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Physics teachers use experimental devices to show students how scientific concepts, 
principles, and laws are applied to understand the real world. This paper studies question 
generation of secondary and under-graduate university students when they are confronted 
with experimental devices in different but usual teaching situations: reading about devices 
while studying still images or diagrams, watching an experimental demonstration, and 
handling the devices in the laboratory. The influence of the prior scientific knowledge on 
the questions asked is also analysed. Inquiry learning environments, involving lab projects, 
seemed to stimulate more inferences addressed to causality when students tried to build 
mental models, whereas reading about devices with the help of still images stimulate more 
descriptive inferences and inhibited predictive ones. 

Keywords: basic physics, problem solving, experimental devices, question generation 

INTRODUCTION  

Teachers agree about the importance of 
experimental work in science education because it gives 
opportunities to develop some important competences 
in their students. First, practical work facilitates 
modelling reality with science (Truyol and Gangoso, 

2012). Second, experimental situations in the Laboratory 
can be used to place the students’ work close to the 
scientists’ work (Chinn and Malhotra, 2002). Third, 
experimental work enables the developing of procedural 
competences such as using measuring techniques, 
controlling variables and relating numerical computing 
to real world. For their educational benefits, 
experimental activities in science education are a 
permanent focus of interest in many countries (see, for 
instance, Allen (2012) a special issue of the Eurasia 
Journal of Mathematics, Science & Technology 
Education devoted to practical work). 
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Experimental devices are used in science education 
in different ways (Trumper, 2003; Holstein and Lunetta, 
2004; Barolli, Luburú and Guridi, 2010 and references 
there in). This diversity is due, among other factors, to 
the varied conceptions that teachers have about what 
‘science’ and ‘science learning’ are (Lederman, 1999). In 
fact, students faced experimental devices in science 
education, but not always in lab situations. Experimental 
devices appear in textbooks and are used in lecture 
demonstrations too. There are at least three basic 
different teaching situations involving experimental 
devices: a) Reading about the operation of experimental 
devices in a textbook, usually with the help of still 
images or diagrams; b) Watching the devices operation 
in a lecture demonstration or in a specialized movie; c) 
Handling the devices in a lab project. Reading about 
experimental devices or watching the devices operation 
in lecture demonstration are very frequent in science 
teaching but in these two ways students are not really 
engaged in experimental work. Both practices are typical 
in the ‘reception learning paradigm’ (Novak, 1979). 
Experimental projects, in which students are free to 
manipulate the devices, have been used in other 
teaching conceptions, as the ‘learning by discovery’ 

approaches or, recently, ‘inquiry teaching and learning’ 
(Anderson, 2002).  

Inquiry learning has been defined as the educational 
process in which students being engaged in conceptual 
understanding, ask questions and construct solutions 
(Gunstone and Mitchell, 1998). According to Schraw, 
Crippen, and Hartley (2006), inquiry teaching promotes 
self-regulation because students have to activate 
“cognitive and metacognitive strategies to monitor their 
understanding (…) such as predict-observe-explain 
(Windschitl, 2002) or question-asking (Chin and Brown, 
2002)” in investigation activities (p. 118). 

In this vein, the present paper focuses on question-
asking when students face experimental devices in 
inquiry environments. We would like to obtain support 
for inquiry teaching involving practical work, not only 
from epistemic but also from psychological grounds. 
Comprehension monitoring has been associated to 
academic success (Wang, Haertel, and Walberg, 1993) 
and deep comprehension (Chin and Osborne, 2008), 
and question generation has been defined as a 
monitoring mechanism. Therefore, developing students’ 
question asking in science education is essential to them 
to achieve deep understanding. 

The aim of this paper is to obtain evidence about the 
type of questions generated when students are 
confronted with experimental devices handling them in 
the lab, as typical in inquiry teaching environments. We 
will use a cognitive approach to compare the above 
teaching situation to other usual teaching situations such 
as reading about experimental devices with the help of 
still images, and visualizing the devices operation in 
lecture demonstrations. 

Students’ questions in science education 

Scientific research begins with “a good question.” In 
fact, teachers agree on the educational potential of 
students’ questions (Chin and Osborne, 2008). 
Accordingly, students’ questions in science education 
have been analysed from several perspectives -didactic, 
epistemic, cognitive, procedural, etc. They have been 
classified using different criteria (Scardamalia and 
Bereiter, 1992; Watts, Gould, and Alsop, 1997; 
Anderson and Krathwohl, 2001; Chin and Chia, 2004), 
their quality has been studied (Graesser and Person, 
1994) or they have been associated to comprehension, 
(Chin and Brown, 2002; Harper, Etkina and Lin, 2003). 
Other studies, apart from the ones in science education, 
have shown an improvement in comprehension and 
memory when students were instructed in question 
asking (Craig, Gholson, Ventura, Graesser, & the 
Tutoring Research Group, 2000; Rosenshine, Meister, & 
Chapman, 1996). 

Finally, and related to the aim of this paper, 
questions about experimental devices have been also 
investigated. Students instructed in inquiry situations 

State of the literature 

• Most of the literature emphasizes the gap between 
theoretical knowledge and practice in teaching. 
Gaining expertise in teaching narrows this gap.  

• One instructional design theory that can be 
applied to provide increased development for 
preservice teachers is expertise- based training 
(XBT). 

• XBT is based on the idea that theories and 
findings of expert research can be used to create 
instructional strategies to enhance advanced 
learners’ expertise. Technology can benefit the 
presentation of these new methods.  

Contribution of this paper to the literature 

• This study is an example of how to use technology 
to present experts’ methods and strategies related 
to teaching in a real classroom.  

• The current literature presents a consensus about 
decreased self-efficacy beliefs during classroom 
teaching. This study provides a method to bring 
real classroom experiences to teacher education 
courses. 

