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The mass of the charm quark is analyzed in the context of QCD
finite energy sum rules using recent BESII ete~ annihilation
data and a large momentum expansion of the QCD correlator
which incorporates terms to order a?(m?/q¢*)®. Using various
versions of duality, we obtain the consistent result m.(m.) =
(1.37 £ 0.09)GeV. Our result is quite independent of the ones
based on the inverse moment analysis.
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1 Introduction

Recently the BESII collaboration has presented new data on the total ete™
annihilation cross section above the charm threshold [l]. Data in this en-
ergy region are particularly relevant for the extraction of the charm quark
mass, one of the fundamental parameters of QCD. The charm quark can
be determined by comparing suitable positive moments of these data with
the corresponding moments of QCD perturbation theory. This direct quark-
hadron duality approach was originally applied to the charm region in Ref.
[B]. A reanalysis along these lines seems indicated in view of the fact that
apart from new data, enormous progress has been made in the theoretical
calculation of the relevant QCD correlator in the region ¢? > m?2. The cor-
relator is now known to O(a?) and O(m'?/q'?) [B], so that the question of
convergence can be meaningfully discussed. There exist also a result to O(a?)
for the quartic mass correction [[] which we will not consider for reasons of
consistency. We believe that in the case of the charm quark mass the direct
duality approach employed by us is less prone to theoretical uncertainties as
the more popular one based on inverse moments [H,[],[1],[8.B]. It should
be pointed out, that we use as phenomenological input only the new BE-
SIT data. This is because older data in this region are plagued by unknown
systematical errors and appear to be mutually inconsistent. An alternative
would have been to adjust the normalizations of the various data sets so that
they agree for large ¢> with QCD [[[0].

We will manipulate our data rather on the basis of QCD duality. Using
suitable linear combinations of moments the emphasis of the hadronic integral
can be shifted at will to experimental regions where the data errors are
small. This technique, which was originally proposed in [[J]], allows in many
cases more accurate prediction, and supplies in addition beautiful consistency
checks. This will be explained in the following.

2 Cauchy sum rule

QCD duality means that the theoretical and phenomenological information
is being related by means of Cauchy sum rule

R 1
L CImll(s)p(s)ds = —5 - fsl:R o (s)p(s)ds (1)
where ImII(s) is defined in terms of the total eTe™ annihilation cross-section
by

R(e*te” — hadrons) =12z Y Q7ImII(s) (2)
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The experimental charm physical threshold in Eq.([l]) is taken from the J/¥
resonance mass

so = (3.097Gev)? (3)

We have included in the sum rule a polynomial weight function p(s)

p(s) =D  ans" (4)

which makes the sum rule a linear combination of moments of Cauchy sum
rules. The polynomial may be chosen in a suitable way to enhance or remove
part of the phenomenological input in the calculation.

3 QCD integral

The two-point function gep(s) is known to O(a?) as a series expansion in
powers of m?/s up the sixth power,

Naco(s) = 323 Autmi (") (1n 7 ) )

s I

where the coefficients A;;(m, 1) may contain powers of mass logarithms In(m?/p?).
The convergence of the series is not seriously affected by the mass logarithms

provided

2 2
1 1

In < n . (6)
m?2 AéCD

This is always the case for the scales of p (~ 5GeV’) we use.
At tree level, the first few terms in the expansion of Ilgcp(s) are given
by

3 (20 4. —s m? m2\> m? —s
HQCD(S):167T2 {§_§IHF+8?+<?> (4—8111?—%811&?)—%..

We use the strong coupling constant o and running MS mass renormalized
at the scale . The lengthy full expression to O(a?) and O(m!?/¢'?) may be
found in Ref.[{].

There is also a small non-perturbative contribution arising from the gluon
condensate, which is known to O(ay) [[J. The first few terms are

(N mN e\ T s
12\ s 3\ s s 3 2 2 h




The Cauchy-Integral in Eq.([[) needs the evaluation of

‘ 1 K —s5\’
= — 1 R
J(k,j) 57 j{s:R s < n E ) ds (7)

for j = 0,1,2,3 and £ = —6,—5,—4,...These integrals can be evaluated
analytically with the result

J(k 1) = — k{1 — jd i
(k7 _"7)_2m’j{s|:}zs <nﬁ> s_n+1><
L1 R j-1), ., R 2 1 »y . 2 R
p~t = 4 A2 2 & —1D(i =2 =
[JH 2 M R CESIE JG =1 —2)In
and
1 1/ —s\’
Jk::—l‘:—j{—l—d
( ) ) s:Rs<n,u2> °
R 2 . R
= W= -G -DW =
v g/ -1 e

See also Ref.[[3]

4 Data integral

The BESII data for the total ete™ annihilation cross section is represented
in figure 1.

