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PRE FACE

The work on the problems in this report was started by the

author at Douglas Aircraft, Santa Monica, in January, 1946.

The main bulk of the work was done at the Jet Propulsion Labora-

tory, California Institute of Technology.

Many of the methods and results of this report have been

presented at seminars, in particular at Johns Hopkins University

and California Institute of Technology. Some of the formulas

obtained have been used in References I, 2, and 3.

The main concepts in the theory of conical wings are drawn

from the work of A. Busemann (Cf. Ref. 4). Through lectures

and discussions the author also received many valuable ideas

from W. D. Hayes, R. T. Jones, and in particular H. J. Stewart.

Some of the results in Sections I, U, Ill,and IV were obtained

independently by the author and others, in particular W. D.

Hayes, and also by many research workers here and abroad

working with widely different methods. Sections V and VI are

believed to be essentially new, as regards both the basic

solutions and the proposed application of these solutions.

Miss Martha E. Graham of the Douglas Aerodynamics Depart-

ment carried out many special computations and supplied valuable

criticism. At the Jet Propulsion Laboratory, George Morikawa

worked on the manyscript and H. J. Stewart read it critically.
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INTRODUCTION AND SUk4_IViARY

The theory of conical flow was initiated by Busemann in Reference

and developed further in Reference 4 where the foundations of a theory of

conical wings are laid. However, these references contain only a brief

outline of the methods and the solutions for only two special cases of

conical wings. Some powerful methods were introduced but often presente

with insufficient explanations. The present report* tries to clarify these

methods and develop them further. It also treats a large number of cases

not considered by Busemann. The emphasis is on a detailed treatment of

the general methods and of the basic conical solutions. At the same time

some new ways of using conical solutions in applied wing theory are

pointed out.

Section I is devoted to the foundations of conical theory. Boundary

conditions are discussed in detail, as well as general methods like the

oblique transformation. Formulas are derived which will simplify the work

in the later sections.

Sections II to VI, inclusive, are devoted to detailed studies of vari-

ous basic conical solutions. In general, expressions for the entire flow

field are derived. In the simplest application of conical theory one di-

vides a given wing of finite chord and span into various regions, in each

of which some conical solution is valid. The effect of angle of attack is

also separated from the effect of thickness with the aid of the superposition

*This report was written under the sponsorship of the Ordnance Depart-

ment, U.S. Army, Contract No. W04-200-ORD-455.

Page 1



Progress Report No. 4-36

principle. Basic solutions useful for such purposes are contained in

Sections II and III. With the aid of these solutions the flow field near

wings of simple planforms and profile may be determined. This is the way

conical theory is customarily applied (Cf. Refs. 1, 6, and 7). However,

the use of conical flow theory goes far beyond this obvious application.

One further method of application was indicated by Busemann, namely, a

method of determining flow conditions (downwash and sidewash) behind a

three-dimensional wing. The method uses wings of constant-lift distribu-

tion. The solutions for such wings are worked out in Section IV. Refer-

ence 2 contains some applications to wings of practical interest where the

method is illustrated in detail.

Another type of wing, which to the author's knowledge has not been

considered before, is the mixed type consisting of a region of constant

lift adjacent to a flat plate. The solutions are easily obtained with the

methods developed in the present report. Essentially these are solutions

of a certain type of interference problem. With their aid the lift problem

may be solved for a much larger class of planforms than was possible with

the solutions from SectionIII. In particular, wings with low aspect ra-

rio may be treated, as pointed out in Section III-K.

In Section VIa different type of interference problem is studied.

The wings considered consist of adjacent flat regions at different angles

of attack, and have many applications. The application to control surfaces

has been worked out in Reference 3.

At the time the essential part of the work in the present report was

done, conical methods frequently provided the fastest and sometimes the

Page 2
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only way of solving many problems in applied wing theory (Cf. Refs. 1, 2,

and 3). Although other methods have been developed since, it is believed

that the solutions presented in the present report still have considerable

practical application. The method of superimposing conical flow fields

also has the advantage of being very intuitive. Furthermore, the theory

of conical flow is of considerable theoretical interest. In the Busemann

theory, the problem of finding the flow around a conical wing is reduced

to that of finding certain analytic functions of a complex variable. With

the aid of the powerful methods of the theory of analytic functions, the

essential structure of the solution may often be seen directly from the

boundary conditions. In this way a deeper understanding of the nature of

conical flow fields is provided. It is to be hoped that eventually similar

results may be obtained for more general flow fields.

I. GENERAL THEORY OF LINIEARIZED SUPERSONIC FLOW_

In this section some fundamental properties of linearized supersonic

flow will be studied. In particular, the concepts of conical flow and

conical wings will be introduced, eThe main purpose, however, is to furnish

the necessary basis for the study of specific conical wings in the re-

mainder of the report.

A. Fundamental Equations and Boundary Conditions

In general, it is assumed in this report that the free stream Mach

number has the value M =v_. As will be shown in Section I-M, a problem

at a different supersonic Mach number may be reduced to an equivalent

_The nomenclature used in this report is given in Table I.
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problem at k4 =_ by a Prandtl-Glauert transformation. Although this

reduction is not universally valid, it is admissible in the linearized

theory for the type of bodies (wings) treated in the present report. The

free stream velocity will be denoted by woo, taken in the direction x 3.

The fundamental equations for linearized supersonic flow at k4 =_-Z

are

gXlXl + gxzxz - gx3x3 : 0 (g : u, v, w or (_) (1.1)

and the equations of irrotationality interconnecting the various pertur-

bation velocities and the velocity potential are

grad _ = (u, v, w) (l.2a)

curl (u, v, w): 0 (l.Zb)

Here (u, v, w) denotes a vector (the perturbation velocity) with three

components u, v, and w.

If the free stream Math number is M, Equation (i.I) will have to be

replaced by

1 1 (1.1')
+ -m z =0, m:gxlx 1 gxzx z gx3x 3 Mz-1

The pressure and the acceleratioh potential (Cf. Ref. 8) are obtained

from the perturbation velocity w by

p - p_ = -taoo w_w (1.3a)

acceleration potential = woo w (1.3b)

When there is no danger of misunderstanding, the component w will be

referred to as pressure.

The boundary conditions usually considered are:

Page 4
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On the surface of a body in a supersonic stream the

flow vector (u, v, w¢_ + w) is tangent to the body. (1.4)

At a great distance upstream of the body (infinity),

the velocity vector and the thermodynamic quantities

have the constant values (0, 0, w_), P0o, Poo, etc. (1.5)

In the problems treated in the present report, condition (1.5) still

applies. But condition (1.4) will be modified for several reasons: First,

it presupposes that the shape of the body is given. In some problems,

however, the pressure will be given instead. In these cases condition

(1.4) will be replaced by a suitable condition on w. Second, when the

shape of the given body is of a certain type, condition (1.4) may be sim-

plified and stated as a condition on v only. Third, in treating conical

flow some important mathematical transformations of the boundary condi-

tions will be made which, however, will not change their content or

introduce any new approximations. In some cases it will also be necessary

to add some further conditions in order to determine the solutions

unique ly.

These modifications of the boundary conditions will be discussed in

Sections I-B and I-K.

B. Wings (Planar Systems), Symmetry Properties, and Boundary Conditions

A11 specific solutions in Sections II to VI, inclusive, will be for

conicalwings as defined in Section I-K. The fundamental properties dis-

cussed in Section I-B will apply to conical wings as well as to more

general wings; in particular, a large class of finite three-dimensional

Page 5



Progress Report No. 4-56

wings as actually used on airplanes or missiles.

In linearized theory it is often permissible to apply the boundary

condition (1.4), or some substitute therefor, to a region which is con-

tained in the X1X3-plane. Such a body will be called planar, and in this

case the X1X3-plane will be referred to as the plane of the wing. Of

course the wing is not contained in this plane except for the trivial case

of a flat plate at zero angle of attack. Prescribing a quantity on the

wing will then mean prescribing it on the vertical projection of the wing

on the X1X 3-plane.

The simplest case is that of a wing whose shape is prescribed in such

a way as to satisfy the following condition:

The tangent plane is everywhere almost horizontal, and

the wing has some points in common with the horizontal

X1X 3-plane. (1.6)

For such a wing one defines:

Local angle of attack at the point P = (Xl, x 2, x5) is

the angle between the tangent plane at P and the X1X 3-

plane measured in a plane x 1 = const ant. (1.7)

For a wing satisfying condition (1.6), condition (1.4) is replaced by the

following

Ifthe local angle of attack at P = (Xl, x2, xB) is (2",

then v = -w0o_ at P = (Xl, O, x3). (1.4')

page 6
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Note that here a condition at a point P on the wing is replaced by a

condition at its projection P in the plane of the wing. Condition (1.4')

may be expressed as v = known function of x 1 and x 3 in vertical projection

of wing on X1X 3-plane.

When the pressure or the lift is prescribed, condition (1.4) will be

replaced by a condition on w; and in all cases of interest in the present

report the values of w will be given in the plane of the wing. Then con-

dition (1.4) will be replaced by:

w = known function of (x 1, x3) in a region which is

the projection of the wing on the X1X3-plane. (1.4")

d Finally, certain mixed types of wing are of importance. Here v is

given over one part of the wing and w over a different part.

Actually, the region in the X1X3-plane may have a top side and a

bottom side. Points on the .top side will be considered as projections of

points on the top surface of the wing. Their x z-coordinate will be denoted

by 0+. Similarly x z = 0- for points on the bottom side. The value of a

function f at (x 1, 0+, x3) will be considered as the limiting value

lira f(x1, x3)
6 -->0,_'>0

In the same way f(xl, 0-, x3) is defined as

tim f(x1, - ¢, x3)

Page 7
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Very often one of the velocity components will have different values

for x 2 = 0+ and x 2 = 0-. In particular, such a discontinuity may be pre-

scribed in the boundary conditions (1.4') or (1.4'I). Discontinuities may

also occur in the XlX3-plane off the wing.

In general, condition (1.5) plus a prescription of the values of v or

w on the wing will not determine the flow field uniquely. One will need

conditions on the part of the XlX 3-Plane off the wing and sometimes some

conditions on the behavior at the edges.

For a study of the first questions some observations are needed about

symmetry properties of the flow and discontinuities in the XiX3-plane.

Proofs of some of the assertions made later in Section I-B would have to

be based on the invariance of the Equations (I.i) and (I.Z) under reflec-

tion (Cf. Sections I-C and I-D).

When the word symmetry is used without specification, itmfers to

symmetry with respect to the XiX3-plane since for the present purpose this

is the important case.

A function f(x 1, x 2, x3) is said to be symmetric, with respect to the

X1X3-plane, if it is even in xz; i.e., if

f(xi ' _ Xz ' x3 ) = f(Xl ' x2 ' x3 ) (1.8a)

It is antisyrnmetric, with respect to the XlX3-plane, if it is odd in xz;

i.e., if

f(xl, - xz, x3) = -f(xl, xz, x3) (1.8b)

If P = (x 1, x Z, x3), then (x 1, - x Z, x3) is called its reflected point Pr-

Page 8
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The following simple property is fundamental:

If f is antisymmetric, it is either zero or dis-

continuous for x 2 = O. (1.9)

In proof of this statement, let

f(x I, 0+, x3)

Then, by condition (l.gb)

= lim f(Xl, _, x3) = +a
6 q670

= limf(x -$f(x I, 0-, x 3) _-_06> I' ' x3) = -a

Obviously, a / 0 means a discontinuity of magnitude 2a. With respect to

symmetry properties there will be two main types of body shapes.

Symmetrical nonliftin 8 wings. Such wings are bisected by the XlX 3-

plane. Whenever a point P is on the upper surface, its reflected point

Pr is on the lower surface. According to conditions (1.4') and (l.8b),

a discontinuous antisyrnmetric distribution of v is prescribed on the wing

(i.e., on its projection in the XlX3-plane ).

Lifting wings of zero thickness. Here the prescribed distribution of

v is continuous and symmetric.

Corresponding to these two types of wings there are two types of flow.

These two types will be denoted, rather arbitrarily, as symmetric and

lifting. The properties are summarized in the following tabulation in

which S = symmetric and A = antisymmetric:

" Page 9
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Case _ u v w body

Symmetric S S A S symmetric

Lifting A A S A zero thickness

(1.10)

The importance of these two types of flow is that any flow may be

decomposed into a sum of the two types of flow, for _) may be represented

as a sum of an odd and an even function, and the behavior of _ determines

the other quantities uniquely by condition {1.2a).

For this reason all wings considered later in the present report will

be either symmetrical and nonlifting or lifting and of zero thickness.

The fundamental principle for determining the boundary conditions of

the wing is:

The X1XB-plane may carry a discontinuity in v or w only

where there is a wing. (1.11)

Combining condition (1.11) with conditions (1.9) and (1.10), one

obtains :

For a symmetrical wing v = 0 in the X1X 3-plane off the

wing. (l.lZa)

For a lifting wing of zero thickness w = 0 in the

XiX3-plane off the wing. (1.12b)

Note that a discontinuity in u is possible off the wing. This dis-

continuity is nothing but a vortex sheet.

Reference 2 contains a detailed discussion of some of the principles

Page 10
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which have just been mentioned. They are actually of great importance for

supersonic wing theory for problems of pressure distribution in an induced

flow field behind a finite wing. They will also be used consistently in

the present report both in the derivation of the basic solutions and in

Sections IV-B, V-E, and VI-E.

Conditions (1.12) and (1.4) prescribe either v or w over the entire

XlXs-plane. There may then occur two types of boundary value problems

which are essentially different from a mathematical point of view. Take

a symmetrical wing with given shape, say, of constant angle of attack.

Then v = +v o on the wing and v = 0 off the wing in the XlX 3-plane. Hence

v alone is prescribed. This problem is essentially easy. Although

Busemann's conical methods may furnish rapid and elegant solutions (Cf.

Section II), there are other straightforward solutions, e.g., by a source

sheet which may be determined directly from the shape of the body. Simi-

larly in the lifting case if the lift is prescribed, w = +_ f(Xl,X3) on the

wing where f is a known functior and w = 0 off the wing. Again this is a

straightforward problem. The solution may, e.g., be had from the accelera-

tion potential (Cf. Ref. 8) which is directly given from the lift distri-

bution. However, conical methods may again be used to great advantage

when the planform is conical (Cf. Section IV). Finally it should be noted

that since v and w satisfy the same equation, any solution for a symmetri-

cal wing of prescribed shape yields a solution for a wing of zero thickness

and prescribed lift distribution if v is replaced by w.

However, if a lifting wing of prescribed _hape is given, the problem

is much more difficult. On the wing v is prescribed; off the wing w is

Page I I
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known (= 0). Most theories of a lifting surface have led to an integral

equation which is very easy to set up but for whose solution there exist

no straightforward methods (Cf. Refs. 9 and 10). In the solution of such

a problem Busemann's methods show their greatest power. The lift problem

is reduced to one in classical potential theory which may be solved by the

powerful tools of theory of complex variables. Ways by which the mixed

boundary value problem may be reduced to well-known problems will be dis-

cussed in Section I-K. Of course, Busemarm's method applies directly to

conical wings only, but one may obtain a very large class of finite wings

by superposition of conical wings (Cf. Refs. 1, 2, and 3 or Section V-E).

Finally for a mixed type of wing (Cf. Section V) the situation may be

even more complicated. For the lifting case v is prescribed on part of

the wing, w is prescribed on some other part, and w = 0 off the wing.

Again Busemann's concept will provide easy solutions.

In some applications the addition of condition (1.12) is not sufficient

to make the solution unique, but it is necessary to prescribe the behavior

of the solution at the edges. First, some definitions are needed. An

edge is called supersonic if its sweepback angle is less than the comple-

ment of the Mach angle; i.e., if the projection of the free stream velocity

w_ on a plane normal to the edge is still supersonic. If this projection

is subsonic or zero, the edge is said to be subsonic. Edges may also be

classified as leading and trailing. If a line in the x3-direction leaves

the wing when crossing an edge, the edge is said to be trailing; in the op-

posite case it is leading. In the intermediate case when the edge, or

page 12
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rather its projection on the XIX 3-plane, is parallel to the x3-direction ,

it is called an unyawed side edge. The essential assumption about the

edges is:

The behavior of the flow at a subsonic edge is

qualitatively the same as in incompressible flowo (1.13)

This rather vague principle will no_vbe amplified. Consider a lead-

ing edge. If it is supersonic, conditions at the edge are easily deter-

mined from the geometry of the wing and of the Mach waves (CI. Section

I-K). However, at a subsonic edge the flow singularity is of the type

encountered in subsonic flow. In the lifting case the perturbation ve-

locity becomes infinite as the distance to edge to the power (-1/2). In the

symmetrical case the edge represents a logarithmic singularity (e.g., Cf.

Sections II and III; and Ref. 11 for a general discussion of the principles).

Now consider a trailing edge in the lifting case. As the flow crosses

the edge, w has to become zero. This is the principle of cancellation of

lift behind the wing (Cf. condition lo12b). If the edge is supersonic,

the lift may be cancelled discontinously by appropriate Mach waves at the

edge (Cf. Ref. 2 for a discussion of the implications of this possibility).

At a subsonic trailing edge, however, a finite discontinuity is not possible.

There are two mathematical possibilities: Either the magnitude of w de-

creases continuously on the wing to zero, or there is a discontinuous shift

from _ to O. The latter case would simply be a reversal of what happens

v-'
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at the leading edge. In accordance with condition (1.13) it will be as-

surned that the first possibility corresponds to the actual behavior of the

fluid (Kutta condition). The following two implications of condition

(1.13) will actually be of decisive use in solving special problems in

this report:

On a flat lifting wing, Iw l decreases continuously to zero

at a subsonic trailing edge and increases to infinity

as the distance to the (-I/2) power at a subsonic leading

edge (Cf. Section Ill). (1.13')

C °

Near a subsonic edge (leading or trailing) of a flat

symmetrical wing, lwl has a logarithmic singularity

(Cf. Sections II-A and II-C).

Invariance of Fundamental Equations Under Tr.ansformations

(1.13")

The concept of the invariance (or, more generally, of the transforma-

tion) of an equation under a mapping or transformation of var'iables is

very important in physics and mathematics in general. In Sections I-C to

I-G inclusive, the behavior of the linearized supersonic equations under

certain mappings will be investigated. This study will furnish an under-

standing of the symmetry properties discussed in Section I-B, a method for

treating yawed wings, and finally a basis for the theory of conical flow.

Similar concepts will be used later in treating the Prandtl-Glauert trans-

formation (Cf. Section I-M). On the whole there are two different types

of results from an investigation of transformation properties: (a) certain
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symmetry properties of solutions and (b) methods for generating new solu-

tions from a given one.

The invariance of an equation under a transformation may be explained

in two different ways:

In the first interpretation x i and x_ are considered to be different

systems of coordinates for the same space. If the equation does not

change its form when the coordinates x_ are introduced instead of xi, then

it is said to be invariant under the change of variables xi-->x _ . Equa-

tion (1.1) would have to be

gXl,Xl, + - = 0gx2,x2, gx3,x$*

in order to remain invariant.

In the second interpretation x i _ xx_ is considered to be a mapping

from a space S to a space S* whereby the point P = (Xl, x2, x3) is mapped

on the point P* = (if*, xz*, x3*). This correspondence between points in

S and S* induces a correspondence between functions defined in the two

spaces. To a function f in S there corresponds a function f* in S* defined

by the rule that f* takes the same value at P* as f at P. Similarly, a

relation or equation in S will correspond to a transformed relation or

equation in S*. Examples of such correspondence are given in Sections I-F

and I-k4. If the transformed equation is invariant, i.e., the same as the

original equation, one obtains a new solution f* of this equation for each

given solution f. Thus the mapping is used for generating new solutions

(this is the way the oblique transformation is going to be used). Even the

case when the equation is not invariant is important. Here the mapping is
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used to generate solutions of the transformed equation (Cf. Section I-k4

for discussion of IOrandtl-Glauert transformation).

Of these two interpretations of invariance, the second, though less

familiar, is definitely preferable in order to put the discussion on a

firm basis. The abstract presentation just presented will be illustrated

by examples in Section I-D to G.

The following four transformations, which are of interest for the

present report, will not be discussed:

I. Reflection in the plane of the wing.

2. Rotation around the x 3-axis.

3. Lorentz transformation in the plane of the wing (oblique

transformation).

4. Uniform expansion around the origin.

D. Reflection in the Plane of the Win 8

By reflection in the plane of the wing is meant the transformation

x i --,x_, where Xl* = +Xl, Xz* =-x z, x3 _ = x 3 (1.14)

Equation (1.1) is obviously invariant under this transformation. Let P_=-

(Xl,-X2, x3) be the reflected point of P = (Xl, x2, x3). Let _ (xI, x 2, x3)

be a solution of Equation (I.I) and define _* as the function whose value

at P* is that of_ at P. In other words, _* (XlTXZ,X3) = _ (Xl,XZ,X3).

In accordance with the general reasoning in Section I-C, _ is also a

solution of Equation (1.1) because of the invariance under reflection.

Applying Equation (1.2), one sees that if the perturbation velocities at P

are u, v, w, then at P* the corresponding quantities u* = u,-v_ = v, w# = w.
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Thus Equation (1.2) is invariant under transformation (1.14) only if v is

replaced by v$ = -v in the mapping. In this way a solution _ has generated

another solution _. If _is even in x2, then the two solutions are iden-

tical; i.e. _ (P*) = _ *(P*), u(P*) = u*(P*), etc., and there results the

case of a symmetrical flow discussed in Section I-B. The important thing

is that, conversely, if the boundary conditions are consistent with sym-

metric flow (e.g., if the shape of a symmetric body is given), it follows

from the invariance discussed that the solution also is a symmetric f low.

Actually, this conclusion is justified only if the boundary conditions

determine the solution uniquely. The logic of this proof of symmetry will

be discussed in greater detail in connection with conical symmetry (Section

I-G).

Similarly, since Equation (1.1) is homogeneous, - _* is a solution if

_* is. Hence the solution _(x l, x2, x3) generates the solution -_(Xl,-Xz,X3).

