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ABBREVIATIONS 

 

I layer I 
IA Layer IA 
IB Layer IA 
II layer II 
IIA layer IIA 
IIB layer IIB 
2Cb 2nd Cerebellar lobule 
III layer 3 
3V 3rd ventricle 
4V 4th ventricle 
7n facial nerve or its root 
8n vestibulocochlear nerve 
8vn vestibular root of the vestibulocochlear nerve 
AA anterior amygdaloid area 
AAD anterior amygdaloid area, dorsal part 
AAV anterior amygdaloid area, ventral part 
aca anterior commissure, anterior part 
Acb accumbens nucleus 
AcbC accumbens nucleus, core 
AcbSh accumbens nucleus, shell 
aci anterior commissure, intrabulbar part 
ACo anterior cortical amygdaloid nucleus 
acp anterior comissure, posterio 
AH anterior hypothalamic area 
AHA anterior hypothalamic area, anterior part 
AHC anterior hypothalamic area, central part 
AHi amygdalohippocampal area 
AHP anterior hypothalamic area, posterior part 
AI agranular insular cortex 
AID agranular insular cortex, dorsal part 
AIP agranular insular cortex, posterior part 
AIV agranular insular cortex, ventral part 
AO anterior olfactory nucleus 
AOB accessory olfactory bulb 
AOM anterior olfactory nucleus, medial part 
AON anterior olfactory nucleus 
AOP anterior olfactory nucleus, posterior part 
APir amygdalopiriform transition area 
Aq aqueduct 
Arc arcuate hypothalamic nucleus 
BAOT bed nucleus of the accessory olfactory tract 
BLA basolateral amygdaloid nucleus, anterior part 
BLP basolateral amygdaloid nucleus, posterior part 
BLV basolateral amygdaloid nucleus, ventral part 
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BMA basomedial amygdaloid nucleus, anterior part 
BMP basomedial amygdaloid nucleus, posterior part 
BST bed nucleus of the stria terminalis 
BSTIA BST, intraamygdaloid division 
BSTLP BST, lateral division, posterior part 
BSTLV BST, lateral division, ventral part 
BSTMA BST, medial division, anterior part 
BSTMPI BST, medial division, posterointermediate part 
BSTMPL  BST, medial division, posterolateral part 
BSTMPM  BST, medial division, posteromedial part 
BSTMV BST, medial division, ventral part 
BSTS bed nucleus of stria terminalis, supracapsular part 
CA1 field CA1 of hippocampus 
CA3 field CA3 of hippocampus 
Ce central amygdaloid nucleus 
CeC central amygdaloid nucleus, capsular part 
CeL central amygdaloid nucleus, lateral division  
CeM central amygdaloid nucleus, medial division 
Cl claustrum 
CM central medial thalamic nucleus 
cp cerebral peduncle 
CPu caudate putamen 
csc commissure of the superior colliculus 
cst commissural stria terminalis 
CxA cortex-amygdala transition zone 
D3V dorsal 3rd ventricle 
DEn dorsal endopiriform nucleus 
DG dentate gyrus 
dlot dorsal lateral olfactory tract 
DM dorsomedial hypothalamic nucleus 
DP Dorsal peduncular cortex 
DR dorsal raphe nucleus 
DTT dorsal tenia tecta 
E/OV ependymal and subendymal layer/olfactory ventricle 
ec external capsule 
Ect ectorhinal cortex 
eml external medullary lamina 
EPl external plexiform layer of the olfactory bulb 
EPlA external plexiform layer of the accessory olfactory bulb 
f fornix 
FC Frontal cortex 
fi fimbria of the hippocampus 
fmi forceps minor of the corpus callosum 
fr fasciculus retroflexus 
Gl glomerular layer of the olfactory bulb 
GlA glomerular layer of the AOB 
GrA granule cell layer of the AOB 
GrO granular cell layer of the olfactory bulb 
HDB nucleus of the horizontal limb of the diagonal band 
I intercalated nuclei of the amygdala 
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ic internal capsule 
ICj islands of Calleja 
IF interfascicular nucleus 
IL infralimbic cortex 
IM intercalated amygdaloid nucleus, main part 
IMD intermediodorsal thalamic nucleus 
IP interpeduncular nucleus 
IPAC interstitial nucleus of the posterior limb of the anterior commissure 
IPl internal plexiform layer of the olfactory bulb 
LA lateroanterior hypothalamic nucleus 
La lateral amygdaloid nucleus 
LaDL lateral amygdaloid nucleus, dorsolateral part 
LaVL lateral amygdaloid nucleus, ventrolateral part 
LaVM lateral amygdaloid nucleus, ventromedial part 
LC locus coeruleus 
Ld lambdoid septal zone 
LDTg laterodorsal tegmental nucleus 
LEnt lateral entorhinal cortex 
LGP lateral globus pallidus 
LH lateral hypothalamic area 
LHb lateral habenular nucleus 
LPB lateral parabrachial nucleus 
LPO lateral preoptic area 
LO lateral orbital cortex 
lo  lateral olfactory tract 
LOT nucleus of the lateral olfactory tract 
LPO lateral preoptic area 
LSD lateral septal nucleus, dorsal part 
LSI lateral septal nucleus, intermediate part 
LSV lateral septal nucleus, ventral part 
LV lateral ventricle 
mcp middle cerebellar peduncle 
MCPO magnocellular preoptic nucleus 
MD mediodorsal thalamic nucleus 
ME median eminence 
Me medial amygdaloid nucleus 
MeA medial amygdaloid nucleus, anterior subdivision 
me5 mesencephalic trigeminal tract 
MeAD medial amygdaloid nucleus, anterodorsal subdivision 
MeAV medial amygdaloid nucleus, anteroventral subdivision 
MeP Medial amygdaloid nucleus, posterior subdivision 
MePD medial amygdaloid nucleus, posterodorsal subdivision 
MePV medial amygdaloid nucleus, posteroventral subnucleus 
MGD medial geniculate nucleus, dorsal part 
MGM medial geniculate nucleus, medial part 
MGV medial geniculate nucleus, ventral part 
MHb medial habenular nucleus 
Mi mitral cell layer of the olfactory bulb 
MiA mitral cell layer of the AOB 
mfb medial forebrain bundle 
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ml medial lemniscus 
mlf medial longitudinal fasciculus 
MM medial mammillary nucleus, medial part 
MnR median raphe nucleus 
MO medial orbital cortex 
MOE Main olfactory epithelium 
Mo5 motor trigeminal nucleus 
MOB main olfactory bulb 
MPA medial preoptic area 
MPB medial parabrachial nucleus 
MPO medial preoptic nucleus 
MS medial septal nucleus 
mt mammillothalamic tract 
mtg mammillotegmental tract 
ns nigrostriatal bundle 
OB Olfactory bulb 
opt optic tract 
ox optic chiasm 
Pa paraventricular hypothalamic nucleus 
PAG periaqueductal gray 
PB parabrachial nucleus 
pc posterior commissure 
Pe periventricular hypothalamic nucleus 
PF parafascicular thalamic nucleus 
PH posterior hypothalamic area 
PIL posterior intralaminar thalamic nucleus 
Pir piriform cortex 
PLCo  posterolateral cortical amygdaloid nucleus 
PMCo posteromedial cortical amygdaloid nucleus 
PMD premammillary nucleus, dorsal part 
PMV premammillary nucleus, ventral part 
PnC pontine reticular nucleus, caudal part 
Po posterior thalamic nuclear group 
PP peripeduncular nucleus 
Pr5VL principal sensory trigeminal nucleus, ventrolateral part 
PRh perirhinal cortex 
PrL  prelimbic cortex 
pv periventricular fiber system 
PV paraventricular thalamic nucleus 
PVA paraventricular thalamic nucleus, anterior part 
PVP paraventricular thalamic nucleus, posterior part 
Py piramidal cell layer of the hippocampus 
py pyramidal tract 
RCh retrochiasmatic area 
Re reuniens thalamic nucleus 
Rh rhomboid thalamic nucleus 
RLi rostral linear nucleus of the raphe 
RMC red nucleus, magnocellular part 
S subiculum 
s5 sensory root of the trigeminal nerve 
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scp superior cerebellar peduncle 
SG suprageniculate thalamic nucleus 
SHi septohippocampal nucleus 
SI substantia innominata 
SL semilunar nucleus 
sm  stria medullaris  
SNC substantia nigra, compact part 
SNR  substantia nigra, reticular part 
sox supraoptic decussation 
sp5 spinal trigeminal tract 
SPF subparafascicular thalamic nucleus 
SPFPC Subparafascicular thalamic nucleus, parvicellular part 
st stria terminalis 
str superior thalamic radiation 
Su5 supratrigeminal nucleus 
SuM supramammillary nucleus 
SuMM supramammillary nucleus, medial part 
TC tuber cinereum area 
Tu olfactory tubercle 
unc uncinate fasciculus 
VDB nucleus of the vertical limb of the diagonal band 
VEn ventral endopiriform nucleus 
VL ventrolateral thalamic nucleus 
VMH ventromedial hypothalamic nucleus 
VNO Vomeronasal organ 
VO ventral orbital cortex 
VP ventral pallidum 
vsc ventral spinocerebellar tract 
VTA ventral tegmental area 
VTT ventral tenia tecta 
ZI zona incerta 
ZID zona incerta, dorsal part 
ZIV zona incerta, ventral part 
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1. GENERAL INTRODUCTION  