The errors given by the authors of Ref. [[[] distinguish between systematic
and statistical errors. In our analysis this distinction is absolutely essential as
the statistical errors average out almost completely in the integration process
while the systematic errors prevail. The threshold of the charm continuum
is at twice the D, mass which corresponds to sgeon: = 13.9 GeV?. For
definiteness we discuss here only the integration up to spm.c = 25GeV?, the
maximum value measured by BESII. If we require for duality that the data
within their errors agree with QCD perturbation theory then it is seen that
Smax May also be chosen somewhat lower. We define

25
]1 = / Rcontinuum(5>p(3)ds (8>
13.9

From this integral over the total cross section the contribution of the light
quarks must be subtracted to isolate the pure charm contribution. As s >
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Figure 1: R(ete™ — hadrons) from BES data as a function of x = (¢cm —
energy)?.

13.9GeV? it is perfectly safe to use QCD perturbation theory for contribution
of the light flavors. We use the four loop result for the massless correlator
25

=2 (1+%+...>p(x)dx 9)

where terms up to O(a?) may be found in refs. [[4], [[5],[Td]. We use here the
highest known order in o, because Is may be considered as an experimental
input. The charm continuum contribution is then given by

Icont == ]1 - I2 (1())

Finally we have to take into account the two J/W¥ and ¥’ charmonium
resonances below the continuum threshold

Ires = 97'('(13704)2 (mlflp (m%) + mgf‘gp (mg)) (11)
where the resonance masses and widths, are given by

m; = 3.0969GeV

I = (5.2640.37) x 107°GeV (12)
my = 3.6860GeV

[, = (2.1240.18) x 107°GeV.

The complete hadronic contribution to the sum rule is sum of these two
integrals
Icharm == Icont + Ires (13>



5 Polynomial weight functions

There is much freedom in the choice of the polynomial in the duality relation,
Eq.([]). In this note we will use the polynomial to reduce the importance of
the continuum contribution relative to the well established sub-threshold
resonances. We impose the following conditions:

The polynomial p(s) = 1 at s = mg/\p, it vanishes at the end of the
integration range (s = 25Gev?), and it is small in the continuum region. To
be specific we choose an n-th order polynomial p,(s) = ag + a1 + .. + a,s"
and determine the coefficients by the constraints

p(25) = 0
po(miyy) = 1 (14)

25
/ s*pp(s)ds = 0, k=0,1,..,n—1
3.9

For a 3-degree polynomial we obtain, for example

p3(s) = 7.9337875—1.209157911s
+6.015 360076 x 102> (15)
—9.792537729 x 1045

This result is plotted in Fig.p.

Figure 2: Polynomial fit vanishing at the continuum range (13.9 — 25)GeV?2.

It is obvious from the figure that the continuum data will almost cancel
when integrated with this polynomial.



6 Results

From the duality sum rule Eq.([l)) we obtain with the help of Eqs.(§{I[J) and
Eqs. (8, @)

Lonarm = = 32 305 axAsyme, ) (m2)' Ik — i, j) (16)

k=0i=0 j=0

which can be solved for m..

We present here predictions for simple duality, i.e. p(s) = 1, and for the
3rd-degree polynomial above. The unknown m, in Eq.([f) is the running
charm mass at a scale p., which we fix to be = 5GeV, the relevant scale of
the problem.

For the coupling constant ag we take as an input its value at the mass of
the tau lepton [[7]

as(m;) = 0.345 + 0.020 (17)

with m, = 1.777GeV. After appropriate matching [I§] from 3 to 4 flavors

this corresponds to
o (5GeV) = 0.224 +0.013 (18)

For simple duality, we plot in Fig.f] the contribution of the QC'D integral
(Ihs of Eq.([Ld)), at tree level and first and second order in the strong coupling,
as a function of the charm quark mass m..

