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Abstract: 

This work presents the application of machine learning techniques to analyze the influence of physical 

exercise in the heart’s physiological properties, during ventricular fibrillation. With that purpose, different 

kinds of classifiers (linear and neural models) were used to classify between trained and sedentary rabbit 

hearts. These classifiers were used to perform knowledge extraction through a wrapper feature selection 

algorithm. The obtained results showed the higher performance of the neural models compared to the 

linear classifier (higher performance measures and higher dimensionality reduction). The most relevant 

features to describe the benefits of physical exercise are those related to myocardial heterogeneity, mean 

activation rate and activation complexity. 

 

 

Keywords:  

Machine Learning, Classification, Knowledge Extraction, Logistic Regression, Multilayer Perceptron, 

Extreme Learning Machine, Ventricular Fibrillation, Physical Exercise. 
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1. Introduction 

Several authors have proposed that physical exercise (PE) modifies the sympathetic-

vagal balance of autonomic nervous system, producing an increase of parasympathetic activity 

that manifests in a decrease of cardiac frequency [1]. Besides, this vagal activity modification 

could have protective effects against the appearance of cardiac arrhythmias and death [2]. Other 

effects of PE are based on changes in the physiological properties of the hearth, and are called 

intrinsic modifications. The effects of such intrinsic modifications caused by PE, as an 

increment of the action potential duration, were previously reported [3]. 

Other previous studies have shown that physical exercise modifies Ventricular 

Fibrillation (VF) response by intrinsic mechanisms [4]. Those modifications were found in 

several parameters derived from frequency and time domains [4], and its spatial distributions 

[5]. There are a high amount of parameters to describe VF signals, and not all of them can 

describe these effects of PE in the same way [6]. 

The purpose of this work is to find which of the previously used parameters better 

explains the intrinsic modifications produced in VF by PE by extracting knowledge from 

machine learning classifiers. Recordings acquired from two groups of isolated rabbit hearts 

(trained with PE and untrained) were analysed using a wrapper feature selection algorithm [7]. 

This wrapper was applied to several machine learning classifiers, to find the most relevant 

features in the classification between records from trained and untrained rabbits. 

Finding the best features to describe the benefits of PE involves a double profit. On one 

hand, it helps to understand the mechanisms underlying the modifications due to PE, suggesting 

what features of the VF signals are modified. Those features can be transferred to the heart 

physiological characteristics. On the other hand, it allows better analysis of these intrinsic 

modifications, improving future works by the use of the most relevant features. 
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Feature selection is a widespread application field of machine learning. There are many 

applications of feature selection in different areas of biomedical engineering [8]. Regarding 

applications of feature selection methods in VF analysis, the most common applications are 

related to arrhythmia discrimination [9], and classification of ECG signals [10]. This paper uses 

a wrapper feature selection algorithm based on the analysis of the perfomance of some 

classifiers using, or not, each input feature [7]. This feature selection will identify the best 

features to classify between two groups of VF records and, therefore, it will find the most 

relevant features to characterize the differences between both groups. 

Next section presents data acquisition and explains the features used with the classifiers. 

Afterwards, these classifiers are explained: Logistic Regression (classical method in statistics) 

[11]; Multilayer Perceptron (the most extended neural model) [12] and, finally, the Extreme 

Learning Machine [13] (a new algorithm to find the parameters in Multilayer Perceptrons with 

one hidden layer). Next section shows the obtained results and final section presents the 

conclusions. 

2. Methods 

The proposed study consists in four stages: data acquisition, data processing, 

classification and knowledge extraction. Electrograms were acquired from two groups of rabbit 

hearts. Next, these electrograms were processed measuring four parameters from time and 

frequency domains. Using these parameters, 18 features were calculated and used to perform a 

classification between the groups in the experiment. Finally, these classifiers were analysed with 

a wrapper feature selection algorithm to perform knowledge extraction, analysing the relevance 

of the different features and performing subset selections. Figure 1 shows a diagram of the 

proposed study. 
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Fig. 1 Proposed study workflow 

Next subsection, data acquisition, explains the first stage of the study. Further 

subsections explain data processing, classification and knowledge extraction stages. 