If the original _ is odd in x2, the two solutions are identical. This is

the lifting case of Section I-B.

Of course, one may also study reflection in the X2X3-plane and the

corresponding symmetry with respect to this reflection. This case is,

however, much more obvious. The main result for symmetries with respect

to this plane is that, if the body is symmetrical, then v and w are sym-

metrical and u antisymmetric. In particular 9w/0x 1 = 0 in this plane.

E. Rotation Around the X3-Axis

Obviously both Equations (1.1) and (1.2) are invariant under rotation

around the X3-axis. This is the basis for studying bodies with rotational

symmetry. It is mentioned here only as a preparation for introducing the
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oblique transformation. The significant fact is that Equation (1.1) is

not invariant under a rotation about any other axis.' Thus the x3-axis is

a preferred direction, whereas the x 1- and xz-axes are equivalent. In

incompressible flow, on the other hand, the equation corresponding to

Equation (1.1) is obtained from Equation (1.1) by changing the minus sign

ahead of the last term into a plus sign. The resulting Laplace equation

is invariant under all rotations. One might then ask whether there are

transformations which are analogous to general rotations but which leave

Equation (1.1) invariant.

Now an ordinary rotation around a point O is a transformation P-_P*

which leaves the distance to O unchanged: I QPI =IQP*I The answer to

the question above will be found by introducing a new metric based on the

concept of hyperbolic distance. A hyperbolic rotation around Q, also called

a Lorentz transformation, will be a transformation which leaves the hyper-

bolic distance to Q unchanged. These concepts will next be defined and

discussed.

F. Hyperbolic Distance, Lorentz Transformation, Oblique Transformation,
and Y aw

The following definition of hyperbolic distance between the points

P = (x 1, x 2. x3) andP= (Xl, x 2, x3) will prove convenient for dealing

with supersonic flow when the Mach number is equal to _-2 and the free

stream is parallel to the x3-axis. !

Hyperbolic distancePP [(x3-x3 )2 _ 2 21z= - (xz - x2) - (xI - _1) (I.15)

Note that the Mach cone from a point P may be defined as the locus of all
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points whose hyperbolic distance to P is equal to zero.

A hyperbolic rotation around Q, or a Lorentz transformation, is de-

fined as a transformation P-)P_ such that the hyperbolic distance QP =

hyperbolic distance QP_. It follows that Q is mapped on itself and that

the Mach cone from Q is invariant in the sense that any point on this Mach

cone is transformed into some other point on the same cone.

The following classical theorem will be the basis for the discussion

in the remainder of Section I-F. It can easily be proved directly for the

special cases which will actually be used.

Equation (I.i) is invariant under any Uorentz

transformation. (1.16)

To obtain a more explicit description of these transformations, con-

sider first the case where x3* = x 3. As is easily seen, invariance of

hyperbolic distance is then equivalent to invariance of ordinary Euclidean

distance. Thus such a transformation is simply an ordinary rotation

around the x.3-axis, and theorem (1.16) reduces to the invariance discussed

in Sectio@ I-E.

However, when x346 x3*, the hyperbolic rotation differs from the or-

dinary rotation. One will need only the case of a hyperbolic.rotation

around the origin which leaves the plane of the wing invariant. Such a

special Lorentz transformation will be called an oblique transformation

and its explicit expression is:
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Xl + ax3 1Xl* -

x2* = X 2

x3* - axl + x 3

,.J

-1_ a_<l

NACA TN 1685

JPq

(1.17)

The fact that this transformation leaves both the hyperbolic distance

and Equation (1.1) invariant is easily checked. Theorem (1.16) depends, of

course, on the fact that Equation (1.1) is a special case of the wave

equation. The general equation for a disturbance (e.g. optic or acoustic,)

spreading in (x,y,z)-space with velocity c is:

1

gxx + gyy + gzz - _ gtt -- 0 (1.18)
c

This equation reduces to Equation (l.1) in the obvious way. In other

words, if x 3 is thought of as denoting time, Equation (1.1) is the equa-

tion for a disturbance spreading in the XlX2-plane with unit velocity.

This analogy was first noted and exploited by yon Karma_n (Cf. Ref. 12).

That Equation (l.18) is invariant under a f0ur-dimensional gorentz

transformation is a well-known fact from mathematical physics and is funda-

mental in wave theory and theory of relativity. In aerodynamics it has

been used by Kuesner and others (Cf. Ref. 13) for the study of nonstation-

ary processes like fields _he to moving sources. When Equation (l.18) is

specialized to Equation (l.l), the general theory of Lorentz transformation

yields the assertion (1.16), in particular the invariance of Equation (1.1)

under Equation (1.17). Although this is an obvious consequence of yon
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Karman s analogy, to the author's knowledge it has never been utilized in

aerodynamics until recently when Jones (Cf. Ref. 14) used the oblique

transformation (1.17) to treat a special case of a yawed wing. The idea

of treating yawed wings by this method has proved quite fruitful; it will

be discussed further and applied ofteia in the present report.

Some formal properties of Equation (1.17) will now be developed.

Since x 2 = x2*, the oblique transformation affects only the plane of the

wing and may be represented by a two-dimensional matrix

(1.17)

(Xl:)
x 3 kx 3

The Jacobian of this transformation is the determinant

of M and is unity. Hence the oblique transformation

is area-preserving. (1.19)

That this statement is of importance for evaluating lift of a yawed wing

will be clear from the discussion later in Section I-F.

The inverse transformation of Equation (1.17) is given by

Xl* - ax3*
x I -

X/l - a 2

x 2 = x 2.

x 3 =
-axl* + x3*

ffl -a 2

02o)
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These equations mean that the inverse of M in Equation (1.17) is given by

'(' ?1 (,.0,_/ 1 - a z -a

Now let _(x I, x 2, x3) be a solution of Equation (1.1). Then in accord-

ance with the general principle discussed in Section I-C, one may generate

another solution from _. Let P* be obtained from P by the transformation

(1.17). Then put

_,(p): _(p,) (l.Zla)

Using Equations (1.17), Equation (i.21a) may be written

= _f xl + ax 3 ax I + x3h_,_*(Xl,Xz,X3) - ,x2, (l.21b)
IV7 aZ _/

If u* is the sidewash belonging to the generated solution I

\gx I /
P P

1 Lu(P*)+a w(P*) _

Carrying out the same computation for the other velocity components

yields

1
u,(P) [niP*)+aw(P*)]-V-Vrq-r

v*(P) = v(P*)

v*(P)- 1
J-V-:%-z-

[a u(P*) + w(P*) I

I (,.Zlc)

IGenerally in this report u*, v*, and w* will denote the harmonic conjugates

of u, v, and w (Cf. Section I-I). The notation in Equations (i.21) and (l.2Z) will

not be used later on.
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Thus equation (1.2) is not invariant under Equation (l.17). As a

matter of fact, Equation (1.2) is instead invariant under ordinary rota-

tions. In general, w*(P) = w(l_) contradicts Equation (1.21c). However,

since w also obeys Equation (1.17, one may define a new solution w* by

w*(P) = w(P*) (1.22)

But if u* and v* are then computed from Equations (1.2_)and (1.22), they

will in general not obey Equation (I.Zl).

In the applications both schemes (1.2-1)and (1.2-2-)will be used de-

pending on the problem, the choice of scheme having to do with the bounda-

ry conditions at the edges. The discussion of this and some other

important features of the oblique transformation will be presented in

Section I-h,

G. Uniform Expansion. Conical Flow

By a uniform expansion around the origin is meant the transformation

x i---*x.* = cxi, c > 0 (i.23)
*

Evidently Equations (1.1) and (1.2b) are invariant under this trans-

formation, but Equation (l.2a) only if _ is replaced by c _.

Invariance under reflection was related to certain symmetry properties

as discussed in Section I-C. Similarly the invariance of the equations

under Equation (1.25) will imply a certain conical symmetry of the flow

wherever the boundary conditions themselves are invariant.

A flow field is said to be conical with respect to a point P (apex)

if u, v, w, and thermodynamic quantities like pressure, density, etc. are

constant along any half-line (ray) issuing from P. Unless otherwise
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specified, the apex will always be assumed to be the origin of the system

of coordinates. Then the definition of conical flow above may be re-

phrased: A flow field is conical if it is invariant under Equation (1.23).

Finally one may say that a flow field is conical if u, v, etc. depend only

on the ratios Xl/X 3, x2/x 3.

A conical body with apex at the origin is formed when a half-infinite

straight line with a fixed end point at the origin moves along some space

curve. The simplest example is of course the circular cone, but an infi-

nite flat triangle with apex at the origin is also a conical body.

Boundary conditions are said to be conical whenever they are invari-

ant under Equation (1.23). Thus the same values of perturbation velocities

or whatever is given must be prescribed for the point (x l, x2, x3), and any

point (CXl, cx2, cx3) where c > 0. The simplest example of such boundary

conditions occurs when the shape of a conical body is given. The other

important example for the present report occurs when the pressure is pre-

scribed in the plane of the wing in such a way that it is constant along

each ray from the origin.

The basis for the theory of conical flow is the following assertion

about conical symmetry;

A flow field is conical if the boundary conditions are

conical. 0.24)

This statement is actually valid for the full nonlinear Euler equations

but fails when viscosity is introduced. Because of its fundamental impor-
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Jr
tance the proof will be considered in some detail even though it may be

claimed to be rather obvious. It may be proved in two different ways

which are at least seemingly different: first, a physical argument based

on dimensional analysis and, second, a more mathematical analysis depend-

ent on the principles of invariance discussed in Section I-C.

The first argument runs as follows: In a nonviscous flow no combina-

tion of the quantities given at infinity (w_, Po_ etc.) has the dimension

length. Furthermore, a conical body or any conical boundary condition is

described without specifying any length. Thus the problem contains no

characteristic length, and the only way to form nondimensional combinations

involving the coordinates is to divide these by each other; for example,

u/w_ has to be a function of xI /x 3 , x2/x 3 , and some nondimensional combi-

nation of the values at infinity.

The second method of proving Equation (1.24) may seem more involved

butwill be given as a concrete example of the principles discussed in

Section I-C. It should be emphasized that this method works in many cases

where dimensional analysis fails (e.g., for the Prandtl-Glauert transfor-

mation). Consider a stationary supersonic flow around a body B (not

necessarily conical) in a space S. Assume that the solution for this flow

has been obtained. Now construct a new solution in another space S_ by

the following rule: To each point P in S let a point P* in S_ correspond

where P* is obtained from P by the transformation (1.23). The body B in

S will then correspond to an expanded body B* in S*. Define a flow field

in S* by letting the velocity at P* be the the same vector as that at P and by
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letting conditions at infinity be the same in both spaces.

The flow thus defined is the correct solution for the flow around /3*

in S * with the given conditions at infinity; therefore Equations (1.1) and

(l.Zb) and the boundary condition (1.4a) are fulfilled. The first part of

this assertion follows from the invariance of the equations under the map-

ping rule (1.23). The second part follows from the fact that the normal

at I_* on B * has the same direction as the normal at P on B.

Now let the body be conical. Then 15 and B* are the same (or rather

congruent) bodies. Hence assuming that the problem (equations and boundary

conditions) has a unique solution, the flow field in S must be exactly the

same as in S _. But from the way the flow field in S* was constructed, it

follows that flow conditions at the point ( CXl, cxz, cx3) in S must be the

same as those at (Xl, x2, x3). Since this statement is true for any posi-

tive c, the flow in S must be conical.

Thus assertion (1.24) is proved for the case when the shape of a

conical body is prescribed. The proof for any type of conical boundary

conditions is of course similar.

As is well known (Cf. Ref. 4), the above considerations apply also to

/x 3 (but not to _ itself). However, very little use will be made of this

fact in the present report.

H. Reductions of Equations for Linearized Supersonic Conical Flow.

Tschaplysin Transformation

Although the reasoning in Section I-G was valid for the nonlinear

Euler equations, the discussion will nowbe restricted to the linearized

equations. As pointed out in Section I-G, in conical flow the number of
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independent space variables may be reduced from 3 to 2. This reduction

will now be carried through explicitly for Equation (1.1).

Consider a solution g(x I, x Z, x3) of Equation (1.1) where g is either

u, v, or w (but not _). To say that g is invariant under Equation (I.23)

is the same as saying that g is homogeneous of order zero in Xl, x 2, x 3.

Introduce cylindrical coordinates (r, 8, x3) by

9 = arc tan __x2 (1.25a)

x I

O"

r = +JxlZ + xzZ (l.Z5b)

Coordinates 9 and r are homogeneous of order 0 and i, respectively, in x I

and x 2. By repeated application of Euler's theorem for homogeneous functions

?. Z (xig0.e +
X3gx 3 = - l,Z Xigxi = - 1,2 xi Xigrrxi)

Thus

= - 0-g 8 - r.g r = - r.g r

Since x3"gx3 is also homogeneous of order 0, by the same principle

x3[x3gx3]x3 = -r(-rgr) r

f'

Z

[ 3] - X3gx3 = r(r'gr) + r'gr 0 .26 )
X3gx3x3x3 x 3gx x3 r

It is also known that the two-dimensional Laplacian may be expressed

in polar coordinates as

l i

gXlXl+ gxzxz : gee (1.z7)
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Finally it is observed that a conical flow is completely known if it i¢

known on the plane x 3 = i. Hence a reduction of variables may be effected

by introducing Equations (1.26) and (1.27) into Equation (i.I) and then

putting x 3 = i. The result is

( 1 _ r)(r.gr) _r.gr + 17- r -_ gee = 0
r

(1.z8)

This is thus the equation for linearized conical flow at the station

x 3 = 1. Inthis plane the k4ach cone from the origin is represented by the

unit circle (N4ach circle). Parallel to the Xl-and X2-axe6 in the plane

x 3 = 0, the X 1- and X2-axes may be introduced into the plane x 3 = 1 with

the same coordinates x 1 and x 2. In this plane _} and r as introduced by

Equation (1.25) become polar coordinates. The X3-axis goes through the

origin of the plane.

By applying the usual formal criteria (Cf. Ref. 15), one sees that

Equation (1.28) is elliptic inside the unit circle and hyperbolic outside.

An intuitive reason for this fact can be found by studying the domains of

dependence of the original Equation (1.1). An interesting discussion of

this question is given in Reference 4.

Now the question arises: Since Equation (1.28) is elliptic inside the

unit circle, does there exist a transformation of coordinates which reduces

it to the simplest of all elliptic equations, namely, the Laplace equation?

This question was first answered in the affirmative by Tschaplygin, who

studied a similar equation in a different connection. A function A = Ts(a)

for any real number between -1 and 1 may be defined by
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O _

Ts(a)=
l-,li-

(1.zg)

This function will be called the Tschaplygin transformation of a. The

change of coordinates introduced by Tschaplygin is then

It should be

0 unchangedtr--_R = Ts(r)
(1.30)

emphasized that there is a straightforward way of finding

this transformation; namely, it is natural, first of all, to leave the

angle 0 unchanged since both Equation (1.28) and the Laplace equation are

invariant under a rotation around the origin. Let R = Ts(r) be unknown.

, ,[g R" ]Since gr = gR'R and grr=R RR'R'+ R' gR ' where prime denotes dif-

ferentiation with respect to r, Equation (I.ZS) becomes

2 , R" I I

R'(l - r )(gRR R +_-TgR)+(r - 2r)R' gR +r-'Z-gS@ = 0 (1.28I)

In order to be the Laplace equation, formula (1.28) has to be identically

equal to

1 1

gRR +I_ gR +R--Z gee = 0 (1.31)

Equations (1.28') and (1.31) are the same if the following two equations

are true for any r:

(Rl)2r2(l - rz) = R z

rZll- rZ)R' + rZ(# - Zr_ --R

The problem is solvable only ifthese equations are consistent.

(l.3Za)

(1.32b)

This is
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the case since Equation (l.3Zb) follows from Equation (lo3Za) directly by

differentiation. And Equation (1.32a) can be written

(in R)' - I
rJFT 

which immediately integrates to Equation (1.30) if the solution is normal-

ized by requiring Ts(1) = I.

Following Busemann, the Cartesian coordinates (x, y) are introduced

corresponding to (R,O) and also complex coordinates by

i0

= x I + ix 2 = r • e (1.33a)

= x + iy = R " e i0 (1.33b)

The plane _3= 1 with its natural coordinates will be referred to as

the _ -plane; and the corresponding plane after the Tschaplygin transforma-

tion, as the g -plane. The Tschaplygin transformation maps each point

= r • e in the -plane on a point e = R " in the _-plane where

R = Ts(r). Also e will be denoted by Ts(_). This transformation leaves

the unit circle and the origin invariant point by point and also transforms

the rays from the origin into themselves, although not point by point;

e.g., if _is real and positive, Ts(_) is real and positive but different

from _ except when _ =1.

Busemann (Cf. Ref. 4) gives a geometrical interpretation of the

Tschaplygin transformation and also points out that it may be written

1 1 -- 1 (1.34)
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In the applications one is often interested especially in flow condi-

lions in the plane of the wing. Then it is convenient to introduce (Cf.

Fig. 1)

Xl
t = x-Z" and qY = arc tan t (1.35)

Either one of the coordinates t or'C specifies a conical ray in the plane

of the wing uniquely; e.g., pressure distributions on such wings are func-

tions of t (or _) only. In the _ -plane one has the simple relations on

the X 1-axis:

t = r" cosO= x 1, r = Itl (1.36a)

The Tschaplygin transformation of t is denoted by T

T __

1 - /I -,t 2
(1.29 _

Then

T = R • cos 8 = x, R = J TI (1.36b)

/*" %%.

/ \\

///W _ \\\
x3=l ,/" \

..... __.__ ¥ _

¢\
Mach cone b T

x 3

x 1

\\_x____ x 1 '

%

Mach Gone

¢.d

FIGURE 1. COORDINATES ON THE PLANE OF THE WING
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I. Algebraic Properties of the Tschaplygin Transformation

Let A be Ts(a). In the application a will be r, t, or tangent of the

angle of some side edge. Then Equation (1.29) implies the following use-

ful relations between a and A:

J°

2A (from Eq. 1.34) (1.37a)
I+A_ =a

1 2

A + A a {from Eq. 1.37a) (1.37b)

(l + A) z : _l + 1 (1.37_)
2A a

A2 + l = 2(2 - a 2) (1.37d)

A 2 a 2

1 1 + _fl- a 2
- = (1.37e)A a

A2 _ 1 - Jl - a 2 (1.37f)

1 + ,FF-Z_-

I-A 2 _ _/i_ a z (1.37g)
I+A 2

A _ a (1.37h)
1 - A 2 2_fl - a2

1 + A /2(I __ a) (1.37i)

-q a

Also it may be seen from the binomial theorem that

A " ½a for a¢.<l (1.38)

Relations Between the Velocity Components in the e -Plane

In Section I-H the following basic result taken from Busemann was

proved:

Page 32



0 _

NACA TN 168_

]PL Prosress Report No. 4-36

In conical flow. the velocity components u, v, w,

satisfy Laplace equations when expressed as

functions of the coordinates x and y defined by

Equation (I.33 b). (I.39)

This statement means that there must exist complex-valued functions

U, V, W such that U, V, W are analytic functions of e

U = u + iu*

V = v + iv*

W=w+iw*

(1.40)

where, the real-valued functions u*, v*, w* are the harmonic conjugates

(determined only within a constant) of the potential functions u, v, and

w. From now on, an asterisk on the symbol for a perturbation velocity

will always denote the harmonic conjugate. The function U, V, W will be

called the complex velocity components.

Since u, v, w are interconnected by Equation (1.2), there must exist

some analogous relations for U, V, and W. These relations should follow

from Equations (1.1) and (lo2) and the fact that the flow is conical.

Busemann (Cf. Ref. 4) states the following result:

dW
d(u + iv) = -½( ---'-+ •dW) (1.41)

This equation may be proved as follows: The right-hand side may be

'] tI _ w-id._..__.._w* 1 1

. 2[ Re_i 9 + Reie(dw+idw * : -½ e i + _)dw+i(R-_)dw:,

eiO(_ .R I dw*) (a).... l --z
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Use was here made of Equation (1.37b) and the formula obtained from Equa-

tion (1.37b) by taking the derivative with respect to r:

z R' (R 1
- r 2 - R -i_) (b)

Thus Equation (1.41) is equivalent to the two relations (c) and (d):

_(u+iv) _eie(1 _w 1 1 _w_

k

9R : ? 9-R-+ { rz R ° 3_/ (c)

or, multiplying by R I ,

_(u+ iv) ie 1 (3 _rW 1 _)
=-e -- + i- (c')

3r r r 3

and

= -e -- 9--'8- R' r2
(d)

or, using relation (b),

9(u+ iv)_ _el@ [I 9w i(l-rZ) 9 w] (dl)
_e _'r 90

Inorder to prove relation(c'),con_ider Equations (1.1)and (1.2)

and homogeneity

_w 9u 3u
_ _ -r_r

9 x 1 9 x 3

9w 9v 9v

9x 3 9x 3 =-r a---r

Multiply the second equation by i and add
9 (u + iv)

grad w = -r 3 r

which is relal ion (c I)
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For proof of relation (d'), consider Equations (1.1) and (1.2.)

9u _v 9 w 9 w

x 1+ 3x 2- 3 x 3- r _ r

_u _ _v_/_
9x 2 -gx 1

Making use of these equations to transform the operator
3O

= - sin egu + cos e ?u
2-_ 9 x 2

= cos egv + sineSV - sin e @w

8x I _ x 2 9 x 3

=gv_ sine 9w

8r @ x 3

1 9v - sine 9_._v + cos 0 _v

r $ 8 9Xl 9x_

= - (cos 0 9u + sin 8_-_)
_Xl 2

_U+cosO_W

r _x 3

1 a(u + iv) @(v - iu) 8 w
r 9e = ar + _T3 (i

+ cos e _ w

x 3

cos e - sin e)

= -i _(u+ iv) + iei8 ____w

9 r 3x 3

[= -i 9(u + iv) + eiO r3r

Now use relation (c'):
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f

9(u+ iv) = - ri |
?e L iS1 9w l_) ei0 9_-e - ( +i- + r"

r _ r

= _ei@ [_i(gw +i 1 9w)+ir2 9w ]
9r r 98

=_eiO [rl__w i(l_ r2) 9 w]_-3 _Vr

which is relation (d').

