m) = G(n)(−m),

which removes the spurious ambiguities and is a natural choice due to the symmetries of the

equations of motion (5) under the change of the mass sign. With this, one obtains for the first two

orders

ω(1) = 0 , (16)

F (1) = −i mȧ
4ω2a

, (17)

and

ω(2) =
5m4ȧ2

8a2ω5
− 3m2ȧ2

8a2ω3
− m2ä

4aω3
, (18)

F (2) = − 5m4ȧ2

16a2ω6
+

5m3ȧ2

16a2ω5
+

3m2ȧ2

32a2ω4
− mȧ2

8a2ω3
+
m2ä

8aω4
− mä

8aω3
. (19)

The third and fourth order contributions are written in Appendix A for completeness.

The adiabatic renormalization method consists in expanding adiabatically the momentum inte-

gral of the quantity we want to renormalize using (13), and subtracting enough adiabatic terms in

order to ensure its convergence in the UV regime. The renormalization of the two-point function at

coincidence requires subtraction up to second order, while the stress-energy tensor needs subtrac-

tion up to fourth order. We apply this procedure to the renormalization of the stress-energy tensor
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in Sec. IV. First, to gain physical intuition and for readers more familiarized with the WKB ex-

pansion for scalar modes, we see below that a similar technique to the one used here can be equally

applied for scalar fields. We rediscover this way the standard WKB-type adiabatic expansion.

III. ANOTHER VIEW ON THE ADIABATIC EXPANSION FOR SCALAR FIELDS

In this section, we provide a new view on the adiabatic expansion for scalar modes. Mimicking

the procedure designed to deal with fermions, we will recover the well-known bosonic WKB adi-

abatic expansion without assuming it as an a priori input. Since the scalar field is more easy to

manage, it can serve to illustrate the prescription used for fermions. A free scalar field of mass m

in curved spacetime is described by the wave equation

(∇µ∇µ +m2 + ξR)φ = 0 , (20)

where ξ is the coupling of the field to the scalar curvature R. In the case of the spatially flat FLRW

metric, the equation takes the form

∂2φ

∂t2
+ 3

ȧ

a

∂φ

∂t
+

1

a2

∑

i

∂2φ

∂xi2
+ (m2 + ξR)φ = 0 , (21)

with R = 6(ä/a) + 6(ȧ2/a2). One now expands the field as

φ(~x, t) =

∫

d3~k
√

2(2πa(t))3
(A~k

ei
~k~xhk(t) +A†

~k
e−i~k~xh∗k(t)) , (22)

where hk(t) are time-dependent functions and the commutation relations for the creation and

destruction operators are [A~k
, A†

~k′
] = δ(3)(~k− ~k′), [A†

~k
, A†

~k′
] = 0, and [A~k

, A~k′
] = 0. If we substitute

(22) into (21), we find that hk(t) obeys the differential equation

d2hk
dt2

+ (ω2
k(t) + σ)hk = 0 , (23)

with ωk(t) ≡
√

(k/a(t))2 +m2 and σ ≡ (6ξ − 3/4)(ȧ/a)2 + (6ξ − 3/2)ä/a. On the other hand, the

right normalization condition for scalar fields is

hkḣ
∗
k − h∗kḣk = 2i . (24)

As for our analysis for spin-1/2 fields, we assume the following generic ansatz for the adiabatic

expansion of the mode functions hk(t),

hk(t) = H(t)e−i
∫ t Ω(t′)dt′ , (25)
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where here H(t) and Ω(t) are real functions. This simplifying assumption is somewhat equivalent

to the natural symmetry relation used for spin-1/2 fields F (n)(m) = G(n)(−m). We can expand

them adiabatically as

H(t) =
1√
ωk

+H(1)(t) +H(2)(t) +H(3)(t) +H(4)(t) + . . . , (26)

and

Ω(t) = ωk + ω(1)(t) + ω(2)(t) + ω(3)(t) + ω(4)(t) + . . . . (27)

As for fermions, we have ensured that the zeroth order term of the expansion recovers the

Minkowskian solutions: H(0)(t) ≡ ω
−1/2
k (t) and ω(0)(t) ≡ ωk(t) ≡ ω(t). By substituting the

ansatz (25) into the field equation (23) and the Wronskian (24), we obtain the following system of

two equations:

Ḧ −HΩ2 − 2iΩḢ − iHΩ̇ + (ω2 + σ)H = 0 ,

ΩH2 = 1 . (28)

Substituting (26) and (27) into (28) and solving the system order by order, we find that the first

term of both expansions is null, ω(1) = H(1) = 0, and that the second order terms are

ω(2)(t) =
5m4ȧ2

8a2ω5
− m2ȧ2

2a2ω3
− ȧ2

2a2ω
+

3ξȧ2

a2ω
− m2ä

4aω3
− ä

2aω
+

3ξä

aω
, (29)

and

H(2)(t) = − 5m4ȧ2

16a2ω13/2
+

m2ȧ2

4a2ω9/2
+

ȧ2

4a2ω5/2
− 3ξȧ2

2a2ω5/2
+

m2ä

8aω9/2
+

ä

4aω5/2
− 3ξä

2aω5/2
. (30)

This algorithm can be extended to all orders. One can immediately check that the expansions

obtained this way are equivalent to the usual WKB-type expansions used for scalar fields [9]

hk(t) =
1

√

Wk(t)
e−i

∫ t Wk(t
′)dt′ . (31)

More specifically, one confirms that the expansion for Wk(t) = ωk + ω(1) + ω(2) + . . . is the same

as the one for Ωk(t) obtained above. One also sees that the H(n) are equal to

H(n) =

(

1
√

ωk + ω(1) + ω(2) + . . .

