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Abstract

An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its
67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants
that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic
characterization showed that atc1D null cells were unable to grow on exogenous trehalose as carbon source, and also
displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42uC) and both
mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored
in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that
catalase was only triggered in response to heat shock in atc1D cells, whereas glutathione reductase was activated upon mild
oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the
homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-
mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results
demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where
it also plays a major role in stress resistance and virulence.
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Introduction

Several yeast species are included among the most dangerous

microorganisms that cause opportunistic infections in humans and

mammals. The genus Candida, particularly Candida albicans,

remains the most prevalent etiological agent of systemic mycoses,

but since the 1980s several clinical surveys [1,2] have documented

the increasing impact of ‘‘non-C. albicans’’ outbreaks in the

bloodstream, e.g. C. glabrata in the USA and C. parapsilosis and

C. tropicalis in Europe, Canada and Latin America [3]. Although

often considered less virulent than C. albicans, C. parapsilosis is the

Candida species with the largest increase in clinical incidence in

recent decades [4,5]. It causes multifaceted pathologies in

immunocompromised and normal hosts, especially low birth

weight neonates. The pathological emergence of C. parapsilosis may

be related to its great ability to colonize the skin, proliferate in

sugar-containing solutions, and adhere to plastic-made clinical

tools and devices [6].

The dramatic extension of opportunistic mycosis, especially

among the debilitated and ageing population, and the worrying

isolation of fungal strains resistant to conventional antibiotics

points to the need for more efficient and selective antifungal

compounds. In this context, the non-reducing disaccharide

trehalose has been studied as a potentially interesting antifungal

target [7–9]. Trehalose (alpha-D-glucopyranosyl (1–1) alpha-D-

glucopyranoside) is widely present in many organisms including

yeasts, fungi, bacteria, plants and insects, but not in mammals

[10,11]. The synthesis of intracellular trehalose plays important

functions in yeasts. It constitutes an endogenous storage of carbon

and energy, it acts as stabilizer of cellular membranes and proteins

and also functions as stress protector in yeast and fungi [10–12].

Trehalose synthesis takes place in a sequential two-step reaction:

trehalose 6-phosphate is synthesized from UDP-glucose and

glucose 6-phosphate in a reaction catalyzed by a Mg-dependent

trehalose 6-phosphate synthase (coded by the TPS1 gene). Then, a

trehalose phosphatase, coded by the gene TPS2, dephosphorylates

trehalose-6-phosphate to release free trehalose. Trehalose hydro-

lysis is essentially confined to a specific class of a-glucosidases that

cleaves off the disaccharide, rendering two molecules of glucose,

the enzyme trehalase (E.C.3.2.1.28) [10–12]. Most fungi possess

two specialized and apparently unrelated trehalases, which differ
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in location, catalytic properties and regulation. The neutral

trehalase is a cytosolic enzyme with maximal activity at neutral

pH (7.0), activated by Ca2+ or Mn2+ and regulated by cAMP-

dependent protein kinases. For its part, the so-called acid trehalase

(optimum pH about 4.5) is located inside the vacuoles (Saccharo-

myces cerevisiae) or is associated to the cell wall (Candida albicans),

whose activity is subjected to glucose repression [13]. We and

others have previously demonstrated that the enzymes involved in

the trehalose biosynthetic and hydrolytic pathways act as virulence

factors in C. albicans [7,14–17]. To our knowledge, there is no

information available concerning trehalose metabolism in the

emergent opportunistic pathogen C. parapsilosis. In this work, we

describe the cloning of the CpATC1 gene, which encodes an acid

trehalase homologous to C. albicans Atc1 [13]. The role of CpATC1

was examined in response to different in vitro stress challenges and

in the new safer model of infectivity Galleria melonella [18]. Our

results support the view that the homozygous atc1D null mutant is

unable to grow on trehalose as carbon source, confirming that

CpAtc1 activity is required to hydrolyze exogenous trehalose. The

CpATC1-deficient mutants were more resistant to in vitro stress

exposure, but more sensitive to immune system clearance after in

vivo infection than its parental counterpart, suggesting a major role

for the CpATC1 gene in C. parapsilosis virulence.

Material and Methods

Ethics statement
All experimental procedures were approved by the local Ethical

Committee for Animal Experimentation of the University of

Murcia (CEEA-UM).

In silico analysis of CpATC1
The presence of an N-terminal signal peptide was analyzed

using SignalP (http://www.cbs.dtu.dk/services/SignalP/). The

Kyte-Doolittle hydropathy plot was generated using a webserver

at the University of Virginia (http://fasta.bioch.virginia.edu/

fasta_www2/fasta_www.cgi?rm = misc1). For pattern scanning

we used ProFASTA (http://www.bioinformatics.nl/tools/

profasta/) [19] and for homology searching, NCBI-Blast (http://

blast.ncbi.nlm.nih.gov/Blast.cgi).

The predicted amino acid sequence (residues 1-1039 of the

mature protein) of the CpAtc1 protein was submitted to the

JIGSAW 3D Protein Homology Modelling Server [20], which

split the protein into two domains, both with successful structural

template matching the catalytic domain of glycosidases. The

sequence was also submitted to the Phyre2 Server to generate an

accurate homology model [21]. Two domains, the catalytic

domain of glycosidases and a carbohydrate-binding domain were

recognized. Structural alignments were refined by visual inspec-

tion and using the secondary-structure (SSM) server [22]. A

superimposed global model was generated involving almost the

complete sequence. The entire sequence was also submitted to the

3DLigandSite [23] to predict the protein binding site.