The detection of environmental chemicals gives valuable information about the external 

conditions in which an organism is living, and enables it to generate proper behavioural 

responses for its survival. The environmental chemicals are detected by chemical 

sensory organs present from the most primitive forms of life to the most complex ones. 

These molecules are sensed by the olfactory systems in vertebrates. Most tetrapods 

present two olfactory systems, the olfactory and vomeronasal (Ubeda-Bañon et al. 

2011). These systems have been identified in some teleost fishes, such as the lungfishes 

(Gonzalez et al. 2010), in amphibians such as Xenopus and Bufo (Taniguchi et al. 

2008), in lizards (Martinez-Garcia et al. 1991) and snakes (Lanuza and Smeets, 1993) 

among the reptiles, in marsupials such as opossum (Martinez-Marcos and Halpern, 

2006; Martinez-Marcos and Halpern, 1999) and in placental mammals such as mice 

(Cadiz-Moretti et al. 2013; Kang et al. 2009) and rats (Pro-Sistiaga et al. 2007). On the 

other hand, birds do not have a vomeronasal system (Ubeda-Bañon et al. 2011), while in 

primates the vomeronasal system is poorly developed (platyrrhini), vestigial 

(hominidae) or lost (catarrhini) (Ubeda-Bañon, et al 2011).     

In rodents, the olfactory stimuli play an essential role in the acquisition of socio-sexual 

information about conspecifics, possible predators and food. These chemical molecules 

are sensed by its main sensorial system, which is chemosensation (rodents are 

macrosmatic mammals). The chemosensory organs include the main olfactory 

epithelium (MOE), which is activated mainly by volatile stimuli and the vomeronasal 

organ (VNO), which is activated by non-volatile stimuli (Gutiérrez-Castellanos et al. 

2010). Recent studies have shown that the non-volatile stimuli detected by the 

vomeronasal organ contained important information for the proper development of 

social and reproductive behaviours in rodents (Chamero et al. 2012). In fact, the 

molecules detected by the vomeronasal system trigger innate behavioural responses, 

suggesting that some chemical cues have an intrinsic biological value for the species, 

such as sexual pheromones (Gutiérrez-Castellanos et al. 2010).  

One of the main conclusion of the previous works done by our group and others in the 

field of olfactory and pheromone research, is that the main and accessory systems 

interact in the detection of chemical substances present in the environment and play a 
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complementary role in the generation of appropriate behavioural responses (Baum and 

Kelliher, 2009; Keller et al. 2009; Martínez-García et al. 2009). In this complementary 

role a key aspect is the learning process in which odorants become associated with 

unconditioned stimuli with either positive (e.g., sexual pheromones, food) or negative 

(e.g., predator odours) value. A particularly interesting type of learning is that involving 

chemical signals that posses a positive emotional value, such as sexual pheromones. It 

has been suggested that the sexual pheromones detected by the vomeronasal system, 

may act as unconditioned stimuli that are associated with neutral odorants detected by 

the olfactory systems, which would act as conditioned stimuli (Moncho-Bogani et al. 

2002; Roberts et al. 2010). This kind of learning probably takes place in the amygdala, 

as it has been shown for the case of olfactory fear conditioning (Cousens and Otto, 

1998), although the amygdaloid nuclei involved are unknown. For the olfactory-

vomeronasal association to occur, the information detected by the vomeronasal organ 

and the main olfactory epithelium should eventually converge. 

The MOE projects to the main olfactory bulb (MOB), while the VNO projects to the 

accessory olfactory bulb (AOB). Anatomical tracing experiments have shown that the 

MOB and AOB send afferent projections to cortical and non-cortical nuclei of the 

amygdala, converging in some of these nuclei such as the ventral part of the anterior 

amygdaloid area, the medial amygdaloid nucleus (Me), cortex-amygdala transition zone 

(CxA) and anterior cortical amygdaloid nucleus (ACo) (Pro-Sistiaga et al. 2007; Kang 

et al. 2009; Cadiz-Moretti et al. 2013). Therefore, it is likely that the association 

between vomeronasal and olfactory stimuli (e.g. pheromones and odours) may occur in 

some of these amygdaloid nuclei. These nuclei are possible candidates areas where this 

kind of appetitive learning can take place. 

