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Bottom-quark mass from finite energy QCD sum rules
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Finite energy QCD sum rules involving both inverse and positive moment integration kernels
are employed to determine the bottom quark mass. The result obtained in the MS scheme at a
reference scale of 10GeV is mb(10GeV) = 3623(9)MeV. This value translates into a scale invariant
mass mb(mb) = 4171(9)MeV. This result has the lowest total uncertainty of any method, and is
less sensitive to a number of systematic uncertainties that affect other QCD sum rule determinations.

PACS numbers: 12.38.Lg, 11.55.Hx, 12.38.Bx, 14.65.Fy

I. INTRODUCTION

With the availability of new cross section data on e+e−

annihilation into hadrons from the BABAR collaboration
[1], the bottom quark mass was determined recently with
unprecedented precision using inverse moment QCD sum
rules [2]. The result in the MS scheme at a reference scale
of 10GeV is

mb(10GeV) = 3610(16)MeV . (1)

However, as was subsequently pointed out [3], this result
relies on the assumption that PQCD is already valid at
the end point of the BABAR data, i.e.

√
s = 11.21GeV,

where s is the squared energy. This assumption might be
questionable, as the prediction of PQCD for the R-ratio
does not agree with the experimentally measured value at
this point. This QCD sum rule result was also shown to
depend significantly on this assumption. Hence, further
reductions in the error of the bottom-quark mass using
QCD sum rules will depend on the ability to control this
systematic uncertainty. One way of achieving this would
be for a new experiment to extend the BABAR measure-
ment into a region where PQCD is unquestionably valid.
In this paper we follow another approach based entirely
on theory. We use a finite energy QCD sum rule with
integration kernels involving both inverse and positive
powers of the energy, as employed recently to determine
the charm-quark mass [4]. We also exploit the freedom
offered by Cauchy’s theorem to reduce the dependence
of the quark mass on the above systematic uncertainty.
This is achieved by using integration kernels that re-
duce the contributions in the region

√
s ≃ 11.21GeV to√

s0, where there is no data and the onset of PQCD at

s = s0 has to be assumed. As a benefit, this procedure
reduces also the continuum contribution relative to the
well known Υ narrow resonances.

II. THEORETICAL BACKGROUND

We consider the vector current correlator

Πµν(q
2) = i

∫

d4x eiqx〈0|T (Vµ(x)Vν (0))|0〉

= (qµqν − q2gµν)Π(q
2), (2)

where Vµ(x) = b(x)γµb(x), and b(x) is the bottom-quark
field. Cauchy’s residue theorem in the complex s-plane
(−q2 ≡ Q2 ≡ s) implies that

∫ s0

0

p(s)
1

π
ImΠ(s)ds = − 1

2πi

∮

C(|s0|)

p(s)Π(s)ds

+ Res[Π(s) p(s), s = 0], (3)

where p(s) is an arbitrary Laurent polynomial, and

ImΠ(s) =
1

12π
Rb(s), (4)

with Rb(s) the standard R-ratio for bottom production.
The power series expansion of Π(s) for large and space-
like s can be calculated in PQCD, and has the form

Π(s)
∣

∣

PQCD
= e2b

∑

n=0

(αs(µ
2)

π

)n

Π(n)(s), (5)
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where eb = 2/3 is the bottom-quark electric charge, and

Π(n)(s) =
∑

i=0

(m2
b

s

)i

Π
(n)
i . (6)

Here mb ≡ mb(µ) is the quark mass in the MS scheme,
at the renormalization scale µ. The order O[α2

s(m
2
b/s)

i]
results for i = 1, · · · , 6 have been calculated in [5], with
new results up to O[α2

s(m
2
b/s)

30] obtained recently [6].

At order O[α3
s], Π

(3)
0 and Π

(3)
1 are known [7], and the

logarithmic terms in Π
(3)
2 may be found in [8]. The con-

stant term in Π
(3)
2 is not known exactly, but has been

estimated using Padé approximants [9], and the Mellin-
Barnes transform [10]. At order O[α4

s] the exact logarith-

mic terms in Π
(4)
0 and Π

(4)
1 were determined in [11]-[12],

whilst the constant terms are not yet known. Given that
these constant terms will contribute to sum rules with
kernels containing powers s−1 and s0, respectively, for
consistency we shall not include any five-loop order ex-
pressions. However, we find that if all known five-loop or-
der terms are taken into account, the mass of the bottom-
quark only changes by roughly 0.03%, which is about a
tenth of the accuracy of this determination.
The Taylor series expansion of Π(s) about s = 0 is usu-
ally cast in the form