Strains and Growth Conditions
The C. parapsilosis strains used or originated during this study are

listed in Table 1. The cells were grown in YP medium (1% yeast

extract, 2% peptone) or MM medium (0.7% yeast nitrogen base

without amino acids and ammonium sulfate) supplemented with

0.5% ammonium sulfate and appropriate nutrients, as detailed in

[24], and with the appropriate carbon source (2% glucose, 2%

maltose or 2% trehalose). Media were solidified with 2% agar. C.

parapsilosis transformed isolates were grown in YPD (2% glucose)

containing 200 mg/ml of nourseothricin (Nou) (Jena Biosciences,

Jena, Germany). Nou resistant (NouR) colonies were grown for 24

h in YPM medium. After incubation at 30uC, 200 cells were plated

on YPD containing 20 mg/ml of Nou. Nou-sensitive (NouS)

colonies were picked up and used for the second round of

transformation. Escherichia coli DH5a (F, Q80, lac4M15, recA1,

endA1, gyrA96, thi-1, (rK-, mK-), supE44, relA1, deoR, D(lacZYA-

argF)U169) strain was grown routinely in LB medium (0.5% yeast

extract, 1% tryptone, 0.5% NaCl) supplemented with 100 mg/ml

ampicillin or 35 mg/ml cloramphenicol. E. coli was transformed as

described elsewhere [25].

Plasmid Construction
To generate acid trehalase-negative mutants, the SAT1-flipper

method [26] was used. Plasmid pCD8 was kindly provided as a gift

by Dr G. Butler, University College Dublin, Ireland. It contains

the C. albicans Nou resistance gene under the control of a C.

parapsilosis actine promoter (ACT1) and a recombinase FLP gene

whose expression is driven from the C. parapsilosis maltose

promoter (MAL2) [27].

To disrupt CpATC1 gene, a 621 bp fragment was amplified from

the upstream region using primers FCpATC1-5 (59-AAACTTGG-

TACCTCGTGGATGGTTATTTTCTCTTCC-39) and RCpA-

TC1-5 (59-AAACTTGGGCCCATCTCCTAATACCTTTGAT-

TCTGG-39) containing engineered KpnI and ApaI restriction sites,

and a 495 bp fragment was amplified from the downstream region

using primers FCpATC1-3 (59-AAACTTCCGCGGATTA-

GAGCCCAAAAGCAATAAC-39) and RCpATC1-3 (59-AAA-

CTTGAGCTCTGAATGAGCAACCACCAGCGGC-39) con-

taining engineered SacII and SacI restriction sites respectively

(underlined). Those amplicons were introduced into pCD8,

generating plasmid pRES12. A fragment excised with KpnI and

SacI from pRES12 was used for C. parapsilosis transformation.

In order to rescue the acid trehalase activity in the KO strain,

the vector pRESR was constructed. Using primers FCpATC1-5

and RCpATC1-3, and a proofreading DNA polymerase (Expand

High FidelityPLUS, Roche, Barcelona, Spain) an amplicon of 3216

bp was obtained, cloned into the vector pJET1.2/blunt (Fermen-

tas, Ottawa, Canada) and verified by sequencing. The plasmid

pRESR was digested with KpnI and SacI and the fragment

corresponding to CpATC1 was blunt-ended and used to transform

C. parapsilosis KO strain. Transformed cells were selected in MM

medium containing trehalose as sole carbon source and checked

for correct integration by PCR using the forward primer

FCpATC1-5 and the reverse primer RCpATC1-55 (59-

TTCAATGTGGTCCATTGTGG-39) which generated an am-

plicon of 1.2 kb only if integration had been performed in the

correct locus.

Transformation of C. parapsilosis
C. parapsilosis strains were transformed by electroporation as

described previously by [26] for C. albicans with slights modifica-

tions. C. parapsilosis yeast cells were grown overnight at 30uC in

YPD medium and then diluted in 100 ml of fresh YPD and grow

to reach an OD600nm = 1.4–2.0. The cells were centrifuged at

3500 xg for 10 min and washed two times with 50 ml of ice-cold

water, resuspended in 20 ml of TE (10 mM Tris-HCl, 1 mM

EDTA, pH 7.5)/100 mM lithium acetate, pH 7.5, and incubated

in a rotary shaker at 150 rpm for 45 min at 30uC. After addition of

500 ml of 1 M dithiotreitol the cells were shaken for an additional

15 min. After addition of 80 ml of ice-cold water, the cells were

centrifuged, washed twice with 50 ml water and then with 10 ml

1 M sorbitol and kept on ice. Approximately 2 mg of purified KpnI-

SacI from pRES12 or pRESR was mixed with 40 ml of C.

parapsilosis competent cells and transferred into a 0.2 cm electro-
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poration cuvette. The electroporation was performed at 1.8 kV

using a Bio-Rad MicroPulser TM electroporator. After electropo-

ration cells were washed once in 1 ml of 1 M sorbitol, suspended

in 1 ml of YPD medium and incubated at 30uC for 4 h with

shaking. Cells were concentrated in 100 ml of YPD and plated

onto YPD plates containing 200 mg/ml Nou and grown at 30uC
during 2–3 days.

Southern Blot
Genomic DNA isolation, gel electrophoresis and hybridization

was performed as described [28]. Approximately 15 mg of genomic

DNA isolated as previously described [29] from C. parapsilosis

strains were digested with BamHI, separated on a 1% agarose gel

and transferred onto a nylon membrane (Roche, Barcelona,

Spain). For hybridization, a 621-bp probe obtained with

FCpATC1-5 and RCpATC1-5 primers (amplicon F1) was labeled

by random primed incorporation of a digoxigenin-labeled

deoxyuridine triphosphate using the DIG-DNA labeling kit

(Roche, Barcelona, Spain) according to the manufacturer’s

instructions. DNA concentrations were determined by measuring

absorbance (A260) in a Gene Quant II RNA/DNA calculator

spectrophotometer (Amersham Biosciences, Quebec, Canada).