2.1. Data acquisition 

Twenty-one male New Zealand white rabbits (Oryctolagus cuniculus) were used in the 

present study. Animals were divided into two experimental groups: an untrained group (G1, 

with a sample size of 10) and a trained group (G2, with a sample size of 11). Animals in the 

untrained group were housed in the animal quarters for 46 days, and rabbits in the trained group 

were submitted to a physical exercise program. After familiarization with treadmill running for 

four days, animals in the trained group ran five days/week for 6 weeks at 0.33 m s
-1

. Each 

training session was divided into six periods of 4 min of running and 1 min of rest [14]. The 

correct execution of treadmill exercise was constantly supervised, and those animals that did not 

adequately run on the treadmill because they either stopped frequently or ran irregularly were 

excluded from the study. Housing conditions and experimental procedures were in accordance 

with the European Union regulation on the use of animals for scientific purposes (2003/65/CE) 

and as promulgated by Spanish legislation (RD 1201/2005). Besides, the University of Valencia 

Animal Care and Use Committee approved all the procedures used in this study. 

In order to analyse the intrinsic modifications of cardiac response in VF, isolated hearts 

were used to make them independents of vagal influence. Perfusion was maintained with a 

Langendorff system in order to avoid metabolic deterioration [15]. 
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Cardiac mapping recordings were acquired with a commercial 256-channel system 

(MAPTECH, Waalre, The Netherlands). An electrode array of 240 electrodes (interelectrode 

distance of 1 mm) was localized on left ventricle. Each recording had 5 minutes of duration, 

acquired at a sampling rate of 1 kHz. VF was induced by pacing with increasing frequencies 

with an electrode placed in the ventricle, outside of the array capturing electrode. 

2.2. Data processing 

The procedure undergone to analyse the recordings involved a pre-processing stage, a 

frequency domain analysis and a time domain analysis. These analyses measured four 

parameters from which 18 features were calculated. 

a) Pre-processing stage. Recordings were processed in consecutive segments of four seconds. 

The signal quality of each 4seconds-segment was analysed, discarding the signals of those 

electrodes in the array with low amplitude or a high presence of noise [4]. 

b) Frequency domain analysis. Welch spectrum was obtained for all recording electrodes in 

each segment, using a Hanning window (2 non-overlapped sections and zero padding until 4096 

samples). The Dominant Frequency (DF) and the Normalized Energy (NE) were calculated 

[16]. The DF was determined as the frequency with maximum spectral energy. The NE was 

defined as the spectral energy in a window placed at DF ± 1Hz, and normalized with spectral 

energy in the interest band (5 - 35 Hz). 

c) Time domain analysis. In order to analyse VF regularity and organization, two parameters 

were calculated: Regularity Index (RI) and Number of Occurrences (NO). The algorithm used 

for the RI computation [4] is a modification of the original [17], in order to adapt it to the 

electrophysiological characteristics of the used cardiac model. More precisely, the local 

activation wave duration was increased up to 50 ms.  The number of occurrences (NO) was also 
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calculated as the ratio of samples which amplitude is inside a zero centred window respect to the 

total number of samples [18]. 

With this procedure, DF, NE, RI and NO parameters were sequentially calculated for 

each electrode and temporal segment, obtaining one map for each parameter and time segment. 

The first eight features were obtained as the mean value (mDF,mNE,mRI,mNO) and standard 

deviation (sDF,sNE,sRI,sNO) of each parameter map. The variation coefficient of the Number 

of Occurrences maps (vcNO) was also computed. 

An algorithm has been implemented to study the Regions Of Interest (ROI) [5], 

previously used on the VF analysis for dominant frequency [19]. To obtain the ROI, a threshold 

was applied to each parameter map. Later on, a ROI membership label is assigned to each 

electrode, according to the threshold criteria and its neighbourhood with electrodes that also 

passed the threshold. From this ROI analysis, three features were obtained for each DF, NE and 

RI parameter map [5]: 

ROI spatial number (ROIsnDF, ROIsnNE, ROIsnRI): the number of ROI detected in a map, 

a measure of spatial fragmentation. 