)(n)

. (32)

One rediscovers this way the WKB expansion for scalar fields. The advantage of this strategy

has been shown for spin-1/2 fields, as it seems that an efficient WKB-type adiabatic expansion for

fermions in an expanding universe does not exist [14].
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IV. RENORMALIZATION OF THE STRESS-ENERGY TENSOR

A. Dirac stress-energy tensor components

The classical stress-energy tensor for a Dirac field in curved spacetime is given by

Tµν =
i

2

[

ψ̄ γ
(µ
∇ν)ψ − ψ̄

←−∇(ν γµ)ψ
]

, (33)

where ψ is the Dirac field and γ(x) are the spacetime-dependent Dirac matrices. In the case of

a FLRW universe, its homogeneity and spatial isotropy imply that we only have two independent

components for this tensor: the energy density, related with the 00-component, and the pressure,

related with the ii-component. The 00-component can be written as

T 0
0 =

i

2

(

ψ̄γ0
∂ψ

∂t
− ∂ψ̄

∂t
γ0ψ

)

, (34)

while the ii-component is

T i
i =

i

2a

(

ψ̄γi
∂ψ

∂xi
− ∂ψ̄

∂xi
γiψ

)

, (35)

(not sum on i implied). The former is directly computed using Γ0 = 0 and γ
0
(x) = γ0. The latter

is obtained taking into account that Γi =
ȧ
2γ0γi and γi(x) = γi/a(t).

The next step is to compute the formal vacuum expectation values of the quantized stress-energy

tensor. To this end, we will use the expansion of the Dirac field (12) in terms of the creation and

annihilation operators. As a necessary previous result, we first compute the quantity
〈

ψ̄γµ∂νψ
〉

.

It is given by

〈

ψ̄γµ∂νψ
〉

=

∫

d3~k
∑

λ=±1

(

v̄~kλγ
µ∂νv~kλ

)

. (36)

With this result and with Eq. (9), we will compute the vacuum expectation value of (34) and (35)

and obtain the corresponding expectation values for the energy density and pressure operators.

B. Renormalized energy density

Let us start with the energy density. If we take the expectation value of (34) over the vacuum

and use (36) and (9), we get after some algebra

〈T00〉 =
1

2π2a3

∫ ∞

0
dkk2ρk , (37)
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where

ρk(t) ≡ i
(

hIk
∂hI∗k
∂t

+ hIIk
∂hII∗k

∂t
− hI∗k

∂hIk
∂t
− hII∗k

∂hIIk
∂t

)

. (38)

Expression (37) contains quartic, quadratic and logarithmic ultraviolet divergences, and conse-

quently, we must expand its integrand adiabatically and subtract from it enough terms of its

expansion in order to have a finite quantity. By dimensionality, one expects to need subtraction

up to fourth adiabatic order1. To see this, we expand (38) as

ρk = ρ
(0)
k + ρ

(1)
k + ρ

(2)
k + ρ

(3)
k + ρ

(4)
k + . . . , (40)

where ρ
(n)
k is of nth adiabatic order. In order to obtain the terms of the expansion, we substitute

(13) and (14) into (38) and obtain the contribution from the different adiabatic terms. We find

that the zeroth adiabatic term corresponds to the usual Minkowskian divergence,

ρ
(0)
k = −2ω , (41)

and that the first odd terms are null,

ρ
(1)
k = ρ

(3)
k = 0 . (42)

On the other hand, the second order term is given by

ρ
(2)
k =

ω +m

ω

(

ImḞ (1) − |F (1)|2ω − 2F (2)ω − ω(2)
)

+
ω −m
ω

(F → G) , (43)

[(F → G) is the same expression as in the first parenthesis but changing F by G] and the fourth-

order term is

ρ
(4)
k =

ω +m

ω

(

ImḞ (3) − Ḟ (2)
ImF (1) − (F (2))2ω − (F (3)∗F (1) + F (1)∗F (3) + 2F (4))ω

+F (2)(ImḞ (1) − 2ω(2))− |F (1)|2ω(2) − ω(4)
)

+
ω −m
ω

(F → G) . (44)

For completeness, the nth adiabatic order contribution to (38) is given by

ρ
(n)
k = −2ω(t)(n) + i

ω +m

2ω

[

FḞ ∗ − F ∗Ḟ
](n)

+ i
ω −m
2ω

[

GĠ∗ −G∗Ġ
](n)

. (45)

1 It follows on dimensional grounds that if a quantityQ has dimensions Md (where M means mass), the nth adiabatic

order term Q(n) in its expansion,

Q = Q
(0) +Q

(1) +Q
(2) +Q

(3) +Q
(4) + . . . , (39)

decays in the UV limit as O(k−λ) with λ ≥ λ∗ ≡ n − d. This can be confirmed by just looking at expressions

(16)-(19) and (A1)-(A4) . For Q = ρk, we have dimension d = 1, and we would require ρk ∼ k−4 in the UV limit

in order to have (37) finite. Therefore, as n = λ∗ + d = 4+ 1 = 5, we need to subtract in (37) all expansion terms

from ρ
(0)
k to ρ

(4)
k . This way, the first contribution to ρk comes from the fifth order adiabatic terms.
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In order to write (43) and (44) in terms of ω and the mass, we use (16)-(19) and (A1)-(A4). This

gives

ρ
(2)
k = −m

4ȧ2

4ω5a2
+
m2ȧ2

4ω3a2
, (46)

and

ρ
(4)
k =

105m8ȧ4

64ω11a4
− 91m6ȧ4

32ω9a4
+

81m4ȧ4

64ω7a4
− m2ȧ4

16ω5a4
− 7m6ȧ2ä

8ω9a3
+

5m4äȧ2

4ω7a3

− 3m2ȧ2ä

8ω5a3
− m4ä2

16ω7a2
+

m2ä2

16ω5a2
+
m4ȧ

...
a

8ω7a2
− m2ȧ

...
a

8ω5a2
.