Stress Treatments
Cultures were grown in YPD until they reached exponential

phase (OD600nm = 0.8–1.0) and were then divided into several

identical aliquots, which were treated with different H2O2

concentrations (5–50 mM), 1.2 M NaCl or 42uC for oxidative,

osmotic or heat-shock stress treatments, respectively, or main-

tained without treatment as a control and incubated at 30uC for 1

h. Viability was determined after samples had been diluted

appropriately with sterile water by plating in triplicate on solid

YPD after incubation for 2–3 days at 30uC. Between 30 and 300

colonies were counted per plate. Survival was normalized to

control samples (100% viability). The susceptibility to compounds

that interfere with the cell-wall architecture was tested in solid

media. Cells were diluted in YPD and 105 cells, and ten-fold

dilutions thereof, were spotted in 5 ml onto YPD agar containing

the specific compound at the indicated concentration. Plates were

incubated at 30uC and scored after 48 h.

Preparation of cell free extracts and Enzymatic Assays
Cell-free extracts were obtained as described previously by [17],

with slight modifications. The yeast cultures were harvested and

resuspended at known densities (10–15 mg/ml, wet weight) in

10 mM 2-(N-morpholine) ethanesulfonic acid (MES), pH 6.0,

containing 1 mM phenylmethylsulfonyl fluoride (PMSF). The

cellular suspensions were transferred into small, Eppendorf tubes

with 1.5 g Ballotini glass beads (0.45 mm diameter). Cells were

broken by vibrating the tubes vigorously in a vortex mixer for 5

min at 4uC. The tubes were then cooled quickly on ice. The crude

extract was centrifuged at 10 000 xg for 5 min and the pellet was

resuspended in the same buffer at the initial density. Acid trehalase

activity was measured as described elsewhere [13]; specific activity

was expressed as nmol of glucose released min21 (mg of

protein)21. Catalase activity was determined at 240 nm by

monitoring the removal of H2O2 as described previously for C.

albicans [30]. Glutathione reductase (GR) activity was assayed by

measuring the glutathione disulfide (GSSG)-dependent oxidation

of NADPH as described elsewhere [31].

Galleria mellonella Survival Assay
G. mellonella larvae (R. J. Mous Livebait, The Netherlands) were

infected as described previously [32]. Groups of 20 larvae (0.3–

0.6 g) were inoculated with 10 ml of 2.56106 yeast cells/ml in PBS

supplemented with ampicillin (20 mg/ml) to avoid bacterial

contamination. The yeast cells were directly instilled into the

haemocele of the larvae by injection using a 26-gauge needle with

Hamilton syringe in the last left proleg. The larvae were incubated

at 37uC after inoculation, and survival was monitored every day.

Larvae death was assessed by the lack of movement in response to

stimulation together with darkening of the cuticle. In parallel, as

control, a group of non-infected larvae and a group of larvae

inoculated with PBS-ampicillin were studied in every infection.

Each experiment was repeated at last three times, and represen-

tative experiments are presented.

In vivo Phagocytosis Assay
Yeast cells were stained with 10 ml/ml Calcofluor white (Sigma

Aldrich, St. Louis, MO, USA) for 30 min at 37uC in darkness and

injected into G. mellonella larvae (107 cells/larva, 10 per group).

After 4 h of incubation at 37uC, haemolymph was collected in

1.5 ml tubes and diluted 1:1 in IPS buffer (Insect Physiological

saline: 150 mM sodium chloride, 5 mM potassium chloride,

10 mM Tris-HCl pH 6.9, 10 mM EDTA and 30 mM sodium

citrate) to avoid coagulation and melanization of the haemolymph.

Haemocytes were placed on a slide and phagocytosis was

quantified visually using a Leica DMI 3000B fluorescence

microscope. One hundred haemocytes from each larva were

counted in each case, and the percentage of haemocytes

containing yeast was calculated and plotted.

Murine infection models
Swiss CD-1 female mice, 6–8 weeks of age (Animal facilities of

the University of Murcia) weighting 25–30 g each, were inoculated

intraperitoneally with 306106 fungal cells in 150 ml PBS. The

Table 1. C. parapsilosis strains constructed and used during this study.

Name Genotype Reference

AM2001/0013 Wild type (WT) ATC1/ATC1 Odds, 2008

Atc1 HETR (NouR) ATC1/Datc1::SAT1-FLP This study

Atc1 HET (NouS) ATC1/Datc1::FRT This study

Atc1 KOR (NouR) Datc1::FRT/Datc1::SAT1-FLP This study

Atc1 KO (NouS) Datc1::FRT/Datc1::FRT This study

Atc1 RE (NouS) ATC1/Datc1::FRT This study

RResistant; SSensitive.
doi:10.1371/journal.pone.0099113.t001
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mice were sacrificed 3 days after infection. Kidneys were removed

and organ homogenates plated on YPD to count the CFUs.

Statistical Analysis
The statistical analysis was performed using GraphPad Prism

version 5.02 for Windows (GraphPad Software, San Diego,

California, USA). The significance of differences between sets of

data was determined by Students t-test. Killing curves were plotted

and differences in survival (Log rank and Wilcoxon test) were

analyzed by the Kaplan-Meier method. Every experiment was

repeated at least twice, and similar results were obtained in all

cases.

Results

In silico screening for potential acid trehalases in C.
parapsilosis

The C. parapsilosis genome database (www.sanger.ac.uk/

resources/downloads/fungi/candida-parapsilosis.html) was blast-

ed taking the gene sequence of the acid trehalase from C. albicans

(ATC1) as template. An ORF named CPAR2-208980 was found on

contig 005809, which presented 67% nucleotide sequence

homology with ATC1 from C. albicans [13], and 62% homology

at protein level. Similar homology was found after comparison of

the predicted amino acid sequence with the sequences found in

protein data bases using the BLAST search algorithm [33] for C.

albicans Atc1 [13] and S. cerevisiae Ath1 [34]. In comparisons made

over the entire length, CPAR2-208980 shared 62% identical and

77% similar amino acids with Atc1, and 41% identical and 58%

similar amino acids with Ath1 (Figure 1). These in silico results

suggest that ORF CPAR2-208980 encodes C. parapsilosis acid

trehalase, leading us to name the gene CpATC1.