Our study is focused on the anatomical bases underliying these kind of appetitive 

emotional learning. Our initial hypothesis is that the corticomedial amygdala (which 

received the strongest projections arising from the olfactory and vomeronasal bulbs) is 

the main candidate to play a key role in this learning process. 

Within the corticomedial amygdala, the medial amygdaloid nucleus (Me) is the main 

area of convergence of vomeronasal and olfactory stimuli. It has been extensively 

studied since it is considered a key structure in the neural circuit that controls 

sociosexual behaviours. The Me is a heterogeneous structure presenting three 
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subdivisions, the anterior, posteroventral and posterodorsal parts. These subdivisions 

present differential efferent connections within the encephalon (Pardo-Bellver et al. 

2012) and more specifically, with brain structures implicated in reproductive and 

defensive behaviours (Canteras et al. 1995). It is also sexually dimorphic (Simerly et al. 

1990). Regardless to its well characterized efferent connections, there is very little 

information about the afferent projections to the Me, and no previous study has been 

focused in the inputs to the Me subnuclei. The remaining amygdaloid nucleus where the 

vomeronasal and olfactory converge, such as the cortex-amygdala transition zone (CxA) 

and the anterior cortical amygdaloid nucleus (ACo) have been scarcely studied.  

Our work is focused on the description of the afferent connections to the three 

subdivisions of the Me, together with the description of the afferent connections of the 

CxA and ACo. With these studies, we try to enlight important information regarding to 

the anatomical connections of these nuclei with the encephalon and the possible role of 

these circuitries in the associative learning of odours and pheromones and its effects in 

sociosexual behaviours.  

This doctoral thesis is organized in three chapters. In chapter 1, we describe the efferent 

projections arising from the AOB and MOB to the amygdala and the amygdaloid nuclei 

where these projections converge. This chapter has already been published (Cadiz-

Moretti et al. 2013). In chapter 2, we describe the afferent connections of the three 

subdivisions of the Me and discuss its functions implications. This chapter is now 

accepted for publication in the journal of Brain, Structure and Function. In chapter 3, we 

describe the afferent connections to the CxA and ACo and discuss its functional 

implications. This last chapter is going to be submitted to a neuroscience journal.  

1.1 References  
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2. MATERIAL AND METHODS  

Animals 

For this work, 105 adult female mice (Mus musculus) from the CD1 strain (experiment 

1 from Charles River, LÁrbresle Cedex, Francia and experiments 2 and 3 from Janvier, 

Le Genest Saint-Isle, France), which were 8-27 weeks old and weighed 24.7-53.2 g 

were used. They were kept in cages with food and water ad libitum in a 12 h light:dark 

cycle at 25-26 °C. The mice were treated according to the guidelines of the European 

Union Council Directive of June 3rd, 2010 (6106/1/10 REV1). The Committee of 

Ethics on Animal Experimentation of the University of Valencia approved the 

experimental procedures. 

Surgery and tracer injections 

The first 29 animals were anaesthetised with intraperitoneal (IP) injections of a 3:2 

ketamine (75 mg/kg, Merial laboratories, Barcelona, Spain) and medotomedine (1 

mg/kg, Pfizer, Alcobendas, Madrid, Spain) solution, complemented with atropine 

(Sigma, St. Louis, MO, USA; 0.04 mg/kg, IP) to reduce cardio-respiratory depression. 

The remaining 76 animals were anaesthetized with a newly acquired vapour anaesthetic 

system. They received isofluorane (2-2.5%) delivered in oxygen (1-1.3 L/min) (MSS 

Isoflurane Vaporizer, Medical Supplies and Services, UK) using a mouse anaesthetic 

mask and a subcutaneous butorfanol injection (5 mg/kg, Turbugesic, Pfizer, New York, 

USA,) as analgesic. After fixing the mouse head in the stereotaxic apparatus (David 

Kopf, 963-A, Tujunga CA, USA), a small hole was drilled above the target zone.  

Experiment 1: To study the projections arising from the AOB and the MOB, 37 

animals received iontophoretic injections of dextranamine (10,000 MW, lysine fixable, 

Invitrogen, Carlsbad, CA, USA) conjugated with tetramethylrhodamine and biotin 

(TBDA) diluted at 5% in diluted in phosphate buffer (PB; 0.01 M, pH 8.0).  

Experiment 2: To study the afferents to the three subdivisions of the medial 

amygdaloid nucleus, 28 mice received iontophoretic injections of the fluorescent 

retrograde tracer Fluoro-Gold (FG) (Hydroxystilbamidine bis(methanesulfonate), 

Sigma-Aldrich, Cat # 39286) diluted at 2% in distilled water.  
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Experiment 3: To study the afferents to the cortex-amygdala transition zone and the 

anterior cortical amygdaloid nucleus, 40 mice received iontophoretic injections of FG. 

In addition, to minimize the number of animals, and to study the efferent connections of 

the CxA and ACo, the anterograde tracer Biotin-conjugated dextranamine (BDA, 

10,000 MW, lysine fixable, Invitrogen, Carlsbad, CA, USA) was delivered in the 

contralateral hemisphere, diluted at 5% in PB (0.01M, pH 8.0) (the results of the 

anterograde projections of these nuclei will be present in other study). 

The tracers were delivered from glass micropipettes (10–50 µm diameter tips for 

experiment 1 and 20-30 µm for experiment 2 and 3) by means of positive current pulses 

(7on/7off seconds) with the following parameters: 3–5 µA during 10 to 15 min for 

experiment 1; 3 µA during 3 min for the experiment 2; and in the experiment 3, 2 µA 

during 2-3 minutes for the CxA injections and 2-3 µA during 3-6 minutes for the ACo 

injections. To avoid diffusion of the tracer along the pipette track, a mild retention 

current (-0.8 to – 0.1µA) was applied during the entrance and withdrawal of the 

micropipette and in addition, after finishing the injection, the tip was left in place for 2 

minutes in experiment 1 and 10 minutes in experiments 2 and 3. Injection coordinates 

relative to Bregma were adapted to the CD1 mice from the atlas of the mouse brain 

(Paxinos and Franklin, 2004). The coordinates for each injection site were the 

following: Experiment 1: ventral MOB: AP 4.25 mm; L 0.95 mm and DV -3.22 mm; 

AOB: AP 3.57 mm; L 0.95 mm and DV -0.90 mm. Experiment 2: MeA: AP -1.40 to -

1.45 mm, L -2.0 to -2.1mm, DV -5.55 to -5.60 mm; MePV: AP -1.9mm, L -2.05 to -

2.10 mm, DV -5.48; MePD: AP -1.9mm, L - 2.1mm and DV -5.18mm. Experiment 3: 

rostral CxA: AP -0.09 to -0.2 mm, L -2.89 to -2.94 mm, DV -6.04 mm; caudal CxA: AP 

-1.4 mm, L - 2.8 mm, DV -6.02; ACo: AP -0.8 to – 1.5 mm, L - 2.55 to -2.8 mm and 

DV -5.97 to -6.02 mm. 