(47)

The adiabatic renormalization subtraction terms are then defined as (we proceed in parallel to

the case of scalar fields [3, 4, 9])

〈T00〉Ad ≡
1

2π2a3

∫ ∞

0
dkk2(ρ

(0)
k + ρ

(2)
k + ρ

(4)
k ) . (48)

Hence the renormalized 00-component of the stress-energy tensor is

〈T00〉ren ≡ 〈T00〉 − 〈T00〉Ad =
1

2π2a3

∫ ∞

0
dkk2(ρk − ρ(0)k − ρ

(2)
k − ρ

(4)
k ) . (49)

This quantity is finite.

However, looking at expressions (46) and (47), one can observe that if we had subtracted only

the terms up to second order, the tensor would already be convergent. In other words, the integral

of the fourth-order adiabatic subtraction is, by itself, finite and independent of the mass of the

field

− 1

2π2a3

∫ ∞

0
dkk2ρ

(4)
k =

2

2880π2

[

−21

2

ȧ4

a4
+ 18

ȧ

a

...
a

a
− 9

ä2

a2
+ 18

ȧ2

a2
ä

a

]

. (50)

Note that this also happens in the renormalization of a scalar field with conformal coupling

ξ = 1/6. However, one must subtract up to the order necessary to remove the divergences for

arbitrary values of ξ, and also for general metrics [3]. For an arbitrary spacetime, the fourth

adiabatic order contains real divergences, which disappear accidentally for FLRW metrics in the

case of fermions or scalars with ξ = 1/6 [15]. Therefore, according to the general rule, we subtract

up to fourth adiabatic order. Discarding the fourth adiabatic subtraction would lead to a vanishing

trace anomaly [see Eq. (70) below].
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C. Renormalized pressure

We can also derive the vacuum expectation value of the ii-component of the Dirac stress-

energy tensor (35) by direct computation using (36). Using (9), one should arrive at the following

expression

〈

ψ̄γi∂iψ
〉

=
i

(2π)3a3

∫

d3~k
∑

λ=±1

ki
[

hIkh
II∗
k + hI∗k h

II
k

]

λ(ξ†−λσ
iξ−λ) . (51)

The property of isotropy of the FLRW spacetime allows us to perform the calculation for i = 3

without loss of generality. Therefore,

〈

ψ̄γi∂iψ
〉

=
i2π

(2π)3a3

∫ 1

−1
d(cos θ) cos θ

∑

λ=±1

λ(ξ†−λσ
3ξ−λ)

∫ ∞

0
dkk3

[

hIkh
II∗
k + hI∗k h

II
k

]

, (52)

where θ is the polar angle (k3 = k cos θ). Using (8), one finds

∑

λ=±1

λ(ξ†−λσ
3ξ−λ) = −2 cos θ , (53)

and plugging this into (52), the final result for the ii-component of the stress energy tensor reads

〈Tii〉 =
1

2π2a

∫ ∞

0
dkk2pk , (54)

with

pk ≡ −
2k

3a
[hIkh

II∗
k + hI∗k h

II
k ] . (55)

Again, expression (54) contains several ultraviolet divergences, and consequently, we must expand

its integrand adiabatically and subtract from it enough terms of its expansion in order to have a

finite quantity. Using the adiabatic expansion in (55), we get

p
(n)
k = −ω

2 −m2

3ω
[FG∗ + F ∗G](n) . (56)

The corresponding renormalized ii-component is also defined as

〈Tii〉ren ≡ 〈Tii〉 − 〈Tii〉Ad =
1

2π2a

∫ ∞

0
dkk2

[

pk − p(0)k − p
(2)
k − p

(4)
k

]

, (57)

with

〈Tii〉Ad ≡
1

2π2a

∫ ∞

0
dkk2

[

p
(0)
k + p

(2)
k + p

(4)
k

]

, (58)
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and [p
(1)
k = p

(3)
k = 0]

p
(0)
k = −2

3

[

ω − m2

ω

]

, (59)

p
(2)
k = − m2ȧ2

12ω3a2
− m2ä

6ω3a
+
m4ä

6ω5a
+
m4ȧ2

2ω5a2
− 5m6ȧ2

12ω7a2
, (60)

p
(4)
k =

385m10ȧ4

64ω13a4
− 791m8ȧ4

64ω11a4
+

1477m6ȧ4

192ω9a4
− 263m4ȧ4

192ω7a4
+

m2ȧ4

48ω5a4

− 77m8ȧ2ä

16ω11a3
+

77m6ȧ2ä

16ω9a3
+

175m6ȧ2ä

48ω9a3
− 175m4ȧ2ä

48ω7a3
− m4ȧ2ä

3ω7a3
+
m2ȧ2ä

3ω5a3

+
7m6ä2

16ω9a2
− 5m4ä2

8ω7a2
+

3m2ä2

16ω5a2
+

7m6ȧ
...
a

12ω9a2
− 5m4ȧ

...
a

6ω7a2
+
m2ȧ

...
a

4ω5a2

−m
4....a

24ω7a
+
m2....a

24ω5a
. (61)

We also note that the integral of the fourth-order subtraction terms is finite and mass indepen-

dent:

− 1

2π2a

∫ ∞

0
dkk2p

(4)
k =

2a2

2880π2

[

−7

2

ȧ4

a4
− 12

ȧ

a

...
a

a
− 9

ä2

a2
+ 14

ȧ2

a2
ä

a
− 6

....
a

a

]

. (62)

As a final comment, we stress that combining properly Eqs. (5), the following simple relationship

between the pressure, the energy density and the mode functions can be found:

ρk = 3pk − 2m
[

|hIk|2 − |hIIk |2
]

, (63)

where the second term in the right-hand side is basically 〈T µ
µ 〉k, with

〈

T µ
µ

〉

=
1

2π2a3

∫ ∞

0
dkk2

〈

T µ
µ

〉

k
. (64)

To see this, just remember that the trace is 〈T µ
µ 〉 = 〈T00〉 − 3

a2 〈Tii〉, and then 〈T µ
µ 〉k = ρk − 3pk .