Structural Analysis of the amino acid sequence encoded
by CpATC1

The ORF CPAR2-208980 on contig 005809 encodes a putative

polypeptide of 1039 amino acids with a calculated molecular

weight of 116587.90 D and a pI of 5.45. Analysis of the predicted

amino acid sequence revealed an N-terminal region with the

characteristics of a signal peptide [35] and a predicted cleavage

site between positions 23 and 24 (…SEA-FP) (Figure 2A).

Hydropathy analysis [36] of the deduced amino acid sequence

showed that the hydrophobic signal sequence is followed by a

neutral region representing the mature protein (Figure 2B).

Sixteen potential N-glycosylation sites (NXT(S)/T) were identified

at amino acid positions 149, 206, 251, 317, 493, 552, 562, 622,

631, 790, 796, 865, 883, 892, 907, 998 (Figure 2A).

A search of protein motifs in CpAtc1 revealed two significant

matches with the fungal trehalases family. Located in the N-

terminal portion of the 1039 amino acid length protein, there is a

glycosyl hydrolase family 65 motif in which amino acids 77–344

are involved. The central segment also correlates with the glycosyl

hydrolase 65 family catalytic domain (amino acids 402–763)

(Figure 2A). This family, included in the GH-L clan, comprises

glycosyl hydrolases (a/a)6, such as vacuolar acid trehalase and

maltose phosphorylase, according to the Carbohydrate–Active

Enzyme (CAZy) classification (http://www.cazy.org/fam/GH65.

html). This last crystalized enzyme (MPLb) catalyzes the conver-

sion of maltose and inorganic phosphate into b-D-glucose-1-

phosphate and glucose. The central region corresponds to the

catalytic domain, which binds a phosphate ion that is proximal to

a highly conserved Glu.

A satisfactory model was generated by superimposition

(estimated precision .90%) comprising the putative catalytic

active centre of the enzyme (amino acids 400–600) and the

carbohydrate accessory module at the C-terminal region (amino

acids 854–1039) (Figure 3A). The maltose phosphorylase enzyme

from Lactobacillus brevis (pdb entry: 1H54) and the carbohydrate

binding module from Streptococcus pneumoniae (pdb entry: 2J1R) were

automatically used as the best possible available templates in the

model generation. The in silico analysis of the hypothetical 3-D

structure of CpAtc1 protein revealed a (a/a)6 toroid folding

enzyme, consistent with the six-hairpin glycosidase superfamily

(GH-L, GH-M and GH-H clan) [37,38] classified by the

secondary-structure (SSM) server [22]. This overall appearance

closely resembled that of CH94 chytobiose phosphorylases [39],

GH15 glucoamylases [40] and GH65 maltose phosphorylases

[41]. All these enzymes act as catalysts with inversion of the

anomeric configuration. The predicted 3-D structure of CpAtc1

offers a satisfactory spatial superimposition of Glu487 (MPLb),

Glu570 (Atc1) and Glu568 (CpAtc1) on the one hand and Asp359

(MPLb), Asp442 (Atc1) and Asp440 (CpAtc1) on the other (Figure 3

B). The structural alignment provided by the SSM server

confirmed that these crucial amino acids are located in topolog-

ically identical loops. Moreover, MPLb Tyr352, Lys592 and

Glu425 also coincide with Atc1 Tyr433, Lys637 and Glu504,

respectively, which provides side chains that could interact with

hydroxyl groups of the substrate. An identical superimposition was

corroborated with the CpAtc1 molecule. Glu568 was also

surrounded by a cluster of hydrophobic residues that might be

considered good candidates for interaction with the trehalose

molecule. The automatic submission of our 100% confidence

sequence to the 3DLigand site prediction server revealed a binding

site for Zn in the central portion of the protein involving Lys637,

Val670, Pro674, Met676, THr677 and Phe678 residues (Figure 3

C). In the C-terminal region of the molecule we identified a b-

sandwich fold which resembles a sugar-binding domain such as

those proposed by [42]. These carbohydrate binding modules

(CBMs) have been described as the non-catalytic carbohydrate

binding accessory modules from larger enzymes dedicated to the

breakdown of polysaccharides. CBMs are believed to be vital for

enzyme targeting and substrate concentration [43] and are

sometimes involved in substrate presentation for catalysis [44].

The binding site architecture of CpAtc1CBM is a well conserved

scaffold comprising variations of an eight-stranded b-sandwich

fold (Figure 3 D). A small section of a-helix separates b-strand b1.

This is a common fold among carbohydrate binding proteins

belonging to the CBM family. The spatial localization of Trp887,

Trp915 and Trp1002 in CpAtc1 resembles the binding site of other

CBM32 modules [45].

Disruption of CpATC1 to generate acid trehalase mutants
The CpATC1 gene was demonstrated to be essential for C.

albicans growth on exogenous trehalose as carbon source [13]. To

investigate the function of CpATC1, homozygous null mutants

were constructed by targeted gene disruption, and the resulting

phenotypes were analysed. Both alleles of CpATC1 were disrupted

using the SAT1 flipper cassette originally developed for C. albicans

[26] and modified by [27] for C. parapsilosis. The strategy followed

for gene disruption is outlined in Figure 4A. The clinical isolate C.