It is sometimes convenient to transform Equation (1.417 to the form

used in Reference 16.

Taking the complex conjugate of each side of Equation (1.417 yields

Adding this to Equation (1.417 yields the relation

[ l 1 12du: -½ (e+_)dW+(e+_)dW

But

2du = dU + dU

Hence

Similarly

Zidv = -½ [
1 l 1(_- _) dW - (_ -_-) dW

and

2dr = dV + dV

Hence it has been proved that

dU z 1 dW--= -_(e+-)
d_-
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J and

dV i
dW (1.42b)

Relations (1.42) will be called the compatibility relations. Three

analytic functions U, V, and W give the three velocity components of a

conical flow only if they satisfy these relations which take the place of

the equations of continuity and irrotationality. When one of the three

functions is given, relations (1.42) determine the other two only within a

constant. The imaginary part of this constant is entirely arbitrary. The

real part may be determined by the fact that u = v = w = 0 in the region

of undisturbed flow and by the rules for the change of these quantities

through a Mach wave or Mach cone (Cf. discussion following Eq. 1.44).

A very important consequence of relation (1.42b) was pointed out by

Busemann (Cf. Ref. 4): Put (d__) = c. If W is regular near the origin,

e=0

then dV/de is there of the form

Hence

Similarly

dV ic

de Ze

function regular at e = 0

ic j. n e + function regular at e 0 (1.42c)V .. __

Z

U = __c _n e + function regular at e = 0 (1.42d)
Z

Thus even if W is regular at the origin, U and V have logarithmic singu-

larities there if c=_=0. In particular, ifc is real, i.e., (dw*)t=0 = 0,
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then the upwash has a finite jump at the origin; v(P) increases suddenly

by (c_)/2 if P passes through the origin on the X-axis in the negative

direction.

This observation is of great importance in finding functions which

satisfy the correct boundary .conditions on the wing. It will be further

discussed in Sections I-K and I-L, and examples of its application will be

given in Sections II, V, and VI.

In the plane of the wing _ = T. Hence, by Equation (1.37a)

z_ 1
2T t

Thus in the plane of the wing

du 1 dw
dt - t dt ' t : tan _= x 1 (1.43a)

Similarly on the imaginary axis _ = iy and

2
_i _1, 1 I + y_ 1
2 (e _-; - Z y -

X z

Hence in the X2X3-plane

dv 1 dw (1.43b)

dx 2 x 2 dx 2

From these formulas it follows easily that if w is constant in a

conical region in the plane of the wing, U is also constant there. More

generally, even when the flow is not conical, it follows directly from the

equation of irrotationality that _. is constant along a {finite or infinite)

line segment parallel to the X 3-axis as long asgw/_l = 0 on the segment.

However, if w has a discontinuity on such a line, u might also change dis-

continuously. If the segment extends upstream into the undisturbed flow,
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Behind a trailing edge the constant

might be different from zero, which for the lifting case means that there

is a vortex line of constant strength. Examples of regions of constant w

are, in the lifting case, the part of the plane wing not occupied by the

wing and regions on the wings studied in Sections V and VI (Cf. Chap. 8-C

of Reference Z).

K. Conical Wings: Classification. Boundary Conditions in Physical Space
and in the _ -Plane

If a conical body is at the same time a wing as described in Section

I-B, it will be called a conicalwing. These are the only conical bodies

studied in the present report. It will always be assumed that they are

planar systems, i.e., that the boundary conditions may be applied to the

plane of the wing. Of course one might also consider cases like wings

with dihedral, but they will not be treated in this report. Such cases

may easily be reduced to planar systems (Of. Ref. 10).

Conical wings will be classified in various ways; for example, in

Section I-B they were classified with respect to symmetry conditions of the

flow or the nature of the quantities prescribed on the boundary. When the

shape is given, it will generally be assumed that the wing is flat; i.e.,

v = constant. There are two such cases: (1) In Section II flat symmetric-

cal wings will be treated. These have wedge-shaped profiles of constant

half angle A, the word profile meaning the intersection of the wing and a

plane x 1 = constant. (2) In Section III the flat lifting wings of zero

thickness are treated; the profiles are here straight lines of constant

angle of attack _. After the flat wings, the wings with given pressure
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distribution will be considered. Since the lifting case is of most inter-

est, in Section IV wings of constant-lift distribution (w = constant on

wing) will be treated. In Section V wings of mixed type are treated.

These are wings where the pressure is prescribed on some region of the

wing and the shape on some other region. It will be assumed that the

second region is flat and at zero angle of attack. In the first, w will

be assumed to be constant. Only the lifting case is of interest. These

wings give essentially an interference effect, the interference of a lift-

ing element on a flat plate. Finally, Section VI treats another interfer-

ence effect: that of a flat lifting wing on an adjacent flat plate.

Conical wings will also be classified according to planform. In all

cases of interest the planform is bounded by two rays from the origin

which may be considered to be the edges of an infinite triangle. These

are

Planform I, in which both edges are outside the _4ach cone.

Planform If, in which one edge is outside, one inside.

Planform III, in which both edges are inside.

For each of these cases subcases (a) and (b) are distinguished:

(a) Both edges are leading.

(b) One edge is leading, one trailing.

There is also an intermediate subcase (ab):

(ab) One edge is leading; the other is an unyawed side edge,

i.e. parallel to the direction of the free stream.

For the boundary conditions at the subsonic edges, the statements in
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Section I-B apply.

Consider now a supersonic leading edge with a sweepback angle _. The

sign of ¢ is defined arbitrarily so that _ is positive if the straight line

passing through the edge passes through the first quadrant (x 1, x 3 _ O) of

the plane of the wing. In Figure Z, _ is positive for the right-hand edge

and negative for the other. In all cases treated in this report the region

y//

//

Cone [ _,+ _ _I ....
/ cot yJ -] \Mach

_X 3 C one

- X 1

x3=l

FIGURE Z. SUPERSONIC LEADING EDGES

of the wing outside the Mach cone from the origin will be flat since here

w = constant is equivalent to v = constant. From the edge two plane Mach

waves originate. In the region between these waves and the IV[ach cone from

the origin, exact sweepback theory is valid; the velocity components are

constant and given by
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u - -w tan ¢ = -0_w'_ tan_ (1.44a)

Jl - tanZ

v = - _ w_ (1.44b)

= (1.44c)
w =v_ - tan2¢ _/1 - tan 2 _b

It should be remembered that the free stream Mach number is assumed to be

equal to _.

The inclination of the leading edge Mach wave itself is given by

sweepback theory and is such that its plane is tangent iv the Mach cone

from the leading edge.

Across the Mach cone a continuous change in the values of u, v, w is

assumed. Hence on the Mach cone the perturbation velocities are given by

Equations (1.44) for the part of the cone in contact with the above-

mentioned regions between Mach cone and Mach waves. On the part of the

Mach cone in contact with undisturbed fluid u, v, and w = 0, This condi-

tion holds true in particular for the entire Mach cone if the wing is

completely inside the Mach cone. The boundary conditions above yield ob-

vious boundary conditions in the _ -plane. Consider Figure 3. The region

between the upper surface, the Mach wave from the right-hand edge, and the

Mach cone corresponds to the regionACD in Figure 3. The angle _ between

OD and OA is determined by the formula

cos _ = tan _b 0.45)

This formula is easily derived from the fact that the trace of the Mach
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X 2

Circle

_ X 1

FIGURE 3. BOUNDARY CONDITIONS IN _ -PLANE

wave in the _ -plane (namely, AD) has to be tangent to the Mach circle.

Thus if a is the angle of attack of the upper surface, u, v, and w are

given by Equations (1.44) on the Mach circle for 0 5 8 _ _/. For 8 > _/ ,

the perturbation velocities are zero till 8 is large enough to bring the

point ¢ = e _ _ under the influence of the left-hand wedge.

Since 8 is unchanged by the Tschaplygin transformation, relation

(1.45) is also valid in the & -plane. Subsonic edges are represented as

points inside the Mach circle on the X-axis, both in the e -plane and in

the _ -plane. Condition (1.13') of Section I-B may be stated when applied,

say, to w: At a trailing edge (which is represented by a point in the

-plane) the analytic function W has a zero; at a leading edge _ = &! ,
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times a function analytic in

In the e -plane, however, one may make an essential reformulation of

some boundary conditions. In particular the flatness condition O_ = con-

stant may be given a very convenient formulation (Cf. Ref. 4):

Ona flat part of the wing _w*/_x = 0 (1.46)

Consider a direct elementary proof of condition (1.46): Since _r is

constant, v is constant on the wing and 9v/_x 3 = 0. Hence by irrotation-

ality 9w/_ x z = 0 on the wing in the _ -plane. Changing over to the $ -

plane, one observes that on the X-axis, the xz-direction coincides with

the y-direction. Thus it follows from the symmetry of the Tschaplygin

transformation that in the e -plane the curves x 1 = constant cut the X-axis

orthogonally. Hence 9w/@ x2. = 0 implies 2 w/_ y = 0. From the Cauchy-

Riemann equations 9w_/_x = 0.

From Equation (1.46) Busemann concludes that w* = constant and that

this constant then may be put equal to zero since w* is determined only

within a constant anyway. However, if there are singularities in W, w*

may take on different constant values on different segments. In particu-

lar, w* might take on different values on the top and bottom sides of a

flat wing. This situation may be clarified by considering formula (1.42h),

which shows that for real e , i.e., in the plane of the wing, the downwash

is connected with w* by

dv=- (e__Z_ dw* (1.47)

_ze /
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Equation (1.47) furnishes a direct proof of Equation (1.46). Consider

an edge when e_0 and a path of integration consisting of a small circle

with the edge as center. Integrate Equation (1.42b) along this path from

one surface to the other and let the subscripts u and _ denote upper and

lower surfaces. Then

V u - _ = +i

and taking the real part

2
e -1

2 e (W u - W_ ) (1.48a)

• _ 2 -1, _ *)vu - v2= - I--F (Wu, w2 (1.48b)

Thus in the lifting case w* has the same value on the upper and lower

surfaces. In the symmetrical case the difference (w* u - w*$) is 2/kw_,

divided by the real constant (1 -e2)/2 ¢-, where _ is the half angle of the

profile. Equation (1.48b) also shows that when e= 0, w_ u = w 2 in order

to keep the difference v u - v_ finite or zero.

Another possible singularity of v and w* is a discontinuity in slope

on the surface of the wing. Section VI treats of wings where _ takes on

two constant values on the upper surface. Then dv = dw_ = 0 on the wing,

but at the discontinuity w* has a jump which is obtained from the jump in

v with the aid of Equation (1.47).

The discussion just given shows that in the following important case

Busemann's statement is unconditionally true:

On a flat wing of zero thickness and no discontinuity

in shape, one may put w* = 0 everywhere on the wing. (1.46 S)
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One of Busemann's fundamental achievements was to point out the appli-

cation of Equation (1.461).

L. Oblique Transformation in _ - and _ -Planes: Equivalence to a Homo-

graphic Transformation

In conical flow only the rays from the origin but not the individual

points are of importance. Each ray (CXl, cxz, cx3) where c runs through

the positive numbers may be represented by the point

in the C-plane. The oblique transformation induces a certain transforma-

tion among the rays or among the points in the ¢ -plane. Apply Equation

(1.17) to a point P = (Xl, Xz, 1) in the C-plane. p is transformed into

the point

x 1 + a 1 + ax 1 ._p*

This point is on a ray which intersects the _-plane in the point

)
7; ax 1' 1+ ax I , 1

Hence in the _-plane the oblique transformation (1.17) induces the

transformation

Xl--_Xl , _ x 1 + a
1 + ax I

J a z

xz---_xz. - x2,1
1 + ax 1

(1.49a)

(1.49b)
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In the applications of the oblique transformation one usually con-

siders a transformation which takes a ray of angle _ in the plane of the

wing into the axis of the DIach cone. Such a transformation is obtained by

putting a = - tan_ in Equation (1.17). An arbitrary ray of angle _ in

the same plane is then taken into a ray l'_ where

tan %:* = tan% - tan _ (1.50)

1- tan_ tan "C

This is the same formula as Equation (1.49a).

If the s_veepback angle _ is measured as in Section l-K, formula

(1.50) should be applied to [(_-_)_. Hence

But because tan

tan(g_- _*)

7r

= tan(_ - _)) - tan

1 - tan_ tan(_'- ¢))

[(_/7) - _] = cot 0 = (1/tan _), this formula transforms

into the same form as Equation (1.50)

tan _- tan
tan _)_ = (i. 50')

1 - tan_ tan _)

where _is the same as in Figure Z and _ is the sweepback angle of the trans-

formed edge. From Equation (1.50) there follows easily

_/ l- tan_ =41- tanZ_ 41-tan2_

1 - tan_ tan'C
(1.51)

Now each mapping of the _-plane into itself induces a mapping in the

e-plane in the following way: If P is mapped on Pl in the _ -plane, then

the induced mapping maps Ts(P) on TS(Pl). Since Equation (1.1) is invar-

iant under the Lorentz transformation, the Laplace Equation (1.31) must be
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invariant under the mapping which the oblique transformation induces in

the _-plane. This induced mapping is then conformal. It leaves unit

circle and X-axis invariant and preserves direction on the X-axis. This

invariance follows from the fact that both the oblique transformation and

the Tschaplygin transformation possess these two properties. Furthermore,

since in the _-plane the origin is mapped on a, in the e-plane Ts(0) = 0

is mapped on

Ts(a) --A --
I - V_I -a 2

From the theory of analytic functions it then follows that the induced

mapping must be the homographic transformation

A + e (I.SZ)
e-'_ - 1 +Ae

The determination of this function is actually a very simple application

of two principles to be discussed in Sections II, III, and V, namely, ex-

tension of a function by reflection (in this case the unit circle) and

determination of its analytical expression from its zeros, poles, and

Riemann surface.

The following theorem has thus been proved:

A Lorentz transformation in the _ -plane of the type

(1.49), which takes the origin into the point _ = R,

corresponds to a homographic transformation (1.52) in

the e-plane which takes the origin into

1- v_l-a 2
A=

a
(1.53)
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Expressed in formulas, theorem (1.53) states that if

= x I + ixz

_ +laxl (_x: I I
+ a) + i _I - a z

A = Ts(a)

(a)

xz] (b)

(c)

(d)

the n

_, = e+ A (e)
l+Ae

e* = Ts(_*)

As a corollary, if Equation (1.53) is applied to a real _ (e

rains the formula

]-), one ob-

T + A 1+ at - IV(1 - tZ}_l"" - a z}"
= (1.54)I+TA t+a

In the application it is sometimes convenient to use the algebraic

identity (Cf. Eq. 1.37e):

t+a

The right-hand side of Equation (1.54) = 1 + at + t/(] - tZ)( 1 " a_) (1"541)

For the benefit of the reader who distrusts an abstract proof, a

computational proof of theorem (1.53) is supplied here. It is straight-

forward but longer than the proof just given.

Substituting Equation (a) in Equation (b) and multiplying the numer-

ator and denominator by [_
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(_ _) 4a 1 1)

+,.a +

From Equations (c) and (d)

2 1 - 2A

A2+I
:=(:+ _), a
c,

1 1 1 - A 2 1 1
I 1 2A (_+:)(_+.)+i+__+_ _ (_+_ -:)(_+_+ e+ _)+ I_'A 2 = -

1 1 2A 1 1
(Z +_-)(e +_-) + ----I+A 2 (_-+_+e+e)

_____4_z)[_ + _ +_ _ (_ +_)] + 2A (1 +_)2 + (1 - A2)_ _ _+ _z(_ -_)3

(1 + A2)(1 ÷e_) 2 + 2A [e+ Z+_Z(E+ _)]

(I + A2)( E + _") + 2A(I + e g) + (i - A2)( _ - 8 )

(1 + A2)(1 + e _) + 2A(e + _)

2 e + 2Azg+ 2A(1+_ _)
1+ A2 + e_Z+ A2e Z÷ 2A(e + g)

2(:+;_A)(_ +A)

(I+ CA)(1 + 7=A) + (_ +A)(f , A)

e+A
2--

1 + eA 2e.*
m

+A d +A
I +I-+_A i +_A I+_*_*

Combining this formula with Equation (1.34) proves that _* -- Ts(_*).

Let ¢ and _ff be defined as in Section I-K and related by Equation {1,45).

A Lorentz transformation with parameter a = - tan_ = - b transforms

into an angle _* defined by Equation (1.50). The angle _/is transformed
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into an angle _f* which, by the previous reasoning, must satisfy the

relations

where

tan _* : cos_ (1.55a)

e i_* e i _ - B

- 1 - Be i_ (1.55b)

1 -V_I- b 2

B = Ts(b) - b

The following relations may be proved easily and will be of use in

Section III-G:

cos T 2 - b cosM/ (1.56a)

sin___ __i+ b/ 1 - c°st_2 2 1 - b cos tV (1.56b)

In Section I-F methods for generating solutions by oblique transfor-

mation were discussed. Theorem (1.53) suggests that there should be

analogous ways of generating solutions in the e-plane by a homographic

transformation.

Although the velocity potential itself does not appear as a function

analytic in e, there is still an analogue of the method of generating so-

lutions by transformation of the velocity potential. Let U, V, and W be

complex functions constituting a solution of some conical flow problem.

In particular they have to satisfy the compatibility relations (1.42).

Then the following three functions also satisfy relations (1.42) and
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ua(e) _ 1 +A_______z 2A (1.57a)
i A2 U('7[) + W(_)- I - A 2

where

va(e) = V(97) (1.57b)

wa(e) _ 2A l + A 2
1-A z U(_)+ I-A z W(_) (1.57c)

d+A
- l+Ae

This conclusion follows from Equations (1.21c) and (1.37) and may also

be checked by direct computation.

Using the method expressed in Equations (1.22), one may also put

w a (_) = w(_) (l.58)

It will be seen from examples to be given later (Cf., e.g., planform

IIb in Section III-H) that a general formula like Equation (1.57) for con-

structing U a and V a is not possible. Hence these functions will have to

be computed from Wa with the aid of Equation (1.42) in each separate case.

In the applications of Equation (1.58) the following question often

arises: If W is the solution for a flat wing, is the same true for wa?

The hypothesis implies that

dv = dw* = 0 on the wing (a)

From condition (a) and Equation (1.58) there follows:

dwa* = dv = 0 on the corresponding wing (b)

Thus the second wing is flat (v = constant) unless V has a singularity
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there. If W is regular on the first wing, W a is regular on the second

wing. Then the only possible singularity of V is at e = 0. The nature of

this singularity is given by Equation (1.42c). Thus the second wing is

flat if it does not contain the origin.

k4. Prandtl-Glauert Transformation Reduction to l%4ach Number _-Z

In the present report it is generally assumed that the free stream

Mach number M is equal to _Z." It will now be shown that within the line-

arized theory a wing problem at any other supersonic free stream Mach num-

ber may be reduced to an equivalent problem at M = _-2-.

Let the original problem be to find the perturbation velocity caused

by a wing placed in a flow of free stream Mach number M. Denote by S m the

three-dimensional space in which this flow takes place. The problem will

be reduced to the study of an equivalent wing placed in a free stream Mach

number = _'_ in a three-dimensional space S. (S and S m are two copies of

ordinary infinite three-dimensional Euclidean space.) A certain corre-

spondence or mapping between the points in S and S m will be set up which

will in particular define the equivalent wing: It consists of the points

in S on which the points of the wing in S m are mapped. From the properties

of this mapping there will follow a procedure for constructing the solution

for the flow in S m from that for the flow in S.

The mapping is the well-known Prandtl-Glauert transformation. A

point P in S m will be mapped on the corresponding point P* in S by the

rule

P : (xI, xz, x 3) ---_P* : (x I, x z, mx 3) (1.s9)
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This correspondence between points will induce a correspondence be-

tween functions. Two functions, f in S and frn in S m, are corresponding

functions if

_(p) _-f(p*) (1.60)

Similarly, the two differential operators 0 and 0m will correspond to each

other if

value of operator 0m applied to frn at P equals value of

operator 0 applied to f at P*.

Consider an example:

(1.61)

, then 0m = 1 _ (1.62.)
If 0 is 9x---3 m _x 3

This correspondence may be proved as follows:

fm(x,, xz, x 3 +_x) - _m(x l, x z, x 3)
D

L_xm m __._ _ 1_ 0m[gx3 /P m£x

f(Xl, X2. mx3+m _ x) -J(Xl. xz, mx3) _(_x3) P
= lim =

m/Ix-_ 0 max *

The two wave operators Q and Qm in the two spaces are defined by

9z 9z _z
Q=

9Xl 2 +0x22 8x32
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2 2 1 2
Qm_9 9÷

9Xl 2 9x22 m 2 9x32

By the method used immediately above it is proved that

Q corresponds to Q rn (1.63)

The definition (1.61) and the theorem (1.63) imply that:

If Qf = 0 at all points in S, then Qmfm = 0 at all

points in Sm. (1.64)

In other words, if f is a solution of Equation (1.1) , then fm is a

solution of Equation (1.11). In this way solutions to Equation (1.1') may

be generated from solution (1.1) by the rules (1.59) and (1.60). This

procedure is very similar to the previously studied generation of function

by the transformations mentioned in Section I-C. In the present case,

however, Equation (1.1) is not invariant under the transformation consid-

ered, and for this reason the generated function fm will not satisfy

Equation (1.1) but the transformed Equation (1.1 I) instead.

In order to make use of relation (1.64), one has to investigate what

boundary conditions the transformed function satisfies. Apply Equation

(1.60) to the velocity potential _, forming a potential ¢m for the flow in

Sm. Form the velocity components u, um, v, etc. from these two potentials.