D. Expression for the renormalized stress-energy tensor

The fourth-order adiabatic subtraction terms, (50) and (62), decouple from the remaining con-

tributions and give rise, by themselves, to a finite geometric conserved tensor. Using the expressions

in Appendix B for the different geometric quantities of a FLRW spacetime in terms of the scale

factor, this conserved tensor turns out to be

〈Tµν〉(4)Ad =
2

2880π2

[

−1

2
(1)Hµν +

11

2
(3)Hµν

]

, (65)

where

(1)Hµν = 2R;µν − 2✷Rgµν + 2RRµν −
1

2
R2gµν , (66)

(3)Hµν = Rρ
µRρν −

2

3
RRµν −

1

2
RρσR

ρσgµν +
1

4
R2gµν . (67)
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Therefore, we get the following expression for the renormalized energy density and pressure:

〈T00〉ren =
1

2π2a3

∫ ∞

0
dkk2

[

i

(

hIk
∂hI∗k
∂t

+ hIIk
∂hII∗k

∂t
− hI∗k

∂hIk
∂t
− hII∗k

∂hIIk
∂t

)

+2ω +
m4ȧ2

4ω5a2
− m2ȧ2

4ω3a2

]

+ 〈T00〉(4)Ad , (68)

and

〈Tii〉ren =
−1
2π2a

∫ ∞

0
dkk2

[

2k

3a
[hIkh

II∗
k + hI∗k h

II
k ]− 2

3

[

ω − m2

ω

]

− m2ȧ2

12ω3a2
− m2ä

6ω3a
+
m4ä

6ω5a
+
m4ȧ2

2ω5a2
− 5m6ȧ2

12ω7a2

]

+ 〈Tii〉(4)Ad , (69)

where the functions (hIk, h
II
k ) above are exact solutions to Eq. (5) and provide the mode functions

defining the quantum state. Using (68) and (69) with (63), it is easy to see that, in the massless

limit, the trace of the above tensor turns out to be

〈

T µ
µ

〉

ren
=
〈

T µ
µ

〉(4)

Ad
=

2

2880π2

[

−11

2

(

RµνR
µν − 1

3
R2

)

+ 3✷R

]

, (70)

in exact agreement with the conformal anomaly computed by other renormalization procedures

and with the expression obtained in [14].

Before seeing some examples of this formalism, we would like to discuss briefly the interpretation

of the subtraction terms in terms of renormalization of constants in the gravitational action, and

the potential ambiguities of the renormalization algorithm. As we have seen, the integrals of the

zeroth and second order adiabatic subtractions in (48) and (58) do contain divergences. Following

the procedure of [10], we can isolate them using dimensional regularization (n is the spacetime

dimension). We obtain

− 1

2π2a3

∫ ∞

0
dkk2ρ

(0)
k → −

1

2π2a3

∫ ∞

0
dkkn−2ρ

(0)
k ≈

m4

8π2
1

n− 4
+O(n− 4) , (71)

− 1

2π2a3

∫ ∞

0
dkk2ρ

(2)
k → −

1

2π2a3

∫ ∞

0
dkkn−2ρ

(2)
k ≈

m2

8π2
1

n− 4

ȧ2

a2
+O(n− 4) , (72)

and

− 1

2π2a

∫ ∞

0
dkk2p

(0)
k → −

1

2π2a

∫ ∞

0
dkkn−2p

(0)
k ≈ −

m4a2

8π2
1

n− 4
+O(n− 4) , (73)

− 1

2π2a

∫ ∞

0
dkk2p

(2)
k → −

1

2π2a

∫ ∞

0
dkkn−2p

(2)
k ≈ −

m2a2

24π2
1

n− 4

(

2
ä

a
+
ȧ2

a2

)

+O(n− 4) . (74)

The zeroth and second order adiabatic subtraction terms, (71) and (72) and also (73) and (74),

are formally divergent, but can be suitable expressed as geometric tensors. Using the geometric
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identities of Appendix B one can easily find

〈Tµν〉(0)Ad ≈
m4

8π2
1

n− 4
gµν +O(n− 4) , (75)

〈Tµν〉(2)Ad ≈ −
m2

24π2
1

n− 4
Gµν +O(n− 4) , (76)

with Gµν = Rµν − 1
2gµνR, the Einstein tensor.

Recall now the Einstein’s gravitational field equations

Gµν + Λgµν = −8πG 〈Tµν〉 . (77)

Equation (75) suggests the possibility of absorbing the UV divergence of the zeroth adiabatic order

into the cosmological constant, Λ, while expression (76) offers the possibility of renormalizing the

second adiabatic order divergence into the Newton’s universal constant, G. This way, the adiabatic

subtraction terms can be nicely interpreted in terms of renormalization of coupling constants, in

parallel to the scalar fields case [10].

On the other hand, as we have stressed before, in a general spacetime the fourth-order sub-

traction terms give rise to proper UV divergencies [15]. They turn out to be proportional to a

linear combination of the two independent geometric tensors with the appropriate dimensions,

namely (1)Hµν and (2)Hµν . The four types of divergent subtraction terms, proportional to

m4gµν ,m
2Gµν ,

(1)Hµν and (2)Hµν , generate intrinsic ambiguities in the curved space renormal-

ization program for the stress-energy tensor [4, 16]. The first two can be naturally associated to

the renormalization of the cosmological constant and Newton’s constant. In our FLRW spacetime

(2)Hµν is proportional to (1)Hµν , and hence we are left with only one relevant renormalization

parameter ambiguity. This translates to the fact that the general expression for the finite fourth

order adiabatic contribution 〈Tµν〉(4)Ad contains actually an arbitrary coefficient c1:

〈Tµν〉(4)Ad =
2

2880π2

[

c1
(1)Hµν +

11

2
(3)Hµν

]

. (78)

Our adiabatic regularization method leads to c1 = −1/2. Other renormalization methods can

only potentially differ from our results on the value of this coefficient. However, we remark that

the ambiguity disappears for spacetime backgrounds for which the tensor (1)Hµν vanishes. This

happens for physically relevant spacetimes, like de Sitter space or the radiation-dominated universe.