parapsilosis (AM2001/0013) strain was transformed by electropo-

ration with a linear DNA fragment, in which 3251 bp containing

the ORF were replaced by the insertion of the SAT1 cassette. The

cells treated with electric pulse were incubated at 30uC in liquid

YPD containing 1M sorbitol with shaking, prior to plating on YPD

containing 200 mg/ml of Nou. After 2 days’ incubation at 30uC,

the NouR colonies corresponding to heterozygous mutants

(HETR), observed on the selection plate could be picked and
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used to prepare cultures for DNA isolation. The HETR mutants

were examined by Southern blot hybridization in order to

demonstrate homologous integration. Figure 4B shows the

Southern blot with a probe localized outside the homologous

regions. Five of the twenty transformants analyzed displayed

correct integration of the cassette within the CpATC1 locus. The

HETR homologous integrated heterozygous mutants were inoc-

ulated into YP containing maltose as carbon source in order to

induce FLP-mediated excision of the cpSAT1 resistance gene. After

24 h of induction, approximately 200 cells were plated on the YPD

plate containing 20 mg/ml Nou. The NouS cells (HET) grew more

slowly and formed smaller colonies compared with the NouR

colonies. Southern blot analysis showed that all of the HET clones

lacked the resistance marker (data not shown). One HET colony

was used in the second transformation round to inactivate the

remaining wild type locus. We analyzed 10 mutants from each

transformation and found 3 independent homozygous mutants

(KOR) that showed the correct integration (Figure 4B). MAL2

activation and excision of the resistance marker were carried out as

described for the first transformation. Finally we obtained the

homozygous mutant (KO).

Construction of C. parapsilosis CpATC1-reconstituted
strain

To demonstrate that the mutant phenotype was caused by

deletion of the CpATC1 locus, the CpATC1 gene was reintroduced

into the original genomic locus. The first step was to amplify the

CpATC1 gene by PCR, using genomic DNA from the C. parapsilosis

wild strain as template, and the oligonucleotides FCpATC1-5 and

RCpATC1-3. The resulting 3216 bp amplicon was sequenced and

used to construct plasmid pRESR (see Methods). The homozygous

mutants were electroporated with the linear DNA fragment

containing the CpATC1 gene and transformed into the mutant

strain lacking the gene. Transformants were selected on YNB

Figure 1. Alignment of CpAtc1 amino acid sequence from C. parapsilosis with Atc1 from C. albicans, and Ath1 from S. cerevisiae. The
text indicates the residues that are identical (*), conserved substitutions residues (:) and semi-conserved substitutions (.). Dashes represent gaps to
maximize alignment.
doi:10.1371/journal.pone.0099113.g001

Figure 2. Amino acid sequence of CpAtc1. (A) Diagram of the features of CpAtc1. The hydrophobic N-terminal domain corresponding to a signal
peptide (amino acids 1-22), the potential N-glycosylation sites (Asn-Xaa-Ser/Thr) (*), the regions showing homology with the glycosyl hydrolase family
65 N-terminal domain (Glycohydro 65N) and with glycosyl hydrolase family 65 central catalytic domain (Glycohydro 65 m), are indicated. (B)
Hydropathic plot from the deduced amino acid sequence of CpAtc1. Values above and below the horizontal line indicate hydrophobic and
hydrophilic regions, respectively.
doi:10.1371/journal.pone.0099113.g002
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plates with trehalose as a carbon source, thereby allowing the

exclusive growth of colonies that had incorporated the gene

CpATC1, which acted in this case as a selection marker. After

transformation, three colonies were analyzed by PCR using the

primers FCpATC1-5 and RCpATC1-4 (59-TTCAATGTGGTC-

CATTGTGG-39), which only amplified an internal sequence of

the CpATC1 gene of 1.2 kb if the integration had occurred at the

correct locus (Figure 4C).

Figure 3. Structural analysis of CpAtc1 protein. (A) Ribbon representation. Colour-ramped from the N terminus (blue) to the C terminus (red).
The residues proposed to act in the hydrolysis mechanism (Asp440 and Glu568) are shown in ball-and-stick representation. The output structure was
generated with RasMol (Sayle and Milner-White, 1995). (B) Superimposition of the important active site molecules of Lactobacillus brevis maltose
phosphorylase pdb:1H54, C. parapsilosis and C. albicans (Labels are shown in order). The figure represents the best fit between the three molecules.
The structure was generated with the Swiss Pdb-viewer (Guex and Peitsch, 1997). (C) 3DLigandSite visualization of prediction for the CpAtc1 structure
with predicted binding site for Zn (blue). The ligands in the cluster used to make the prediction are displayed with ions in spacefill and organic
molecules in wireframe formats. (D) Putative homology model for the CpAtc1CBM from C. parapsilosis covering residues 854 to 1039. The residues
proposed to participate in the binding site (Trp887, Trp915 and Trp1002) are shown in ball-and-stick representation. The structure was generated
with the Swiss Pdb-viewer (Guex and Peitsch, 1997).
doi:10.1371/journal.pone.0099113.g003
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Phenotypic analysis of the C. parapsilosis CpATC1
mutants

The growth cycle at 30uC of the C. parapsilosis strains used in this

study was analyzed in different conditions. The four cell types

exhibited a roughly similar growth pattern in YPD rich medium

(Fig. 5 A), whereas substitution of glucose by trehalose as carbon

source (YPtre medium) caused a certain delay in KO cells after

8 hours of incubation (Fig. 5B). These results suggest the CpATC1-

deficient mutant might be unable to metabolize exogenous

trehalose, the initial growth being sustained by the nutritional

ingredients, yeast extract and peptone. To check this hypothesis,

only the wild type and the KO null mutant were cultured in liquid

minimal medium (MM) supplemented with different carbon

sources (glucose, sucrose, trehalose and lactose) (Figure 5 C-F).

The results clearly showed that CpATC1 deletion in C. parapsilosis

impaired the ability to use trehalose as sole carbon source (Figure 5

E). This yeast was also unable to grow in lactose, as can be seen in

Figure 5F and has been previously observed [46]. In addition to

the experiments in liquid medium, the growth pattern was also

analyzed on solid medium in order to confirm these phenotypes.