• The literature reviewed on expertise in teaching 
and its effects on preservice teachers’ self-efficacy 
beliefs was mostly theoretical articles. However, 
this study presents actual evidence of the effects of 
expertise in teaching on preservice teachers’ self-
efficacy beliefs. 
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learn to ask more and better quality questions than other 
students in different teaching situations do (Hartford 
and Good, 1982; Cuccio-Schirripa and Steiner, 2000). 
Greasser and Olde (2003) investigated the role of 
previous knowledge on question generation. 
Participants with different levels of expertise were faced 
with a broken device and they had to ask questions in 
order to repair it. The authors found that participants 
having higher expertise and knowledge about the device 
operation asked a higher amount of quality questions, 
i.e., those useful to repair the broken device. 

In a previous study, Sanjosé, Torres and Soto (2012) 
analysed how different formats in the presentation of 
information on physical devices affected question 
generation in Secondary students. They consider reading 
about experimental devices (without any images or 
diagrams), visualizing the devices in a DVD, and also 
handling the devices in the lab. The reading condition 
generated more descriptive questions than the other 
conditions, the visualizing condition stimulated more 
predictive questions and the handling condition 
stimulated more explanation questions. The origin of 
the observed differences between the visualizing and the 
handling conditions, was not clearly stated, although the 
authors elaborated a non-contrasted conjecture to 
explain them.  

The present study aims to replicate some findings of 
Sanjosé, Torres and Soto’s (2012) study, but introduces 
some interesting innovations: 1) the consideration of 
still images together with texts, which is a usual learning 
situation in science classrooms; 2) the contribution of 
the still/dynamic images factor, together with the 
visualization/handling factor; 3) the contrast of the 
hypothesis about the reason why the differences 
between the visualizing and the handling conditions 
could appear; 4) the consideration of university students 
in the sample -having higher specific knowledge than 
secondary students-, to obtain new evidence about the 
contribution of science knowledge to question asking in 
science education; 5) the improvement of certain 
methodological aspects in order to diminish the error 
variance. From points (1), (2) and (4) we will obtain new 
specific data about question generation and self-
regulated learning in lab situations. As point (3) 
concerns, we aimed to shed light on the reasons of the 
non-explained results obtained in Sanjosé and 
colleagues’ work. Finally, point (5) involves some 
procedural details improving the ceteris paribus 
requirements with respect to that mentioned previous 
study. 

A cognitive approach to question generation 

We will focus on a particular type of questions, the 
‘information seeking questions’, (ISQs), i.e. questions 
aimed at obtaining additional information on content. 
They are very important in academic contexts. These 

questions are considered to be ‘prototypical,’ ‘genuine,’ 
or ‘sincere’ by many researchers (Van der Meij, 1994; 
Flammer, 1981).  

Even though students’ questions have received 
attention by the researchers, less work have been 
devoted to propose cognitive mechanisms for question 
generation (Ram, 1991; Flammer, opus cit).  

Recently, Otero proposed the ‘Obstacle-Goal’ model 
(2009) which postulates that ISQs are generated by 
subjects as a consequence of subjects’ attempts to skip 
comprehension obstacles found in the way to their goal: 
to build an specific mental representation about the 
content. Thus, different questions are generated from 
different types of comprehension obstacles. This model 
is rooted in Nelson and Narens’ (1990; Otero and 
Campanario, 1990) two-phase model of self-regulation 
processing, and also in Kintsch’s cognitive theory for 
comprehension (Kintsch, 1998; Kintsch and Greeno, 
1985) further developed for science comprehension 
(Greeno, 1989; Truyol, Sanjosé and Gangoso, 2012). 
According to this model, ‘comprehension obstacles’ 
refer to the impossibility of building the mental 
representation the subject needs to understand new 
information. Making inferences to elaborate the 
information and/or to link it with previous knowledge 
have been suggested to be the most important cognitive 
activity for science comprehension (Graesser and 
Zwaan, 1995). Thus, most of the comprehension 
obstacles in science understanding should come from 
intended but failed inferences. If students had the 
opportunity to ask questions, most ISQs would be 
associated with failed inferences in the process of 
building the attempted mental representation (Otero 
and Graesser, 2001). In science comprehension, these 
mental representations should be the Situation Model, 
the Scientific (or Abstract) Model (Greeno, op.cit). 

Trabasso and Magliano (1996) studied inference 
generation in the process of conscious understanding of 
narrative texts, and identified three broad categories of 
inferences: associative, explanatory and predictive. 
‘Associations’ provide information about features, 
properties, relations and descriptive detail of the entities 
(actors, objects, actions and events). ‘Explanations’ 
provide reasons about why something occurs. Lastly, 
‘Predictions’ are forward-oriented and include 
consequences of actions or events, and they anticipate 
occurrences. Student questions should be associated to 
these inferences when they failed. 

The Obstacle-Goal model assumes that the typology 
of inferences intended in science understanding tasks 
will be the same proposed by Trabasso and Magliano 
(op.cit). According to this assumption, a typology for 
students’ information seeking questions is proposed: 

1) Association questions, Q1, aimed at knowing objects 
and events better (originated by non-achieved associative 
inferences), formed as “What..., How..., When...?” 
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For instance, “What is the shape of a double cone?”, 
“How big is the bottle used in the Cartesian diver?” 

2) Justification questions, Q2, aimed at justifying why 
objects and events ‘are the way they are’ (originated by 
non-achieved explanatory inferences), frequently formed 
as “Why..., Why not..., How is it that...?” For 
instance, “How is it possible that the double cone rolls 
the slope up?”; “Why does the Cartesian diver come up 
to the surface?” 

3) Prediction questions, Q3, aimed at anticipating future 
happenings or events that could take place if the 
conditions were different to the ones explained in the 
information provided, formulated as “What would 
happen if..., What is going to happen...?” For instance, 
“What would happen if we used oil instead of water (in 
the Cartesian diver)?”; “What would happen if we 
increased the ‘V-shape’ angle of the guides?” 