Π(s)
∣

∣

PQCD
=

3 e2b
16 π2

∑

n≥0

C̄n z
n, (7)

where z ≡ s/(4m̄2
b). The coefficients C̄n can be expanded

in powers of αs(µ) as

C̄n =C̄(0)
n +

αs(µ)

π
(C̄(10)

n + C̄(11)
n lm)

+
(αs(µ)

π

)2

(C̄(20)
n + C̄(21)

n lm + C̄(22)
n l2m)

+
(αs(µ)

π

)3

(C̄(30)
n + C̄(31)

n lm + C̄(32)
n l2m

+ C̄(33)
n l3m) + . . . (8)

where lm ≡ ln(m2
b/µ

2). Up to O(α2
s), the coefficients up

to n = 30 of C̄n are known [13]-[14]. There is also a sub-
leading contribution of orderO(α2

s (mc/mb)
2) [15] affect-

ing the coefficient C
(20)

n in Eq.(8), as well as QED correc-
tions. The former contributes around −1.0MeV, and the
latter roughly −2.0MeV to the result for mb(10GeV).
Finally, there is a non-perturbative contribution to Π(s)
from the gluon condensate, but it has been found to be
completely negligible [16]. We fully agree, and thus con-
firm this result. For the strong running coupling we use
the Particle Data Group [17] value αs(mZ) = 0.1184(7),
which corresponds to αs(10GeV) = 0.1792(16).
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FIG. 1: The corrected BABAR data [1] and the PQCD pre-
diction (solid black line) obtained using Rhad [20].

III. EXPERIMENTAL INPUT

In order to evaluate the left-hand side of Eq.(3) one needs
to use experimental input. First, there are the four nar-
row Υ-resonances, and we calculate their contribution to
Eq.(3) using the zero-width approximation

Rres
b =

∑

i

9 πMi Γi

α2
EM(s)

δ(s−M2
i ) , (9)

where i = 1, · · · , 4, corresponding to Υ(1S), Υ(2S),
Υ(3S), and Υ(4S). We use the masses and widths
from the Particle Data Group [17]. The widths
are ΓΥ(1S) = 1.340(18) keV, ΓΥ(2S) = 0.612(11) keV,
ΓΥ(3S) = 0.443(8) keV and ΓΥ(4S) = 0.272(29) keV.
Given that the widths of the Υ(1S),Υ(2S) and Υ(3S)
were obtained at the same experimental facility, we
will assume their uncertainties to be correlated. The
masses are MΥ(1S) = 9.46030(26)GeV, MΥ(2S) =
10.02326(31)GeV, MΥ(3S) = 10.3552(5)GeV, and
MΥ(4S) = 10.5794(12)GeV. Finally, we use the effec-
tive electromagnetic couplings from [16]. The BABAR

Collaboration [1] has performed direct measurements of
Rb in the continuum threshold region between 10.62GeV
and 11.21GeV. There is also data on the full ratio R in
the bottom-quark region by the CLEO Collaboration [18]
dating back to 1985. Subsequently, a later CLEO mea-
surement in 1998 [19], at a single energy, s ≃ 10.53 GeV2,
gives a total R-ratio roughly 30% lower than the 1985
data in this region. Since this discrepancy remains unre-
solved we shall use here only the BABAR data. As was
pointed out in [2], these BABAR data cannot be used di-
rectly in sum-rules, such as e.g. Eq.(3), for the following
reasons. First, the initial-state radiation and the radia-
tive tail of the Υ4S resonance must be removed. Second,
the vacuum polarization contribution must be taken into
account. We follow this procedure, as detailed in [2], to
correct the BABAR data with results shown in Fig. 1.
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FIG. 2: The values of mb(10GeV), obtained for different
values of s0 and using the 10 different kernels in the class

P(i,j,k)
3 (s0, s). All results lie within the shaded region.