No significant differences were found when the studied strains

were grown on plates of MM-glucose (Figure 5 G), whereas the

CpATC1 homozygous null mutant has lost the capacity to grow on

MM plus trehalose as sole carbon source (Figure 5 H). Therefore,

these data strongly support the idea that the acid trehalase activity

in C. parapsilosis is necessary to hydrolyze exogenous trehalose. The

phenotypic analysis of the distinct CpATC1 constructions was

completed by measuring the sensitivity to a set of compounds that

interfere with the cell wall integrity (Calcofluor White, Congo red,

SDS and Caffeine). The CpAtc1 null mutant (KO strain) showed

increased sensitivity to Calcofluor White and Congo Red

compared to the WT strain (Figure 5 I). The susceptibility to

both compounds was restored by reintroduction of a functional

CpATC1 gene (RE strain) (Figure 5 I). In identical drop tests, all the

strains displayed a similar degree of susceptibility to SDS and

Caffeine (Figure 5 I). These results suggest that disruption of the

CpATC1 gene altered the cell wall structure, which made the cells

more sensitive to agents that perturb the cell walls but not to those

affecting the cell membranes. However, the evidence is not

conclusive and the location of CpAtc1 in the cell wall cannot be

unequivocally established, as it can in the case of C. albicans [13].

Level of cellular viability after several stress treatments
The degree of cell killing caused by a set of well established

environmental stress challenges (H2O2, heat-shock and saline

exposure) was analyzed in exponential-phase blastoconodia

Figure 4. Construction of the CpATC1 null (KO) and the reintegrant (RE) C. parapsilosis strains. (A) Diagram of the sequential process
followed to disrupt both alleles of CpATC1 (steps 1–5). The probe used to verify correct integration and deletion of the SAT1 flipper by Southern blot
hybridization is represented by a black line in step 2. (B) Southern blot hybridization analysis of genomic DNA digested with BamHI and isolated from
the wild type of C. parapsilosis, (lane 1), HETR (lane 2), HET (lane 3), KOR (lane 4), KO (lane 5). (C) The reintegration was confirmed by PCR amplification
using the primer pair FCpATC1-5 and RCpATC1-4. A positive control (lane 1), a negative control (lane 2) and 3 problem samples (lanes 3–5) are
depicted.
doi:10.1371/journal.pone.0099113.g004
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obtained from the wild type strain C. parapsilosis (AM2001/0013),

its congenic CpATC1 null mutant (KO) and the reintegrant strain

(RE) containing a functional CpATC1 gene. As shown in Figure 6,

WT cells were the most sensitive under all the experimental

conditions assayed, whereas the reintegrant strain (RE) cells

showed an intermediate phenotype, although closer to parental

than to Cpatc1D cells. In the case of the oxidative treatments, the

addition of 5 mM H2O2 had only a limited effect on the viability

of YPD-grown exponential phase cultures from the strains tested,

while a higher concentration (50 mM H2O2) caused a more

drastic loss of viability, the KO cells being significantly more

resistant to oxidative stress (Fig. 6). Similar results were obtained

when identical exponential-phase cultures were subjected to saline

exposure (1.2 M NaCl). In contrast, a heat shock at 42uC caused a

reduction of viability in the parental strain and, to a lesser extent,

in RE cells, while the KO cells exhibited a greater capacity to

withstand this moderate temperature (Figure 6). The results

obtained with the heterozygous mutant (HET) were roughly

equivalent to those found in the RE strain (results not shown).

Trehalose content and trehalase activities in response to
stress treatments

Identical cultures subjected to several stress conditions were

used to evaluate the intracellular content of the protective

disaccharide trehalose and the changes in the enzymatic activities

involved in trehalose metabolism. The trehalose content showed

Figure 5. Phenotypic analysis of the C. parapsilosis strains. The growth cycle at 30uC of wild type (WT), heterozygous (HET) and homozygous
(KO) and reintegrant (RE) yeast strains was monitored in YPD (A) or YPtrehalose (B). To check the ability to use different carbon sources, cells from the
WT and KO strains were cultured in liquid minimal medium (MM) supplemented with: glucose (C), sucrose (D), trehalose (E) and lactose (F) at 30uC
for 6 hours; or in solid MM medium supplemented with glucose (G) or trehalose (H) for 24h. The susceptibility to compounds that affect the cell wall
architecture (I) was examined by spotting approximately 105 cells and 10-fold dilutions thereof, on YPD plates containing the indicated compounds
at the following concentrations: SDS (0.02%, w/v); Calcofluor White (60 mg/ml); Congo Red (100 mg/ml) and Caffeine (50 mM). The plates were
incubated at 30uC for 48 h and photographed. Growth in liquid medium was measured by cell density at OD600. Results are expressed as mean 6

standard deviation of one representative experiment of two performed in triplicate. Growth in solid medium was monitored by visual inspection of
plates performed in duplicate and repeated twice with similar results.
doi:10.1371/journal.pone.0099113.g005
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significant differences between the control samples and stress-

treated cells in the two strains analyzed, except for one saline

treatment (Table 2). The intracellular trehalose levels increased in

response to heat-shock in both strains, especially in the homozy-

gous mutant (Table 2). Regarding the enzymatic activities, a

significant activation of neutral trehalase was recorded in response

to a thermal stress (42uC) in both strains, the increase being more

pronounced in the parental strain. In turn, the acid trehalase

activity did not change in response to the different stresses applied.

As expected, CpAtc1 activity was virtually undetectable in the KO

mutant (Table 3).

Induction of antioxidant activities in response to stress
Given that the ability of yeast to survive an acute oxidative stress

depends on the induction of specific stress-responsive genes that

encode for enzymes with both antioxidant and repairing roles, we

analyzed the changes recorded in a set of activities that play an

antioxidant role, in this case catalase and glutation reductase (GR)

[30,47]. For this purpose, exponential-phase cultures of the tested

strains were exposed to identical stresses. Catalase activity levels

varied depending on the treatment applied (Figure 7A). The basal

activity increased after gentle oxidative stress (5 mM H2O2), but

was only moderately activated in response to intense oxidative

exposure (50 mM H2O2), while it remained at similar levels after

saline/osmotic stress provoked by the addition of NaCl. This trend

was observed in the parental, reintegrant and CpATC1 null KO

strains with no significant differences between them (Figure 7A).