Note that if one considers the general expression (78), instead of (65), the numerical coefficient

of ✷R in (70) is actually proportional to c1.
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E. Stress-energy conservation

The above 〈Tµν〉ren is, as expected, a conserved tensor ∇µ 〈Tµν〉ren = 0. The conservation

equations in a FLRW spacetime can be spelled out as

〈T 0ν
;ν〉 = 〈Ṫ00〉+ 3

ȧ

a
〈T00〉+

3

a2
ȧ

a
〈Tii〉 = 0 , (79)

〈T iν
;ν〉 = 0, i = 1, 2, 3 (80)

and they can be checked by direct computation. This is a consequence of the fact that, for each

adiabatic order of the formal subtraction tensors 〈Tµν〉(n)Ad , where

〈T00〉(n)Ad = − 1

2π2a3

∫ ∞

0
dkk2ρ

(n)
k , (81)

〈Tii〉(n)Ad = − 1

2π2a

∫ ∞

0
dkk2p

(n)
k , (82)

we have the independent conservation laws ∇µ 〈Tµν〉(n)Ad = 0, for n = 0, 2, 4.

V. EXAMPLES

In this section, we work out the renormalized stress-energy tensor for two different spacetimes:

de Sitter spacetime and a radiation-dominated universe. For a given scale factor a(t), we need to

solve (5). As it is a system of two coupled first-order differential equations, we have 2 degrees of

freedom which have to be fixed somehow. More specifically, given a particular solution (hIk, h
II
k )

normalized as in (11), we can construct the general solution by a Bogolubov-type rotation:

hIk → Ekh
I
k + Fkh

II∗
k ,

hIIk → Ekh
II
k − Fkh

I∗
k , (83)

where Ek and Fk are two arbitrary constants. On the other hand, we should also ensure the

normalization condition (11), which implies the following constraint:

|Ek|2 + |Fk|2 = 1 . (84)

Note that the renormalization ambiguity associated to the (1)Hµν tensor disappears for de Sitter

spacetime and the radiation-dominated universe.
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A. Renormalized stress-energy tensor in de Sitter spacetime

For de Sitter spacetime a(t) = eHt with H a constant, the general solution to the field equations

(6) and (7) can be conveniently expressed, using the transformation in (83), as the following linear

combination:

hIk(t) = Ek

(

i

2

√
πze

πµ
2 H

(1)
1
2
−iµ

(z)

)

+ Fk

(

1

2

√
πze

πµ
2 H

(1)

− 1
2
−iµ

(z)

)∗

, (85)

hIIk (t) = Ek

(

1

2

√
πze

πµ
2 H

(1)

− 1
2
−iµ

(z)

)

− Fk

(

i

2

√
πze

πµ
2 H

(1)
1
2
−iµ

(z)

)∗

, (86)

where z ≡ kH−1e−Ht, µ ≡ m/H, H(1)(z) are Hankel functions of the first kind and Ek and Fk are

constants that need to be fixed with appropriate initial conditions. A crucial physical requirement

is that, as k →∞, the physical solutions should have the adiabatic asymptotic form

hIk ∼
√

ω +m

2ω
e−i

∫ t′ ω(t′)dt′ , hIIk ∼
√

ω −m
2ω

e−i
∫ t′ ω(t′)dt′ . (87)

This way, one recovers in this limit the Minkowskian solutions. This leads to

Ek ∼ 1 , Fk ∼ 0 , (88)

as k → ∞. The above condition can be naturally achieved by the simple solution Ek = 1 and

Fk = 0. This determines a vacuum for spin-1/2 fields analogous to the Bunch-Davies vacuum [17]

for scalar fields. It is also the natural extension of the conformal vacuum for massless fields. It can

be uniquely characterized by invoking de Sitter invariance [3].

By changing the integration variable from k to z, we obtain that the energy density (49) is

〈T00〉ren =
H3

2π2

∫ ∞

0
dzz2(ρk − ρ(0)k − ρ

(2)
k − ρ

(4)
k ) , (89)

where from (85), (86) and (88), the bare contribution (38) is

ρk(z) =
πHeπµz2

2

(µ

z

[

H
(1)
ν−1H

(2)
−ν −H(1)

ν H
(2)
1−ν

]

+ i
[

H
(1)
ν−1H

(2)
1−ν −H(1)

ν H
(2)
−ν

] )

, (90)

with ν ≡ (1/2) − iµ and H
(1,2)
ν ≡ H

(1,2)
ν (z). On the other hand, the subtraction terms, from (41),

(46) and (47), take the form

ρ
(0)
k = −2H

√

z2 + µ2 , (91)

ρ
(2)
k = H

(

µ2

4(z2 + µ2)3/2
− µ4

4(z2 + µ2)5/2

)

, (92)
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ρ
(4)
k = H

(

105µ8

64(z2 + µ2)11/2
− 119µ6

32(z2 + µ2)9/2
+

165µ4

64(z2 + µ2)7/2
− µ2

2(z2 + µ2)5/2

)

. (93)

Similar expressions can be obtained for the renormalized pressure (57),

〈Tii〉ren =
a2H3

2π2

∫ ∞

0
dzz2(pk − p(0)k − p

(2)
k − p

(4)
k ) , (94)

where, from (55),

pk(z) = i
πHeπµz2

6

[

H
(1)
ν−1H

(2)
1−ν −H(1)

ν H
(2)
−ν

]

. (95)

From these results, one can obtain 〈T00〉ren and 〈Tii〉ren numerically with very high accuracy. We

reproduce exactly the analytical expression already obtained in [14] from the trace anomaly and

the symmetries of de Sitter spacetime

〈Tµν〉r =
1

960π2
gµν

[

11H4 + 130H2m2 + 120m2(H2 +m2)
(

log
(m

H

)

−Re

[

ψ
(

−1 + i
m

H

)])]

,

(96)

where ψ(z) is the digamma function.