These three types of questions are also related to 
three main scientific competences: describing reality in 
scientific terms (modelling), explaining why objects and 
events are as they are using scientific laws and principles 
(establishing causal antecedents), and predicting events 
using hypothetic-deductive reasoning (predicting causal 
consequents). This typology has proven to be sufficient 
to account for the questions asked by students aimed to 
understand experimental devices (Torres, Duque, 
Ishiwa, Sánchez, Solaz-Portolés and Sanjosé, 2012). The 
Obstacle-Goal model has received empirical support in 
recent experiments, (Ishiwa, Sanjosé and Otero, 2012), 
hence we will adopt the above cognitive perspective for 
question generation. 

Hypotheses 

As we said before, we aimed to obtain empirical 
evidence of the advantages of using experimental 
devices in lab situations. We compared an inquiry 
learning perspective, to other two very frequent learning 
situations involving experimental devices: using videos 
to show how experimental devices operate –students 
can visualize the operation of the devices in real time 
without the possibility of handling them, as in lecture 
demonstrations- and reading about devices with the 
help of still images in a textbook. We will refer to these 
three situations as the “LAB”, the “DVD” and the 
“Text-plus-Still-images” conditions.  

The possible advantages of the LAB condition, 
respect to the other two considered learning situations, 
can be originated by two main factors: 

I) The static/dynamic nature of the observed images. 
In classroom demonstrations or in handling work in the 
lab, the operation of devices can be observed as a time-
dependent event, whereas in textbooks the operation 
has to be imagined from text content and still images. 
The integration of textual information and images or 
graphics can improve comprehension (Schnotz, 2005). 
In addition, the visualization of an event developed in 

time, can reduce the cognitive load with regard to the 
situation in which the process is re-constructed from 
mind, according to the Cognitive Load Theory, 
(Chandler and Sweller, 1991). In the last case, cognitive 
resources have to be dedicated to the de-codification of 
the text and/or to construct mental models to represent 
the temporal development of the event not directly 
perceived by senses. Höffler and Leutner (2007) found 
an instructional advantage for animations on still images 
with a moderate effect size, but the effect size became 
large when the animations were realistic. In a recent 
research on biology education, dynamic images (video) 
helped students to identify animal species in the reality 
(aquarium) better than book-based teaching (Pfeiffer, 
Scheiter, Kühl, and Gemballa, 2011).  

According to the previous findings, our first 
hypothesis is: 

H1: Students in the text-plus-still images condition 
(TSI onwards) will formulate a greater proportion of 
descriptive questions (Q1 onwards) and, therefore, less 
proportion of predictive questions, (Q2 and Q3 
onwards) than the students in the conditions of dynamic 
images (DVD and LAB). 

In the TSI condition, we expect students will find 
some obstacles to know the devices components and 
the devices operation along time. Thus, students will 
generate “What, When, How, Where” questions. 
However, when students can visualize a real device 
operation (in DVD or in LAB conditions), we expect 
this type of obstacles will almost disappear and the 
cognitive resources will be used to establish causal 
relationships.  

In previous experiments on question generation 
from the reading of expository texts, many descriptive 
and causal questions but very few predictive questions 
were obtained (Costa, Caldeira, Gallástegui and Otero, 
2000; Millis and Graesser, 1994; Graesser and Bertus, 
1998). However, it has been found that students do 
generate predictive questions when they can watch 
videos about experimental devices (Sanjosé, Torres and 
Soto, 2012). As causal questions concerns, we expect 
that a significant proportion of questions might be of 
this type (Q2) in whatever condition. This is because 
causality is the most important relationship among ideas 
in comprehension (Millis and Graesser, 1994, Singer and 
Gagnon, 1999; Wiley and Myers, 2003).  

II) The possibility of handling the devices. The 
possibility of interacting with real devices manipulating 
them in the LAB condition opens the way to the 
activation of sensory-motor resources in the brain, 
which could affect reasoning (Barsalou, 2008, Zwaan, 
2004). Moreover, the possibility of free manipulation 
could alter the proportions of causal and predictive 
questions on the devices. When a student tries to 
understand the causal operation of the devices, he/she 
can elaborate a conjecture about the causal role of a 
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certain factor, thus formulating a “What would happen 
if this factor was altered?”-question (Q3). In the 
handling condition, instead of formulating this Q3 
question, the subject has the possibility of modifying the 
factor and seeing what happens. This possibility does 
not exist in the only-watching, DVD condition. When a 
student cannot understand what has happened as 
consequence of some change carried out in the device, 
then a different and specific causal question will appear, 
Q2. That is, the possibility of handling the devices can 
eliminate some Q3, predictive questions, but, on the 
other hand, it opens the way for new Q2 questions.  

Our second hypothesis is: 
H2: Students in the handling (LAB) condition will 

produce a higher proportion of explanation “Why did 
this happen?”-type questions (Q2), but a lower 
proportion of Prediction “What would happen if?”-type 
questions (Q3) than students in the Visualization-
without-handling (DVD) condition. These LAB/DVD 
differences in the proportions of Q2 and Q3 will be due 
to the extra-amount of questions formulated after, and 
as consequence of, the handling of the devices in the 
LAB condition. 

III) Finally, previous knowledge in science should be 
associated with the mental representation students try to 
elaborate about the devices operation. We expect that 
the higher the level of previous knowledge, the more 
frequent the use of scientific concepts, theories, and 
principles to model the devices operation. Therefore, in 
any of the considered learning situations, the obstacles 
detected on the way to comprehension could also 
depend on previous knowledge, and that could 
influence the way questions are formulated (Miyake and 
Norman, 1979).  