One obtains the following relations (Cf. Eq. 1.62):
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_m(p) = _(p,)

urn(P)= u(P*)

vm(p) : v(P*)

win(P): row(P*) )

(1.65)

Now let there be given a wing in S m of prescribed shape, satisfying

Equation (1.6). If Equation (1.59) is applied literally to the wing, the

equivalent wing has a different angle of attack because of the affine dis-

tortion. However, as explained in Section I-B, in the mathematical treat-

ment the wing is replaced by its projection on the X1X3-space, which is

given a certain distribution of _, i.e., of v. It is to this projected

region that Equation (1.59) should be applied in forming the equivalent

wing. It then follows from Equations (I.64) and (1.65) that Equation

(1.65) is the correct rule for generating a solution for the original wing

from that of the equivalent, provided the equivalent wing is prescribed to

have the same angle of attack as the original wing at corresponding points.

An alternate scheme is used if the boundary conditions are given on w

instead of on v. In this case let w have the same value at corresponding

points of the two wings. Then one obtains the functions _b,/_ , etc. for

the equivalent wing, forms the functions ¢_, etc. as in Equation (I.65),

and then multiplies them by the quantity m.

If one has mixed boundary conditions (Cf. Section I-B), the first of

the above shcemes works if the only value prescribed for w is zero. Simi-

larly, the second scheme works if the only value prescribed for v is zero.
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II. FLAT SYMMETRICAL WINGS

This section discusses flat conical wings whose profile (i.e., inter-

section of wing and the plane x I = constant) is a wedge of half angle /_

(Cf. Fig. 4). The wings are assumed to be symmetrical relative to the

/
/

/
/

/
/

X1

\ /
\ /

\ /
\

\ /
\ /

\/

X 3

(a) Planform IIab

X 2

\

\\ s

\\

(b) Planform IIIab (c) Profile

FIGURE 4. BASIC CASES OF FLAT SYMMETRICAL

WINGS

plane of the wing. The general characteristics of symmetrical wings were

discussed in Section I-B. In the plane of the wing the boundary condi-

tions are

v = Aw on the upper surface of the wing

v = -)% woo on the lower surface of the wing (2.1)

v = 0 off the wing
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On the Math cone the values of v are given as described in Section I-K.

As for boundary conditions at an edge, consider a subsonic edge,

leading or trailing. In the •-plane such an edge is represented by a

point E I (-! _ 61 <1)and the boundary conditions in the neighborhood are as

in Figure 5.

el=Edge of Wing

Wing _ V=Vo=)_w_ F
II V = 0

V=-- Vo=-- _ W_. o

Y-axis

X -axis

FIGURE 5. SUBSONIC EDGE OF SYMMETRICAL WING

It is seen that the given values of v are vo[]T times the polar angle G

with apex at el ; namely, if 0 = 0, + 71", or - 7r, then v = 0, v o, and -Vo,

respectively. The analytical expression for the fact that v is propor-

tional to 8 is that it is the imaginary part of a logarithmic singularity

at _/ . More precisely

s

V
O

E - ) + (2.z)

where f(_) is analytic at e I and purely imaginary along the X-axis. Thus

f(e) does not contribute anything to v = Re(V) there.

From Equation (1.42b) it follows that

W

dW o 2 e 2 e f'(e)
d--_ =-_- _-Z--_-I " E - e I + i(_ Z-l) (2.3)
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, W also has a logarithmic singularity. However, w is the

real part of the logarithmic singularity and hence becomes legarithrnically

infinite at & : _-| , whereas w_ behaves qualitatively like v. In the ex-

ceptional case where the side edge is along the axis of the h/lach cone,

(=l = 0 and V still has the same type of singularity but W is regular.

Although the function (2.2) fits the boundary conditions in Figure 5,

there are other possible solutions. These will have to be ruled out by

special considerations. This subject will be discussed in Section II-B.

As pointed out in Section I-B, the fact that there are sufficient

boundary conditions for one perturbation velocity makes the problem of

finding solutions for symmetrical planar wings very easy. Another circum-

stance which simplifies the problem is that there is only pressure inter-

ference but no downwash interference between two such wings. Hence the

boundary conditions are not affected by the interference. Thus in the

present case it is sufficient to obtain the solution for planforms IIab

and IIIab (Cf. Fig. 4). The other solutions for planforms I, If, and III

may then be obtained by superposition. In particular the solution dis-

cussed in Reference 17 may be derived in this way.

A. Planform IIab

The boundary conditions are shown in Figure 6. As has just been ex-

plained, the singularity at the edge may be expressed by the function

-i vo _ n e (a)

This function gives the correct values of v on the X-axis provided the
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• - -plane is cut along the negative real X-axis. The two discontinuities on

the Mach Circle may also be obtained as logarithmic singularities. If e

U=U 0

V=V 0

W_W O

Y

_'_a £1v= °

\
V = 2% %%,_

cos _r = tan _)

FIGURE 6. BOUNDARY CONDITION IN _ -PLANE

varies in the positive direction on a small half circle inside the Mach

circle (Cf. Fig. 6), then v decreases by v o. This type of discontinuity

suggests that V is of the form

iv o

--IT _[ n (5 - el) + function analytic at e l (b)

Combining functions (a), (b), and the corresponding function for the dis-

continuity at e 2 gives

iv° [_V = _ n(£ -(-i)(_ -eg) - I n& ] (c)

Actually the function defined by (c) satisfies all the boundary conditions.

Since

Re [ -i_[n(_-el) ] = arg (&-_l)
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and on the real axis arg (e - el) = - arg(e - e2) , the first term gives

no contribution to v on the real axis, and the second term gives the

correct boundary conditions. That conditions on the Diach circle are

also satisfied will follow later on (Cf. proof of Eq. 2.8) when v is

evaluated in physical coordinates (r, 0) from Equation (c).

But first U and W will be evaluated from Equations (c) and (1.42).

From Equation (c)

v :of 1_--_= _+ _-el+ e-e 2
(d)

From relation (d) and Equation (1.4_b)

dW _ 2Vo e r

L

= e i_ e 2 e -i_Since e_1 , =

_ 2Vo _ 1

_ - _1)( _l- _z)

e-e I • _'_

(e)

' 1+ (_ - _z)( ez- _l )

- 6 = 2isin_b
1 2

(f)

Combining relations (e) and (f),

iv E_ e 2o

W- _sin_V _nd-d I +c

To eva'luate the constant of integration c, one observes that,

according to (1.44) and (1.45),

-V O

at d = -I, Re(W) = w = w ° sin]V

(g)
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But as may be seen by elementary geometry

Hence

Re F-i n-l- l]-1
&-_&-

TF W 2,9

-iln-- +Su+ 71"
w _-6-

o 1

Similarly U may be evaluated

(h)

dW -i v 9 I [ -i 1 ]dUde - zl (e+ i) de - Z7[ sin_/ (e÷ ) e - e I + e _ eZ (i)

After some algebraic manipulations this formula becomes

dU -i _v___ [_ cos________. 1 cos_ 1 i 1= 7[ sin_/ e- e1 + sin_/ e - e 2 e
(J)

Integrating formula (j), using Equations (1.44) and (1.45), and determining

the constant as for relation (g)

u o [ e _ e-2

u-- -_-[-i_n e - 5
(k)

Next u, v, and w will be evaluated as functions of the physical coordi-

nates r and O. Consider an arbitrary point re in the -plane and the

corresponding point Re i8 in the e-plane.

Using the notation in Figure 7 •

Re( - i_n(e 1 -e) = arg(e I -e) = _1 l

Re( - i_n(e Z -e) = arg(e 2 -e) = _2

These angles are connected with R and @ by
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tan ¢1 = sin _ - R sine
cos _ R cose

- sin _/r _ R sin{}
tan _ Z = cos_ - Rcose

I (m)

Y

6z

,_ X

FIGURE 7. NOTATION FOR EVALUATION OF u, v, AND w IN 6-PLANE

From relations (m)

tan(# 1 + #2) Z R sin8 (R cose -- 1 + R z - ZR z sinZ9
cos¢r) (-)
- ZR cose cos _//

sin0[(_-4,-rZ)cos0 -rcos_3
tan(_i+ #Z)-

1 - (1 - N/I - r2)'sin20 - r cos O cos

In a similar way one may derive

c°s(#z -#I + lu+ _")-- r cos e - cos
_/il - r Cos8 cos _/)2 _ r _ sinE{} sinZ]_

(nI)
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The results derived are summarized in Equations (2.4) to (2.7):

For a wing of planform IIab, sweepback _, and symmetrical wedge profile

of half angle )k, the perturbation velocities are as follows. On the wing

outside the k4ach cone

)%woo tan ¢_ (2..4a)
u = u0 = - w o tan ¢_- N/1 _ tan2 _

on the upper surface

on the lower surface

(2.4b)

-V 0 _ AWc_

- (z.4c)
w :wo -- J l- tanz_ ¢l - tanZ

Inside the Ivlach cone the complex expressions for the velocity are

u:no  Ivo_ +_+ -_-#n_
(Z.Sa)

V = iv-'-_°12n(eT[ -el)(e-ez)-2ne3 (2.5b)

e -_- I

No Z

w= _ -i2=__e I +_+Tr (z.sc)

Here c°s_/ =tan_'el = e ' eZ = I"

Putting arg(@ 1 -6)=_i, arg(eZ -_-) = _ Z (Cf. Fig. 7), and

_" = R " e i{) , the real parts of the functions above may be written

u° I$2-_i +_/+ _'] - Vo _nR (2.6a)u= -_- _r
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vo[ ,]v = _- 0 - (¢i + _2 (2.6b)

W=TL z-#l+_+ (z.6c)

With the aid of relations (n') and (o) the values of the brackets in

Equations (2.6) may be given as a function of the physical coordinates r

and 0

cos(_z-#l+ W + _) = r cos 0 - cosW

4 (i- r cosO cos_/)2_ r2 sinZOsin2]_
(2.7a)

sin 0 [ (i -_I - rz) cos 0 -r cos_/13

tan(#l + 4)2) : 1 - (i -_i - rz) sin20 - r cos O cos_ / (2.7b)

For points in the plane of the wing Equations (2.6) and (2.7) may be

simplified considerably. Use is thereby made of the fact that 0 is either

0, W-, or -7)" and hence sin0 = 0 and r cos 0 = t (Cf. Eq. 1.36).

In the plane of the wing

u° t -tan_ Vo 1 -V_l - t z
_ - _n (2.8a)U = _-- arc cos 1 t'tan # It ]

V o

v = -- 0 (2.8b)
11-

w o t - tan (_

w = 7F-arc cos 1 - t.tan¢ (2.8c)

Finally on the Mach cone Equation (2.7b) reduces to tan O = tan (qb+ 4)2).

Hence 0 - (_1-_ _Z): nT]" where n is an integer. At the point _ : 1, n

must be zero by Equation (2.8b). Hence by analytical continuation it re-

mains zero on the Mach circle up to singularities _-} and _Z" Here the
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jump is found by the method described at the beginning of Section If. In

this way it is seen that Equation (2.5b) actually satisfies the boundary

conditions on the Math circle. This fact could also have been seen geo-

metrically from Equation (2.6b).

B. Planform 1]lab. Principle of Reflection

The boundary conditions as illustrated in Figure 8 are very similar to

(a) Top View

t
/

/
/

/
/

/
/

/
/

/
/

/
/

\\\

- X I

b = tan

B = Ts(b)

(b) . _ -Plane

Y

v=o E*

_.=1
B

v=-Vo X

V=V O

FIGURE 8. SYMMETRICAL WING: PLANFORM Illab
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The main difference is that the logarithmic singu-

larities are all on the real axis of the e -plane. Since the wing is en-

tirely within the Mach cone, there are no singularities on the k4ach circle;

here u = v = w = 0. The function V has two logarithmic singularities in-

side the Mach circle, at e = 0 and e = B, which points correspond to the

two edges. However, these two singularities are not sufficient to deter-

mine V. Some information about the behavior of V in the rest of the

e -plane will be necessary and can be secured with the aid of the principle

of reflection.

A proof and exact formulation of this principle may be found in text-

books on analytic functions, especially those with the geometric (Riemann)

approach (Cf. p. Z18 of Ref. 18 or p. 37Z of Ref. 19). The principle may

be conveniently formulated in geometrical terms. One may consider the

solution V (e) as a mapping of the e-plane into the V-plane; to each point

x + iy in the 6-plane there corresponds a point V(e) = v + iv* in the V-

plane. In this way a straight line or a curve in the e-plane will corre-

spond to some curve or straight line in the V-plane.

The principle of reflection (Cf. Fig. 9) indicates that if a line L 1

is mapped analytically on a line L2 and the mapping is defined on one side

of L1, then it may be extended to the other side of h 1 in such a way that

points which are symmetrically located (images) with respect to L 1 are

mapped on points which are symmetrically located with respect to L 2.

In this statement any one of the straight lines may be replaced by a

circle if by image of a point with respect to a circle is meant the recip-

rocal point. Two points are reciprocalwith respect to a circle if they
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Y ,*

_L 1

X

-Plane

FIGURE 9.

v- Plane

PRINCIPLE OF REFLECTION

are on the same ray from the center of the circle and the product of their

distances to this center is equal to the square of the radius.

The principle of reflection will be of fundamental importance for

many solutions given in this report. It will now be applied to the present

example. On the unit circle in the e-plane, v = 0; in other words, V is

purely imaginary. Expressed in geometrical terms this fact means that the

unit circle in the e -plane is mapped on the imaginary axis in the V-plane.

That e I is the image ore 2 in the unit circle means algebraically that

e I : I/e z Similarly, if V I is the image of V z with respect to the imagi-

nary axis, then V 1 = -V 2"
Hence V must satisfy the relation

V(I/e) = -V(e) (2.9)

More precisely it is known that V is analytic inside the unit circle ex-

cept for the s'lit OE (Cf. Fig. 8). Since v = 0 on the circumference of

the unit circle, V may be extended to the outside of the unit circle by

Page 68



_aCA TN 1685

JPL Progress Report No. 4-36

the rule (2.9), and it will be analytic there except at the slit which is

the image of OE. The reciprocal of the point E: e = B is the point

E*: 6 = I/B. The reciprocal of the origin is the point at infinity. Hence

the image of OE is the slit extending along the real axis from I/B to in-

finity. From Equation (Z.9) there follows that v = - v on top of the slit
O

and v = + v ° on the lower side. Thus there is the same type of logarithmic

singularity as at the edge E. One may think of E* as the edge of the re-

flected wing. When e varies counterclockwise on a small circle around E*,

V increases by 2v o. This fact determines the strength of the singularity.

Hence all singularities of V are known, and the solution may be written

down immediately as for planform IIab:

,vo jV = W n(e- B)(Be - I)- 2 n_ (2.I0)

V O =_W(x )

where )x = half angle of profile. The functions U and W are then easily

computed from Equations (2.10) and (1.42):

U = _- n6 - _"-_ _nB--'__ 1 (2.11a)

(I___BZ_ e-BW = _-v° ZB _n B&- 1 (2.11b)

That the constant of integration has been chosen correctly may be

seen from the fact that if e = i, Re(U) = Re(W) = 0 which is the correct

boundary v ue. It is interesting to note as an additional check that
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9_ = (e - B)/(Be -1) is the homographic transformation previously encountered

in a different context (Cf. Section I L). This transformation maps the unit

circle of the • -plane into the unit circle of the 9_ -plane. Hence when e_

is on the unit circle, the arguments of the logarithmic functions in Equa-

tion (2..11) are applied to numbers of absolute value = unity, and u and w

vanish on the entire unit circle.

For an arbitrary point re _ O in the _ -plane, w has the value

v o 3B 2n IRei8 - B I
w = __ (2.1Za)

11- 1 - B-Z- BRei8 - 1

where (Cf. Eqs. 1.29 and 1.37h)

v o =Aw0o , R = Ts(r), B = Ts(b), and

i8
In the plane of the wing @ = Re = T = Ts(t).

ZB b

I-B -Z- = _/ l_bZ

Hence

W ---

pT-11 _ VV-Cv-'n I
l-bt- V/(l-b g)(l-tz)l

!

t-b I
(Z.13a)

Vo_u=_ nR

and in the plane of the wing

Here use has been made of Equation (1.54). Similarly

I + B z I Rei8 J
i__ - BBRe i@ - 1

I_ 1 ,nl- bt -V/(1 - b2)(1-t2) I )u: nlTl :b2 ,-b

Page 70

(Z.lZb)

(2.13b)



NACA TN 168_

.]PL Prosress Report No. 4-36

C. Solutions with Hisher-Order Sinsularities: Uniqueness

Some comments will now be made about the uniqueness of the solutions

obtained in Sections II-A and B.

Consider, e.g., planform IIab. Denote by V 1 the solution obtained in

Section II-B and by V 2 another solution with the same boundary condition.

The difference V 3 = V 1 - V 2 then satisfies the following boundary condition:

v 3 = Re(V3) = 0 on real axis and on unit circle (2.14)

If the function V 3 is to be regular in the interior of the unit cir-

cle, condition (2.14) implies that it is identically zero (or equals an

imaginary constant). In this case V 1 = V 2 except for irrelevant "n_naginary

constants.

Nonvanishing solutions of condition (2.14) may of course be had by

assuming various unnatural singularities of V 3. However, assume that the

only singularity is at the origin _ = 0 and that except for this point V 3

is regular in the unit circle.

Then by the principle of reflection V 3 is regular on the whole Riemann

sphere ( _-plane and point at infinity) except for the singularity at e = 0

and the reflected singularity at _ = o_ . If the singularity is a pole of

order n, the function must then have the form

V3 = V (n) (e)=k i(en+61 ) (2.15)

where k is a real constant. Hence

v3 = Re(v3)= k_ n - Rn 1 sinn8 (z.16)
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(2.17a)

(Z.l_b)

Thus for n > 1 the pressure distribution corresponding to V (n) gives

an infinite force on a finite area, and the solution may be rejected be-

cause of this fact. However, the force corresponding to the solution V (1)

is finite since W (1) only has a logarithmic singularity at the edge. Thus

the only way to reject this solution is to make explicit use of the bound-

ary condition (1.13 ii).

If one allows discontinuities across slits in the unit circle, poles

of fractional order may be used. Let the wing correspond to a slit in the

e-plane. Consider the function

W = i(_/'_+_-)1 (2.18)

8

w = (1_f___V_) sin _ (2.19)

The corresponding downwash function is

V = ½(e 1/2- -1/2) _ 1e _ (e312-e-3/2)(2.20)

1 8 i (_R'--__ 1 _cos 3_8e (Z.Zl)
v =_(_ -_) cos_ -_ \ j_-_ z

Evidently v vanishes on the wing 8 = +1[ and on the unit circle

R = I/R. The pressure is infinite at the leading edge but gives a finite
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force for finite areas. Thus again it is possible to add this solution to

the solution of Section II-B unless boundary condition (1.13") is used.

It is interesting to note that Equations (2.18) and (2.20) have the

symmetry properties of the lifting case. Thus it may be seen that in

spite of the fact that the equation and the boundary conditions are anti-

symmetric in v, the resulting solution does not necessarily have this

property unless uniqueness may be proved (Cf. Section I-D).

III. FLAT LIFTING WINGS OF ZERO THICKNESS

The general characteristics of flow fields induced by lifting wings

of zero thickness have been discussed in SectionI-B. When the shape of

the wing is prescribed, fi riding the solution is difficult because the

boundary conditions are mixed (involving both v and w). An unpleasant

characteristic connected with a lifting wing is that it generally induces

an upwash (positive or negative) in its own plane off the wing. Thus it

is in general not possible to generate solutions by the very simple method

that was used in Section II.

The prescribed shape gives the condition on v. When the surface is

flat, this condition is v = constant. In this case, which is the only one

considered in Section III, the condition on v may be eliminated. This im-

portant method (drawn from Busemann) will be discussed in connection with

planform IIab. More general shapes (cambered profiles), both conical and

nonconical, may be constructed from the wings introduced in Section VI.

Especially simple are those solutions which may be obtained from the
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solutions in Section II with the aid of the general principle to be described

next.

A. Cases Reducible to Symmetrical Flow

Consider a conical symmetrical wing which may have any camber, but

whose two edges are leading and supersonic. Then the Mach cone from the

apex is disconnected by the wing into two separate regions without any

contact. There is no contact between upper and lower surfaces arotmd the

edges since these edges are supersonic. Thus the flow above the wing is

completely independent of the flow below the wing. Hence if the lower

surface is kept unchanged but the upper surface is modified, the flow be-

low the wing is unchanged. Modify the upper surface so that the wing

changes from symmetrical to a wing of zero thickness. Then below the wing

the flow is known from the symmetrical case. Next one obtains the flow

above by the general symmetry rules for the lifting case given in Section

I-B.

B. Planform la

This is the wide delta wing. Both edges are outside the Mach cone

and leading. Hence the solution is obtained from Section II by the general

principle just discussed. Let the wing have an angle of attack = _ . Con-

sider the solution for the syrnn_etrical case where the half angle of the

profile is = A. Then the perturbation velocities below the wing in the

lifting case are obtained from the formulas for the symmetrical case by

replacing )_ by /_. To obtain the flow above the wing, A will have to be

replaced by - _.
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C. Planform Ib

Here one edge is trailing and the wing is completely outside the Mach

cone. In the applications such a case may occur at a wing tip if the rake

angle is larger than the Mach angle. This case was discussed briefly by

Busemann in Reference 4. Conditions on the wing are entirely supersonic

and obtained by sweepback theory. For this special planform a flat wing

is also a wing of constant-lift distribution. Within the Mach cone there

is no lifting surface but a flow field (vortex field) induced by the lift-

ing wing outside the cone. The solution is easily obtained by a superpo-

sition of two wings of constant-lift distribution with planform IIab (Cf.

Ref. 4). Such wings will be considered in Section IV, where the superpo-

sition method will also be discussed.

D. Planform IIab: Pressure

This planform is of importance in considering the tip effect of an

unyawed rectangular wing and applies also when the sweepback of the leading

edge is different from zero but smaller than the complement of the Mach

angle. The planform of the wing and the boundary conditions are illustrated

in Figure 10. Busemann indicates how this case can be solved by using

the principle of reflection. (He actually treats the slightly less general

case gO = 0). The solution will here be given in some detail in order to

illustrate the use of certain very important principles.

As explained in Section I-K, w may be assumed to be zero on the

flat wing AO.