The high-energy expansion of Π(s), given in Eq.(5),
is only formally guaranteed to converge above

√
s =

4mb(µ) ≈ 15GeV, due to non-planar diagrams having
cuts starting there. Above this value the high energy
expansion is an almost perfect approximation to the full
analytic PQCD result [20]. Therefore, we shall always
choose

√
s0 > 4mb(µ) in Eq.(3) so that it is safe to use

the high energy expansion of Π(s) in the contour integral.
Between the end point of the data (

√
s = 11.21GeV)

and
√
s0 > 4mb(µ), we will use the best available PQCD

prediction of Rb(s), obtained from the Fortran program
Rhad [20]. We consider this as data input, even though it
stems from theory. The Rhad [20] prediction of Rb(s) is
shown in Fig. 1.

The first uncertainties affecting the bottom-quark
mass are due to the uncertainty in the strong cou-
pling αs (∆αs), the uncertainty in the experimental data
(∆EXP), and our limited knowledge of PQCD (∆µ). The
latter was estimated by varying the renormalization scale
µ = 10GeV by ± 5GeV, running the mass calculated
at this scale back to µ = 10GeV and then taking the
maximum difference. The second set are systematic un-
certainties stemming from the fact that the PQCD pre-
diction for Rb(s) does not agree with the experimen-
tally determined values at the end point of the data
(
√
s = 11.21GeV), as can be seen from Fig. 1. Two pos-

sibilities for this discrepancy were considered in [3]. Op-

tion A: The BABAR data are correct, but PQCD only
starts at higher energies, say at

√
s = 13GeV. Use then

a linear interpolation between REXP
b (11.21GeV) = 0.32

and RPQCD
b (13GeV) = 0.377, rather than the predic-

tion from Rhad. Option B: The PQCD prediction from
Rhad is correct, but the BABAR data are incorrect, per-
haps affected by an unreported systematic error. In this
case multiply all the data by a factor of 1.21 to make
the data consistent with PQCD. In addition to these two
options, we wish to consider a third possibility. Op-

tion C: The BABAR data are correct, and PQCD starts
at

√
s = 11.21GeV. However, the PQCD prediction of

Rhad is incorrect. The motivation for this option is that

the exact analytical form of RPQCD
b is only known up to

one-loop level. At order O(α2
s) already the full analytic

result has to be reconstructed using Padè approximants
to patch together information about Π(s) obtained at√
s = 0,

√
s = 2mb(µ) and

√
s → −∞. Both the Padè

method, and the reliance on PQCD results obtained at
threshold (

√
s = 2mb(µ)) could introduce unaccounted

systematic errors. As a measure of the dependence of the

method on the prediction of RPQCD
b (s) up to s0 (chosen

to be large enough so that the high energy expansion

becomes a rigorous prediction), we use RPQCD
b (s) calcu-

lated using the high energy expansion. The prediction

of RPQCD
b at

√
s = 11.21GeV using the high energy ex-

pansion is also closer to experiment than the prediction
obtained using Rhad.

IV. CHOICE OF INTEGRATION KERNELS

To minimize the dependence of results for the bottom-
quark mass on Option A and Option C, the contri-
bution from the region

√
s ≡

√
s∗ ≡ 11.21GeV to

√
s0

should be quenched. This can be achieved by borrow-
ing from the method of [21], where a Legendre polyno-
mial was used to minimize the contribution of the then
poorly known continuum threshold region. We choose
here a Legendre-type Laurent polynomial, i.e. we con-
sider linear combinations of powers of s chosen from the
set S = {s−3, s−2, s−1, 1, s}. Inverse powers higher than
s−3 lead to a deterioration of the convergence of PQCD,
introducing large uncertainties from changes in the renor-
malization scale µ and the strong coupling αs (see also
[24]). We only use positive powers up to s1, as higher
powers emphasize unknown O(α3

s) terms in the high en-
ergy expansion. The optimal order of the Legendre-type
Laurent polynomial was found to be 3 or 4. First, let us
consider the order 3 case and let

p(s) ≡ P(i,j,k)
3 (s, s0) = A(si +Bsj + Csk) , (10)

subject to the global constraint

∫ s0

s∗
P(i,j,k)
3 (s, s0) s

−n ds = 0, (11)

where n ∈ {0, 1}, i, j, k ∈ {−3,−2,−1, 0, 1}, and i, j, k
are all different. The above constraint determines the
constants B and C. The constant A is an arbitrary
overall normalization which cancels out in the sum rule
Eq.(3). The reason for the presence of the integrand s−n

above is that the behavior of Rb(s) in the region to be
quenched resembles a monotonically decreasing logarith-
mic function. Hence, an inverse power of s optimizes the
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Uncertainties (MeV) Options A, B, C (MeV)