After the injection, the wound was closed with Histoacryl (Braun, Tuttlinger, Germany) 

and in the case of those animals anaesthetized with the ketamine/medotomedine 

solution, an intramuscular injection of atipamezol (Pfizer, Alcobendas, Madrid, Spain; 1 

mL/kg) was used to revert the medotomedine effects. During the whole procedure, 

animals rested on a thermic blanket to maintain their body temperature, and they 

received eye drops (Siccafluid, Thea S.A Laboratories, Spain) to prevent eye ulceration. 
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Histology 

After 3-5 days of survival for experiment 1, 6-8 days for experiment 2 and 3, animals 

were deeply anaesthetised with an overdose of sodium pentobarbital (Sigma, 90 mg/kg) 

for experiment 1 or sodium pentobarbital (intraperitoneal, 100mg/kg, Eutanax, 

Laboratorios Normon S.A. Madrid, Spain) for experiments 2 and 3. Then, they were 

perfused transcardially with saline solution (0.9%) followed by 4% paraformaldehyde 

diluted in PB (0.1 M, pH 7.6). Following perfusion, brains were removed from the 

skull, postfixed for 4 h in the same fixative and cryoprotected with 30% sucrose in PB 

(0.1M, pH 7.6) until they sank. Using a freezing microtome, parasagittal sections (30 

µm) from the bulbs and frontal sections (40 µm) from the rest of the brain were 

obtained. In both cases, sections were collected in four parallel series. 

For the detection of the TBDA or BDA tracers, endogenous peroxidase was inactivated 

with 1% H2O2 in Tris buffer saline (TBS; 0.05 M, pH 7.6) for 15 min and then sections 

were incubated for 90 min in ABC complex (Vectastain ABC kit, 6 Vector Labs, PK-

6100, Burlingame, CA, USA) diluted 1:50 in TBS-Tx (Triton X-100 0.3% in TBS 0.05 

M pH 7.6) at room temperature. After rinsing thoroughly with buffer, peroxidase 

activity was developed with 0.025% diaminobenzidine in PB (0.1 M, pH 8.0) and 

0.01% H2O2 and 0.1% nickel ammonium sulphate, obtaining a black precipitated 

product.  

In those cases were the FG tracer was injected, first the location of the injection was 

checked using fluorescence microscopy and then one of the series of each brain was 

processed for FG immunoperoxidase. To do so, endogenous peroxidase activity was 

first inactivated with 1% H2O2 in TBS (0.05M, pH 7.6) for 15 min (in the cases where a 

contralateral injection of BDA was performed, this step was not repeated, since the 

BDA tracer was previously detected). Then, the sections were incubated in a blocking 

solution of TBS-Tx containing 8% of normal goat serum (NGS) and 4% of bovine 

serum albumin (BSA), for 2 hours at room temperature. After that, the sections in were 

sequentially incubated in: rabbit anti-Fluorescent Gold (Millipore, Cat # AB153) diluted 

1:3000 in TBS-Tx with 4% NGS and 2% BSA overnight at 4°C; biotinyled goat anti-

rabbit IgG (Vector, Cat # BA-1000) diluted 1:200 in TBS-Tx with 4% NGS for 2 hours 

at room temperature; and ABC Elite diluted 1:50 in TBS-Tx for 2 hours at room 

temperature. Finally the resulting peroxidase labelling was revealed with 0.0025% 
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diaminobenzidine in PB (0.1M, pH 8.0) with 0.01% H2O2, obtaining a brown 

precipitated product. 

The anti-FG antibody has been previously validated in many papers (e.g. Gutierrez- 

Castellanos et al. 2014; summarized in the Journal of Comparative Neurology antibody 

database). We also checked that the omission of the primary antibody resulted in no 

labelling in our brain tissue. 

Series were mounted onto gelatinised slides, dehydrated with graded alcohols, cleared 

with xylene and coverslipped with Entellan (Merck Millipore, Cat # 1079610100). To 

facilitate the identification of the neural structures containing the anterograde labelled 

fibres in experiment 1, before the tissue was coverslipped, it was counterstained with 

the Nissl method. In the experiments 2 and 3, to facilitate the identification of the neural 

structures containing retrogradely labelled cells, in most cases a second series of 

sections was processed for FG immunohistochemistry and counterstained with Nissl 

staining (experiment 2) or was stained with the Nissl method (experiment 3).  

In addition, the histochemistry of the acetil cholinesterase was studied in the amygdala 

from mouse brain series that were available on the laboratory stock samples.  

Image acquisition and processing 

We observed the sections using an Olympus CX41RF-5 microscope and photographed 

them using a digital Olympus XC50 camera. Fluorescent images of the FG injection 

sites were captured with a Leitz DMRB microscope with epifluorescence (Leica EL-

6000) equipped with a specific filter for FG (Leica, A) and a digital Leica DFC 300 FX 

camera. Using Adobe Photoshop 7.0 (AdobeSystems, MountainView, CA, USA) 

pictures were flattened by subtracting background illumination and brightness and 

contrast were optimized. No further changes were performed. Finally, illustrations were 

designed with Adobe Photoshop 7.0 and Illustrator. 
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3.1.1 Introduction 
 

Rodents possess two long-distance chemosensory organs, the nasal or main olfactory 

epithelium (MOE) and the vomeronasal organ (VNO). Chemosensory stimuli detected 

by them play a key role in socio-sexual (Brennan and Kendrick 2006) and antipredatory 

behaviour (Papes et al. 2010). The MOE mainly detects air-borne volatiles while the 

VNO seems specialised (with some exceptions) in detecting non-volatile chemicals 

(Krieger et al. 1999) possessing an intrinsic biological value, such as sexual 

pheromones or predator-derived chemosignals. Thus, in the context of socio-sexual 

behaviour, vomeronasal stimuli apparently trigger innate behavioural responses 

(Martínez-García et al. 2009; Keller et al. 2009).  

 

The MOE and VNO project to the main (MOB) and accessory (AOB) olfactory bulbs 

respectively. In the 1970´s, tract-tracing experiments described that the main and 

accessory olfactory bulbs (OB) projected to adjacent but non-overlapping telencephalic 

nuclei (Scalia and Winans 1975; Skeen and Hall 1977). Traditionally, the structures 

considered as receiving only main olfactory projections are the piriform cortex (Pir), the 

olfactory tubercle (Tu), cortex-amygdala transition zone (CxA), anterior cortical 

amygdala (ACo), the nucleus of the lateral olfactory tract (LOT) and the posterolateral 

cortical amygdala (PLCo). The nuclei traditionally considered as vomeronasal 

recipients are the bed nucleus of the accessory olfactory tract (BAOT), the 

posteromedial part of the medial division of the bed nucleus of the stria terminalis 

(BSTMPM), the anterior amygdaloid area (AA), the medial amygdaloid nucleus 

(anterior, MeA, and posterior, MeP, subdivisions) and the posteromedial cortical 

amygdala (PMCo). These observations led to the dual olfactory hypothesis, which 

stated that these two pathways act independently in the chemical information processing 

(see, for a review, Halpern 1987).  