Next use the principle of reflection as explained in Section II-B.
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(a) Planform

W 0 -

(b) E-Plane

iQ
v=Re ,R__I

_l=e , e 2 :e

cos_-= tan _)

/
/

Ad/
/

/

_W_

\
\

X3=l \_

X 3

Y

W=W O

W= -W O

J£Z

\

X 1

X

FIGURE 10. LIFTING WING: PLANFORM IIab

The function W is analytic inside the unit circle although not necessarily

across the slit AO. The fact that w* = 0 on this slit means in geometri-

cal language that AO in the £ -plane is mapped on the real axis in the W-

plane. Hence W may be continued analytically across the slit in sucha

way that points which are images with respect to AO are mapped on points
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which are images with respectIo the line w* = 0 in the W-plane. This

fact may be expressed algebraically as follows (Cf. formula 2.9):

W(e) : W(e) (3.1)

But Equation (3.1) implies that w is symmetric with respect to the

X-axis, whereas it is known that in the physical problem w is antisymmetric.

This apparent contradiction is resolved by introducing the Riemann surface.

Start with a function W analytic in the unit circle except across OA,

which represents the physical solution and is antisymmetric in W. If this

solution is now continued across 0A by reflection, one arrives at the

lower sheet of the Riemann surface of the function W. It should be empha-

sized that any point may be reflected in OA, not only points directly

above it. Thus the whole unit circle may be reflected in OA, and the

image will form a second sheet of the Riemann surface which is a unit

circle like the first sheet. The two sheets are joined along the slit OA.

In Figure 11 a closed path around the origin is drawn. The function is

analytic along the entire path. The fact that the path actually closes

after two laps results from the assumption that w* = 0 both on top and

below the slit OA. If its vahe on the lower side of the slit were a con-

stant different from zero, reflection would have given an infinite number

of Riemann surfaces instead of just two.

The main advantage of extending the function is that the discontinuity

OA has disappeared. On the Riemann surface the function is analytic across

OA. Thus there are no boundary conditions in w* or v, but only in w. The
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Contour is on

the Lower Sheet

Y

D

C
• X

FIGURE 11. CLOSED PATH AROUND THE ORIGIN ON THE RIEMANN SURFACE

boundary is now a connected closed curve which represents the circumference

of the two-unit circle. It runs like the closed curve in Figure 11. The

values on the part of it which is on the upper sheet are given from physical

considerations (Cf. Fig. 10). The values on the lower branch are given by

reflection; e.g. , at the point P in the physical plane w = -w o but on the

corresponding point on the branch beneath it w = w since that point is
o

the image of a point Q in the physical plane where w was prescribed to be

W
O"

This is the first example of Busemann's method for treating mixed

problems, mentioned in Sections I-B and I-K. In the original mixed problem

the boundary conditions are given in terms of both w and v. With the aid

of Equation (I .45) the condition on v was transformed into a condition w*.
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Then with the aid of the principle of analytic extension by reflection,

the condition on w* was replaced by conditions on w on the extended part

of the Riemann surface. Although the domain obtained after the analytic

extension is a double-sheeted circular disk, it is actually easier to

handle than the original disk since it contains no cut across which w is

dis continuous.

Now there is a standard way of unwinding such a double-sheeted sur-

face, i.e., with the aid of the transformation

This transformation maps the double-sheeted surface obtained by extending

the 6 -plane into a single-sheeted surface in the 22-plane, and the boundary

value problem can now be formulated in the _-plane. This fact is illus-

trated in Figure 12. Here C 1 is the transform of the point C on the upper

sheet, C Z the transform of the corresponding point on the lower surface,

etc. In particular the wing OA appears in the imaginary axis in the _-

plane; the segment OA 1 represents the upper surface and OA Z the lower

surface.

W is analytic in the unit circle but has certain singularities on the

circumference. These are of the same nature as those encountered for plan-

form IIab in Section If. Thus the jump in w at the four points /Ji may be

taken care of by appropriate logarithmic functions. This procedure leads

to the following solution:

-
iw._._o._ n (3.3)

w(e) = +
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a)l=e Z

_z=-e Z

_3 = -e-Z-

v4= e --Z-

I

w':o
7"

_W- -W 0

l

FIGURE IZ. BOUNDARY CONDITIONS IN THE _'-PLANE

=_-_, _]i as in Figure 12

w = w o on the top side of the wing outside Mach cone

+0[w_
W O

_1 - tanZ_
/

It will follow from the evaluation of Equation (3.3) in physical coor-

dinates that this solution actually satisfies all the boundary conditions.

It is especially easy to evaluate w on the wing. However, in order to il-

lustrate the technique, the general expression for w at any point inside

the Mach cone will be derived.

The following abbreviation will be used:
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(3.4)

_"W

W o

Y -Plane

All angles

_{ positive
iV

_1= e-2 -

I¢1 - (w-#z) - (_r+ 93) -94 + K • zwJ
(3.5)

FIGURE 13. NOTATION USED IN EQUATION (3.5)

By considering a point on the real axis of the ,Y -plane, it is seen

that the integer k has to be given the value k = 1, because such a point

corresponds in the physical plane to a point in the plane of the wing but

not on the wing. Here w has to be zero because of antisymmetry and con-

tinuity. Thus

"_rw

- - (02 - 01) (3.6)
W o

where 02 and 01 are explained in Figure 13. Figure 13 also gives the
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relations

sin _r/2 - N sin 0/2

tang51 - cos_/2 - N cos 0/2

sin_tr/2 - N sin 0/2

tang52 -cos_V/2 + N cos 0/2

tang53 _ sin_r/2 + N sin O/Zcos_/2 + N cos O/Z

(a)

tang54 _ sin_P-/2 + N sin 0/2
cos_Y/2 - N cos 0/2

_rom relation (a):

tan(g51 - g54) =

tan( z- 3) =

From relation (b):

-z N _.in O/Z (cos _/Z - N _os O/Z)
1 + NZ cos O - Z N cos_/Z cos O/Z

-ZN sin 0/z (_o--y/z + N _os 0/Z)

1 + N 2 cos 0 + Z N cos_/2 cos 0/2

(b)

tan (01 + _2 - 03 - 04) =

2N3cos 0/2cos_/2 sin0-2N sin0/Zcos_/2-aN3sin0/2 cos _/2 cos 0
=2

_(4NZsina0/2cos2_/Z)+N 4 sin2O+l+N 4 cos20+2Nacos O-4NZcosZ(O/Z)cosZ_/2

2N sin(}/2 cos _//'2 (N2-1)

: z ZNZ[cos 0 - cos _] + N4-ZN_+I

4 sin 0//2 COS _'/2

NZ-IN _lf-]

= _J + N
2 ---:--__cos 0 cos

NZ_1 L

(c)

By Equations (3.4) and (1.37i)
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N z - 1 =/2(1- r) (d)
N _/ r

Hence relation (c) may be written

tan I(+l++2) _ (lt_3 +it_4).7 = _ sin _ @_/tan++ l ° 2_1_

Simplifying Equation (f) and comparing with Equation (3.5) give the final

formula:

a w_ 2 sin _ @_/(tan$ + 1)r(1 - r)= _ arc tan (3.7)
w lrdl - tanZ_b 1 - r(1 - cos e + tan_b)

This formula gives the value of w at a point (r, Q) inside the Mach

cone if the value of w on the upper surface of the wing outside the Mach

cone is = + Wo = a w_

By elementary trigonometry Equation (3.7) may be transformed to

w = a w_ arc 1 - r(1 - cose + tan ¢) (3.7i)
1T_/1 tan£_ '

C°Sv/1 ÷ r2(tan z _ - sinZe)-Zr cos e tan _ "

The advantage of the second form (3.7') is that on the wing itself

(0 = _') it simplifies to

a w_ 1 - r(2. + tan¢) (3.8)
w = 11"_ 1 - tant'_ arc cos 1 + r tan @
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or using the notation of Equations (1.35) and (1.36a)

w - GV¢_ arc cos 1+ tan_;(2 + tan_) (3.8')

_ta. .¢ 1-tan tan
Equation (3.8') is easily derived from Equation (3.6) by the above method

if the cosine function is used instead of the tangent function.

It should be remembered that this formula is valid on the wing only

and that hence T takes only negative values. For points in the plane of

the wing but not on the wing, _ is positive and w of course is 0 by anti-

symmetry. Note that if the range of arc cos is restricted to angles be-

tween - _ and 1T, it is still a two-value function which for the same argument

gives a positive and a negative value. The positive value corresponds to

a point on the top surface of the wing.

For _ = 0, Equation (3.8 I) specializes to the formula given by Buse-

mann (Cf. Ref. 5).

g. Planform llab: Downwash and Sidewash

The computations proceed along the same lines as those in Section II.

First introduce the variable }2 =

dU 1

dz/ 2

V_" into relations (1.42).

d_ - 2 d* /

Then introduce the functions F'and G by

(a)

(b)

dF = - 11" I dW
iw ° _/-2

(c)
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-W

dG =iw
O

2
_ dW (d)

The following expansions into partial fractions will be needed:

1 -I I I
- +

2 a 2

- t)+ a +_-_
_- a

(e)

(f)

From Equation (3.3)

iw

dW _ +_+___ 1
d_ _ -- ___

J

where

+ is used for j = 1,4

and

- is used for j = 2,3

Combining relations (c), (e), (f), and (g)

(g)

-dr _ Z+ [ 1 _ 1-- vj2_ vj_Z +

where + and - are used as in relation (g).

Since
i __ -i_ i_

2 2 2

_i = e ' _2 = -e ' _3 =-e ' _4

2

= e

(h)

the n

-i_v +i T

+ _.---_=e -e
-- j

-i_u +i_

-e +e = 0 (i)
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_-4cos_- (j)
Z

Similarly

and

4
-F : + _- cos _/Z+_-_j+ _I I¢n(/2- _j)+ constant

J

-dG =L+ (#+ __i/jj- 4 c°s2 j-- j
d_ - _)+ _ *+Z +_

(k)

(£)

- G = 4;/cos _+ _'+ _.Z _n(_'-_j)+ constant
Z -- 3

From relations (a) to (d), inclusive,

Thus finally

i
-_u _+-(F+G)
w o 2.

- ½(F - G)
W

O

_m:-zi(_÷_)cos_--icosV_n
w 0 Z

(g-Wl)(W-4)

(w-vz)(_-5 )

(m)

(n)

(o)

(3.9)

--: * _ (_- _l)(_- _z}1T V -2(_2- _-)cos - isin_n
Wo z (_- _}(_-_4}

-fsin _ (3.10)

Note that according to Equations (1.44) and (1.45), -w o cos _i = u o and

-w o sin_ / = v ° where u o and v o denote values of u and v on the top side of

the wing outside the h/[ach cone. The choice of the constants of integration

may be justified in the following way: The relations given above for uo
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and v o are in particular valid at the point whose _ -coordinate is i. At

that point Equations (3.9) and (3.10) are also valid. The first term in

Equation (3.9) gives 0, and the real part of the second term is -w o cosT,

as can be seen by comparison with the corresponding term in Equation (3.3).

_utthisisthecorrectvaluesincecos_--tan4 InEquation(3.10)it

may be noticed that the first two terms are imaginary for _ = i. Since sin_=

cos2V: ,an2 ,theconstantagreeswiththevaluefromsweep-

backtheory.

For the case of no sweepback (¢-- 0,_=7[/2), the simplified rela-

tions are obtained:

-n- U _ -i_Z(_+ I) (3.11)
W o

7[ V _ q_(_-_ - i/n (_-_I)(_-_2) "11- (3.12)
W

o (w -_"3 )(J'- "4)

From these relations it can be seen that there is flow around the

side edge in the following sense. On the lower surface u = 0 on the wing

outside the Mach cone. Inside the hAach cone it increases steadily and

reaches the value + c_ at the side edge. The positive sign means outward

flow, as is physically reasonable since there is overpressure on the lower

surface. At the edge, v (which of course is constant on the wing) jumps

to the value + oo (positive sign means directed upward). On the upper sur-

face the flow is inward, into the suction region. At the side edge u = - _o

and increases monotonically to the value zero on the lVtach cone. In the

plane of the wing outside the wing, u has the constant value zero.

The sidewash and downwash velocities are obtained in terms of the
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physical coordinates r and 0 and of the sweepback _ by taking the real

parts of Equations (3.9) and (3.10), then making use of the trigonometric

relations in Section III-D and relations (1.37).

Referring to Figure 13 and formula (3.9)

where

iru i %U 0

Wo-- = 2 (N -_) cos--'Z sin_+ cos_/" arg

-arg [(w-_I)(*/-Y4 ]I

may be obtained from relation (f) in Section III-D .

velocity inside the Mach circle is

I 1_ru = 0
_r° - 2 (_-) (1 + tan_) sin_- tan _.

L r

(3.13)

Hence the sidewash

t 1 - r (1 - cos O + tan _)
arc cos [i rF(tan 2 - sin20) r+ qb - Z cos O tan ½ (3.13')

In the plane of the wing the formula for the sidewash is

t >0:u=0

_ru g_
t < O: _ - -Z (I + tan ¢) tan_ arc cos I - t • tan_ (3.13")

That u = 0 off the wing in the plane of the wing follows directly from the

discussion at the end of Section I-J.

Referring to Figure 13 and formula (3.10)
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"_'v 1 _. 0 _a [(_-_I)(_-_2)-] 71" I
_o = -2 (N -N) cos _ cOS _-+ sin _# rg

= Z (_--_) (1 + tan_ cos g - sin_ (_Z+_3)-(_1+04 + (3.14)

From relation (a) in Section III-D

__ _ 0
2 sin_ (cos 2" + N cos_)

e. __
tan (_2 +_3) = (cos_ + N 2) + 2N cos _ cos 2 (p)

tan [(_

tan (_ 1 ÷ _4 ) =
2 sin (cos_- - N cos 2 )

(costP+ N z) . 2N cos_" cos 2

0
4N (1- NZ)sin_ cos

e (i + 2N z cos _ + N 4)4N z cos z _ -

±

1-r ]z 82r[(_-D(l - tan_)) cos_

0
2r cos 2 _- r tan_ - 1

(q)

(r)

Hence the downwash velocity inside the Mach circle is

w-- = 2 (I+ tan_ cos 2
O

(I - tanZq5)_ arc tan 2 jr(1. - r)(1 i _an.._-)_.__ ccs.2. - 7[

1 + r tan _- 2r cos 2 8_ |
2 ]

(3.14')

For no sweepback, _ = 0 (and hence @ = Tr/2), Equations (3.13')and (3.14')

reduce to
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±
l - r 2

___v
W o

1

_o = - Z r sin_

1

I-r Jc°s ........O 2 Ir(1
cos "_ + arc tan

f.,

1 - 2r cos 2

_T

(3.is)

(3.16)
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FIGURE 14. PLANFORM IIa
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FIGURE 15. PLANFORM IIb

F. Planforms IIa and IIb

These planforms differ from planform IIab by the fact that the side

edge is yawed (_ _: 0; Cf. Figs. 14 and 15). As pointed out in Sections
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I-F and I-L, the solution may be obtained from that for planform IIab by a

Lorentz transformation. One may use either a transformation of the veloc-

ity potential or a Lorentz transformation of the w-function. However, be-

cause of the different boundary conditions for leading and trailing edges,

neither of these methods will give the complete solution for both types of

planforms; some correction functions will be needed. For this reason both

methods will be investigated. But first some preliminary formulas will be

derived. Consider a wing as given in Figure 14 or 15. Such a wing may be

unyawed by the oblique transformation (Cf. formula 1.17)

p ---,p*

p =(Xl,xz,x3),P*= l-_' xz'_ 1 (317ai

b = tan

The corresponding homographic transformation is (Cf. Section I-L)

e-B 1 -V_l - b 2

e-.4_ 1 - B6 "B = Ts(b) = b (3.17b)

Denote the sweepback of the original yawed wing by _b and that of the

transformed wing by _o.

Then by Equation (1.50')

tan _)o = tan_ b - b
1 - b tan_) b (3.18a)

In the complex plane Equation (3.18a) will correspond to the formula:
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e

i_ b
i_ b i_ ° e - B

= e = _), cos_ o = tan 4)° (3.195)1 =e --_7_ 1
I - Be iT

b o
Let w o and w o be the values of w on top of the wing outside the k4ach

b o b

cone in the yawed and the unyawed cases, respectively. Define Uo, Uo, Vo,

in a similar fashion. Then by the general formulas (1.44):
O

V
O

b = wb _b, O _Ou o - tan u ° = - w tan
o o o

b o

b -v o -v o
O

w: _o _/I - tanZ_ D ' w°

(3.z0)

Using the fact that the inverse of Equation (3.18) is obtained by

substituting -b for b (Cf. Eq. l.Z0), one obtains from Equation (1.51)

,oo  o:
1 - b tan _)b

(3.Zla)

A- tanZ(/)b= _v/ll - tan z_____°
1 + b tan _)o

(3.Zlb)

o b
If one also assumes that v o = v o , then Equations (3.Z0) and (3.Zl) imply

O

Wo V/I - b2 1 - B z

5-- b - tan_P =-zB - (I + B z) cos_°
U o

-1+btan@ -(I+Bz)+ZBcos_b
= tan(_ _ = (1 - B z) cos_ b

(3.ZZa)
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O
W

O

W o

/I - b2 1 - B 2

- l+btan_ ° -I + B z + 2B cosP U

I - b tan _b 1 + B z- 2B cost_ b

%/I - b2 1 - B 2

(3.22b)

G, Lorentz Transformation of the Velocity Potential; Solution for
Planform Ila

0
This is the first method mentioned in Section I-L. Denote by U ,V °,

and W°the three functions defined by Equations (3.9), (3.10), and (3.3),

respectively. According to Equation (1.57) one may form three new func-

tions U b, V b, and W as follows ( _ denoting _ = e - B_ rather than_/'e-):
1 Be

ub,e,_ ] _ I + B y. uO[_%_,.,.ZB " -Zwo° i + B 3 o 1
I Sz _ W(_)=_. cos± i(v+9-)

I - B z 2

i O
+--W -(I+ Bz)¢os_° - zB _n(_-_1)(_-_4)

2

1 - s (_- _)(J- _) (3.23a)

o :°I ]-Wo 5p° o (#- _])(J-#2)- (3.23b)

vb(e) = V°(_) = _ 2 cos -2--(_- i) + i_n (w_ _3)(__v4 ) +IT

- 2B .1 + B 2 Wo° 4B _o 1

wb(e)- 1 _ U_)_-- _ w°(_)=_l-S z _--Z i(_+_-)

O

w o ZB cosV° + 1 +Bz (_-_l)(_-w4)

+ W 1 - B z i._n (___,2)(___3) (3.23c)
o b

Since v o = vo when the transformation is applied to the velocity
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potential (Cf. Eqs. 1.21c and 1.57b). Equation (3.22) is valid. With the

aid of Equations (1.56), (3.Z0), and (3.ZZ), Equations (3.23) may be sim-

plified to

b
u

o
ub(e) =

b
v

vb ( ) oe =-IF

b
w

o

wb(e) : v

[Cli(_+_)+iI (w-'I)(_-"4)
n

z(_ -_) + i2n ('-_3)(_-'4)

[ (a)-_l)(_'- _4) ]c3i(_+l--)+iln (p-j._Z)(_,-%)

(3.Z3a')

+ 7[] (3.23b')

Here the constants c i may be given in many forms; e.g.,

(3.Z3c')

V/Z(1 + tan D°) /Z(l - b tan_b)(l + tanCb). 1= b + tan _ = 1 - b ( 1 + b)tan ch (3.24a)c 1

¢= / 2 2(i - b tan_) b) (3.Z4b)
c 2

- tan_ (I + b)( 1 - tan_ b)

bV/2(l + tangO)b /2(i + tanCb)(l_ b- tan ¢ b) (3.24c)
c 3 = 1 + b tan¢ ° 1 + b %/ 1 b

The real velocity components corresponding to Equation (3.23) may be

easily evaluated in physical coordinates. The velocity on the original wing

is related to that on the unyawed wing by Equation (I.21c) and the velocity

on the latter wing is given by Equations (3.8'), (3.13"), and (3.14'). It

should be noted that according to Equation (I.21c), v is the same at

corresponding points. Hence assuming w,_ to be the same for both

wings, ff is also the same. Since the sweepback angles differ, w o also
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takes on different values on the two wings according to Equation (3.20).

It follows from Section I that the three functions given by Equations

(3.23) and (3.24) represent a conical flow field. However, one has to in-

vestigate whether they actually satisfy the boundary conditions for the

wings in Figure 16. It follows immediately that all conditions on V are

satisfied and that in the plane of the wing w* = 0 on the wing and w = 0

off the wing. By construction these properties are transferred from the

unyawed wing to the yawed wing. There remains to be checked the condition

at the side edge. Formula (3.23) shows that for B _0, W b has here a pole

of order ½ because of the term I/_'. A comparison with Equation (I.13j )

yields the result (Cf. also the discussion preceding Eq. 1.46;:

Formulas (3.Z3) and (3.24) yield the correct solution

for planform IIa (leading side edge) but not for IIb. (3.25)

A solution for planform lib will be obtained from the second method

of applying the oblique transformation.

E. Uorentz Transformation of the W-function; W for Planform lib

In accordance with Equation (1.58) one generates a function Wlb(e)

from the function W ° defined in Equation (3.3) by

Wlb(e) :

e-B

-1- e

(3.,6)

As before the planform of the unyawed wing is given by Equation

(3.18) or (3.19). Relations (3.Z0) and (3.Zl) are also valid. However,
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b
Equation (3.2Z) fails since the condition v ° = v has to be replaced by

O O

o b
w = w . Thus the angle of attack and v on the wing are different in the

O O

b. o b

two cases. If v o ,s given, then v and w are determined byO O

O

o b Vo
_ W -_ -- W ----

o o _/ 1 - tanZ_ °

o b
which follows from Equation {1.44) and w o = w o.

b
V o

V / 1 - tan2_ b

(3.2v)

According to Equation (3.21) one may write Equation (3.27) as

O

V o /I - b 2 i + b tan¢ °

vb - 1 - b tan_ b - V_ - b z (3"271)
O

If these values of v o and w ° are used in determining W °, then the

function defined by Equation (3.Z6) satisfies the boundary conditions on

the Mach circle for both planforms Ila and llb. For B _= 0, ( d_ d =0

Hence by Section I-L there is a logarithmic discontinuity in the downwash

at the origin, and Equation (3.26) is good only for planform IIb. Further-

more, Equation (3.26) gives zero perturbation pressure at the edge (q_ = 0).