B. Radiation dominated universe

In this section, we apply our general results for a radiation-dominated universe. This is also a

nice example to show how the general procedure works. In this case, the two independent solutions

of the differential equation for the field modes with a(t) = a0
√
t are given in terms of the Whittaker

functions 1
a(t)Wκ,µ(z) and

1
a(t)W−κ,µ(−z) (see [18]), where

κ =
1

4
− ix2, µ =

1

4
, z = i2mt , (97)

with x2 ≡ k2/(a202m). We choose a set of two linear independent solutions for the field modes of

the form

hIk = Ek

(

N
Wκ,µ(z)
√

a(t)

)

+ Fk

(

N
k

2ma(t)3/2

[

Wκ,µ(z) +

(

κ− 3

4

)

Wκ−1,µ(z)

])∗

, (98)

where the constant N =
a
1/2
0

(2m)1/4
e−

π
2
x2

and the condition |Ek|2 + |Fk|2 = 1 are fixed from the

normalization condition (11). The adiabatic condition (87) for k → ∞ also requires that Ek ∼ 1

and Fk ∼ 0. Moreover, a detailed analysis (see Appendix C) of the asymptotic properties of the

stress energy tensor components using the Whittaker functions [19] allows us to characterize the

condition for the renormalizability of the vacuum expectation values of the stress tensor as

|Ek|2 − |Fk|2 = 1 +O(k−5) . (99)
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As one can see from Appendix C, this particular combination of Ek and Fk is the crucial one in

the analysis of the renormalized energy density (C3) and pressure (C4) for 1/2 spin fields.

In contrast with the previous example of de Sitter spacetime, the absence of extra symmetries

(in addition to the standard homogeneity and isotropy of a FLRW spacetime) for the radiation-

dominated background does not allow us to fix a natural preferred vacuum state. However, the

early and late-time behaviors (t << m−1 and t >> m−1, respectively) of the renormalized stress-

energy tensor can be obtained generically, and agree with the forms assumed by classical cosmology.

As detailed in Appendix C, we have that, as time evolves and reaches the regime t >> m−1, the

renormalized energy density takes the form of cold matter

〈T00〉ren ∼
ρ0m
a3

, (100)

where

ρ0m =
m

π2

∫ ∞

0
dkk2

[

1− (|Ek|2 − |Fk|2)
]

≥ 0 . (101)

Notice that, 2 ≥ 1− (|Ek |2−|Fk|2) = 2|Fk|2 ≥ 0, and together with the renormalizability condition

(99), we see that the energy density ρ0m is finite and definite positive. The specific value of ρ0m

depends on the form of the quantum state for our spin-1/2 field, i.e. of the choice of Ek and Fk.

Since at late times t >> m−1 the relation (98) transforms into

hIk(t) ∼ Ek

√

ω +m

2ω
e−i

∫ t′ ω(t′)dt′ + Fk

√

ω −m
2ω

ei
∫ t′ ω(t′)dt′ , (102)

the coefficients Fk are actually the fermionic β-type (Bogolubov) coefficients [1, 2]. Therefore, we

actually get ρ0m ∼ m〈n(t)〉, where 〈n(t)〉 is the number density of the created particles. Moreover,

we find

〈Tii〉ren
a2

∼ 0 , (103)

and hence the pressure obeys the cold matter equation of state. Note that the potential renormal-

ization ambiguity, proportional to (1)Hµν , is here identically zero. In more general cosmological

spacetimes these fourth-order adiabatic terms rapidly vanish at late-times.

On the other hand, for sufficiently early times in the evolution, t << m−1, we have (see

Appendix C)

〈T00〉ren ∼
ρ0r
a4

, (104)

with

ρ0r =
1

π2

∫ ∞

0
dkk3

[

1− (|Ek|2 − |Fk|2)
]

≥ 0 , (105)
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and additionally

〈Tii〉ren
a2

∼ 1

3
〈T00〉ren . (106)

Note again that ρ0r is finite and definite positive. The specific value of ρ0r depends on the specific

form of the quantum state throughout the complex functions Ek and Fk. From (106), we see that

p ∼ ρ/3, in agreement with the assumptions of classical cosmology for the radiation.

The analysis and phenomenology of the renormalized stress-energy tensor obtained from specific

choices of the vacuum state is beyond the scope of the present paper. Note again that any choice

for the quantum state has not a preferred status, in contrast with the Bunch-Davies type vacuum

of the previous example, due to the absence of the additional symmetries endowed by de Sitter

spacetime.