Our third hypothesis is: 
H3: No matter the experimental condition, high 

knowledge students will include in their questions a 
greater amount of scientific terms than low knowledge 
students will.  

METHOD 

Participants 

Ninety-one Secondary students and ninety 
University male and female students from a large city, 
participated in this study. The secondary school students 
belonged to 10th grade groups in a public school of high 
academic level. All of them were taking Physics. The 
university students were in the second year of a grade in 
Physics in a public university and were taking Mechanics 
(a part of Physics, which is very relevant for the 
comprehension of thedevices). We expected the 
academic level to be associated with the prior specific 
science knowledge. 

Table 1 shows the distribution of the participants 
according to the factors considered. 

The Secondary participants belonged to three intact 
and equivalent groups, so each group was randomly 
assigned to one of the three experimental conditions. 
University students belonged to two groups. They were 
assigned at random to one of the three experimental 
conditions in each group.  

Materials 

Dillon (1990) proved that perplexity brings about the 
generation of questions in students. Thus, we used two 
experimental devices operating in an amazing, 
unexpected way (Torres et al. 2012). These devices are: 

1) A Double Cone, which rolls downward on a slope 
formed by two straight guides, but able to roll towards 
the upper part of the ramp when the two guides are in a 
“V-shape” with the vertex in the lower part of the 
slope. 

2) The Cartesian Diver, which sinks to the bottom when 
the water bottle in which it floats is squeezed, but 
returns to the surface when the squeezing releases. 

They both are well-known experimental devices 
(Websites, 2012) whose physical explanation can be 
found in Appendix 1. 

The devices were manufactured under the 
specifications of the researchers and their good 
operation was tested repeatedly to avoid any risk in their 
manipulation. 

Two short texts were prepared with the description 
and operation of each device. These same texts were 
used in all of the three experimental conditions. Each 
text was composed of three parts: a) the activation of a 
well-known explanatory schema (i.e. when a round 
object is abandoned on an inclined plane, it rolls the 
slope down); b) the presentation of an event hoped for 
according to this explanatory schema (a cylinder rolling 
the slope down); c) the introduction of a ‘discrepant 
event’ with this explanatory schema (the double cone 
seems to roll the slope upwards). 

For the visualization without handling (DVD) 
condition, two image files were elaborated by filming 
the operation of the real devices. The experimental set-
ups were carried out in the school lab and we proceeded 
to the filming of their operation afterwards. The filming 

Table 1. Distribution of the participants according to 
the experimental conditions and academic levels 

Second.10th Univ. Totals 

TSI 25 26 51 
DVD 30 31 61 
LAB 36 33 69 
Totals 91 90 181 
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was carried out by an audio-visual technician with 
professional equipment. Various shots were taken from 
different perspectives to facilitate the visualization of 
the operation of the devices. The filming of each device 
lasted between 4 min 30 sec, and 5 min 00 sec. 

For the TSI condition, we proceeded in the 
following way: from each video recording, 3 specific still 
shots were selected, one for each of the parts of the 
text, to which labels, arrows, etc. were added, as it is 
typical in schematic images in textbooks. These 
modified still shots were the ones used in the TSI 
condition. In such a way, we tried to make some 
variables constant (i.e. realism of the images). 

Appendix II shows one of the texts with one still 
image used in the TSI condition. 

Variables 

The independent variables were the experimental 
condition (TSI/ DVD/ LAB) and the academic level 
(10th grade / university). The questions of each type, 
Q1, Q2, Q3; and the total amount of questions 
formulated by each student, Qtot, were accounted for.  

The causal questions generated after, and as 
consequence of the handling of the devices in LAB 
condition, Q2aftermanip, were accounted for separately. We 
simply paid attention to that questions referring to 
actions or observed results not present in the initial 
setting and operation of the devices. These specific 
questions, Q2aftermanip, should not be generated in the 
DVD condition. Finally, the amount of questions whose 
formulation included at least one scientific term, Qsci, 
was also considered.  

The dependent variables were the proportions of 
each type of question with regard to the total amount of 
questions: PropQ1 = Q1/ Qtot; PropQ2= Q2/ Qtot; 
PropQ3= Q3/ Qtot. Differences in the proportions of 
each type of question can be associated with different 
types of mental representations students try to 
construct, and with the obstacles found by them. For 
instance, a greater proportion of Q2 questions would 
indicate a greater concern for saving causal 
comprehension obstacles, or for justifying “Why are 
things the way they are?” A greater proportion of 
questions with scientific terms, PropQsci, could indicate 
greater efforts of modelling reality with science by the 
students. 

Procedure 

An ethical protocol was respected in the entire 
process. Professors, parents, and students were 
informed weeks before the experiment was conducted, 
to assure consented and willing participation. The 

researchers committed themselves to respect the 
confidentiality of the data at every moment. 

To preserve the validity of the study, it was proper to 
assure (to the degree possible), that the students would 
formulate the questions that they really needed in order 
to understand the devices, and not ‘all of the questions 
that came to mind”. Thus, we use the particular 
procedure by Torres and colleagues (2012). In the 
instructions, two experimental sessions were 
announced. In the first session, students should have 
comprehended the operation of the devices, and in the 
second session, they would do a comprehension test, 
which would be the source of the experimental data. In 
the first session, students could formulate all of the 
questions they needed to comprehend the devices, (and 
to hand them in). The researcher would respond to each 
student’s questions before the second session, so that 
performance in the comprehension test would improve. 
In this way, the focus of attention drifts away from the 
questions themselves to the comprehension of 
experimental devices. After the taking of data in the first 
session, the students were informed that the second 
session would not be necessary and the researchers 
answered the students’ questions in front of the group-
class. 