This is a second reason why it gives the correct boundary condition for

planform lib but not for planform fla.

In summarizing Section III-H above,

WI b as defined in Equation (3.26) satisfies the boundary

conditions for planform IIb. However, for planform IIa

it fails for two reasons: First, there is not a pole in

w at the side edge, and second, v has the correct value

only for -1<. t < 0 and changes discontinuously at t = 0. (3.28)
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One might, however, approach the solution of planform IIa in the

following way. Startwith the function defined in Equation (3.26). Then

try to add a correction function which removes the difficulties mentioned

in condition (3.28) without spoiling the boundary conditions which already

are satisfied. This correction function must thus satisfy the following

four conditions :

1. w = 0 on unit circle.

2° w_ = 0 on the wing.

3. W is regular inside the Mach circle except for a

simple pole in _ at _ = 0. > (3.29)

4. v is zero for -14 t _ 0; at t = 0 it has a dis-

continuity which is the negative of that resulting

b

from W 1 .

Because of condition 1, W may be extended by reflection and is hence

regular on the whole z; -plane except for the simple pole 1/P at the origin

and the reflected pole z¢ at z_ = oo. This fact, together with condition 2,

leads to a function of the form

b 1

W = k W 2 = k i (_+ _-) (3.30)

where k is a real number and

:l_ -B_/ 1 -B_

In order to satisfy condition 4, k will have to be determined from

the equation
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d(W1 b W2 b+k ) =0
6-=0

(3.31)

If this equation is solved for k, one obtains (Cf. Eqs. 3.23c a and

3 .Z4c)

b
W

0

k--_-- c 3

b
where the function W

W b W1 b b= +kW 2

is the one derived in Section III-G.

(3.32)

Returning to planform IIb, one sees that Wl b + c wzb, c being any

real constant, satisfies all boundary conditions except that for the side

edge (1.13 t). Hence for this planform there are infinitely many solutions

unless a Kutta condition is imposed at the trailing edge. Thus Equation

(1.13 I) is actually an essential boundary condition. In planform IIa the

situation is different. Here the value of k is determined by the downwash,

and the existence of a pole at the edge is proved to be necessary.

If poles of higher order are allowed, one might also consider the

correction functions

-n n

W = ci(_ + _ ) (3.33)

where n is an odd integer. These functions are excluded on the grounds

that they yield infinite lift on a finite area (Cf. Section II-C).

I. SolutionW = i [_+ (l/w)] ; Dowr_vashandSidewash for PlanformlIb

The function W2 b = i[_+ (I/v)] has already been d,scussed in this

section. This function will appear in many connections and thus needs to
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be studied separately here. In computing the corresponding sidewash and

downwash (U2 b and v2b), one has to distinguish between two cases:

B< 0 and

In the first, where _ _ 0, several properties of the flow field may

be determined a priori. The solution represents a flat wing of zero

thickness and of planform Lib. Although the angle of attack is everywhere

zero, still the wing is lifting with an inlinite pressure peak at the

edge. On the Mach cone and outside the Mach cone all components of the

perturbation velocity vanish. As pointed out in Section I-J, the sidewash

uis = zerofor 0<t<land = constant= Uo for b <t <0. This condi-

tion represents a vortex sheet behind the lifting wing. Since the liftis

positive and u o is the value on the upper side of this sheet, Uo_ 0. The

corresponding value on the lower side is -u o. On the upper surface of the

wing u increases from - oo to zero. At the edge the upwash is infinite and

there is also a logarithmic infinity in V at t = 0 corresponding to the

logarithmic jump of U.

b b

Actual computation of U 2 and V 2 bears out these predictions. One

obtains the following trio of functions:

B2-+I 1 (1-B)(I+B) z
U2 b = -i "-_ (_+ T) + 4B

Vzb= I-B 2
2B 4B _"

F

+ +

(u- I) + (I-B)(I+B) 2 2n (v- V/'_)(iv+--- v/_

W2 b : i(V + 1)

3.34a)

(u + V_'-_)(_ _ 1)

(3.34b)

(3.34c)

page 99



Progress Report No. 4-36

Here

-BB<0, U'= - B_

NACA TN 168_

_PL

For evaluating Equation (3.34) in real coDrdinates, the following for-

mulas may be used:

BZ+12B - b'I I-BZ2B -_b ' (I-B)(I+B)24BV/__ l+bb _l-b (3.35)

t-b
Also on the wing, putting t* - 1 - bt

i(p+l) = i IT*I + -

/2(I + t*) : /2(I - b_ + t)

J -t* b - t

f

1- IT*I /2(1- It*l )

/IT*t It*l

Hence

where

/2(1 - b)(1 + t)b-t (3.361

-l<t <b

As may be seen by comparing Equations (3.23c), (3.28), and (3.2Zb),

one may write the solution W b for planform Ilb as

= W b b (3.37a)W1 b - c W 2

O
where w

o 4B _ o
C - COS--

1- B 2 2
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Hence the sidwash and downwash for planform IIb are obtained from

Equation (3.34) and the formulas

= U b bU1 b - cU (3.37b)
2

= V b b
Vl b - cV 2 (3.37c)

The second case,/9 > 0, also represents a wing of zero thickness.

However, since b > 0, the planlorm is IIa and the ray t = 0 is on the

wing. The angle of attack is zero for - 1 < t _, 0 and jumps discontinu-

ously to another constant value between 0 _ t < b. Wings with such dis-

continuities will be discussed in Section VI.

If the sidewash and downwash are computed, one obtains the following

trio of functions corresponding to Equations (3.34)

Z

b B+I
U z : -i (3.38a)

ZB

b I-B 2 1

V z - (_-_) +2B

B)2._n i
(_+1)_ (I-B)(1+ (#-iv/_(P+_)

4B _ (_+ i_r_( . _ i)
v'g-

(I- B)(I__+ B)2[_iln(V-iV_)(g- _) (3.38b)

W2 b = i(_+ I) (3.3Sc)

As before, in Equation (3.35),

(I- S)(l + B) 2

4B v/E -
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Note that the second terms in the expressions for sidewash and down-

wash differ from the corresponding terms in Equation (3.34). The real

part of the second term of Equation (3.38a) will now be evaluated for

points on the wing:

T-BP= i IT*I, T* - 1 - TB < 0 (a)

Hence putting I T*I = R*

___t_i )
(_- iv/_(y+ _/_.

(_+i _(_ -

Here

_/_-. I-B(V_-_V_d](_ I) I I-R*

-t$ . 1 - b

1_7¥] b

Rv_ I-B
I+

i-R*

(b)

t-b
1%t* - 1 - bt _cj

and

-t* b-t (d)

t* + 1 - (t+l)(1-b)

Expression (b) may also be transformed into

-t -Cb(1 + t)
J(l + b)t (e)

Hence on the top surface of the wing (-1 < t <. b) the following for-

mulas result from Equation (3.38):
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2(1 - b)(1 + t) _2(1 + b) 1 - b
(b - t) b

- t -JbO+ t I
b)t

v= 0 for - 1< t <0.

11.1 -_ b /1 - bv = - b 2b for0<t<b

(3.39a)

(3.39b)

/2(i - b)(1 + t)

w= 4 b-t
(3.39c)

j. Planform III

Consider a flat lifting delta wing with both edges inside the Mach

cone. To begin with, leave unspecified whether one edge is trailing

(planform IIIb) or whether both are leading (planform Ilia) and what the

nature of the flow at the edges is. The boundary conditions are shown in

Figure 16.

(a) Planform

(b) E-Plane

/
#

/

A

////////_

|

\\\\

_3

\

X
I

X

%
\

FIGURE 16. PLANFORM III
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The Riemann surface of the function W can easily be obtained by re-

flection (Cf. Sections II-B and III-B). The fact that w = 0 on the unit

circle means in geometrical language that W maps the unit circle in the

£- -plane on the imaginary axis in the W-plane. Then by analytic continua-

tion one can define W outside the unit circle in such a way that points

which are images with respect to the unit circle are mapped on points

which are images with respect to the imaginary axis in the W-plane. The

image of e in the unit circle is I/e and the image of w + iw _ in the

imaginary axis is - w + iw#. Hence the rule for extension is in algebraic

formulation (Cf. Eq. Z.9)

W(1/_) = - W(e) (3.40)

Before extension, W was analytic inside the unit circle except across the

slit BzB 1 and except for possible poles at B 1 and B z. By extension W will

then be analytic in the outside of the unit circle except for the slit

(1/B 1 to + c_, - o_ to 1/Bz), which is the image of the slit inside the cir-

cle. Hence W is defined on the whole Riemann sphere (e-plane and point at

infinity) except for the two slits mentioned. By Equation (1.46), w* = 0

on the slit BZt _ both on the top side and the bottom side. By Equation

(3.40), this condition is then also true for the reflected slit. Since

w* = 0, one may again use analytic extension for continuing the function

across the slits. The rule for this extension will be

W(e) = W((=) (3.41)

According to this rule w = Re(W) is symmetric with respect to X-axis. But
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from considerations in Section I it is known that in the part corresponding

to physical reality w is antisymmetric with respect to the wing. Hence

continuation across the slits will not give the values of W that the orig-

inal part of the function assumed but will lead to a new sheet of the

Riemann surface The situation is very similar to that of planform IIab

except that only one slit had to be considered in planform IIab. It may

again be concluded that the Riemann surface has only two sheets because

w* = 0 on both sides of both slits. Hence the four possible reflections

(in the upper and lower parts of the two slits) yield the same result, and

two successive reflections give back to the original function (Cf. plan-

form IIab). Thus the Riemann surface consists of two spheres joined along

the two slits B2B 1 and 1 1m_. This condition is shown in Figure 17
B 1 B Z

where some closed curves have been drawn to illustrate the nature of

the branch points.

w*=O w=O
$

w*=0 1

B z

Y

. w* --0 :'-'_
I I

Dotted Part of Contour

is on the Lower Sheet

PX

FIGURE 17. RIEMANNSURFACE FOR PLANFORM III
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This is a well-known Riemann surface (Cf. pp. 229 and 244 ff. of Ref. 18;

also Part Ill, Chap. 9.1 of Ref. 19). It has the connectivity of a torus,

and any function which is meromorphic on this surface (i.e.,is analytic

except for isolated poles) may be expressed as a rational function of the

two quantities e and the radical

i l
f= (e - B1) (e- B2) (e- _11) (e-_2)

(3.42)

Furthermore, for any meromorphic function on a compact Riemann sur-

face, the number of zeros equals the number of poles; when the poles and

zeros are known, the rational function of /' and e can be written imme-

diately. From the process of extension just described, it follows that

the only possible poles are at the end points of the slits.

First consider a basic solution which has a simple pole at B z and a

zero at B I. The connection with physical condition at the two edges will

be discussed later in this section. From Equation (3.40) one concludes

that 1/B z must be a simple pole and 1/B I a zero of the function W. Since

no other poles are possible and the number of zeros already equals the

number of poles, it may be concluded that there are no other zeros either.

The rational function of to and _ which has the correct zeros and poles is

easily seen to be

1
(e- BI) (e-_,)

W = k /o _ (3.43)

where k is a real constant. The constant k has to be real but is otherwise

arbitrary. Then for real values of _-, Equation (3.43)gives the correct
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values: w_ = 0 on the slits and w = 0 between the slits. Furthermore,

w = 0 on the unit circle. Hence Equation (3.43) satisfies all boundary

conditions except Equation (1.41), which will be used in determining k.

Note that a simple pole does not have the form

1 1
but

- B 2 V/_- B 2

This condition exists because B 2 is a branch point, and a neighborhood of

B 2 on the Riemann surface cannot be described by the variable e; instead

one needs a uniformizing variable (Cf. pp. 214 ff. of Ref. 18) likeqr_ - B z.

By a similar reasoning one sees that (e -BI) represents a zero of order 2.

However, in Equation (3.43) _ - B 1 appears in the denominator. If this

factor is divided out, v_ - B 1 remains in the numerator and represents a

simple zero. To show the poles and zeros, write

-( e - SI)(Bi e - i)W=k (e- Bz)(B 2 e - I) (3.43')

where k is a real number.

Next look for solutions with simple poles at B 1 and B z. Such a

solution is found by adding to Equation (3.43 i) a similar solution with B 1

and B 2 interchanged:

W = kl_-(_ - BI)(BIe- i) + k2 J-(e - Bz)(B 2e-l)
(e - B2)(Bze - i) (e - BI)(BIe - I)

(3.44)

where k I and k 2 are real numbers. Evidently Equation (3.44) satisfies the

• Page 107



NACA TN 1685

Progress Report No. 4-36 JPL

boundary conditions for W since each of the terms does and the conditions

are homogeneous: Each of the terms has the property that its real term

vanishes on the unit circle and its imaginary term vanishes on the real

axis between B 1 and B 2. Hence the sum of the two terms has the same prop-

erty. Furthermore, since there are poles of the right order both at B 1

and B 2, there remains only one thing to be checked, namely, the absence of

a logarithmic singularity at e = 0 if this point is on the wing (planform

Ilia). This can be achieved by choosing k I and k z in the correct ratio so

(dW) vanishes (Cf. Section I-] and the use of the correction
that d-_-J_ = 0

function in Section III-H). Then

dW kl _ -B2(1 + BI2) + BI(1 + B22) (a)

= 0= T,] -B22

k2 _ -BI(I + B22) + B2(I + BI2) = 0 or k2_ B1

+ -_-q B z -B12 kl -B z

Hence for planform IIIa, Equation (3.44) must be of the form

where k' is a real number.

(b)

(3.45)

For the unyawed delta wing _i = -/_2 = /8 and B 1 = -B 2 =B.

I-[BeZ - (I +B2) a+B] + [-BeZ -(i+ BZ)_-B] 1W = k'B k/(e 2 - BZ)(B2e 2 - I)

- 2k'B2(l + e 2)

= X/_J - BZ)(B2eZ-I) - J

Then

(c)
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Hence for the unyawed case

B(e2+l)

W = k '_ / (3.46)

_/(e2 _ 82)(SZe 2 _ 1)

where k" = -2k'B is a real number.

This is the formula obtained by Stewart in Reference 16. It may also

be obtained directly by the following reasoning. The Riemann surface for

W is as described in connection with Figure 17. There are four poles,

namely, at + B , and + ]/I_ and these are the only singularities. Thus the

function may be written down as a rational function of e and/° (Eq. 3.42)

as soon as the four zeros are found. Now w = 0 on unit circle. Further-

more, for the unyawed wing the imaginary axis is a line of symmetry. Hence

_)w/@x = 0 here and thus also _}w*/_y = 0. But w* = 0 at e= 0. Hence w* = 0

on the whole imaginary axis. Thus at + i, w = w* = 0 and also W = w + iw* = 0.

But these are actually four zeros, since the surface is double-sheeted and

the points _- = + i occur on both sheets. Thus the information about the

zeros and the poles is complete, and this fact yields Equation (3.46) im-

mediately. Comparing the results with the boundary condition (I.13I) for

the edges, one reaches the conclusion that Equation (3.43 t) is the solution

for plan:[orm IIIb if B 1 corresponds to the trailing edge and (Eq. 3.45) is the

solution for planform Ilia. Both formulas contain an undetermined con-

stant k which will have to be determined from the angle of attack (Cf.

Eqs. 3.50 to 3.54, inclusive).

As for planform lib, one obtains the result that if a pole is allowed

at a trailing edge there are infinitely many solutions for planform IIIb,
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because the angle of attack gives just one relation between k 1 and k 2 in

Equation (3.44). Thus this formula represents a one-parameter family of

solutions for planform IIIb, all of which have poles at the trailing edge

except when k 2 = 0 (Cf. Ref. 16 for a discussion on higher-order

s ingular itie s).

To evaluate w in physical coordinates in the plane of the wing, ob-

serve that

(e- B1)(B1 e " 1) 2e 2B I

(e- B2)(Bzt- I)

2
e z B I + I I I+I _ -_

B I t b I B I

2 _- 2B 2 t b 2

(d)

Hence for the wing with one edge trailing

t

w= k -B_I•

1

I:T_
b 2

(3.47)

For the wing with two leading edges

w = -k' -B_IB 2
1 _t 1_

f F1 - N2
+ (348)

Finally, for the symmetrical case (b 1 = - b 2 = b), Equation (3.48)

reduces to

w = -k'B 2 = k"

1 - (T

(3.49)

To complete the solution the constant k has to be determined as a
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function of the ang]e of attack. One way of finding k is to compute the

downwash from the pressure and to compare it with the known values on the

wing. Calculations have been carried out for the symmetrical case by

Stewart (Cf. Ref. 16). For the yawed case the constants were first found

in Reference 20.

For planform IIIb the constant k is given by (see Kef. 20)

k _=

E(C)+ CiD_-[o [C,(-D_) ]

(3.50)

where

AJ_. -blb2_____ .____+/1-b12_ -b2z....

4 2
C = 1 _(1- b 1 )(1- b22 )

C 1 = _I- C 2

n

b 1 + b 2

1+ blb 2 +x/l- bl2x/_- b22

D 1 = J l - D 2

E(C) = the elliptic integral of the first kind

2jn o ,(- D 1 = the elliptic integral of the second kind

= dA

o (l -x2o  ,J(i - Azm -
The corresponding formula for planform IIIa is
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k, = -aw_ 1

1 - BIB z m(C)

(3.5l)

where C is defined as in (3.50).

In the symmetrical case Equation (3.51) reduces to

_0[w • ZB 1 /_w b
k" = -2k e B -

E E (_/ri--_-23
LI+B_]

(3.5Z]

From Equations (1.43a), (3.49), and (3.52-) it follows easily that the

sidewash on the wing has the simple form

U ----

-(lw (t/b)

E(V/I_--_b ).4/(1- (t/b)Z (3.53)

With the aid of this formula and the rule for oblique transformation

(Eq. 1.21), the constant for the yawed case of planform IIIa (Eq. 3.51)

may be deduced from the unyawed case (Eq. 3.53).

The downwash is determined from

z)2
dV _ -iaw_. (I +B z) (I -e- (3.54)

de ,1-B z] [(eZ _BZ)(BZ(Z _i13/z

IV. WINGS OF CONSTANT-LIFT DISTRIBUTION

The wings considered in this section are lifting wings of zero thick-

ness. In this respect they are similar to the wings discussed in Section

III. Thus the local angle of attack is the same at corresponding points
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on the top surface and on the bottom surface, and v is symmetric and u and

w are antisymmetric (Cf. Section I-B). However, in Section IIla constant

value of v was prescribed on the wing since the shape of the wing was

given. In the present case the lift of the wing is prescribed and hence w

is given. It will always be assumed that the lift distribution is con-

stant. Thus on the top surface w = constant = w o and on the bottom sur-

face w = - w o. For the purpose of obtaining solutions the present case is

thus much closer to Sectionll than to Section Ill, because, in the present

case, w is prescribed in the whole plane of the wing and also of course on

the hAach cone. Thus there are sufficient boundary conditions for one per-

turbation velocity. As for the syrnrnetrical wings of given shape (Cf. Sec-

tion II), this fact makes the solution straightforward. Another similarity

to Section II is that interference between two wings of constant lift in

the same plane does not affect the boundary conditions, for there is only

downwash and sidewash interference but no pressure interference between

two wings of the constant-lift type.

These general characteristics simplify the solution in two ways.

First, because of the last-mentioned property it is enough to obtain the

solution for some very simple planforms and then obtain the other plan-

forms by simple superposition as in Section II. By making a slight modi-

fication of the procedure in Section II planform II will be chosen for the

basic solutions. Planforms I and III are then easily obtained by superpo-

sition. As a matter of fact if, e.g., solutions for planform IIb have

been found, one may obtain solutions for planform IIa by subtracting from
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the two-dimensional case. Condition (113) is not of importance for the de-

duction of the analytic formulas since for the constant-lift wings there

is no difference in principle between a leading and a trailing side edge.

But such a subtraction is very useful for actual numerical computations.

The second simplification is that for solving problems in this sec-

tion one may merely borrow the solutions from Section If. More precisely,

if a certain function f(_) is the correct solution for V for a symmetrical

wing with v = + aprescribed on the wing, then the same function f(e) is a

correct solution for W for a wing of the same planform with w = + a on the

wing. Actually W(e) will be obtained for a wing of planform IIab by this

procedure; W for the general planform II is then obtained by a homographic

transformation. This transformation is completely trivial for wings with

prescribed lift distribution, and none of the complications of Section III

arises. However, because of the special use of the wings in this section

(Cf. Section IV-B), the interest is mainly in the downwash and the side-

wash, which, of course, may not be taken immediately from Section II.

Thus, the program is as follows: From Section II one obtains imme-

diately the function representing W for planform II. From this function V

and U are computed with the aid of Equation (1.42), and v and u are then

evaluated in terms of physical coordinates. To evaluate w separately is

of course superfluous since this function may be had immediately from

Section II.

A. Planform II

This planform will be treated in detail because of its importance for
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downwash calculations. The boundary conditions are shown in Figure 18.

Since the lift distribution is constant on the wing, w is also constant on

the. wing by Equation (1.3a). It is assumed that the value of w on the top

side of the wing is w . Hence it is -w on the bottom side.
o o

(a) Top View

/
/

/
/

/
/

/
/

/
/

/
/

/

,k

\
\
\

X I

\
\

X 3

(b) e -Plane w=w_. w=wnl. W=Ul J, X

W=-W'_ W=-%WO B
e,

FIGURE 18. WING OF CONSTANT-LIFT DISTRIBUTION, PLANFORM II

As in Section III-F the following abbreviations have been introduced:

1 -V_I - b z

b = tan/_, B - b

ei
1 = ,_2 =

, cos_f- - tan ¢ (4.1)
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As before, move the point B, representing the edge, to the origin by

the transformation

e -B

- (4.2)
l-Be

The singularities & 1 and @ Z are thereby moved to _1 and v_Z, respectively,

whe r e

(- I -B _ Z -B

- and _2. --- (4.3)
1 1 -Be I 1 - Be 2

In the _-plane the boundary conditions look as shown in Figure 19.