Note the high degree of catalase activation in KO cells (3-fold with

respect to the control) when they were subjected to thermal stress

(42uC), while the increase was significantly less conspicuous in the

parental strain (Figure 7A). As regards glutation reductase, the

results showed that this activity increased after mild or acute

oxidative exposure (5 or 50 mM H2O2) in the acid trehalase-

deficient mutant (Figure 7B). These data are consistent with the

Figure 6. Level of cell survival after different stress treatments in C. parapsilosis strains. YPD-grown cultures of exponential C. parapsilosis
wild type (WT), its isogenic mutant (KO), deficient in CpATC1 gene, and the reintegrant (RE) strains were adjusted to a cell density of 1.06106 cells/ml
and subjected to the following stress challenges for 1h: 5 mM H202, 50 mM H202, 1.2 M NaCl or 42uC. Identical, untreated samples were maintained at
30uC as a control. Results are expressed as mean 6 standard deviation of one representative experiment of two performed in triplicate. Student t-test:
*P,0.05; **P,0.01 between WT and RE or KO strains.
doi:10.1371/journal.pone.0099113.g006

Table 2. Intracellular content of trehalose following different stress treatments in exponential phase cultures of the parental strain
(WT) and its congenic mutant deficient in acid trehalase (KO).

Treatment Trehalose (nmol (mg wet wt) 21)

WT KO

Control 4.860.5 3.360.2

5 mM H2O2 8.360.2 *** 5.960.2***

50 mM H2O2 9.660.3*** 6.260.1***

NaCl 1.2 M 3.760.5 4.160.1**

42uC 21.660.8*** 24.260.6***

Yeast cells were grown at 30uC in YPD until they reached exponential phase (OD600 = 1.0–1.2). The samples were prepared and the trehalose content was measured as
described in Methods. The results are the mean 6 SD of one representative experiment of two performed in triplicate. The distinction between the treated samples and
control values obtained was significant at **P,0.01 and ***P,0.001 according to the Student t-test.
doi:10.1371/journal.pone.0099113.t002
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oxidative stress-induced GR activation observed in an atc1D
mutant of C. albicans [17]. The application of NaCl to the cultures

promoted a slight activation of the enzyme in parental cells, an

effect that was much more pronounced and significantly higher in

the homozygous mutant. Heating at 42uC was the most effective

stress treatment for activating the GR activity in CpAtc1-deficient

cells, the RE cells showing a clear increase in such activity

(Figure 7B).

CpATC1 is required for virulence in C. parapsilosis
The effect of deleting CpATC1 on the virulence of C. parapsilosis

was determined by using the larvae of the insect Galleria mellonella,

which has proven to be a good model for candidiasis studies [48].

We first confirmed that the C. parapsilosis strains used in this study

were capable of infecting and killing G. mellonella larvae (Figure 8

A-D). Following injection of WT cells, survival was reduced to

approximately 40% within one day, compared with a 100%

survival in the case of uninfected larvae, whereas the virulence was

significantly attenuated through double deletion of CpATC1 gene,

and the heterozygous mutant showed an intermediate degree of

infectivity (Figure 8 E). The virulence phenotype could be partially

recovered by reintroduction of the native CpATC1 gene (RE strain,

Figure 8 E). It should be noted that G. mellonella larvae were

melanized within a few minutes of C. parapsilosis WT strain

injection, while such melanization was largely reduced in KO cells.

Again, the RE strain showed an intermediate level of melanization

(Figure 8 A-D). An important line of defense against fungal

infections is the response shown by phagocytic cells [32]. For this

reason, we studied whether WT and KO cells were recognized

and phagocytosed by larval haemocytes to a similar extent in order

to evaluate the degree to which they were responsible for the

differences found in the virulence assays. Our results showed that

there were no differences in the capacity of G. mellonella to engulf

yeast cells among the C. parapsilosis strains 4 hours after infection

(result not shown). Therefore, the decreased virulence in CpATC1-

deficient cells compared to WT cells is probably not due to a

diminished phagocytosis rate, but to the absence of a functional

acid trehalase activity, that would act as a virulence factor. Similar

results were obtained after analysis of the invasiveness in a mouse

model, in which C. parapsilosis infection is not lethal, by

intraperitoneal inoculation of the four strains under study in

standard Swiss mice (Figure 8 F). The homozygous mutant in acid

trehalase (KO strain) underwent a significant loss of virulence, as

shown by the lower number of CFUs found in kidneys compared

to those recorded in the WT strain three days after infection

(Figure 8 F). In turn, the presence of a single copy of CpATC1 gene

(HET strain), as well as the reintroduction of the functional gene

(RE strain), increased the invasiveness capacity as shown by the

higher number of CFUs recovered (Figure 8 F).

Discussion

C. parapsilosis is the causative agent in a high number, and

increasing proportion, of invasive candidal infections [5]. Hence, it

is of utmost importance to understand the molecular basis of C.

parapsilosis virulence to be able to successfully combat this

pathogen. In this work, we focus on the enzymes involved in the

trehalose metabolism of C. parapsilosis, because trehalose has

became a target of great interest in the search for novel effective

antifungal compounds [13,16,17]. This sugar is absent in mammal

cells, whereas trehalase is located in the brush border membranes

of epithelial cells and in the kidney proximal tube [49]. A previous

work showed that the ATC1 gene, which codes for a cell-wall

linked acid trehalase, is a virulence factor in C. albicans. Therefore,

it also seemed conceivable that proteins located in the external

surface might be preferential targets for antifungal drugs [17]. For

this reason, we have carried out the cloning and functional

characterization of an ATC1 orthologous in C. parapsilosis.