In the TSI condition, the session took place in a 
classroom and was carried out for groups of participants 
together. One of the researchers delivered the 
instructions to students and read them aloud. When 
doubts were clarified, the first text with still images was 
handed out. The order of the texts was counterbalanced. 
After the text with the still images, a blank sheet of 
paper was included to write the questions down. Upon 
finalizing the questions on the first text, the question 
sheets were collected and the second text with still 
images was handed out. Time was limited to 15 min for 
each device. 

In the DVD condition, the session took place in a 
computer lab in which each participant was assigned a 
personal computer. The instructions were handed out, 
read aloud, and explained to the students in this 
condition, in identical fashion as what was carried out in 
the TSI condition. Then, the text of the first device 
(without the still images) was handed out, with the blank 
sheet of paper for students’ questions. On each 
computer, the two files with the video-recordings of the 
operation of each device, were previously installed. 
Each student could see the filming and read the text at 
his/her own pace. After collecting the questions of the 
first device, the second text was handed out and the 
second filming was seen under an identical procedure. 
Researchers controlled that each student should only see 
the corresponding device in each moment. The order of 
each device was also counterbalanced. The time was 
also limited to 15 min per device. 
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In the handling condition, LAB, the participants 
were taken to the lab one by one, since data collection 
was individual. Before proceeding, they were given and 
read aloud the instruction sheet. After solving the 
participant’s doubts, the first text and the blank sheet 
were handed to him/her so that he/she could write 
nis/her questions down. Afterwards, the student was 
placed in front of the first device and one of the 
researchers operated the device a couple of times. While 
making the device work, the researcher orally narrated 
the same information written on the corresponding text. 
Afterwards, the researcher invited the student to handle 
the artefact by himself/herself and to write his/her 
questions on a blank sheet. Complete freedom was 
given to the student for 15 minutes. After time was up, 
the sheet with the questions was taken up and 
everything proceeded in the same fashion with the 
second device. The order of presentation of the devices 
was balanced.  

The questions formulated in writing by the students 
were classified according to the assumed taxonomy (Q1, 
Q2, Q3). To guarantee the validity of the procedure, a 
subset of 33% of the questions was classified by two of 
the researchers independently, and the inter-coder 
agreement was calculated computing the Cohen’s 
Kappa. A value of 0.72 was obtained and hence the 
agreement was not considered good enough. After a 
discussion and clarification session, another subset of 
33% of the total amount of questions was considered 
and the same procedure was followed. This second 
time, the Kappa value reached 0.83 so we went ahead, 

reclassified the initial sub-group and classified the 
remaining 33% of questions asked. No more inter-coder 
disagreements were found. 

RESULTS AND DISCUSSION 

A total amount of 2064 questions, aimed at 
obtaining information on the devices, were collected. 
This corresponds to a general average of more than 11 
questions per subject, that is, more than 5.5 questions 
per subject and per device, which is a very high figure. 
Thus, the procedure stimulated students’ information 
seeking questions. 

The independent variables, i.e. the proportions over 
the total for each type of question and the total amount 
of formulated questions (Qtot), were also distributed 
according to a normal curve (K-S: p> .05). 

Table 2 shows the averages (and standard deviations) 
obtained in the two devices, for the proportions of each 
type of question in each experimental condition and 
educational level. 

Table 3 shows the most frequent students’ questions 
and the most frequent scientific terms mentioned. 
Other important, but not mentioned scientific concepts 
are also listed in Table 3. 

In order to contrast H1, we compared the still 
images condition (TSI) with the dynamic images 
conditions (DVD + LAB). The independent-groups t-
test was used. When the homoscedasticity condition was 
not fulfilled, according to the Levene’s test, the degrees 
of freedom were corrected.  

Table 2. Mean values (and standard deviations) for each type of question in the experimental conditions and 
academic levels. Both devices have been considered together.  

Qtot PropQ1 PropQ2 PropQ3 PropQsci 

Secondary 10th gr. (totals) 11.4 (3.6) .16 (.16) .56 (.20) .27 (.19) .25 (.18) 
Still images (TSI)   9.4 (2.6) .23 (.23) .64 (.23) .13 (.12) .25 (.19) 
Dynamic images 12.2 (3.6) .14 (.11) .53 (.19) .33 (.19) .25 (.18) 

DVD 11.3 (4.0) .11 (.12) .47 (.18) .42 (.17) .18 (.14) 
LAB 13.0 (3.1) .16 (.10) .58 (.19) .26 (.17) .31 (.19) 

University (totals) 11.4 (3.3) .17 (.14) .56 (.21) .28 (.21) .42 (.22) 
Still images (TSI) 11.5 (2.8) .19 (.19) .67 (.16) .14 (.10) .34 (.19) 
Dynamic images 11.3 (3.5) .16 (.12) .52 (.21) .32 (.22) .45 (.23) 

DVD 11.7 (3.7) .15 (.12) .44 (.19) .41 (.20) .29 (.14) 
LAB 11.0 (3.3) .17 (.12) .58 (.21) .25 (.20) .61 (.19) 

Both levels (totals) 11.4 (3.4) .17 (.16) .56 (.21) .27 (.20) .34 (.22) 
Still images (TSI) 10.5 (2.9) .21 (.21) .65 (.19) .13 (.11) .29 (.19) 
Dynamic images 11.8 (3.6) .13 (.12) .52 (.20) .33 (.20) .35 (.23) 

DVD 11.5 (3.8) .16 (.11) .46 (.19) .42 (.19) .24 (.15) 
LAB 12.0 (3.3) .17 (.15) .58 (.19) .25 (.18) .45 (.24) 
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In order to contrast hypothesis H2 about the specific 
effects from handling -apart from the ones coming from 
watching real images-, the DVD and LAB conditions 
were compared to each other and the independent-
groups t-test was also used. 

Finally, in order to contrast H3, a 3X2 ANOVA was 
carried out, taking the experimental condition (TSI/ 
DVD/ LAB) and the Educational Level (10th grade / 
university) as the two factors. 