_ w=O

= -W G

FIGURE 19. BOUNDARY CONDITIONS IN THE q-PLANE

As is seen, there are three logarithmic singularities inside the unit cir-

cle, namely, at _= 0, 7_1, ]qZ" Figure 19 shows paths consisting of small

half circles around the singularities. The paths are inside the circle

and do not cross the slit on the negative real axis. If 9?_ varies counter-

clockwise on these paths, w.. increases by 1 ate= Oand decreases by 1 at
W o
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and l_Z. A function which has these singularities (Cf. Ref.4) is

w[, 1w - o n(_-_.l) + Jn (Tt - _Z) -1 nr L (4.4)
11-

On the real axis of the _ -plane the real parts of the first two terms

represent angles of equal magnitude but opposite sign. Hence the only term

-iw° _n _ which gives the correctthat gives a contribution to w = Re(W) is 71"

values w = +w o, -Wo, or 0.

For the applications_ the components u and v rather than w are of

interest. Explicit formulas for these components will be derived from

Equations (4.4) and (1.42). As in Section III-E the functions F and G are

introduced by

and

-3_ dW
dF = .----_ (a)

o

dG = iw dW
o

The following auxiliary formulas will be needed:

(b)

drt

d_ -

(I - Be) - (e-B)(-B) I - B Z

(1 - Be) z -(1 - B_)z

1 1

YL -_I e-___BB- el-B
1-Be

I - Be
1

_ (I - Be)(1 - Be l)

- e I - B2(_ -el)

(c)

(I - B_)(I - Bel)

(I - BZ)(e- el)

(d)
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i - me z (I- a z) ]
dW = iw o I - Be I +

dE 7]- (I- Be)(e-el) ( i - Be)(e-aZ) (e - B)(1 - Be) J
(e)

B z
1 i - B e I 1 - Be I 1 1 1 + (f)

= - &+6 _ e I_B__e (i - Be)(& -ei) e i I - 1

2 B21 - B 1 - B z 1 (g)

(_- B)(I - Be) - Be + B(e- B) + 1 - B<-

e (1 - Btl) e 1 1 (h)

(I - Be)(c-- el) = e -e I + 1 - Be

a (I - B z) B 1 (i)

(e- B)(I- Be) - &- B +i- Be

Hence integrating formulas (a) and (b) and neglecting constants of

inte g r ation:

- F= -
1

._n (+61 ._n (a -_1) - B _n (I - B&)

1 - Be z i

- _Z ._n e +e2--._n(6-ez)-B._n(l- Be)

I-B 2 I ]- - T _n6 + _ A_n (6 -B) - B _ n (I-B6) (j)

Since
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oJw_ = _ -F + + c 2 (m)

where cI and c2 are constants of integration, then

2_U F - G / 1 - Be I . 1 - Be 2 I - B 2

iw ° e 1 e 2 B

1
+1-_I +e )Jnl_-el) +(I-_Z+ e2)/_n(e-e:Z)1

1

-(_- + B)_n (1 - Be) - (g+ B)_n(_- B) + cI

= (!+ B z
B - 2 Reel)]_n e + 2Re(61)2 n(_-61)(6-62)

1

-(B + _-)_n(&- B)(I - Be) + cI

or

[w = i Ree 1
O

i (B+I
B

I+ B2] n

Z--B" "_J _" iRe(q)_n(_--&l)(6"eZ)

)_n(6- B)(I - Be) + cI

2_V

W
O

I - B_ 1 1 - Be Z 1 - IB2_= - F + G = el _2 + _ _ j_n(-

(n)

(4.5)

or

+ (ez -el).in(6 - el)+ (_-1-_z)In(E -EZ)

I - i+ B)£ n(e- B) + c
+(?B - B)_ n(1 - B&) + ( B 2 (o)

Page 119



ProBress Report No. 4-36

NACA TN 1685

JPL

-WV (1 + B 2
w - 2B

O

Reel) J_ne + i(Imt}) In--

1 -_n
+ ½(B-

e-B
I - Be + c2

@-_'2

_-E- 1

(4.6)

Y

_X

FIGURE 20. NOTATION USED IN EVALUATING EQUATION (4.6)

The most convenient way to evaluate the constants c I and c Z from the

boundary conditions is first to find the real parts of V and U.

i9
gives for a point e= R • e

sin_- R sin8

tan O1 = cosy- R cos{)

Figure 20

tan0 2 = sin _ + R sin0
cos_- R cos8
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Hence

tan tan 01 + tan 82
= tan (81+82) =

1 - tan81 tan82

-2R sin8

cos_-R cos 0

- sin2_b - R 2 sin2@

I + (cos_ - R cos e)2

-2R sin8 (cos_J- R cos e)

1 + RZ(cosZe - sinZe) - 2R cose cos
(p)

Similarly

- _2._

I+

2 sin_ b

cos_- R cos 8

R 2 sin20 - sin 2 tp

(cos_- R cos 8) 2

zsin_(-cospecos0)
- 1- R 2 - 2 cos Z_2R cos_cos{} (q)

To evaluate c 1 and c 2, pute= 1; i.e., R = 1, cos{} = 1. All the

terms in Equation (4.5) have vanishing real parts, i.e., c 1 = 0. All the

terms in Equation (4.6) vanish except the term computed in formula (q)

above. The right-hand side of formula (q) reduces to

2 sin_P(-cos_ + 1) sin_ _/1 - tan2_
- Z cosZ_+Z cosp =cos_ = tan

Hence

c 2 = - (Im_l) Re(i_n 1-_Z)I-e I = -V_ - tan2+ arc tan/1 tan_

Introducing these values and some standard simplifications gives
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and

_U _ i[tan_ - ctn_J_n_- itan_ _n(e-61)(_-_2 )
W o

÷ i ctn_ _ n(6 - B)(1 - B_ )

-e 2
1VV (ctn_ - tan _b )_na + i /1 - tan2_ _n ¢_ 61W_o= --=----

(4.7a)

+ (_)J_n 1 - B_- - tan

To complete the evaluation of the real parts the third term in

Equation (4.7a) should also be considered. With reference to Figure Zl

Re [ (i_ n(6 - B)(1 - Be)J= -(81 ÷ 82) + nlT

where

n= + 1 for B_O

= 0 for B_O

Y

X

FIGURE 21.

The angles 01 and 82 are determined by

6 -PLANE
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R sin 0
•O_anvI = R cos0 - B

R sin 0

tan02 - R cos0 -1
B

(s)

tan (e l+ 82)-

R sin@ [2 R cos e -(B +l )_

R2(cosZO - sinZ0) - R cos 0 (B _ ) + 1

Hence

-Wu= 1
Wo (-tan_+b-) 0 + tan

- 2R sin 9 (tan_- R cos 8)
arc tan

1- RZ(sin20-cos20)-ZR cos0tan 7)

1

2 R sin0 (R cos 0 -b) "_
R +

tan R2(cos2O . sin20) _ 2 _ cosO + 1

(4.8a)

where n = 0 for b< 0, n = -I for b _>0, Actually nTr = - argument of

(-B). The values of arc tan and n have to be chosen so that u = 0 for

e- ;1.

-B
To find the real part of _ n"1 B

served that if

then

and

Hence

in Equation (4.7b) it may be ob-

le-BI =Rland II- Bel =R z

R12

2
R 2

= R 2 + B 2 - 2BR cos 0

= 1 + BZR 2 - 2 BR cos 0
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e-B

Re (In_)=-_nR 1 - _nR Z = ½_n

R Z B z+ -ZBR cos{)

1 + BZR z --2BR cos {)

JPL

The expression for v then becomes

(_) I 2 _l-tan2_ (R cos{)-tan_) Vwo_ (ctn#-tan )InR+ arctanI_RZ_ZtanZ#+ZRtan cos0

- arc tan tan _ | + 4B _n
J

R Z + B 2 - 2BR cos {)

1 + B2R z - 2BR cos {) (4.8b)

Formulas (4.8a) and (4.8b) will now be specialized to points in the

plane of the wing. For such points {) is either O, + _" (top side), or -3[

(bottom side). This value has to be substituted in Equations (4.8a) and

(4.8b), or Equation (4.7) may be used. Care has to be exercised in choos-

ing the values of the arc tan function. A reference to Figures 20 and 21

is here recommended.

The following calculations apply to the top side of the plane of the

wing. Because of antisyrnmetry, u takes on the corresponding values of op-

posite sign on the bottom side.

The expression for u becomes

Wu_o:[_ tan_ ÷ ctn#] arge- ctnj_ [arg (e-B)+arg (1-Be)]

where

u - (-tan _ + ctn_) n I - nZ ctn_ (4.9a)
W o

n1 = 1 for t <. O.

: Ofor t >0.

The corresponding formula for v reads
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- arc tan

tan
2-41 - tanZ+ (T - tan @)

1 - T2-2 tan2# +2T tan#)

(4.9b)

Plarfform II will now be specialized in four different ways by assuming

simple values of the angles _5 and_ : (1) @ = O, (2)/_ = - 71-/4, (3) _ = O,

/_ = -_4, and (4) _ = O. In the first case (_ = 0), Equations (4.7) and

(4.8) reduce to

_=- na-ln(e- B)(1 - Be (4.10a)

IrV B 2 + 1.2ne - i_ne-i B2-1 6-B 11-
_o - 2-B _-_ ÷ --_ ]"n 1-Be 2.

-Iru =-ctn/_ 0 + arc tan_2(cosZ8_sinZe)_R cos 8 ctn/_+_o " +n

= n R + arc tan Z R cos @
I - R 2

B2-11 n R2 + B2 - 2BR cos 8 71"
+ -_- 1 + BZR z - ZBR cos8 -

For points in the plane of the wing, there is a further reduction:

u

Wo - (nI - n2) ctnp

(4.lOb)

1"1 (4.11a)

(4.11b)

n 1 = 1 for t <0, n 1 = 0 for t_O

n z = 1 for t<b, n z = 0 for t >b

ll-Vw___=_I _n[T[ +arctan 1 -2TTz + BZ-lzB "_*I T- BIWI BT --2

(4.1Za)

(4.12b)
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In the second case (# = - 71-/4) one obtains

Wo - i (tan_ +1)_na - i tan _2 n(e -el)(e -eZ)-Zi In(l+e)

_I tan2_ 6 -
Z

qIV - (i + tan#Jln& + i - Ine -_I,%--

(4.15a)

tan2_.rc (4.13b)

-flu (tan_+l)0+tan_ "arc tan
O

-ZR sin 8 (tan¢ -R cos 8)

l+RZ(cosZS-sing@)-ZR cos 8 tan

+ 2 arc tan
R sin 0

1 + R cos 0

W--Zv= -(l+tan_)_nR +/1 - tanZ_
W o

V/I- tan2@
- arc tan

tan

For points in the plane of the wing:

_o=u - (tan_ + l)nI

(4.14a)

Ia Z Jl-tan 2-_ (R cosS-tan _6)
rc tan I_RZ_2 tanZ ¢ +ZR tan¢ COS 0

(4.14b)

(4.15a)

n 1 = 1 for t < 0, n 1 = 0 for t >0

-n-v

_o = -(1 + tan_) _nl T ]

+Jl - tan2_ [arc tan

2V/I - tan 2_ (T - tan¢)

1 - T 2 - 2 tan2@ + 2T tan @

]Jl -tan2_

- arc tan tan _5

Inthe third case (_= 0, _ = - 7[/4) one obt ains
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w-U = iln¢- 2 iXn(1 +_)
o

_V = --_n e + i._n _ + i yr-
,w..-- 6-i 2

o

_fu R sin 8

_o = - @ + 2 arc tanl+ R cos 0

_v 2 R cos 0 _-w-- = -_nR + arc tan
o I - R Z Z

For points in the plane of the wing:

(4.16a)

(4.16b)

(4.17a)

(4.17b)

u__ = _ lfor t _. 0, u= 0 for t_>0
Wo

_['v _n I TI÷ arc tan ZT -U-
w° - 1 - T 2 Z

In the fourth special case (_ = 0) the following limits have to be

evaluated:

lira _n(e- B)(1 - Be)-_ne

B-_0 b

= lira In(e- B)(I - B6)-_ne

B-_O 2B

I I-_B_n(e-B)(l -B_)I B=0=2-

1 1
= --(_ +_-)2

J

(4.18a)

1 e-B 1 I__Blim-_ (-_n I B_- .tn_) = - _
B-_0

n 1
11

B=0

(4.18b)

(a)

(b)

Then Equations (4.7a) and (4.7b) reduce to

-w__U i l)tan_ ._ne - itan_ ]n(e-el)(e-62) -_e+
i

w o
(4.19a)
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Jl • -62
_'_o=v - tan_ne + i - tan2_ _n •__ii

1

-/l-tan2_) arc tan V//I- tan2_ (4.19b)
tan

The corresponding real parts are most easily found by comparing Equa-

tions (4.19a) and (4.19b) with Equations '4.7a), (4.7b), (4.8a), and (4.8b).

-Tru
w- = - Otan_ + tan_ arc tan

O

- 2R sinO(tan_ - R cos0)

1- RZ(sin20 - cosZe) - 2R tan _ cos 6

sinO 1

(R - (4.Z0a)+ 2

la 2 /1 - tan2_ (R cosO - tan_))= - tan _ J nR + _I - tan2_ rc tan 1 - RZ-Ztan2_ + 2R tan _ cos0
I[ V

2 t
V/l-tan * 1 cos{) 11

- arc tan _an_ "J+--7 _ - R) (4.20b)

B. Note on Applications

Probably the most important application of the wings of constant-lift

distribution is in finding the induced flow field behind a wing of finite

chord. This application was indicated by Busemann (Cf. Ref. 4) and is

discussed in detail in Reference 2.

V. MIXED TYPE OF LIFTING WING

The problems studied in this section will be those in which the lift

distribution is prescribed over one region of the wing and in which the

shape is prescribed for the rest of the wing. Only a special case will be

treated with the following properties: In one region the lift distribution
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is constant, w = +w o, and the rest of the wing is a flat plate at zero

angle of attack. The importance of such solutions is that the interfer-

ence of a lifting element is determined (Cf. Section V-D). In Section IV

wines of constant-lift distribution were discussed. In the plane of the

win E such wines induce a downwash field but no pressure field off the win E.

However, if a flat plate at zero angle of attack is introduced into this

downwash field, an interference effect results. Since the downwash has to

be zero at the flat plate, an additional flow field is generated which

cancels the downwash due t o the liftin E element at the plate, and at

the same time yields lift on the flat plate. Thus, though actually the

flat plate is at zero anEle of attack, it has a variable effective angle

of attack because of the downwash field. The resultin E composite flow

field will be determined in this section, and the lift induced by a flat

liftin E element will be discussed in Section VI.

Solutions in this section will be straightforward , because of the

previously developed technique, in particular the use of the flatness con-

dition (1.46) in combination with analytic extension by reflection and

also the use of the Lorentz transformation.

The previous classification of wines by planforms is no longer suffi-

cient. Only certain representative examples of the various possible cases

will be treated.

A. Example I: Pressure Distribution

The most important case is probably the one shown in FiEure 22. This

win E consists of two regions. Region I is flat and at zero angle of attack

(v =0), and region II has a constant-lift distribution w -- +__w ° . The more

Page 129



Progress Report No. 4-36

NACA TN 1685

JPL

t 'S//
Region I ////Flat Plate,

v0

X 3

\\\\

\\\\

Region II

Constant Lift,
W=+ W

-- O

-_ X 1

FIGURE ZZ. MIXED TYPE OF WING, EXAMPLE I

general case 6t@:0 on region I can be obtained easily by simply adding a

solution from Section III which has the same planform as region I and which

has a constant angle of attack _: 0. Such a wing would have w = 0 on region

II and hence its superposition would not spoil the boundary condition:

w = +__w o on region II. It is also evident that when the flat plate (region

I) is at zero angle of attack, the sweepback angle of the leading edge of

region I is irrelevant as long as this edge is outside the k4ach cone; in

this case any perturbation velocity existing in region I is induced by re-

gion II and there are no disturbances outside the Mach cone.

The boundary conditions in the e -plane are shown in Figure Z3.

The fact that _t = 0 on region I and on the wing outside the Mach cone

has as a consequence that w = 0 on the Mach circle. Furthermore, since v
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B = I - l_-b Z-

b

b = tan

Y

• X

FIGURE 23. BOUNDARY CONDITIONS IN THE e -PLANE, EXAMPLE I

is constant on line OP (Cf. Fig. 23), it is assumed as before that w* = 0

here by Equation (1.46_). As in Section III the function W is extended by

reflection in OP. Assume, to begin with, that there is a function W which

is analytic inside the unit circle except for the slits OP and OB. By re-

flection in OP, W is extended to a two-sheeted surface consisting of two

unit circles. The point 0 is then a branch point, and passage from one

sheet to the other is across the line OP. On the lower sheet a slit OB is

then obtained similar to the one on the upper surface. As before, the

surface is made single sheeted by the transformation

The boundary conditions in the u -plane are shown in Figure 24.

This is a simple type of boundary value problem. The narrow unyawed
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W = - W 0 w=O

W =W 0 _ I._

_0 - I w=0
W= --W O

i W= W
O

FIGURE Z4. BOUNDARY CONDITIONS IN THE _-PLANE, EXAMPLE I

delta wing (planform III) has,these boundary values for w in the e -plane

if it has constant lift (Cf. Section IV) and for v in the e -plane if it is

nonlifting and has a symmetrical wedge profile (Cf. Section II). There are

two logarithmic singularities at +_-B. Since w = 0 on k4ach circle, two

additional singularities are obtained at +_l/v/-B by reflection. By the

standard procedure previously used in this report, the strength of the

logarithmic singularities can be determined, and when the singularities

are known, the function h_ay be written down immediately

(_ - v/-B)(1 - v_ _) (5.2)
-i w o _n (_+qr-_)(l + _u)W- 71"

This discussion of the singularities does not determine whether a

constant is to be added to the right-hand side of Equation (5.2). That

Equation (5.2) actually is the correct expression if suitable values of

the multivalued logarithm function are taken will be seen from the evalu-

ation of w in terms of variables in physical space (Cf. proof of Eq. 5.3).
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For the applications, one is primarily interested in the lift distri-

Since it is at zero angle of attack, it would have

However, the presence of the lifting surface, region

II, induces a lift in region I. This region corresponds to the negative

real axis in the e -plane and to the imaginary axis in the _ -plane. A ray

in region I is characterized by the angle _ , which is negative.

1 -V_I - t 2

t = tan 3_, T = t (a)

and also

N Ibl

The ray U then corresponds to the point Ni (or -Ni I in the _ -plane.

FIGURE 25. /J -PLANE: EXAMPLE I

From Equation (5.2.) it follows that the value of w at the point Ni is
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given by

_w =¢1 +¢z -¢3 -¢4 -_= el + °z - _ (c)_o

where the notation is as explained in Figure 25. Equation (c) is still

true if the point P is on the unit circle, in which case it gives w = 0,

the correct boundary condition. It also gives the correct value w = w o on

interval (- v_, x/B) which corresponds to region II on the wing.

From Equation (c) one may evaluate w as a function of 2[ on region I.

O1 _- 02 1

tan 2 - N' tan_-=_ N (d)

el + Oz ¢_ + 1
tan--- -_ _ N(B+I) (e)

1
Z 1 - S--2 VB (NZ-I)

N z B+I 2

*-(N -I)2B
cos(O 1 ÷ 8z) = NZ(B+I)Z (f)

1 + (NZ_I)ZB

But by Equation (1.37c)

and

B : \2B/ = _ b

(_ 2-2=2
-I -t

(g)

(h)

Introducing Equations (g) and (h) into Equation (f):
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1+ t b+l
1 + t b b + t + 2bt

cos(el + ez) = - (i)
t b+1 b -t

I
l+t b

Using the formula (arc cos x) - "W : arc cos (-x), Equations (c) and (i)

result in

w 1 b + t + Zbt
_-o =_ arc cos t - b

t = tan T (5.3)

For the top side of region I, arc cos is to be taken between 0 and +-ft.

The boundary between regions I and II corresponds to t = 0. Here w =

(Wo/Tr) arc cos (b/-b) = To, which checks. Where the Mach cone cuts region

I, t = -1. Thenw/w ° =# arc cos (b - 1 - 2b) / (- 1 - b) = 0. This value

also checks since region II cannot induce any lift outside the Mach cone.

B. Example I; Sidewash and Downwash

U and V can be calculated most readily following the procedure in

Section III-E. Introducing 9 = _ in Equations (1.42)

dU = __ dW
(a)

Let

1 dW (b)
dV_i ( 2 _.._)_.__d_ 2

dF -i[ 1 dW
_= -.-------"-2"
d_ xw p d

o

dG -_ _2 dW
dT= - x_-_o " d_

Differentiating Equation (5.2)

(c)

(d)
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dW

dx)

1 d_ r

Expanding _ dr

F

tWo |___/___i 1 1

and _ Z d WWinto partial fractions

1 v_'] (e)
_+

= + 1

_ -_t--_-_-_)_ (_,-_1 +

dG 2 +_)+ Iy B id--V= _J-g+

Integrating Equations (f) and (g)

7

B 1 BI (f)

_v- 1___ B(J2+_-B) J)+ 1

v_

B 1

t ¢fi-/ i, J-K/

(g)

2{B+l./ 1

F= t---_B]']+

+ constant

o:,/:_+4+[
+ constant

il--j_n(_- v/B) BJn(l -_ v/B) - 1 _n(_+V_)_B2n(l+_v_')l

]
+

B B J
(h)

, : ]Bln(i,'-V_) + _._n(l -i,'V/B)-BAn(IJ+ v/B) - fn(l+i)'4B)

(i)

Then the complex sidewash and downwash are

U i

-- = _(F+ G)+ constant (j)
TF Wo

"IT- V - ½(-F+G) + constant (k)
W o

Hence

" ,(_+'V,+'4+,(-_+'-]°_-_,c,-__>+<oo_<oo<(_._)
w_:t-_-B/t 7/ tz----Bj_ Os+ v_-)(,+.v_)

w_:t_/t _- , _,,__o(_+_)(,-__)+°o°s<_o<
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The evaluation of the real sidewash and downwash (Cf. Eqs. 5.6 and

5.7) shows that both constants of integration in Equations (5.4) and (5.5)

must be zero in order to satisfy the boundary conditions.