An ORF (CPAR2-208980) was identified on contig 005809 by

screening the data base of C. parapsilosis. Since the corresponding

prospective protein had high homology with Atc1 of C. albicans, we

called it CpAtc1. The deduced amino acid sequence reveals the

presence of a signal peptide at the N-terminus of the protein,

which is a characteristic of proteins that transit through the

secretory pathway. The theoretical molecular mass of mature

CpAtc1 protein is 116587.90 and it has 16 potential N-

glycosylation sites (Figure 2A). These data are consistent with

those described for other filamentous fungi and yeasts, e.g.

Emericella nidulans and C. albicans [13], where the Atc1 activity is

also located on the cell surface, in contrast to the acid trehalase

from S. cerevisiae and C. utilis, which is located inside the vacuoles.

This difference might reflect the existence of different exogenous

trehalose uptake mechanisms in yeasts [13,17,50–52]. In filamen-

tous fungi, trehalose hydrolysis appears to be carried out by an

extracellular enzyme, while glucose is released after hydrolytic

cleavage and then transported to the cell cytosol [52].

The homology model generated for the CpAtc1 enzyme of C.

parapsilosis revealed that the catalytic domain matches the catalytic

domain of the glycosyl hydrolase family 65 (Figure 2A). In

addition, it possesses two crucial catalytic residues, Glu570 and

Table 3. Levels of enzymatic activities corresponding to neutral (CpNtc1) and acid (CpAtc1) trehalases in exponential phase
cultures of the strain WT and Cpatc1D null mutant (KO) submitted to different stress treatments.

Treatment Neutral Trehalase (CpNtc1) a Acid trehalase (CpAtc1) a

WT KO WT KO

Control 16.660.8 14.260.4 3.160.3 ,0.3

5 mM H2O2 17.160.3 12.161 3.760.4 ,0.3

50 mM H2O2 12.460.3** 9.360.3*** 2.960.2 ,0.3

NaCl 1.2 M 20.561** 15.660.2** 3.560.3 ,0.3

42uC 33.760.4*** 22.560.5*** 3.860.3 ,0.3

The samples were prepared and the enzymatic activities were measured as described in Methods. The results are the mean 6 SD of one representative experiment of
two performed in triplicate. The distinction between the treated samples and control values obtained was significant at **P,0.01 and ***P,0.001 according to the
Student t-test.
aValues are nmol glucose min21 (mg protein) 21.
doi:10.1371/journal.pone.0099113.t003
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Asp442, present in other trehalases from E. nidulans, S. cerevisiae and

C. albicans [13], which also overlap perfectly with the conserved

residues of LbMP protein (Figure 3A).

The inability of the Cpatc1D null mutant to metabolize

extracellular trehalose strongly supports the view that acid

trehalase activity is necessary for trehalose hydrolysis in C.

parapsilosis. These result are similar to those previously obtained

for C. albicans [13], as well as for other fungi, such as S. cerevisiae

[34] and E. nidulans [53]. When a phenotypic analysis of the

CpATC1 null mutant (KO) was performed to study its putative role

in stress resistance and virulence, KO cells showed a greater

capacity to withstand oxidative, osmotic and thermal challenges

than those of its parental strain (Figure 6). These results are also

consistent with those described for C. albicans, where an atc1D null

mutant showed increased resistance to oxidative stress, heat and

saline shock [17]. In S. cerevisiae too, the ATH1 null mutant showed

higher resistance to dehydration, freezing or ethanol-induced

stress [54]. As regards endogenous trehalose, incubation at higher

temperatures promoted the intracellular increase of this sugar

(Table 2). C. parapsilosis displayed similar behavior during the heat

shock response as C. albicans [17]. On the other hand, the two

antioxidant enzymes monitored, catalase and GR, were activated

in response to the type of stress applied (Figure 7). Thus, they

might act as cell protectors as occurs in C. albicans [30]. The

available data suggest that CpAtc1 is a secretion protein that

contains one signaling peptide and sixteen potential N-glycosyla-

tion sites (Figure 2), but they do not allow its location in the cell

wall to be unequivocally established. In light of this, the observed

stress resistance in KO cells could be due in part to structural

modifications associated with CpATC1 disruption, as the endog-

enous trehalose content accumulated in mutant and parental

cultures was roughly equivalent (Table 2).

Since double disruption of the CpATC1 gene seems to alter the

stability of the external surface, leading to a reduction in virulence,

we next studied the impact of CpATC1 on virulence. The innate

immune responses of mammals are involved in the defense against

fungal pathogens [55]. Since components of the innate immune

response are conserved between mammals and insects, analysis of

Figure 7. Effect of the exposure to different stress treatments on the enzymatic antioxidant responses in C. parapsilosis. The levels of
catalase (A) and glutathione reductase (B) were determined in exponential phase cultures of the WT, KO and RE strains, submitted to different stress
treatments. The samples were prepared and the enzymatic activities measured as described in Methods. Activity data are expressed with respect to
an untreated control. The results are the mean 6 SD of one representative experiment of two performed in triplicate. Student t-test: *P,0.05; **P,

0.01 between WT and RE or KO strains.
doi:10.1371/journal.pone.0099113.g007
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insect responses to fungal pathogens can provide general insights

into the process of host defense against fungi [56–58]. In recent

years, there has been much interest in developing non-mammalian

host models to study microbial infectivity in order to attenuate the

bioethical impact of classical animal experimentation. In this

respect, Galleria mellonella is a Lepidoptera that has been

successfully used as a model host to study the virulence of

pathogenic fungi, such as Cryptococcus neofomans, [59] C. albicans [60]

and Aspergillus fumigatus [61]. Our results show that the validity of

this model can be extended to C. parapsilosis.

The findings strongly support the idea that the genes coding for

an acid trehalase (ATH1/ATC1) involved in trehalose catabolism

are necessary for both virulence and resistance to environmental

stress exposure in several pathogenic yeast species [17]. Therefore,

the corresponding enzymatic moiety deserves more intensive

research as a potential target for the development of new, more

potent and specific antimycotic drugs.
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