Figure 3: QCD integral without polynomial weight as a function of mass.
The three curves (from top to bottom at m = 2) represent tree, first and
second order calculations in the strong coupling constant.



For the Data integral we have the continuum contribution I, = 14.06GeV?
and the resonance contribution /.., = 12.80GeV? with their sum being the
total charm data integral

Lharm = 26.86GeV? (19)

Solving Eq.([d) for this value of charm data, the results for the mass
of the charm quark at different orders in the perturbative expansion are:
m® = 0.916GeV, m(Y = 0.980GeV and m? = 0.990GeV. We see that the
convergence of the QC'D asymptotic expansion is extremely good. The main
source of uncertainties come from the strong coupling constant and data.
The result that we quote with this approach is

me(p = 5GeV) = (0.99 £ 0.0145ymp £ 001, £ 0.04,¢; £ 0.10,0,)GeV  (20)

The asymptotic uncertainty comes from the difference of two- and three-loop
results used for the QCD correlators. The result of Eq. corresponds to an
invariant mass [[9]

me(me) = (1.40 £ 0.11)GeV (21)

In this final result the errors have been added quadratically.

The contribution of the gluon condensate is completely negligible

Our second approach consist in plug-in the 3rd degree polynomial in
Eq.([3) into Eq.([§) in order to minimize the contribution from the charm
continuum data, and therefore minimize the error involved in these data. As
before we plot in Figf] the QCD integral as a function of m, for different
orders in the perturbative expansion

The contribution from the continuum data is now I = —0.176Gev?,
whereas the resonance contribution, practically from J/W resonance, is I,.s =
9.341GeV?. The complete charm data contribution is then

Leharm = 9.165GeV? (22)

With this value we solve again Eq.([[f) at different orders in the perturbative
expansion of o, with the results: m(®) = 1.153GeV, m{!) = 0.991GeV, m{? =
0.927GeV. We see that, although we have eliminate the uncertainty coming
from continuous data, the price we pay is that the asymptotic expansion does
not converge so nicely as before, but still good enough to make a sensible
prediction for the mass of the charm quark. We have

me(pu = 5GeV) = (0.93 £ 0.0645ymp £ 0.015,, £ 0.014,.,)GeV (23)
This corresponds to an invariant mass [I9]

me(me) = (1.34 & 0.08)GeV (24)
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Figure 4: QCD integral with polynomial weight as a function of mass. The
three curves (from top to bottom at m = 1) represent tree, first and second
order calculations in the strong coupling constant.

The influence of the gluon condensate is in this approach ~ 0.3% for (a ;GG /m) ~
.024GeV*, still negligible.

The result we find is perfectly compatible, within error-bars, with the one
we found above by the simple duality approach. This agreement constitutes
a non trivial confirmation of the duality ansatz. Averaging the results of
both approaches, we finally find

me(me) = (1.37 £ 0.09)GeV. (25)

Our value for m.(m.) appears to be slightly bigger than the ones given by
alternative QCD sum rule methods. With our normalization point the latter
results read m.(m.) = (1.29£0.05)GeV [ and m.(m.) = (1.28+0.06)GeV[{].
Although these values agree, within error bars, with ours, it should be kept
in mind that these authors use older and lower values of the QCD coupling
constant, so that the error-bar quoted should really be larger.

7 Conclusions

In this letter we have analyzed the mass of the charm quark in the context of
QCD finite energy sum rules. In the phenomenological side of the sum rule
we use recent BESII eTe™ data, whereas in the theoretical side we employ
the a large momentum expansion of QC'D vector correlator function up to
O(a?) and O(m!?/q'?) . Two approaches are considered. The first one
uses simple Cauchy sum rule for the correlator. The second one includes a
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polynomial in the sum rule to minimize the contribution of the continuum
data. The results from both approaches are nicely compatible with each
other. Whereas with the first approach suffers from a substantial uncertainty
arising from the continuum data, the second one shifts this uncertainty to
QC D asymptotic expansion. The results allow a nice consistency check of
QCD duality assumption. More precise results need either better data or
further terms in QC'D asymptotic expansion.
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