ROI spatial area (ROIsaDF, ROIsaNE, ROIsaRI): the percentage of the area map occupied 

by ROI, where higher percentages implies a higher homogeneity. 

ROI electrode number (ROIenDF, ROIenNE, ROIenRI): the number of electrodes whose 

membership to a ROI changed between two consecutive maps, related to the temporal 

change of ROI size. 

As result of data processing stage, 18 features were computed. Table 1 shows the 

computed features and its brief description. These features were computed each 4 seconds, 

obtaining a total of 1626 samples; 814 from control group (negative class) and 812 from trained 

group (positive class). 
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Table 1 Features used in the classification. Parameter related to each feature and a brief description 

2.3. Classification 

This section presents the classifiers used on the data. Logistic Regression (LR), which 

can only solve linearly separable problems (if inputs are not transformed by some function) and 

a non-linear classifier, the Multilayer Perceptron (MLP). MLP was trained with Levenberg-

Mardquardt algorithm, and with a new paradigm: the Extreme Learning Machine (ELM). 

2.3.1. Logistic Regression 

Logistic Regression (LR) is a generalized linear model for classification. LR models the 

probability of an outcome in terms of some predictor variables [11]. Let p=Pr(y =1|X) denote 

the probability of an outcome, LR models log[p/(1- p)] as a function of the predictor variables. 

In LR, we have the relation defined by equation 1 (here x0=1 and x1 to xn are the input variables) 

[11]. 

Feature Parameter Description 

mDF Dominant Frequency Mean value in DF parameter map 

sDF Dominant Frequency Standard deviation in DF parameter map 

ROIsaDF Dominant Frequency Area covered by ROI in DF parameter map 

ROIsnDF Dominant Frequency Number of ROI in DF parameter map 

ROIenDF Dominant Frequency Changes in area covered by ROI between consecutive DF maps 

mNE Normalized Energy Mean value in parameter NE map 

sNE Normalized Energy Standard deviation in parameter NE map 

ROIsaNE Normalized Energy Area covered by ROI in parameter NE map 

ROIsnNE Normalized Energy Number of ROI in parameter NE map 

ROIenNE Normalized Energy Changes in area covered by ROI between consecutive NE maps 

mRI Regularity Index Mean value in RI parameter map 

sRI Regularity Index Standard deviation in RI parameter map 

ROIsaRI Regularity Index Area covered by ROI in RI parameter map 

ROIsnRI Regularity Index Number of ROI in RI parameter map 

ROIenRI Regularity Index Changes in area covered by ROI between consecutive RI maps 

mNO Number of occurrences Mean value in NO parameter map 

sNO Number of occurrences Standard deviation in NO parameter map 

vcNO Number of occurrences Variation coefficient in NO parameter map 
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Each one of the parameters describes the contribution of a variable to the output model; 

a positive coefficient means that the explanatory variable increases the probability of the 

outcome, while a negative regression coefficient means that the variable decreases the 

probability of that outcome. Looking at the absolute value of a coefficient allows analysing the 

relevance of the input variable related to the coefficient if inputs are correctly normalized. 

2.3.2. Multilayer Perceptron 

Multilayer Perceptron (MLP) is a layered arrangement of individual non-linear 

computation units, called artificial neurons, organized in different layers. The neurons of a layer 

feed the neurons of the next layer with their outputs [12]. 

These neurons are grouped in layers, forming a fully connected network. The first layer 

contains the input nodes, usually fully connected to the next layers (hidden layers), in turn, 

connected to the output layer. Only one output neuron is necessary in our case, since we are 

tackling binary classification. Multilayer perceptron uses a learning algorithm to find the best 

parameters to model the relationship between input and output variables [12]. This objective can 

be fulfilled with a minimization procedure of a cost function that depends on the difference 

between the obtained output and the desired output value [12]. 