 

This view has been seriously challenged by recent data. Thus, tract-tracing experiments 

conducted in rats (Mohedano-Moriano et al. 2007; Pro-Sistiaga et al. 2007) and mice 

(Kang et al. 2009, 2011a), have demonstrated the existence of convergent projections 

from the MOB and AOB to several cortical and non-cortical amygdaloid structures 

(Gutiérrez-Castellanos et al. 2010). Functional experiments also indicate that both 

chemosensory systems play a complementary role in eliciting adequate behavioural 
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responses (Martínez-García et al. 2009; Keller et al. 2009). This interaction can be 

observed in a particular case of emotional learning in which airborne olfactory stimuli 

are associated with sexual pheromones detected by the vomeronasal organ. Male-

derived involatile pheromones elicit an unconditioned attraction in female mice (even if 

the females have no previous experience with males or male-derived chemical signals; 

Roberts et al. 2010). In contrast, male-derived volatile odorants do not attract 

inexperienced females. Following experience with male-soiled bedding, which contains 

involatile pheromones and volatile odorants, females acquire a learned attraction to 

volatile male odours (Moncho-Bogani et al. 2002). Therefore, in this case, male 

pheromones act like appetitive unconditioned stimuli for females and, following 

chemosensory experience, become associated with male-derived volatiles, what results 

in a conditioned attraction for those volatiles (Moncho-Bogani et al. 2002; Martínez-

Ricós et al. 2008). 

 

In this context, we have started a neuroanatomical study of the neural centres receiving 

direct projections from both the main and accessory olfactory bulbs in the mouse brain, 

as a way to explore the brain regions where olfactory-vomeronasal associative learning 

might first occur. 

 

3.1.2 Results 

3.1.2.1 Injections in the Accessory Olfactory Bulb  

Six injections involved in the AOB. Three of them were centred in the AOB (with no 

MOB involvement), one of which was restricted to the glomerular and mitral layer (Fig. 

1A). This injection is described as a representative case. Importantly, in this AOB 

injection no labelled fibres appeared in the dorsolateral olfactory tract (dlot) (Figs. 1B, 

C), and no retrogradely labelled cells were observed.  

 

Anterogradely labelled fibres originated by the AOB injection ran caudally in the inner 

part of the lateral olfactory tract (lo) to reach the anterior piriform cortex (Pir), nuclei of 

the lateral (LOT) and accessory (BAOT) olfactory tracts, anterior amygdala (AA), 

medial amygdala (Me) and several nuclei of the cortical amygdala. 
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Fig. 1 Photomicrographs of Nissl counterstained parasagittal (A-C) and frontal (D-F) 
sections, illustrating the injection site of TBDA in the AOB (A-C) and the resulting 
anterograde labelling (D-F) in some of the vomeronasal nuclei. Rectangles in A and B 
correspond to B and C, respectively. For abbreviations, see list. Scale bar: 1 mm for A; 
500 µm for B; 250 µm for D, E; 50 µm for C, F. 
 

In the anterior Pir labelled fibres were observed in the edge between the lo and layer IA 

(Figs. 2A, B). Labelled fibres display abundant varicosities and most of them are 

oriented parallel to the pial surface. In addition, in the anterior ventral Pir (where the lo 

runs below the pial surface, see Martínez-García et al. 2012) a number of fibres were 

observed crossing the layers II and III  (Fig. 2c). In the posterior Pir (at the level of the 

AA and CxA), labelled fibres are not present anymore. At the medioventral edge of the 

Pir, in the limit with the adjacent the striato-pallidal territory, some labelled fibres were 

observed running towards the ventral external capsule (Fig. 2D).  

 

In the rostral CxA, next to the ventral and dorsal AA (ventral part of the anterior 

amygdaloid area (AAV) and dorsal part of the anterior amygdaloid area (AAD), 

varicose fibres were seen in layers IA and IB (Figs. 2D, E, F), and a number of fine 

fibres crossed layer II (Fig. 2D). At this level, vertically oriented fine and thick fibres 

crossed through the AAD, entering the ventral tip of the external capsule (Figs. 2D, E). 

Labelled, fine fibres were seen scattered throughout the AAV and AAD (Figs. 2D, E).  
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Fig. 2 Line drawings and photomicrographs of Nissl counterstained frontal sections 
illustrating the anterogradely labelled fibres in the telencephalon resulting from the 
AOB injection shown in Fig. 2.1. The drawings A, D, G illustrate the labelling in 
traditional olfactory recipients (with indication of the coordinate relative to bregma). 
For abbreviations, see list. Rectangles in A, D, G, J correspond to B, E, H, K, 
respectively. Rectangles in B, E, H, K, correspond to C, F, I, L respectively. Scale bar = 
250µm for B, E, H, K; 50 µm for C, F, I, L. Arrows indicate fibres and arrowheads 
varicosities. 
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At the level of the ACo, labelled varicose fibres appeared in its layer I (sublayers IA and 

IB; Figs. 2G, H). Some fibres crossed layer II (Fig. 2I) tangentially to the pial surface. 

In the LOT, scattered varicose fibres were present in the layers IA and IB, whereas in 

the BAOT a compact bundle of labelled fibres was observed (not shown). 

 

In the anterior subdivision of the Me (MeA) we observed a dense plexus of terminal 

(fine and varicose) fibres in layer I (Fig 2J, K, L), some of which reached layer II. 

Dorsal to the MeA, a few labelled fibres took a dorsal course to reach the ventral zone 

of the caudoputamen (CPu) (Fig. 2J). In the posterior subdivisions of the Me (MeP) a 

dense field of anterogradely labelled, fine, varicose fibres occupied layer I (Fig. 1D), 

with a few fibres reaching layer II. From the posterodorsal subdivisions of the Me 

(MePD) labelled fibres were seen to enter the stria terminalis (st) and ran rostrally up to 

the medial bed nucleus of the stria terminalis (BST), where they gave rise to a terminal 

field specifically innervating its posteromedial part of the medial division (Fig. 1F).  

 

Finally, a dense terminal plexus of labelled fibres was observed in layers IA and IB of 

the PMCo (Fig. 1E).  

3.1.2.2 Main Olfactory Bulb Injections 

We obtained six injections in the MOB. Two of them were restricted to the ventral 

MOB, and were located in the glomerular, external plexiform and mitral layers (as a 

shown in a representative case in Figs. 3A and 3B), and are described here as examples.  