Table 4 shows the main data of the statistical 
analyses computed for the three hypotheses formulated. 

As predicted in H1, the still images condition (TSI) 
generated a higher proportion of Association-type 
questions than the dynamic images conditions (DVD + 
LAB). Dunnet post-hoc analysis showed significant 
differences between the TSI and the DVD experimental 
conditions, but not between the TSI and the LAB 
conditions. The last result was due to the extra-amount 
of Association questions asking for particular values of 
the experimental setting parameters (for instance: “What 
is the maximum angle for the slope so that the double 
cone can roll up”?), generated in the LAB condition. 

Table 3. The most frequent students’ questions and the most frequent scientific concepts mentioned. Other 
important but not mentioned scientific concepts are also listed. 
Questions Type 
Questions which do not include physics terms 
-What are the dimensions of the double cone? 
-Is there a bubble of air inside the cap? 
-Why does the double cone go up? 
-Why does the diver sink and then rise? 
-What would happen if instead of a double cone, it were another figure? 
-What would happen if we removed the bottle top? 
-What would happen if the bottle were completely filled with water? 

Questions which include physics term or parameters 
-What is the range of opening angles of the guides so that the cone goes up? 
-What is the pressure inside the Cartesian diver? 
-What forces act on the double cone? 
-Is the opening angle of the guides related to the incline angle of these same guides? 
-Does the speed with which the diver submerges depend on the strength we exert? 
-Is the air pressure on the inside of the pen cap what makes it submerge? 
-Would it go up at the same speed if the angle between the guides were greater? 
-What would happen if the density of the water were different? 

 
Q1 
Q1 
Q2 
Q2 
Q3 
Q3 
Q3 

 
Q1 
Q1 
Q1 
Q2 
Q2 
Q2 
Q3 
Q3 

Most common physics concepts in students’ questions: 
Diver: Weight, Force, Pressure, Density, Speed 
Acrobat: Weight, Friction, Opening Angle, Incline Angle, Speed 
Important physics concepts which were not mentioned: 
Diver: Boyle and Mariotte’s law (Pressure and Volume relationship in gases); Pascal’s Principle; Newton’s 2nd Law 
Double-cone: Net Force; Normal Force; Rigid body; Torque. 
 
Table 4. Statistical data for the analyses carried out to contrast the three hypotheses formulated. ‘t’ stands for the 
independent groups Student’s t-test; ‘F’ is the Snedecor’s test in ANOVAs, ‘p’ is the significance, and ‘η2’ measures 
the effect size.  
 PropQ1 PropQ2 PropQ3 
H1 Still vs Dynamic 

Images 
t(62.5)=2.055 
p= .044; η2= .04 

t(179)= 3.994 
p< .001; η2= .08 

t(157.2)= -8.219 
p< .001; η2= .19 

 
H2 

 
DVD vs LAB 

t(128)= -1.658 
p= .10 

t(128)= -3.822 
p< .001; η2= .10 

t(128)= 4.974 
p< .001; η2= .16 

 PropQsci 
H3 Level: 10th gr/Univ. 

Condition: TSI/DVD/LAB 
Interaction Level X Condition 

F(1,175)= 38.620; p< .001; η2= .18 
F(2,175)= 28.350; p< .001; η2= .25 
F(2,175)=   6.667; p= .002; η2= .07 
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As it can be seen in Table 4, there were significant 
differences between the LAB and the DVD conditions 
due to the possibility of the free handling of the devices, 
supporting H2. These differences only implied the 
proportions of Explanation and Prediction questions, 
but not the proportion of Association questions.  

In order to complete the contrast of H2, we studied 
whether the observed DVD/ LAB differences in Q2 
and in Q3 were due to the possibility of doing an 
immediate test for the student’s conjectures in the LAB 
condition, but not in the DVD condition. Thus, the 
causal-type questions formulated after, and as 
consequence of manipulations, Q2aftermanip, were 
accounted appart from the rest of the Q2 questions in 
the LAB condition, and scored separately. Some 
examples of this kind of questions are: “Why cannot the 
double cone roll up now?” (asked after decreasing the 
the ‘V-shape’ angle of the guides); “Why can the ball roll 
the slope up?”, (after using a ball instead of the double 
cone or the cylinder); “Why cannot the Cartesian diver 
float now?”, (after putting the cap inside the bottle 
upside down, and observing the cap sinking); “Why do I 
need less pressure when there is more water in the 
bottle?”, (after filling the bottle up with water, and 
squeezing the bottle to make the diver sink), etc. 

Before handling originating a new Q2aftermanip 
question, the subject has to generate a “What would 
happen if?” question. For instance, before handling the 
Cartesian diver to take some water out of the bottle, 
then asking the question: “Why does the pressure 
exerted have to be greater when there is less volume of 
water in the bottle?”, the student had to generate a silent 
question similar to: “What would happen if less water 
was inside the bottle?” Therefore, in the LAB condition 
each explicit Q2aftermanip question has associated a silent, 
implicit Q3 question. 

Therefore, if we added Q2aftermanip to the amount of 
“What would happen if” questions, Q3, we would 
obtain a best estimation for the amount of the questions 
generated in the LAB condition, verbally explicited or 
not. This amount of Q3 questions have to be compared 
to the quantity of Q3 in the DVD condition.  

As Q2aftermanip cannot be generated in the DVD 
condition, we can compute Q2 - Q2aftermanip in the LAB 
condition and compare this Explanation questions, 
generated apart from the handling) in both conditions 
(see Table 5). ANOVA showed that the previously 
found significant differences between the two 
conditions disappeared (F< 1). Neither was the 
academic level significant (F< 1), nor was interaction 
produced (F< 1). The proportion of Q3+Q2aftermanip was 
also compared with the proportion of Q3 in the DVD 
condition by means of ANOVA. The significant 
differences between conditions showed in Table 4, also 
disappeared for these variables (F(1,126)= 1.588; p = 
.210). In addition, the Academic Level did not produce 
significant differences (F(1,126)= 1.228; p= .270) and 
there was no significant interaction between both 
factors (F<1).  