When the used learning algorithm consists on the minimization of a cost function, an 

excessive adjustment of the model parameters during the minimization of the cost function can 

be achieved [12]. In order to avoid this over-fitting, data set is usually divided into three 

subgroups: training set, validation set, and test set [12]. Other alternative to avoid over-fitting 

can be the use of regularization terms in the cost function. 
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2.3.3. Extreme Learning Machine 

Extreme Learning Machine (ELM) was proposed by Huang et al [13]. It is a learning 

algorithm that is also applied to MLP with single hidden layer. ELM assumes that the weights 

of the hidden layer can be randomly assigned [13], thus being only necessary the optimization 

of the output layer weights. Such optimization can be carried out by the pseudoinverse of the 

Moore-Penrose’s matrix [13]. ELM allows reducing the computational time needed for the 

optimization of the parameters. Gradient-descent methods, or global search methods involve a 

much longer time. 

2.4. Feature selection method 

The feature selection method used in this work is a wrapper applied to the previously 

described classifiers [7]. Here, the modification produced in the behaviour of the classifiers 

when each feature is individually cancelled is studied. The deviation found in the output was the 

criterion to perform such analysis, also called sensitivity analysis [6]. 

In Logistic Regression, this analysis can be performed by means of the absolute value of 

the coefficient associated to each input [11]. The relevance of the different features in the 

Multilayer Perceptron was obtained with an specific algorithm. The authors have already used 

this technique with excellent results in other works, and it consists on the steps detailed above 

[6][20][21][22]. 

1. Selection of the Nb models with product between sensitivity and specificity in test 

subset higher than its 90
th
 percentile. 

2. Obtaining of the outputs with these Nb models, using all the dataset (denoted by ok 

where k refers the pattern number).  
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3. Individual cancellation of each feature, xi, and obtaining of the output for all dataset 

without such feature (denoted as 
i

ko ). 

4. Computation of the model sensitivity, as indicates equation 2 (here Np is the number of 

patterns, and i refers to the i-th feature):  





PN

k

i

kk

p

oo
N

iS
0

1
)(   (2) 

5. Ranking the features according to S(i), for each one of the Nb considered models. Higher 

values of S are given to the most relevant features; S near to zero implies that the same 

output is obtained either using or not that features, i.e. it is low relevant.  

6. The positions are averaged for the Np considered models.  

As result, the features were ranked according to its relevance in each model. An 

aggregation of the obtained four rankings was calculated to estimate the joint relevance in all 

classifiers. The relevance of each feature in each classifier was quantified as a score inversely 

proportional to its order in the ranking. These scores were averaged as indicates equation 3. 
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Where, Vi,j is the obtained score by the i-th feature in the j-th classifier; AUCj is the Area Under 

the Receiver Operating Characteristics (ROC) Curve of the j-th classifier; and N is the number 

of classifiers (4 in our case). This aggregation uses a weighted average, so that the best classifier 

has more impact than the other ones. This procedure obtains thus a new list, called global list. 

3. Results 

3.1. Classification achieved by classifiers 

Data were divided in three data subsets, maintaining the ratio between the number of 

samples in positive and negative classes. Training data, 2/3 of total data, were used to adjust the 

classifiers; validation data (1/6) were used in the case of MLP to perform early-stopping, and 

test data (1/6) where used to assess the classifiers with new samples. 

Logistic Regression was adjusted by classical optimization methods, as it is a 

generalised linear model [11]. Regarding Multilayer Perceptron, two different algorithms were 

tested: Levenberg-Marquardt and Extreme Learning Machine. 

Levenberg-Marquardt (LM) algorithm was applied used in using early-stopping in 

order to avoid overfitting [12]. Different architectures were used (number of used hidden nodes 

ranged from 2 to 10 in each layer, and number used of hidden layers varied from one to two). 

Each architecture was initialized 100 times with random weights to avoid the local minima 

problem; this initialization was done using normal distributions with zero mean and low 

variance to avoid initial neurons saturation [12]. 