p(s) mb(10GeV)
√
s0 (GeV) ∆EXP. ∆αs ∆µ ∆TOTAL ∆A ∆B ∆C

s
−3 3612 ∞ 9 4 1 10 20 -17 16
s
−4 3622 ∞ 7 5 10 13 12 -12 8

P(−3,−1,0)
3 (s0, s) 3623 16 6 6 2 9 1 -6 0

P(−3,−1,1)
3 (s0, s) 3623 16 6 6 2 9 2 -7 0

P(−3,0,1)
3 (s0, s) 3624 16 7 6 2 9 2 -7 0

P(−1,0,1)
3 (s0, s) 3625 16 8 5 4 10 4 -12 0

P(−3,−1,0,1)
4 (s0, s) 3623 20 6 6 3 9 0 -4 0

TABLE I: Results for mb(10GeV) using kernels p(s) selected for producing the lowest uncertainty. Results from the kernels
p(s) = s

−3 and p(s) = s
−4 used in [2]-[3] are given here for comparison. The errors are from experiment (∆EXP.), the strong

coupling (∆αs) and variation of the renormalization scale by ± 5GeV around µ = 10GeV (∆µ). These sources were added in
quadrature to give the total uncertainty (∆TOTAL). The option uncertainties ∆A, ∆B and ∆C are the differences between
mb(10GeV) obtained with and without Option A, B, or C. As in [2]-[3] these are not added to the total uncertainty, and are
listed only for comparison purposes.

quenching. As an example, taking s0 = (16GeV)2 (and
A = 1) we find

P(−3,−1,0)
3 (s, s0) = s−3 − (1.02× 10−4 GeV−4) s−1

+ 3.70× 10−7 GeV−6 , (12)

with s in units of GeV2. There are ten different kernels
P(i,j,k)
3 , and the spread of values obtained for mb using

this set of different kernels will be used as a consistency
check on the method. Outside the interval s ∈ [s∗, s0],

P(i,j,k)
3 (s, s0) will blow-up, which leads to a suppression

of the continuum threshold region relative to the well
measured Υ-resonances. This will minimize the depen-
dence of the results onOption B. Hence, this kernel min-
imizes all three sources of systematic uncertainty. The

fourth-order Laurent polynomial P(i,j,k,r)
4 (s, s0) is also

defined by the constraint Eq.(11), but with n ∈ {0, 1, 2}.
There are also five different kernels P(i,j,k,r)

4 (s, s0). In
general, the higher the order n of Pn, the better the con-
trol over the systematic errors. However, the price to
pay is a reduction in the rate of convergence of PQCD,
though this convergence can be improved by increasing
s0. In the Appendix we give explicit expressions for the
various kernels used in table I.

V. RESULTS AND CONCLUSIONS

We considered a total of 15 different kernels p(s) used

in Eq.(3), 10 from the class of kernels P(i,j,k)
3 (s, s0) and

5 from the class P(i,j,k,r)
4 (s, s0). All these are similarly

constructed (i.e they obey Eq.(11)), and hence have a
similar ability to reduce the dependence of the bottom-
quark mass on Options A, B, C. They do, however,
place very different emphasis on theory. In particular, if

say P(i,j,k)
3 (s, s0) only included inverse powers of s, then

almost the entire right hand side of Eq.(3) would em-
anate from the residue, and hence from the low energy

expansion of PQCD. If however P(i,j,k)
3 (s, s0) were com-

posed of only positive powers of s, then only the high
energy expansion of PQCD would enter the right hand
side of Eq.(3). Different kernels can therefore lead to sig-
nificantly different dependencies on the renormalization
scale µ. Our philosophy is to choose those kernels pro-
ducing the lowest total uncertainty. The results from
these are displayed in Table I. We also plot in Fig.2
the range of values for mb(10GeV) obtained using all

of the 10 kernels in the class P(i,j,k)
3 (s, s0), as a function

of s0. Remarkably, between 12GeV <
√
s0 < 28GeV,

all of the masses obtained using all 10 kernels from

the class P(−3,−1,0)
3 (s, s0) fall in the range 3621MeV ≤

m̄b(10GeV) ≤ 3625MeV. Our method gives a consistent
result even in the region

√
s0 < 4mb(µ) ≈ 15GeV where

the high-energy expansion used in the contour integral in
Eq.(3) is not guaranteed to converge. Using, rather, the 5

kernels in the class P(i,j,k,r)
4 (s, s0), and varying s0 in the

range 18GeV <
√
s0 < 70GeV, all of the masses thus

obtained lie in the interval 3620MeV ≤ m̄b(10GeV) ≤
3626MeV. These results show a great insensitivity of our
method on the parameter s0, and also on which powers of

s are used to construct P(i,j,k)
3 (s, s0) and P(i,j,k,r)