 

From the injection site, labelled fibres entered the lateral olfactory tract (Fig. 3C) to 

reach the Pir, olfactory tubercle (Tu), AA, parts of the cortical amygdala, LOT and Me. 

Occasionally, some retrogradely labelled cells were observed in the Pir, nucleus of the 

horizontal limb of the band diagonal (HDB) and magnocellular preoptic nucleus 

(MCPO). 

 

Throughout the Pir, a dense plexus of beaded and varicose labelled fibres was observed 

in layer IA (Figs. 3D, E, G). Only occasionally labelled fibres were observed in layer 

IB. No labelled fibres appeared in layers II and III. In the Tu, anterogradely labelled 
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fibres ran parallel to the pial surface (Fig. 3F), most of which restricted to layer IA, with 

some occasional fibres reaching the layer IB. 

 

 
Fig. 3 Photomicrograph of Nissl counterstain of parasagittal (A-C) and frontal sections 
(D-L), illustrating the injection site in the ventral MOB (A,B) and the anterograde 
labelling in the traditionally considered vomeronasal (D-I) and olfactory (J-L) nuclei. 
Continuous rectangles in A, D, G, J, correspond to B, E, H, K, respectively. 
Discontinuous rectangles in A, D, G, J, correspond to C, F, I, L, respectively. For 
abbreviations, see list. Scale bar = 1 mm for A; 500 µm for B, D, G, J; 250 µm for C, E, 
H, K; 50 µm to F, I, L. Arrows indicate fibres. 
 
 

When the lateral olfactory tract reaches the amygdaloid formation, labelled varicose 

fibres were observed in layer IA of the CxA and in the superficial portion of the AAV 

(Figs. 3G and 4A-C). At the medial edge of the CxA, in the limit with the AAV, a few 
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fibres were observed to run dorsally into the AAD (Fig. 4A). Within the cortical 

amygdaloid nuclei, thick varicose labelled fibres formed dense plexuses in layer IA of 

the ACo and the LOT (Figs. 3G, H, I), where some fibres occasionally entered layer IB. 

Caudally in the cortical amygdala, both fine and thick beaded and varicose labelled 

fibres were present in layer IA of the PLCo, restricted to the most superficial zone (Fig. 

4H). 

 

 
Fig. 4 Line drawings and photomicrographs of Nissl-stained frontal sections illustrating 
the anterogradely labelled fibres in the telencephalon of a MOB injection (same animal 
of Fig. 2.3). Photomicrographs show the labelling in traditionally considered 
vomeronasal recipients (except for H that is a traditionally olfactory recipient). 
Continuous rectangles in A, D, G correspond to B, E, H, respectively. Discontinuous 
rectangle in G corresponds to I. Rectangles in B, E correspond to C, F. For 
abbreviations, see list. Scale bar: 250 µm in B, E, H; 50 µm in C, F, I. Arrows indicate 
fibres and arrowheads varicosities. 
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In the medial amygdala, a number of thin labelled fibres were observed to reach the 

superficial aspect of the ventral part of the MeA (Figs. 3J, K, L and Figs. 4D, E, F). 

This anterograde labelling is particularly dense at the rostralmost levels of the MeA. 

The plexus of anterograde labelling in the MeA did not show continuity with the fibres 

present in the ACo (Figs. 4D, E). In the posterior medial amygdala, a few fine fibres 

were observed in layer I of the MePD (Figs. 4G, I), whereas no labelling was found in 

the MePV.  

 

3.1.3 Discussion 
 

Traditionally, the vomeronasal and olfactory systems have been considered to process 

chemosensory information independently, given their differential and non-convergent 

projections to the basal telencephalon (Skeen and Hall 1977; Scalia and Winans 1975). 

This idea is known as the dual olfactory hypothesis (reviewed in Halpern 1987). The 

results of the present study confirm and extend previous results reported in mice and 

rats of convergent projections of the main and accessory olfactory bulbs to portions of 

the amygdala and olfactory cortex, thus contradicting the dual olfactory hypothesis. Our 

results indicate that the AOB projects to areas traditionally considered being olfactory 

recipients, such as the CxA, ACo and LOT in the amygdala and a particular zone of the 

Pir, while the MOB projects to areas traditionally considered as vomeronasal, such as 

the AAV, MeA and MePD. 

 

The Pir is the main projection target of the MOB, and therefore is usually viewed as the 

primary olfactory cortex (but see Martínez-García et al. 2012). Our results show fibres 

originated in the AOB innervating layers I, II and III in a small restricted area of the Pir: 

the anterior ventral Pir (surrounding the lo). It is important to note that the distribution 

of anterograde labelling in the Pir following AOB injections (fibres oriented 

perpendicularly to the brain surface that entered layers II and III) is very different from 

that observed after MOB injections (fibres oriented parallel to the brain surface 

concentrated in layer IA), and therefore it is unlikely that these fibres might arise from 

inadverted contamination of the MOB. In addition, these results agree with schematic 

drawings shown by Mohedano-Moriano et al. (2007) in rats (Table 1), as well as with 

the description of collaterals fibres entering the Pir after AOB injections in mice (Kang 

et al. 2011a; Table 1).  
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Table 1. Comparison of the present results with recent studies of AOB and MOB 
projections performed in rats (Mohedano-Moriano et al. 2007; Pro-Sistiaga et al. 2007) 
and mice (Kang et al. 2009, 2011a). Collaterals refer to reported axon collaterals 
entering the structure in a flat-mount view. * Layers IA and IB not specified in the 
original paper. - Not mentioned in the original paper. MOB, main olfactory bulb; 
accessory (AOB) olfactory bulbs; MeA, anterior medial amygdale, MePD, 
posterodorsal medial amygdala; MePV, posteroventral medial amygdale; Nlot, nucleus 
of the lateral olfactory tract; Pir, piriform cortex; PMCo, posteromedial cortical 
amygdale; PLCo, posterolateral cortical amygdale. 

 
Nucleus Layers where it can be seen labelling 

from AOB 
Layers where it can be seen labelling 

from MOB 

 Rat Mouse Present 
work 

Rat Mouse Present work 

Pir Line 
drawing 

Collaterals IA-IB 
II-III 

IA IA IA-IB 

CxA IA-II - IA-IB IA-II - IA 
AAV I I* I I I* I 
LOT I-II-III I* IA-IB IA-IB I* IA-IB 
ACo IB-III Collaterals IA-IB 

II-III 
IA I* IA 

BAOT I-II I-II I-II IA I* IA 
MeA I-II-III I-II I-II I IA-II I 

MePV I-II - I No No No 
MePD I-II I-II I No IA-II I 
PMCo IA-IB IA-IB IA-IB No No No 
PLCo IA-IB No No IA I* IA-IB 

 
 

 

In the latter study only the fibres in layer I were described probably because the authors 

used flat-mount preparations of the telencephalon. In any case, the authors did not 

discuss the observed fibres in the Pir. However, this evidence suggests that this 

particular zone of the Pir is the first cortical area where vomeronasal and olfactory 

information converge. 