Regarding Extreme Learning Machine, the number of neurons was increased, as it 

usually needs a higher number of computing units due to the random determination of the 

hidden layer parameters [13]. Therefore, the hidden nodes ranged from 40 to 80. The number of 

used random adjustments on each architecture was 100. 
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The highest product between Sensitivity and Specificity in test data was used to select 

the best models among the different used architectures, in case of MLP. Table 2 shows the 

performance measures obtained with the different models. All classifiers show a good 

behaviour, and MLP with one and two hidden layers trained with LM, were the best performers. 

LR is the classifier with the lowest performance measures, due to the fact that it is unable to 

perform non-linear classification.  

Table 2 Performance measures of the used classifiers, using all the features. PPV: Positive Predictive 

Value; NPV: Negative Predictive Value; AUC: Area Under the ROC Curve; MLP-LM: MLP trained with 

LM algorithm; MLP-ELM: MLP trained with ELM. 

Training data 

Classifier Sensitivity Specificity PPV NPV AUC 

LR 81.33 82.11 81.33 79.01 87.11 

MLP-LM 1 layer 98.04 96.07 96.15 97.99 99.22 

MLP-LM 2 layers 97.55 97.79 97.79 97.55 99.75 

MLP-ELM 89.65 89.95 89.65 87.59 95.38 

Validation data 

Classifier Sensitivity Specificity PPV NPV AUC 

LR 82.35 82.44 82.35 82.44 89.63 

MLP-LM 1 layer 92.20 93.14 93.10 92.23 98.23 

MLP-LM 2 layers 87.80 94.12 93.75 88.48 96.57 

MLP-ELM 87.62 87.80 87.62 86.96 93.54 

Test data 

Classifier Sensitivity Specificity PPV NPV AUC 

LR 80.21 81.86 80.21 75.91 84.58 

MLP-LM 1 layer 96.57 90.64 91.20 96.34 97.59 

MLP-LM 2 layers 95.10 93.10 93.27 94.97 97.82 

MLP-ELM 89.84 90.69 89.84 84.09 92.36 
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Cohen’s kappa coefficient was obtained in order to check the agreement level among 

those classifiers. Cohen's kappa coefficient is a statistical measure of inter-rater agreement for 

qualitative items [23]. It is a more robust measure than ordinary agreement calculation, since it 

deals the agreement occurring by chance. Table 3 shows the obtained kappa coefficients among 

all the used classifiers, using the test subset. The highest agreement was observed among the 

MLPs, trained with LM or ELM, due to the fact that those classifiers use have similar 

architectures. In the same way, the low kappa obtained between LR and the other classifiers is 

due to the existent differences in its architectures. 

Cohen’s Kappa MLP-LM 1  MLP-LM 2  MLP-ELM 

LR 0.5950 0.5668 0.6735 

MLP-LM 1  - 0.8917 0.7531 

MLP-ELM - 0.7243 - 

Table 3 Cohen’s kappa coefficient between the best classifiers. MLP-LM 1: MLP trained with LM using 

one hidden layer; MLP-LM 2: MLP trained with LM using two hidden layers. 

3.2. Feature selection analysis 

The wrapper explained in section 2.4 was applied to the classifiers. This scheme 

consists on the analysis of the individual effect of each feature. In case of MLP classifiers, there 

is not only a single model, since several architectures and initializations were used. Therefore, 

this analysis is applied to the best Nb architectures and initializations with product between 

sensitivity and specificity higher than its 90
th
 percentile. Figure 2 shows boxplots of several 

performance measures of the Nb selected models for MLP-LM with one and two hidden layers 

and MLP-ELM; note that the selected MLP trained with LM (with one or two hidden layers) has 

higher rates than the ELM alternative. 
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Fig. 2 Performance measures of the Nb selected models to perform the feature selection. 

Figure 3 shows the results of the feature selection algorithm. The relevance obtained for 

each one of the 18 features with the four used models, and the relevance obtained in the global 

ranking is represented. Here, the most relevant feature has a score of 100, the second a 

punctuation of 94.44, and so on. 