VI. CONCLUSIONS

In this paper, we have extended the adiabatic regularization method to the renormalization

of the spin-1/2 stress-energy tensor. The main result of this paper is Eqs. (68) and (69), which

provide expressions that are simple and numerically easy to compute, once the quantum state is

given. We have illustrated our approach by briefly analyzing de Sitter space, with an assumed

Bunch-Davies type vacuum state. The renormalized energy and pressure densities coincide with

those predicted by symmetry arguments [14]. We have also analyzed the renormalized stress-energy

tensor in a purely radiation-dominated universe. In the latter case the early and late-time behavior

of the renormalized stress-energy tensor can be worked out explicitly, irrespective of the specific

form of the quantum state, and agree with those assumed by classical cosmology for radiation and

cold matter, respectively.
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Appendix A: Fermionic adiabatic expansion

We give here the third and fourth order contributions to F (t) and ω(t) in (14) [we have

G(n)(m) = F (n)(−m)]:

ω(3) = 0 , (A1)

F (3) = i

(

65m5ȧ3

64a3ω8
− 97m3ȧ3

128a3ω6
+

mȧ3

16a3ω4
− 19m3ȧä

32a2ω6
+

mȧä

4a2ω4
+

m
...
a

16aω4

)

, (A2)

and

ω(4) =− 1105m8ȧ4

128a4ω11
+

337m6ȧ4

32a4ω9
− 377m4ȧ4

128a4ω7
+

3m2ȧ4

32a4ω5
+

221m6ȧ2ä

32a3ω9
− 389m4ȧ2ä

64a3ω7
+

13m2ȧ2ä

16a3ω5
− 19m4ä2

32a2ω7

+
m2ä2

4a2ω5
− 7m4ȧ

...
a

8a2ω7
+

15m2ȧ
...
a

32a2ω5
+
m2....a

16aω5
, (A3)

F (4) = +
2285m8ȧ4

512a4ω12
− 565m7ȧ4

128a4ω11
− 1263m6ȧ4

256a4ω10
+

2611m5ȧ4

512a4ω9
+

2371m4ȧ4

2048a4ω8
− 333m3ȧ4

256a4ω7
− 3m2ȧ4

128a4ω6
+

mȧ4

32a4ω5

−457m6ȧ2ä

128a3ω10
+

113m5ȧ2ä

32a3ω9
+

725m4ȧ2ä

256a3ω8
− 749m3ȧ2ä

256a3ω7
− 19m2ȧ2ä

64a3ω6
+

11mȧ2ä

32a3ω5
+

41m4ä2

128a2ω8
− 5m3ä2

16a2ω7

− 17m2ä2

128a2ω6
+

mä2

8a2ω5
+

7m4ȧ
...
a

16a2ω8
− 7m3ȧ

...
a

16a2ω7
− 13m2ȧ

...
a

64a2ω6
+

7mȧ
...
a

32a2ω5
− m2....a

32aω6
+

m
....
a

32aω5
. (A4)

Appendix B: Useful formulas for a FLRW spacetime

In checking that the fourth order adiabatic subtraction terms (50) and (62) give the covariant

result (65) we used the following results:

R00 = 3
ä

a
, Rij = −a2

[

2
ȧ2

a2
+
ä

a

]

δij , (B1)

R2 = 36

[

ȧ4

a4
+ 2

ȧ2

a2
ä

a
+
ä2

a2

]

, (B2)

✷R = 6

[

ä2

a2
+

....
a

a
− 5

ȧ2

a2
ä

a
+ 3

ȧ

a

...
a

a

]

, (B3)

RµνR
µν = 12

[

ȧ4

a4
+
ä2

a2
+
ȧ2

a2
ä

a

]

, (B4)

R;00 = 6

[ ....
a

a
+
ä2

a2
− 8

ȧ2

a2
ä

a
+ 6

ȧ4

a4

]

, (B5)

R;ij = −6a2
[ ...
a

a

ȧ

a
+
ä

a

ȧ2

a2
− 2

ȧ4

a4

]

δij . (B6)
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Appendix C: Asymptotic analysis of the energy density and pressure for a spin 1/2 field in a

radiation dominated universe

In this Appendix we shall study the asymptotic properties of the stress tensor components in a

radiation-dominated universe. The large momentum behavior of this tensor will give us a necessary

and sufficient condition for its renormalizability, while the late/early-time behavior will reproduce

the classical results of physics of fluids for a matter/radiation-dominated universe.

Recall the general solution (98) for the modes in a radiation-dominated universe, and define for

simplicity the following quantities:

gIk(t) ≡ N
Wκ,µ(z)
√

a(t)
, (C1)

gIIk (t) ≡ N k

2ma(t)3/2

[

Wκ,µ(z) +

(

κ− 3

4

)

Wκ−1,µ(z)

]

. (C2)

Expressions (38), (55), and (63), can be rewritten in terms of these independent solutions by doing

a a Bogolubov-type rotation (hIk → Ekg
I
k + Fkg

II∗
k , hIIk → Ekg

II
k − Fkg

I∗
k )

ρk = ρDk
[

|Ek|2 − |Fk|2
]

− EkF
∗
k ρ

ND
k − E∗

kFkρ
ND∗
k , (C3)

pk = pDk
[

|Ek|2 − |Fk|2
]

− EkF
∗
k p

ND
k − E∗

kFkp
ND∗
k , (C4)

ρDk = 3pDk − 2m
[

|gIk|2 − |gIIk |2
]

, (C5)

where

ρDk = i

[

gIk
∂gI∗k
∂t

+ gIIk
∂gII∗k

∂t
− gI∗k

∂gIk
∂t
− gII∗k

∂gIIk
∂t

]

, (C6)

ρND
k = −2i

[

gIk
∂gIIk
∂t
− gIIk

∂gIk
∂t

]

, (C7)

pDk = −2k

3a

[

gIkg
II∗
k + gI∗k g

II
k

]

, (C8)

pND
k = −2k

3a

[

(gIk)
2 − (gIIk )2

]

. (C9)

The energy density and the pressure functions, expressed this way, show explicitly the dependence

on the vacuum state.