 

With regard to the projections of the AOB to the amygdala, our results fully agree with 

those reported by Kang et al. (2009; 2011a), the only differences being that they did not 

report fibre labelling in the CxA, and that they described fibres in deep MeA. In rats, 

Pro-Sistiaga et al. (2007) and Mohedano-Moriano et al. (2007) reported AOB-

originated projections in the same structures that we found in the present study (with the 
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exception of a few fibres in the PLCo that we could not observe), thus suggesting that 

rats and mice have similar patterns of olfactory projections, although some differences 

might exist regarding the layers innervated, as summarised in Table 1.  

 

We have also observed fibre labelling through the AAD that apparently reached the 

ventral tip of the external capsule (Fig. 2D). We could not identify the target structures 

of these fibres. In rats, similar anterograde labelling has been reported (Mohedano-

Moriano et al. 2007) and was interpreted as part of the stria terminalis (st) pathway to 

the BSTMPM. However, at the levels where this labelling appears the st is not present 

yet. An alternative explanation would be that these fibres are actually retrogradely 

labelled axons from neurons of the diagonal band that project back to the bulb (Shipley 

and Adamek 1984), although we did not observed retrograde labelled cell bodies in this 

nucleus.  

 

The amygdaloid targets of the MOB projection described in the present report are fully 

consistent with the results of previous works (Kang et al 2009; Pro-Sistiaga et al. 2007), 

again with minor differences regarding the layers innervated in each structure, as 

summarised in Table 1. The only result of our work not previously reported is the 

presence of a few labelled fibres located deep in the AAV and in the AAD. Since this 

labelling is similar to that found in injections that only affected the granular layer of the 

MOB (not shown) that gave rise to abundant retrograde labelling, it is possible that it 

actually corresponds to retrogradely labelled axons.   

 

Therefore, according to our results and other previous works, the amygdala contains 

several associative areas where chemosensory information coming from the AOB and 

MOB converge, including the CxA, ACo, MeA and MePD (Fig. 5). The CxA and ACo 

are structures receiving predominantly olfactory projections and a minor input from the 

AOB in layers I and II (also reaching layer III in the ACo) (Table 1).  

 

The MeA and MePD are areas receiving predominantly vomeronasal projections and 

also a minor afferent from the MOB (layers I and II). Since the inputs to the inner layers 

are closest to the cell body, they presumably have a higher modulatory strength than 

those reaching the distal dendrites. Taking these considerations into account, we 

consider the four mentioned areas more relevant for the association of olfactory and 
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vomeronasal information than the AAV, LOT and BAOT, where fibres coming from 

the MOB and AOB are superficial and may also be axons en passant (Table 1).  

 

 

 
Fig. 5 Semi-schematic diagram showing the convergence from the AOB (red) and MOB 
(blue) projections. 
 

 

Although the present studies were performed in female mice, previous works showed no 

differences in the pattern of the AOB projections between male and female mice (von 

Campenhausen and Mori 2000). Regarding the MOB efferent projections, most of the 

previous works in mice were performed in males (e.g., Shipley and Adamek 1984; 

Kang et al. 2011a), and our results have not revealed any difference with these previous 

reports. Consistent with these observations, no sexual differences have been found in 

the AOB or MOB projections in rats (Dr. Martinez-Marcos, University of Castilla-

LaMancha, personal communication). In addition, the reported similarities between 

mice and rats make it unlikely that the described convergent projections from the AOB 

and MOB to amygdaloid structures are different in males, although experimental 

confirmation of this possibility awaits further study. Noteworthy, a recent study has 

revealed a sexual dimorphism in the distribution within the MOB of the mitral cells that 

project to the medial amygdala, but no sex difference was found in the pattern of 

projections from the MOB to the medial amygdala (Kang et al. 2011b). 
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The direct convergence of projections from the main and accessory olfactory bulbs in 

the amygdala, as well as in a particular area of the anterior piriform cortex, suggests that 

these structures are likely implicated in the complementary role played by these two 

kinds of chemosensory information (Keller et al. 2009). In particular, it has been shown 

that non-volatile molecules detected by the vomeronasal system, which elicit 

unconditioned responses (e.g, sexual attraction), become associated by means of 

chemosensory experience with volatile molecules detected by the main olfactory system 

(Martínez-García et al. 2009). By this learning mechanism, animals may learn to 

respond to volatiles, which can be detected at a distance, and consequently track the 

source of the volatile molecules (e.g., a possible mate). A similar learning process might 

take place in the case of vomeronasal-detected predator signals (Papes et al. 2010) and 

associated volatiles, allowing the animals to avoid predators at a distance. This learning 

process has obvious advantages for the animal. 

 

The medial nucleus of the amygdala is involved in sex-specific and sex-steroid 

olfactory preference (Dibenedictis et al. 2012). Studies of c-fos expression performed in 

female mice have shown that the cell bodies of this area are activated after exposure to 

male-derived chemicals (Moncho-Bogani et al. 2005; Kang et al. 2009), and electrolytic 

lesions of the MeP abolish the preference of females for male-derived urinary chemicals 

(Dibenedictis et al. 2012). Similar results have been reported in male hamsters (Maras 

and Petrulis 2006). This evidence, as well as the convergent projections of the 

vomeronasal (pheromones) and olfactory (volatiles) information in the medial 

amygdala, makes this structure a likely candidate to be involved in the association 

between odours and pheromones. With regard to the CxA and ACo, no information is 

available about their possible roles in pheromone detection, although it has been shown 

that the ACo expresses c-fos in female mice following chemoinvestigation of male-

derived volatiles (Moncho-Bogani et al. 2005; Kang et al. 2009). Further studies are 

needed to clarify the role of these associative chemosensory structures.  
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Afferent projections to the different 
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3.2.1 Introduction 
!
The medial amygdaloid nucleus of the amygdala (Me) is one of the main structures 

receiving the projections originated in the accessory olfactory bulb (Scalia and Winans 

1975), and it was very early identified as a relevant structure for the control of sexual 

behaviour in male hamsters (Lehman et al. 1980). In addition, the Me has been 

proposed to be a key node of the sexually dimorphic network mediating sociosexual 

behaviours in rodents (Newman 1999) and other vertebrates (Goodson 2005). In fact, it 

is enriched in neurons expressing steroid hormone receptors.  