 

Fig. 3 Scores obtained by each feature with each classifier, and the aggregation of the scores in all the 

classifiers (global score). 

Table 4 shows the six most relevant features for each classifier, and aggregating the 

relevance in the four classifiers. Note that MLP-LM with 1 and 2 hidden layers obtain similar 

feature rankings, while LR is the classifier with the more differenciated feature ranking. MLP-
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ELM presents a feature ranking more similar to han to LR.   Thsese similarities among the used 

classifiers were previously found in terms of kappa coefficient, and are related to the analogies 

among its structures. The features of highest performance are sDF and mRI. The features related 

to DF and RI parameters have a high relevance, as shows the global list where these parameters 

appear in four of the six most important features. 

Table 4 Six most important features for each considered model, and aggregating the relevance in the four 

models (global list). 

A feature subset selection is done with the results shown in figure 2. This subset was 

selected adding features in the order established on the rankings. The criteria to stop adding new 

features uses the quantity S(i), computed as was indicated in equation 2. This quantity was 

accumulated for the Nb best architectures of all MLP-LM and MLP-ELM models. Finally, this 

score was normalized. The subset includes the minimum number of features needed to 

accumulate a normalized score higher than a threshold (thS), established in thS=0.5. 

This procedure was firstly done with the LR model, scoring features according to the 

absolute value of its coefficient in the model, instead of S(i). These scores were normalized and 

accumulated until pass ths. As result, a subset of two features was selected, which misclassifies 

all negative patterns in the dataset. These results showed that the used subset selection algorithm 

does not provide accurate results with linear models. 

Classifier 1st 2nd 3rd 4th 5th 6th 

LR vcNO sNO mNO mRI mDF ROIsaDF 

MLP-LM 1  sDF mDF mRI vcNO mNE ROIenDF 

MLP-LM 2 sDF mDF mRI mNE vcNO ROIenDF 

MLP-ELM sDF mRI vcNO mNO ROIsaRI ROIenRI 

Global sDF mRI vcNO mDF mNE sRI 
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Next, this subset selection algorithm was applied to MLP. The obtained subset lengths 

depended on the training algorithm; it consisted on six features for MLP trained with LM (one 

and two hidden layers) and nine features for MLP trained with ELM. Table 4 summarizes the 

obtained results with those subset selections. A higher performance of MLP when is trained 

with LM algorithm was observed, comparing to ELM algorithm. Besides, the results provided 

by the subset with MLP with two hidden layers (Se=97.06 Sp=95.07 PPV=95.19 NPV=96.98 

AUC=99.15), overcome the results using all the features (Se=92.68 Sp=94.61 PPV=94.50, 

NPV=92.34 AUC=97.72) particularly in test data. This improvement suggests that the features 

discarded by this subset are noisy features that trigger the misclassification of some patterns. 

Training data 

Classifier Sensitivity Specificity PPV NPV AUC 

MLP-LM 1 (6) 93.38 90.42 90.71 93.16 98.13 

MLP-LM 2 (6) 98.28 97.54 97.57 98.27 99.46 

MLP-ELM (9) 86.70 87.25 86.70 83.96 92.90 

Validation data 

Classifier Sensitivity Specificity PPV NPV AUC 

MLP-LM 1 (6) 92.68 90.69 90.91 92.50 97.72 

MLP-LM 2 (6) 92.20 94.61 94.50 92.34 98.22 

MLP-ELM (9) 84.08 84.39 84.08 83.17 91.02 

Test data 

Classifier Sensitivity Specificity PPV NPV AUC 

MLP-LM 1 (6) 94.12 92.12 92.31 93.97 97.37 

MLP-LM 2 (6) 97.06 95.07 95.19 96.98 99.15 

MLP-ELM (9) 90.59 92.16 90.59 79.32 91.77 

Table 5 Results obtained using the feature subsets; the number in brackets is the subset length. 
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4. Discussion and conclusions 

A comparison among three classification algorithms was carried out. Two different 

algorithms for training Multilayer Perceptrons were compared, Levenberg-Mardquardt 

algorithm (LM) and Extreme Learning Machine (ELM). These models were compared using a 

linear classifier (Logistic Regression) as reference. 