Using the result (C6), and derivative and functional properties of the Whittaker functions [20],

one can find for the energy density,

ρDk = −2m− 4mx2e−πx2

|z|3/2 (C10)

×
[

|Wκ, 1
4
(z)|2 −

(

1

4
+ x4

)

|Wκ−1, 1
4
(z)|2

]

.
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For large values of the momenta, k2/a2 >> m2, the Whittaker function can be very well approxi-

mated by [19]

Wκ,1/4(z) =

√
πz1/4

Γ
(

3
4 − κ

)

{

cos(2
√
κz)

[

1− M2(z)

κ
+
M4(z)

κ2
−
(

M1(z)

κ
− M3(z)

κ2

)

Γ(3/4 − κ)
Γ(1/4 − κ)

]

(C11)

− sin(2
√
κz)√
κ

[

M1(z)−
M3(z)

κ
+
M5(z)

κ2
+

(

1− M2(z)

κ
+
M4(z)

κ2

)

Γ(3/4 − κ)
Γ(1/4 − κ)

]}

+O(|κ|−3) ,

where Mn(z) are a set of polynomials that satisfy

M1(z) = −
z3/2

12
, (C12)

M2(z) = −
z

16

(

1− z2

18

)

, (C13)

M3(z) = −
z1/2

32
+
z5/2

120
− z9/2

10368
, (C14)

M4(z) = −
1

128
+

19z2

1536
− 11z4

23040
+

z6

497664
, (C15)

M5(z) =
z3/2(2721600 − 291924z2 + 3528z4 − 7z6)

209018880
. (C16)

After a long calculation one can find that

|Wκ, 1
4
(z)|2 −

(

1

4
+ x4

)

|Wκ−1, 1
4
(z)|2 (C17)

=

(

|z|
x
− |z|

3/2

2x2
+
|z|2
8x3
− |z|(1 + |z|

2)

128x5
+O(x−7)

)

eπx
2
,

so that, taking the change x =
√

t
2m (ω2 −m2), one gets

ρDk =

[

−2ω +
m2

16t2ω3
+O(ω−5)

]

. (C18)

From this expression it is easy to see that we recover those terms of zeroth and second adiabatic

order found in Eqs. (41)-(46) for a radiation-dominated universe. These contributions give the

divergences of the stress-energy tensor. Additionally, the no-diagonal terms are shown to be

ρND
k = O(ω−1) . (C19)

On the other hand, taking (C8) [or more easily (C5)] we can find for the pressure

pDk = −4m

3
− 4mx2e−πx2

3|z|3/2

×
[(

1− |z|
x2

)

|Wκ, 1
4
(z)|2 −

(

1

4
+ x4

)

|Wκ−1, 1
4
(z)|2

]

= −
[

2

3
ω − 2m2

3ω
− m2

48t2ω3
+O(ω−7)

]

, (C20)
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which also agrees with the divergences found in (59) and (60). Additionally,

pND
k = O(ω−1) . (C21)

The choice of the parameters Ek and Fk (the choice of the vacuum state) is determined by

imposing some initial condition at a given instant of time, t0. This choice must be in such a way

that leaves the stress energy tensor without divergences. According to (C18), (C20) and (49), (57)

respectively, the stress energy tensor renormalizability imposes a natural constraint on the vacuum

state [recall (C3) and (C4)],

|Ek|2 − |Fk|2 = 1 +O(ω−5) . (C22)

This means that Ek = 1 + O(ω−5) and Fk = O(ω−5/2), which makes EkF
∗
k = O(ω−5/2), and it is

enough for the no-diagonal terms, (C19) and (C21), to not to give new divergences.

Let us focus now on the stress-energy tensor for late times in the expansion of the universe.

Taking t >> m−1, equation (C10) behaves as

ρDk = −2m− 4mx2

|z| +
4mx4

|z|2 + . . . , (C23)

while

ρ
(0)
k + ρ

(2)
k + ρ

(4)
k = ρDk +O(|z|−7) , (C24)

so we may state, recalling (49),

〈T00〉ren (t >> m−1) =
1

2π2a3

[
∫ ∞

0
dkk22m

[

1− (|Ek|2 − |Fk|2)
]

+O(|z|−1)

]

. (C25)

Similarly, one can study the late-times behavior of the pressure (C20), and find

pDk = −8mx2

3|z| +
16mx4

3|z|2 −
2mx2(−1 + 8x4)

|z|3 + . . . , (C26)

while the corresponding adiabatic subtractions are

p
(0)
k + p

(2)
k + p

(4)
k = pDk +O(|z|−7) . (C27)

Again, following (57) we find

〈Tii〉ren (t >> m−1) =
1

2π2a

[
∫ ∞

0
dkk2

8mx2

3|z|
[

1− (|Ek|2 − |Fk|2)
]

+O(|z|−2)

]

. (C28)

This time, the dominant contribution to the total pressure, p ≡ 〈Tii〉ren /a2, decays with time.

Basically, Eqs. (C25) and (C28) tell us that in a radiation-dominated expansion of the universe,

a spin-1/2 field tends to behave as a source of cold matter in cosmology. This may be useful to
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analyze in detail the phase transition from radiation to matter dominated universes, in the standard

cosmology.

On the other hand, at early times t << m−1, (C10) reads [we analyze only the large momentum

behavior since it is in this case where any problem with divergences might arise]

ρDk = i
4mπe−πx2

√

|z|

[

(−1)1/4
Γ(ix2)Γ(1/2 − ix2) +

(−1)3/4
Γ(−ix2)Γ(1/2 + ix2)

]

+O(|z|0) (C29)

=
1
√

|z|

[

−4mx+
m

32x3
+

21m

8192x7
+O(x−11)

]

+O(|z|0) , (C30)

and just as in the late-time case we obtain

ρ
(0)
k + ρ

(2)
k + ρ

(4)
k =

1
√

|z|

[

−4mx+
m

32x3
+

21m

8192x7

]

+O(|z|1/2) , (C31)

so at early times,

〈T00〉ren (t << m−1) ≈ 1

2π2a3

[

∫ ∞

0
dkk2

4mx
√

|z|
[

1− (|Ek|2 − |Fk|2)
]

+O(|z|0)
]

. (C32)

Finally, if one tries to do the same calculation to the pressure (C20), one finds just the same results

for (C30) and (C31) but with a factor 1/3, so recovering this way the equation of state for classical

radiation in cosmology.
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