4 (s, s0).
This in turn demonstrates the consistency between the
high and low energy expansions of PQCD.
For our final result we choose the optimal kernel

P(−3,−1,0)
3 (s0, s) to obtain

mb(10GeV) = 3623(9)MeV , (13)

mb(mb) = 4171(9)MeV . (14)

This result is fully consistent with the latest lattice value
mb(10GeV) = 3617(25)MeV [23]. It is also consis-
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tent with a previous QCD sum rule precision determi-
nation [2]-[3] giving mb(10GeV) = 3610(16)MeV. Apart
from our novel QCD sum rule approach, the inputs in
the latter are almost identical to ours, with the excep-
tion of their use of kernels of the form p(s) = s−n,
n ∈ {2, 3, 4, 5}, and the use of a value of the strong cou-
pling with a larger uncertainty. Their final result was
obtained using p(s) = s−3, which can be seen from Ta-
ble I as being far more sensitive to possible systematic
uncertainties arising from Options A, B, C. They also
determined mb using p(s) = s−4, for which they obtained
mb(10GeV) = 3619(18)MeV. This value is closer to our
result, which may not be surprising given that it is less
sensitive to Options A, B, C than p(s) = s−3, although
not as insensitive as using our kernels.
In conclusion, we have discussed here a finite energy QCD
sum rule method with integration kernels involving in-
verse and positive powers of the squared energy. The
result for the bottom-quark mass has a lower total un-
certainty, and is far less sensitive than the popular in-
verse moment method to the three systematic uncertain-
ties identified earlier, i.e. Options A, B, C. It should be
appreciated from Table I that the results Eqs.(13)-(14)
are independent of the PQCD prediction from Rhad in
the region between

√
s ≃ 11.21GeV and

√
s = 4mb(µ).

VI. APPENDIX

Up to an overall constant, the integration kernels
Pn(s, s0) can be obtained from Eq.(11). For complete-
ness we list below the explicit expressions for all the poly-
nomials used in Table I, at the corresponding values of
s0. First, for s0 = (16GeV)2

P(−3,−1,0)
3 (s, s0) = s−3 − (1.015× 10−4GeV−4) s−1

+ 3.694× 10−7GeV−6 , (15)

P(−3,−1,1)
3 (s, s0) = s−3 − (6.875× 10−5GeV−4) s−1

+ (1.000× 10−9GeV−8)s , (16)

P(−3,0,1)
3 (s, s0) = s−3 − 7.767× 10−7GeV−6

+ (3.103× 10−9GeV−8)s , (17)

P(−1,0,1)
3 (s, s0) = s−1 − 0.01129GeV−2

+ (3.059× 10−5GeV−4)s . (18)

Next, for s0 = (20GeV)2

P(−3,−1,0,1)
3 (s, s0) = s−3 − (1.4668× 10−4GeV−4) s−1

+ 8.781× 10−7GeV−6 − (1.381× 10−9GeV−8) s . (19)

VII. ACKNOWLEDGEMENTS

This work was supported in part by the National Re-
search Foundation (South Africa) and by the Alexan-
der von Humboldt Foundation (Germany). The authors
thank Hubert Spiesberger for discussions on the data,
and one of us (SB) wishes to thank C. Sturm for helpful
correspondence.

[1] B. Aubert et al., Phys. Rev. Lett. 102, 012001 (2009).
[2] K. G. Chetyrkin et al., Phys. Rev. D 80, 074010 (2009).
[3] K. G. Chetyrkin et al., arXiv:1010.6157v2 (2010).
[4] S. Bodenstein, et al., Phys. Rev. D 83, 074014 (2011).
[5] K. G. Chetyrkin, R. Harlander, J. H. Kühn, and M.
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[14] A. Maier, P. Maieröfer, and P. Marquard, Nucl. Phys. B
797, 218 (2008); Phys. Lett. B 669, 88 (2008).

[15] G. Corcella and A. H. Hoang, Phys. Lett. B 554, 133
(2003).
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