Of primary interest is the sidewash in the plane of the wing. Since

second term'in Equation (5.4)is -(B_+ll(TrW_-h ' the sidewash isthe

---_"ol_2B/

11"
. /sin Re +c12 \ 2B

The constant cI = 0 in order to satisfy the condition U = 0 at 6 = - 1 (or

R = I, 9 =+'/I").

Transforming Equation (5.4I) to physical coordinates gives, with the

aidofEquations(1.36),(1.37c),and (1.37i),

TU_wo V/21+-_b/z(11-tlltl)sin ez_ ERel (_'w_> (D

For the sidewash in the plane of the wing three different cases have

to be considered, namely, (-i _ t <0), (0 < t <b), and (b < t < i).

In RegionI, sinS/2 is = I, - 1< t < 0, and hence It I = - t. The

last term in Equation (t) is given by Equation (5.3). Hence the sidewash

is

iru _I + b)(1 + t)
_o = 2 %/ (-bt) 1 (b+t+Zbt / (5.6a)- _ arc cos t - b

for

(-I < t < 0).

In region II, sinS/2 = 0, the first term of Equation (5.4) vanishes

and Re0rW/wo) = 7]-. Hence the sidewash is constant.
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for

(5.6b)

(0 _ t <.b)

Finally for b <_ t __ 1 it follows from Section I-J that u = 0.

Taking the real part of Equation (5.5), the downwash is found to be

) IZB / + v_)(l-_ _) + cz

The constant c 2 -- 0 in order to satisfy the condition v = 0 at e = -1

(m)

(R = i, 8 : +-rV, y = +__i).

The downwash can now be obtained in the plane of the wing: In region

I, g : + 7T and _ is imaginary. Thus v = 0, which checks the boundary con-

ditions. In region II, 0 = 0 and _ = V/_. Then

Then with the aid of the formulas for

( _-/g)(1 + BraY)

(¢Y + ¢_)(I- BV-fi-q)

T2+I B2+I T - 1 -B

¢-g

T2+I B2+I

2T 2B
'the Tschaplygin transformation

(_)- f-B)(l +_v/B) ]b + t - 2 v/t(l - t)b(1- b) - 2bt

(_)+ v/B)(l -_)JB-) =[ b - t

Hence the downwash in region II is

_r_ = _ 2/II + b)(l - t)

o _/ bt

(n)
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C. Example If

This case is obtained by yawing the wing in Example I.

conditions on w and w* are given in Figure 26.

The boundary

(a) Planform

(b) _-Plane

!
/_\ _ X 1

Region I / |I-_\

¢X = 0 // _-'_ \\ Region II

_/ I _W=Wo, Top Side

./ _ ] _ "\ w=-Wo, Bottom

/I I _ \\ Side
/ \

_o c = tan ¥C = Ts(c)

FIGURE 26. MIXED TYPE OF LIFTING WING, EXAMPLE II

The solution will of course be obtained from that for Example I by a

Lorentz transformation. The situation is very similar to that in Section

III (planform II). The transformation of the velocity potential may be

used. The functions U, V, and W for Example II are then obtained imme-

diately from Equations (1.57), (5.2), (5.4), and (5.5) and the values of

u, v, and w in the plane of the wing from Equations (1.21c), (5.3), (5.6),

and (5.7). However, the constant w o has to be adjusted. If Wo ° is the

C

constant value of w on top of region II in Example I and w o the corre-

sponding value for Example II, the formulas (1.21c) give the following
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relation between these two values:

1
woC - ]- c

1-c2 L
c = tan y,

woo1ob _

b_* _ b-c
1-bc

b-c

o
• w

o

This equation shows that Wo c actually is a constant and also that w o

b-c c
in the formulas (5.2), (5.4), and (5.5) has to be taken equal to w

b _/l_c2 o

in __der that the method of Lorentz transformation of the

velocity potential give the prescribed value Wo c in region II of the yawed

wing.

The details of this transformation may be easily carried through as

in Section III. However, only the other possibility will be worked out here,

namely, the oblique transformation of the pressure function.

The solution will be written W = W 1 + W 2 where W 1 is given by Equa-

tion (5.2) after unyawing the wing by a homographic transformation

whe r e

-iw o {W-_}{I-_ _/-B_)
(s.9a)

- _ In (_ +_-_)(I+ *)v/B -_)Wl- w

e ' - 1 - CB' C = Ts(c)

and the correction function W 2 is 0 for Y < 0 and is of the same form as

Equation (3.30) for Y > 0

ikw o 1
(; +_) (5 9b)W2- _r

(5.8)

where k is a real number and must be evaluated to satisfy the condition
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d(Wl + W_l (5.10)

de I =0e=0

That this is the right correction function is shown as in Section III.

Note that Re(Wz) = 0 for _ real and positive. Hence the addition of W 2

does not violate the boundary condition that w = w o = constant in region

II. The evaluation of k follows:

f_'_ =-Z _ C+ B''''-_-+ I+CB

=0

Z(l+ B) v_B - C)(1 - CB)

B(1- cz)

I
iIT dW_ 1

%-7D- L : - k(l+ C )
=0

Then

and

d(Wl+WZ)Idu me_o=--i;°I-Z(l-

% B) _(B - C)(l - CB)

B(1/-cz) '-

]
k(1 + C )[

JC
=0

kJZC(1+B)v/(B-C)(1-CB)
B(I - CZ)(I + C)

(5.11)

With the aid of Equation (1.37) this formula is easily transformed into

k - b(1+ c) (5.11')

Finally the pressure function is
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_W.

w o

where

/2

Wo (WI+Wz) = - iln (v+B¢_)(l+_v_)

2 i C(I+B_B-C)(I-CB) (g + i
B(I-C2)(I + C) _-)

Ce

(s.lz)

The evaluation of w = w I + w 2 in the plane of the wing in terms of

the physical coordinates follows:

I 1
"IFwZ = Re i k (P+_-)

w o

- k

= +k

=0

_L1 -_| sin--ay_/__fore* = 0,+'If" (5.13)

J Z -

V/-_l fo r 0* +_ 1T

for 0* = 0

In region I in the plane of the wing with the aid of Equation (1.37i)

- - k /20 * t*)
_-woWe _ k(l_+ T* ) = -_ (-t*)

(5.14)

for -I _. t* < 0

-I< t _- c

where

t - c
t* -

1 - ct

The expression for w 1 is obtained from Equation (5.3), replacing b by b*

and t by t*. Hence, the pressure in region I is given by the formula
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"Ww

w o

- arc Cos
b* + t* + 2b*t*

t* - b*
z0 + t*)
(-t*) (s.ls)

for - 1 x. t* _0

-l__t _- c

where

t-c b-c
t* - b*-

1 - ct ' 1 - cb

and k = 0 for Y< 0 and k is given by Equation (5.11) or (5.11 t) for Y > 0.

Inserting the values for t*, b*, and k, one may rewrite Equation

(5.15)as

q]-W

W o

- arc cos (b - c)(l + t) + (t - c)(l + b)

(t - b)(l ¢ c)
for c< 0

qTw (h - c)(l + t) + (t - c)(l ÷ b)
= arc cos

o (t - b)(l + c)

/(b - c)(l + b)(l + t)Zc

b(1 + c) x/ c - t for c'_ 0

(5.151a)

(5.15'b)

These formulas are valid on the flat part of the wing, i.e., - 1 fi t __c.

D . Note on Applications

The use of the mixed type of wing for obtaining solutions is illus-

trated in Figure Z7.

The solution for the flat lifting delta wing AIBA z is given in Sec-

tion III-J. If one wishes to have the solution for the corresponding wing

with the tips A i CID 1 and AzCzD Z cut off, one has to take the basic solution

for AIBAZ and then cancel the liftin the cut-off region by infinitely

many mixed-type wings. A typical wing of this kind would have (a) constant
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j
Z _I

A 1 "F1D 1

B

D z F_ A z

FIGURE 27. MODIFIED NARROW DELTA WING

lift on region DzEzF z (region II in Fig. 2Z) and (b) zero downwash to the

left of this region (region I in Fig. 22). Condition (b) is necessary be-

cause the basic solution for A1BA z already has the correct downwash on the

wing D1C1BCzDz, and the superposition of additional solutions should not

lead to a violation of the boundary condition that the wing is flat.

Another application is to wings of very low aspect ratio. The sim-

plest example is the rectangular wing. If the aspect ratio is greater than

unity, one obtains the solution by superposition of the solutions given in

Section II-E and a two dimensional flow. However, if the aspect ratio is

smaller than unity, one also needs solutions of the type studied in Sec-

tion V-A (Cf. pp. 42 and 43 of Ref. Z).

Many similar applications are possible (Cf. also Section VI-E).
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VI. WINGS WITH DISCONTINUOUS SLOPE

This section discusses conical wings with prescribed shape which are

piecewise flat; that is, the surface of the wing consists of conical re-

gions where _ = constant and the value of the constant is different in

adjacent regions. Thus _ is discontinuous on the boundary between such

regions.

The symmetrical case is solved by trivial superposition of the solu-

tions given in Section II. This is tl_e same superposition principle that

was used in Section II. As was explained there, it is justified because

there is no downwash interference between symmetrical wings in the same

plane.

The lifting case is also trivial when the upper and lower surfaces

are independent, i.e., when all free edges are supersonic. In this case

it is reduced to the symmetrical case as explained in Section III-A. This

method is illustrated in Examples I and II of this section.

The case where at least one edge is subsonic is less easy. Examples

III, IV, and V belong to this type. Although these examples may not be

obtained from any symmetrical case, it will be seen that some results pre-

viously obtained in Section III will furnish part of the solution.

It will always be assumed that there is no gap at the place of dis-

continuity of angle of attack. By gap is meant a break in the solid sur-

face through which the region above and below the wing are connected. In

such a gap the pressure would have to be zero in the plane of the wing.

If the gap is infinitely narrow, however, there is only a removable
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singularity; i.e., the pressure would have to be zero along the ray repre-

senting the gap, but this value would not influence the rest of the solu-

tion. It must be remembered, though, that a gap may have finite extension

in the vertical direction and still its projection on the plane of the

wing have zero width. This condition is easily visualized for a deflected

control surface (Cf. Section VI-E). However, su_:h a finite gap cannot be

treated by the present theory which applies all boundary conditions on the

wing to the corresponding projections in the plane of the wing.

Although there is a great variety of wings falling under the heading

of this section, only a few examples are treated. They are in general of

direct or indirect practical importance and are also chosen so as to il-

lustrate the methods.

A.

2 / ¢I " xl

A

3

Profile: Flat Plate or Symmetrical Wedge

FIGURE 28. PLANFORhA FOR EXAMPLE I

Example I

This wing is illustrated in Figure 28. It may be reduced to a simpler
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case. First of all, it is enough to consider the case of a symmetrical

wedge profile. Then angle of attack means half angle of the wedge. From

this ease one obtains the solution for the flat plate profile by the meth-

od discussed at the beginning of Section If. Furthermore, it is sufficient

to afssunae that the angle of attack = (_I -6[2) =_ to the left of the line

of discontinuity and = 0 to the right of this line. Then the general ease

may be obtained by superimposing a wing of the same planform and constant

slope, -6_ Z (Cf. Section HI-B).

Hence the problem has been reduced to the wing shown in Figure zg,

but here the flat plate is immaterial. Thus there is simply the wing of

t

Symmetrical

Wedge of Half

Angle ]k

Flat Plate

X 3

X 1

FIGURE 29. EXAMPLE I, REDUCED

planform II whose solution was given in Section II-A, for such a wing does

not cause any downwash in the plane of the wing outside of the wing, as

has been pointed out repeatedly. Hence a flat plate may always be inserted
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there without changing flow conditions.

Thus the pressure distribution on the wing in Figure 29 is given by

formula (2.8c) for/5 = 0, and formula (2.8c) combined with formula (Z.13a)

for _qa0.

The principle used for treating Example I is evidently quite general.

One may superimpose several nonlifting wings to form a nonlifting wing

with prescribed slope distribution. If necessary, fiat plates are then

inserted to prevent any communication between the upper and lower surfaces.

After they are inserted, one modifies the wing so that the lower surface

is intact but the profile changes to a flat plate profile. Then one has a

lifting wing whose angle of attack at any point is equal to half the wedge

angle of the unmodified wing. The flow below the wing is the same in both

cases, and the conditions above the wing are obtained by the general sum-

merry principles of Section I. One more example of this principle is il-

lustrated in Figure 30.

X 1

Profile: Symmetrical Wedge or Flat Plate

FIGURE 30. PLANFORM FOR EXAMPLE II
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B. Example II

By the general principles stated in Section VI-A, one obtains the

solution for Example II immediately from the solution for planform III of

Section II and Example I of the present section.

C. Example III

The example illustrated in Figure 31 may not be solved by the above

_= _ X 1

\\k\

0 \kx\

= Constant

X 3

Profile: Flat Plate,_ is Counted Positive

FIGURE 31. PLANFORM FOR EXAMPLE III

methods: The case of the nonlifting wing with wedge planform is of course

easily solved by superposition of solutions from Section III. But since

the upper and lower surfaces are not independent, the solution for the

flat profile may not be deduced from the solution for the wedge

profile.

Fortunately, the boundary conditions for Example III are very sire-

ilar to the conditions (3.Z9) for the correction function in Section III-H.

It can easily be seen from the discussion in that section that the solution
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ik ;+ 1
w : W( _)

(6.1)

where k is a real number and

-B 1 - v/if- bz

_ =q/_ ' _- l-Bt ' B= b , b --tan]_

To make this formula complete, one has to establish the numerical

relation between the constant k and the discontinuity in angle of attack

at e = 0. This relation is obtained from Equation (1.42c).

1 . 1__. (l - B_) - (c=- B)(-B)

dedW_ik_w(I - _-f) " _ f_ (l _ B_)2 (a)

I(_) =_ 1-(- )
_=0

1 1 1 - B z

"_'-i

k i- B . 1 + B2 + 2B

11- +_v/_ 2B

/
k/2(i b) 1

= +__ _/ j . (g + 1) (b)

In evaluating Equation (b), Equations (1.37c) and (1.37i) were used,

and the undetermined sign was introduced because of the square root. The

correct sign of k may be determined in the final formula by the rule that

w is positive for the positive value of 6[. Hence by Equation (b) and the

discussion following Equation (1.42c)
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Discontinuity in v = /_ w
oo

i k (1 - B)(1 + B) 2
= +_'i (- _-)__

2B4r-_

+-n-i(_i) k/___ b+l-- 2 "/7" b

(c)

Hence by the above rule for the determination of the sign of k

b / 2b _Zw_ = 4B _ _ w,._
k = + 1 + b 1 - b (1 - B)(1 + B) 2

(6.2)

if

F-'-'--

+ i_17_ I on top of wing

In proving Equation (6.2) one should remember that

1 I -i

is the dominant term in Equation (6.1).

Formulas (3.38) of Section III-I give the corresponding sidewash and

downwash. Thus the complete solution for Example III is the following

trio of functions

7]-U _ -2f-B(1 + B2)

0C_,_ (i - B)(I + B)2

• v 2v'_

0[w_ 1 + B

7i-W 4Bv_

&w----_= (i - B)(I + B) 2

Here

i
1 ._ (_;- iv/-_ (g+_)

i(_+ _-) - n

(_+iv/-_) (__ i )

I- Iiln (#_i_/_)(,w - i--___)_ _

(. +i V/_-)(,;+ i_)

(6.3a)

(6.3b)

(6.3c)
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I±B z
_ 2b 1

4B - h1 + B ' (I_B)(I+B)2 1 + b

It is easily seen that v has the correct discontinuity at e = 0.

The evaluation of formulas (6.3) in physical coordinates in the plane

of the wing can be made easily from Section III-I. In particular, the

pressure on the wing is determined by

oo 2b,_- l+t

w- "lr l+b b-t -l<t<b (6 4)

D. Example IV

This case is a generalization of the previous case as is seen from

Figure 32. It is of course reduced to the previous case by the transformation

/7
C 2

e _ _ -C _ 0, C = 1 -V_ - , c = tanY (d)
i- C_ c

/

///// __..

\\

\
\

_onstant

X
3

\
\
\
\

= X 1

FIGURE 32. PLANFOKM FOR EXAMPLE IV
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The solution is obtained by combining formulas (1.57) and (6.3). One has

to substitute 0 for _- and B* = (B - C) /(1 - BC) for B in Equation (6.3)

and then form linear combinations of these expressions according to Equa-

tion (1.57). The combination of these substitutions leaves the definition

of _) in Equation (6.3) formally invariant, for _) Z should now be (0-B*)/(1-B*0)

which is simply (_ - B)/(1 - B_), as may be seen by direct computation. A

more intuitive way of proving this invariance is given in the following

paragraph:

b )2= is the result of two successive homographic transformations of the

special type discussed in Section I-L. The first one takes B into B*, and

the second one B* into zero. Hence the composite transformation takes B

into zero and has the form given above independent of C.

The procedure for obtaining the solution is straightforward and re-

sults will be given only for W:

i

__ = ZC (> - i f_)( _' + _) (6.5)_W k I i (,)+$) + ._n

_woo i- Ca (_+iv/'=_)(_- i )
7_

= B , B _ -

4B*

kl = (1 - B*)(1 + B*) 2

B-C

I - BC

B*(1- C 2) +1

_ 4B(1 - BC) v//_B - C
(I - C)(I - B)(1 + B) z - _

or

k I =_ ,,) 2,,(c 11+ b* -_-" _, + _/l - c2
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From Equation (6.5) one obtains the following formula for the pressure

on the upper surface of the wing:

2c -t)-,Xb-c)II+t)
w = 7V k_/l - c 2 _n \_l b)(c t)

+ 1+--"--_,_/ 1 - c_/ b-t

E. Note on Applications

One application is to find the lift of a twisted wing. The simplest

example is a wing with rectangular planform and zero thickness where the

slope is constant chordwise but varies spanwise. Such a wing may be ob-

tained by superposition of wings of the type shown in Figure 29 with

_i = _2 =_= 0 . However. it must be assumed that the slope of the wing

is constant within the k4ach cones from the leading edge tips. If this is

not the case, the superposition described would give lift outside the wing.

However, this lift may be removed by additional superposition of wings de-

scribed in Section V. Another way of expressing this fact is to say that

the twisted rectangular wing may be obtained by superposition of wings of

the type shown in Figure 33.

If the solution for the wing in Figure 29 is applied to the wing in

Figure 33, the region ABC will be lifting. This lift may be cancelled by

superposition of wings described in Figure 22, These wings will then change

the lift distribution in the region ABD of Figure 33.

The problem of the lift of a flat wing in a variable downwash field

is of course similar to that of a twisted wing in a uniform flow field.
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/
/

O_= Constant ÷0 /

/
/

/
/

/
/

\
\
\.

\

B

-_'=0 -/-\_

\
./ \

, \

/D A
/

FIGURE 33. LIFTING RECTANGULAR WING ADJACENT TO FINITE
FLAT PLATE

Finally consider the problem of finding the forces induced by the

deflection of control surfaces. Two examples are shown in Figure 34.

_W_ _ W_

/ _IA _2 B
/

/

X\

\

E 1 z _k

,E F

FIGURE 34. VARIOUS TYPES OF CONTROL SURFACES

It is clear that the effect of the control surface ABCD in the region

DAIA 2 is given by the solution for Example I in this section.

normally this rdgion contributes just a small part of the lift.

However,

On the
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main part of the control surface, two-dimensional theory applies. The

effect of the control surface EGF in the region EIFG is given by the solu-

tion for Example IV. In this case one is no longer dealing with a small

correction. The main effect of deflecting the control surface is not

given by any formula in the previous sections, but only by formula (6.6).

It has been assumed here that a gap which might exist along AD or EG

in Figure 34 does not influence the pressure distribution appreciably.

Further discussions of the applications may be found in Reference 3

where all solutions given in this section have been shown to have practi-

cal applications to control surfaces.

'4.
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P

P_

m

M

r

R

t

Ts(a)

U

U _

U

V

V _

V

W

W_

W_

W

TABLE I

NOMENCLATURE

pressure

free-stream pressure

1

_/Ivl L- i

free-stream Mach number

x + x 2

1 -_/I - r2
Ts(r) =

r

x/x3

T schaplygin transformation
1 -V/-1 " - a Z

a

perturbation velocity in Xl-direction (sidewash)

harmonic conjugate of u

u + iu*

perturbation velocity in X2-direction (upwash)

harmonic conjugate of v

v + iv*

perturbation velocity in X 3-direction

harmonic conjugate of w

free-stream velocity

w + iw*

Defined

on page

4

4

4

3

27

29

31

29

4

33

35

4

33

33

4

33

4

33
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TABL/_ I (cont'd)

/
Wing /

X 3

Vertical Direction

/_/Free Stream

*X 1

X1X3-Plane = Plane of Wing = Horizontal
Plane

x

Xl,x 2,x3

Y

e

%

9

Page 158

coordinate in e-plane = Re(e)

coordinates in physical space

x 1 in lateral direction

x z in vertical direction

x 3 in free-stream direction

coordinate in (_ -plane = Im(e)

angle of attack

R" e*0 = x + iy

iO
r. e = xI + ixz

6-B

I-B6

arc tan xz

xI

Defined

on page

3O

30

6

30

30

27
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X

TABLE ! (Cont'd)

half-angle of wedge

Mach angle = arc tan m

free-stream density

arc tan t

sweep-back angle

velocity potential

arc cos (tan _)

Defined

on page
57

54

79

4

31

41

4

42
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