Results provided by LM overcome those achieved by ELM. LM obtains higher 

prediction power when new data is presented, i.e. higher performance measures in test dataset. 

Besides, this higher performance is achieved with a fewer number of hidden nodes (in case of 

MLP with one hidden layer), showing the benefits of optimizing all parameters in a Multilayer 

Perceptron instead of randomizing the hidden layer weights as proposes ELM. The linear 

classifier provided lower performance measures in all data subsets, showing non-linear 

components among the used features and the group (trained or untrained rabbits). 

Knowledge was extracted from these classifiers, to analyse the relevance of the 18 

features in the classification. A wrapper feature selection algorithm was applied, where the 

output deviation produced when each feature is individually cancelled provided a score to rank 

the features. This score was obtained for the best architectures in case of MLP (trained both 

with LM and ELM). These best structures provided better classifications when where trained 

with LM algorithm. Besides, the aggregated score (global ranking) showed the joint relevance 

in all classifiers. This global score has provided a ranking of features with physiological 

meaning, showing the goodness of the feature ranking method. 

These rankings allowed the creation of feature subsets. This method has improved the 

behaviour of the MLP with 2 hidden layers respect to the performance using all the input space. 

Besides, using all the input space it was not clear which number of hidden layers has performed 

a better classification (i.e. some performance measures were higher for single hidden layer and 

others for the two layered version). The dimensionality reduction performed by our subset 
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selection algorithm has clarified this fact. With the selected subset, the best model was the MLP 

using two hidden layers and trained with LM algorithm. 

In this way, not all the used features can describe the modifications between the two 

groups with the same relevance. The knowledge extraction performed showed that some 

features allow a better analysis of the intrinsic modifications produced by PE in VF. 

The high relevance of the parameters based on the mean value of RI and NE shown that 

these intrinsic modifications are also based on changes in regularity of activations, measured in 

time and frequency domains. An increase in regularity implies the existence of local activation 

waves with a decrease of complexity, which is related to the existence of lesser complex 

activation patterns [24]. Moreover, the upper relevance of the features related to standard 

deviation of NE and NO showed that the dispersion in the wave morphology and spectral 

complexities are essential to characterize the benefits of PE. In that way, these results suggest 

that PE modifies the complexity of activation patterns by intrinsic mechanisms. 

Regarding mean and standard deviation of DF, are related to ventricular refractoriness 

and action potential duration. It is known that physical exercise influences in ventricular 

refractoriness [25]. The modification of these physiological features helps to stabilize cardiac 

electrical refractoriness, and thus also helps to prevent sudden cardiac death, caused in most 

cases by reentrant arrhythmias as VF [26]. 

Features related to ROI, i.e. related to the parameters spatial distribution, where ranked 

with low scores; except those that involve DF. Such DF features, especially ROIsnDF and 

ROIenDF, where the most relevant within the ROI features. The spatial homogeneity of 

refractoriness period (related to DF) is highly connected with fibrillatory rhythms, where higher 

homogeneity of refractoriness period involves lesser facilities in initiation of fibrillatory 

arrhythmias [25]. 
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In that way, can be assumed that physical exercise produces intrinsic modifications in 

VF response, and such modifications can be better analysed with features related to activation 

rate and activation complexity rather than with other VF features. 

5. Future work 

Feature selection is an unsolved problem, and the high amount of existing techniques to 

perform feature selection implies the existence of several future work directions. In that way, 

other wrapper methods can be applied to the same classifiers used in this work. Besides, there 

are alternatives to the wrapper feature selection. There are many different feature selection 

techniques based on filter methods, which uses statistical measures of relevance. 

As alternative, the wrapper used in this work can be applied to other classifiers. 

Classification is another important application field of machine learning, and there is a high 

diversity of classifiers. For instance, Support Vector Machines or Decision Trees could be 

applied to this classification problem. Such algorithms also allow the study of input relevance 

by the application of wrapper feature selection methods. 
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