Summing up, the observed LAB/DVD differences 
in the proportion of Explanation questions were caused 
by Q2aftermanip, and once removed, those differences 
disappeared. Similarly, when we accounted for the 
implicit, silent “What would happen if?” questions 
preceding each of the Q2aftermanip questions, the 
LAB/DVD differences in the proportion of Prediction 
questions also disappeared. 

Finally, and concerning hypothesis H3 (see Table 5), 
the university students generated a higher proportion of 
questions including scientific terms, Qsci, than the 
secondary students, and the LAB condition generated a 
higher proportion of Qsci than the DVD and the TSI 
conditions (Dunnet: p< .001 in both comparisons). The 
DVD and the TSI conditions were not significantly 
different generating this kind of questions (Scheffé: p= 
.27). Moreover, there was a significant interaction effect 
because university students were particularly stimulated 
to ask scientific questions in the LAB condition. 
Specifically, in the LAB condition university students 
used more scientific laws to ask causal-type questions. 
Once they activated a scientific causal schema, they 
asked for particular values of some relevant parameters 
(or setting variables) so increasing the number of 
Association-type questions (for example: “What is the 
minimum pressure causing the ‘Cartesian diver’ to 

Table 5. Questions formulated after manipulation and proportion of Explanation and Prediction questions when 
these questions are subtracted or added to the quantities Q2 and Q3, respectively. The proportions in the DVD 
condition are the same as the ones in Table 2. 

Q2aftermanip Prop(Q2-Q2aftermanip) Prop(Q3+Q2aftermanip) 
LAB (both levels) 1.4 (1.5) .46 (.18) .37 (.19) 
Secondary 10th  grade 1.8 (1.6) .44 (.16) .40 (.17) 
University 0.9 (1.2) .48 (.19) .34 (.21) 
DVD (both levels) --- .45 (.19) .41 (.19) 
Secondary 10th grade --- .47 (.18) .42 (.17) 
University --- .42 (.19) .40 (.21) 
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sink?”). Anyway, only 25% of the questions asked by 
Secondary students, and 42% in the case of University 
students included scientific terms. These results show 
the difficulties students had using the abstract concepts 
of science to model reality, despite the fact they had 
studied advanced science courses.  

CONCLUSIONS 

There is a clear agreement that formulating 
hypotheses and knowing how to contrast them is 
essential for students’ scientific education, because it is 
one of the ways in which scientific knowledge is 
constructed and validated (Gil, 1986). However, not 
every teaching situation allows students to develop this 
competence. Inquiry learning is one of these situations, 
which frequently use experimental devices to propose 
scholar research projects to students. In this study we 
have explored the contribution of two components 
present in the use of experimental devices in lab to 
promote causal and hypothetical-deductive reasoning: a) 
the possibility of visualizing the dynamics of the devices 
operating through time, and b) the possibility of 
handling the devices. 

The results from the present study can be 
summarized as follows:  

1) Compared to learning situations in which students 
read about experimental devices with the help of still 
images, the possibility of visualizing real devices (thus, 
dynamic images) stimulated in students significantly 
more “Why?” questions (medium effect size) and 
significantly more “What would happen if?” questions 
(large effect size). As expected according to Chandler 
and Sweller’s work (1991), the condition with still 
images seemed to demand more cognitive resources 
than the conditions of dynamic images to represent the 
phenomena through time. The possibility of visualizing 
the temporal development of a phenomenon seemed to 
release the working memory from the effort of 
adequately representing the entities (objects and events), 
which allowed these cognitive resources to be dedicated 
to causal antecedents or consequents. As causal 
antecedents and causal consequents imply two or more 
entities -the ‘cause’ and the ‘consequent’-, knowing 
these entities seems to be a prerequisite for looking for 
their relationship. Therefore, subjects ask Association 
questions before asking Explanation of Prediction 
questions. If the representation of the entities is 
difficult, a working memory overload could inhibit 
asking for other, non-descriptive questions. In our 
study, compared to the possibility of visualizing real 
devices operating along time, the text-plus-still images 
condition promoted the elaboration of more descriptive 
inferences, and inhibited predictive inferences in the 
construction of students’ mental representations.  

2) Handling the devices helped students to advance 
through the ‘space of the problem’ (Newel and Simon, 
1972) towards the goal (comprehending the device). 
This experimental situation allowed students to answer 
some hypothetical-deductive questions immediatly, 
using a “handle-and-see-what-happens” strategy. After 
handling, and as consequence of it, new causal questions 
were generated which, in time, could open a way to new 
conjectures and ways of handling. These extra causal 
questions produced significant differences in the 
distribution of the questions between the handling 
condition and the only-watching condition (with 
medium and large effect sizes). The reason is that this 
kind of questions cannot be generated in the only-
watching condition because students cannot check their 
conjectures but only ask hypothetical-deductive “What 
would happen if?” questions. Thus, if freedom of action 
is allowed to vary the set-up of the devices, the learning 
activities could simulate a scientific research project 
fostering more causal questioning, and deep 
comprehension of science phenomena. Our data have 
shown that inquiry learning in lab can generate more 
questions addressed to causality (to causal antecedents 
and consequents), which could gain specific importance 
as “research questions,” that is, questions that initiate 
learning processes in the science classroom. 

3) High knowledge students attempted to modelling 
reality using science more than low knowledge students 
as expected (the observed effect size was large), but 
again more science knowledge was activated and used 
when students had the possibility of handling the 
devices. However, students used scientific knowledge in 
a poor way, usually alone in a sentence. They scarcely 
included full scientific ideas involving scientific 
modelling in their questions. For example, the cruzial 
question, “What would be the relation between the 
three angles so that the centre of mass of the double 
cone went down while rolling up the slope?” was never 
asked, nor was the question, “What factor is creating the 
Archimedes buoyant force acting on the Cartesian 
diver”? Similar difficulties were found by Olsher and 
Dreyfus (1999) in junior high-school students, long time 
ago. Recently, Truyol and Gangoso (2012) obtained the 
same result in university physics students: it was hard 
for them to solve physics problems successfully, when 
the physics model was not explicit in the problem 
statement so solvers had to elaborate it. These findings 
and ours show that scientific modelling is hard to 
perform even for students in advanced science courses. 
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APPENDIX I: Experimental devices used 

THE CARTESIAN DIVER 

In a flexible covered bottle, a volume of liquid is to be found in such a way that it does not totally fill it. In this 
liquid, the Cartesian diver is found, made in the following way: plasticine is placed on a pen cap as a counterweight 
and is fixed with wire to the cap. The diver is placed in such a way that it floats vertically, doing so carefully so that 
this way an air bubble is formed inside, between the upper part of the cap and the surface of the water. 
The diver ascends or descends depending on the relation between its weight and the buoyant force. Upon squeezing 
the bottle by hand, the pressure inside is increased: in the liquid, which is diffused in its cavity due to the Pascal 
principle, and in the air. This makes the volume of the air bubble decrease inside the pen cap (the Boyle and 
Mariotte law:  PV = nRT; like T = cte, so PV = cte; as, P2b>P1b so V2b<V1b). Upon diminishing the interior volume 
of the diver, the buoyant force diminishes (it diminishes the volume of water displaced by the air bubble). If the 
increase in pressure inside the bottle is such that the buoyant force on the diver is less than it weight, the diver will 
sink. By releasing the bottle, the pressure inside decreases so increasing the volume of the air bubble inside the pen 
cap. Therefore the buoyant force increases making the diver rise again to the surface.  

THE CLIMBING ACROBAT (the double cone) 

This consists of a double cone and two straight circular-section guides, which constitute a ramp by which the double 
cone moves. The guides can vary the opening angle between them in such a way that they can be parallel or adopt a 
“V” form. When the guides are parallel, the double cone descends by the ramp, as expected. But if the guides form a 
“V” with the vertex below, the double cone rolls towards the high part of the ramp without help. When the guides 
are in a “V”, with the vertex in the low part of the ramp, the guides separate from one another to the degree that the 
cone goes up the ramp. This implies that the double cone “sinks” more and more between them. That is, to the 
degree that the double cone rolls up, on one hand, its CM gets higher due to the ramp, and on the other hand, it 
loses height by sinking between the two guides in the “V” form. If the second effect is greater than the first, the 
movement will be spontaneous, for the CM, globally, will descend to the degree that the apparatus rolls toward the 
high part of the ramp. That is, the double cone will move in such a way that its energy potential decreases. This is 
the condition which is fulfilled in the device. The condition can be expressed in geometric terms from the 3 angles 
implied: the angle of the ramp’s incline (α), half of the angle of the opening of the guides (β), and half of the cone’s 
own angle (γ). 
 

 
 

 
Figure 1A) Acrobat as seen from 

side 
Figure 1B) Double cone as seen 

from front 
Figure 1C) Double cone as seen 

from bottom 

(Source: Defying gravity: The uphill roller, J. Havil, 
http://plus.maths.org/content/os/issue40/features/uphill/index, visited on 2/6/2012) 

Situating the double cone in the lowest part of the ramp (on the vertex of the “V” formed by the two guides which 

constitute the ramp), to the degree that the double cone rolls toward the high part of the ramp, the height gained by the 

CM, and (Figure 1A), it is the subtraction between what ascends the ramp vertically, h, and what has sunken the 

double cone between the guides, a: y = h-SR (see Figure 1B). The horizontal and vertical run of the double cone is 

related to the angle of the ramp: tan() = h/x (Figure 1A); from which h = x tan(). For its part, due to the sinking of 

the double cone, the CM (in the geometric center of the figure) descends a height SR = PS tan(), being PS = PQ/2 

the distance of horizontal separation between the guides in the point in which the double cone is found supported 

(Figure 1B). But tan() = P1Q1/2x = PQ/2x = PS/x (Figure 1C). Therefore, SR = x tan() tan(). 

Since h = y-SR, we have h = y-SR = x tan() – x tan() tan() = x (tan() – tan() tan()). So that there may be 

spontaneous movement, h < 0, that is, tan(a) < tan(b) tan(g) should be demanded, which is the design condition of 

the device so that it may work in the desired way. 

http://plus.maths.org/content/list-by-author/Julian%20Havil
http://plus.maths.org/content/os/issue40/features/uphill/index
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APPENDIX II. One of the texts used in the experiment, and one of the still images with it. 
(The structural parts of the text have been added in parenthesis). 

The ‘Climbing Acrobat’ 
We know that a round object rolls downward on an inclined plane. It cannot move upwards unless it has a motor or 
something that pushes it. (Activation of a pre-existent explicative scheme) 
The ‘climbing acrobat’ consists of a double cone -two cones united by their bases-, and an inclined plane formed by 
two upright bars which are used as guides. If the two bars which form the ramp parallel-wise are set in place, and 
then the double cone is situated on top of them, the object rolls towards the low part of the ramp, as is expected. 
(Presentation of an event expected according to the previously explicative scheme) 
However, when the two bars which form the ramp are placed in the “V” form with their vertex in the low part of 
the ramp, the double cone rolls and moves towards the high part of the ramp without help! (Introduction of the 
‘dissenting event’ to provoke perplexity) 
 

 
Figure 2. One of the still images for the “climbing acrobat” text. 
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