The efferent projections of the Me have been previously characterized in several rodent 

species (Gomez and Newman 1992; Canteras et al. 1995; Coolen and Wood 1998; 

Usunoff et al. 2009; Maras and Petrulis 2010a; Pardo-Bellver et al. 2012), and the 

pattern of projections differs between the anterior (MeA), posteroventral (MePV) and 

posterodorsal (MePD) subdivisions of the Me. The anatomical data suggest that the 

posterodorsal part is mainly involved in reproductive behaviours, whereas the 

posteroventral part plays a role in the expression of defensive behaviours, in particular 

elicited by predator-derived chemicals (Choi et al. 2005). 

However, recent findings about the type of information perceived by the vomeronasal 

organ have revealed that, in addition to reproductive-related signals and predator-

derived cues (Papes et al. 2010; Isogai et al. 2011), it detects chemical signals from 

competitors (Chamero et al. 2007), stress-related signals (Nodari et al. 2008) and illness 

cues (Riviere et al. 2009). Therefore, the view of the medial amygdala as a relevant 

nucleus processing sexually relevant signals versus chemicals from predators should be 

revised taking into account these other possible types of information. Moreover, the Me 

also receives direct projections from the main olfactory bulb (Scalia and Winans, 1975; 

Pro-Sistiaga et al. 2007; Kang et al. 2009; 2011; Cádiz-Moretti et al. 2013), and 

therefore it is also a critical node to integrate olfactory and vomeronasal information.   

To fully understand how the Me process the information derived from the different 

types of vomeronasally-detected chemicals, it is necessary to identify the rest of the 

neural inputs received by this nucleus, and in particular by its subdivisions. However, 

the afferents to the Me have not been properly studied in any mammalian species taking 

into account its anatomical subdivisions. In fact, our knowledge about the inputs to the 
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Me derive from a number of anterograde tracing studies of some of the structures giving 

rise to projections to the Me (see, for a review, Pitkanen 2000), and a few injections of 

retrograde tracers encompassing several of the Me subdivisions (Ottersen and Ben-Ari 

1979). Anatomical information is available mainly for rats (and, to a lesser extent, for 

hamsters). By contrast, very little information is available for mice, a species used in a 

large number of behavioural experiments to understand the role of the vomeronasal 

system (Halpern and Martínez-Marcos 2003). These studies have benefited from the 

availability of genetically modified mice with alterations of key genes for the function 

of the vomeronasal organ, which have yielded relevant new information on the neural 

basis of sociosexual behaviours (Tirindelli et al. 2009; Zufall and Leinders-Zufall 

2007). 

With the aim to comprehensively describe the neuroanatomical substrate of the inputs 

relaying information to the different subdivisions of the medial amygdala, in the present 

study, we have traced the afferent projections to the anterior, posterodorsal and 

posteroventral subdivisions of the Me by using the retrograde tracer fluorogold.  

3.2.2 Results 
!
For the description of the results we follow the cytoarchitecture and nomenclature by 

Paxinos and Franklin (2004) with a few modifications that are discussed where needed. 

For the amygdaloid complex (see Table 2), we follow the architecture proposed by 

Martínez-García et al. (2012) and the functional grouping of the chemosensory 

amygdala proposed by Gutierrez-Castellanos et al. (2010): olfactory nuclei, receiving 

inputs only from the main olfactory bulb (MOB); vomeronasal nuclei, receiving inputs 

only from the accessory olfactory bulb (AOB); and mixed nuclei, receiving inputs from 

both bulbs, with either olfactory or vomeronasal predominance. 

Retrograde labelling with FG typically appears as granular staining of the cell body. 

Staining intensity ranged from a few granules surrounding the neuronal nucleus to 

darkly stained somata with labelling extending into the proximal dendritic tree.  

On the other hand, the extent and boundaries of the injection sites are difficult to discern 

in immunoperoxidase material, apparently because high concentrations of FG make 

immunostaining hazy. In contrast, fluorescence microscopy neatly delineates the 

injections. Therefore, each injection was photographed under fluorescence microscopy 
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to map its location and extent (Fig. 6). In addition, retrograde labelling in structures 

adjoining the injection sites were analysed in fluorescence material.  

In this section we will describe the distribution and relative density of retrogradely 

labelled cells after the three kinds of injections performed.  

 

Table 2. Semiquantitative rating of the density of the retrograde labelling resulting after 
tracer injections in three subnuclei of the medial amygdaloid nucleus.  
++++ very dense; +++ dense; ++ moderate; + scarce; - very scarce; 0 not found. 

  MeA MePV MePD 

OLFACTORY 
SYSTEM 

    

Accessory Olfactory 
Bulb 

MiA rostral/MiA 
caudal 

++++ ++++ ++++/++ 
!

Main Olfactory Bulb Mi - 0 - 

Olfactory Cortex DTT/VTT jjbj! +/0 -/0  

 Pir jj! + - 

 DEn/VEn jjbjj! ++/+ +/- 

AMYGDALA AND 
BST 

    

Vomeronasal PMCo jjjj! ++++ ++ 

Vomeronasal 
predominance  

MeA injection ++++ ++++ 

 MeAV/MeAD jjjj! +++/++ Qbjj!

 MePV jjj! injection ++++ 
!

 MePD jj! +++ injection 

 BAOT jjjj! ++++ +++ 

 AAV/AAD jj! ++/+ QbQ!

Olfactory PLCo jjj! +++ ++ 

 APir ++ + - 
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  MeA MePV MePD 

Olfactory 
predominance 

ACo jjj! +++ +++ 

 CxA jj! + 0 

 LOT j! - + 

Basolateral complex BLA Q! - 0 

 BLP Q! + - 

 BLV Q! + 0 

 BMA jjj! ++ ++ 

 BMP jjj! ++ - 

 LaDL/LaVM/LaVL -/+/+ -/+/- 0/0/0 

Amygdalohippocampal 
transition area 

AHi jj! ++ +++ 

Central CeC 0 - 0 

 CeL Q! 0 0 

 CeM j! + + 

 I j! + - 

 IM j! + - 

BSTL BSTLP - 0 0 

 BSTLV Q! - 0 

BSTM BSTMA Q! - 0 

 BSTMV - 0 0 

 BSTMPM jj! ++ ++++ 
!

 BSTMPI jjj! +++ ++ 

 BSTMPL j! - 0 

 BSTIA jjj! ++ ++ 



! (*!

CORTEX AND 
HIPPOCAMPAL 

FORMATION 

! ! ! !

 AI jj! - 0 

 PrL j! - 0 

 Cl Q! 0 - 

 MO j! + - 

 LO Q! 0 0 

 IL j! - - 

 DP j! + - 

 PRh Q! 0 - 

Hippocampal 
formation 

LEnt jj! + + 

 CA1 jjj! +++ ++ 

 S ++ ++ + 

SEPTUM/STRIATUM ! ! ! !

Lateral septal 
complex 

LSI j! + 
!

+ 

 LSD Q! 0 0 

 LSV Q! - - 

 SHi jj! + - 

Medial 
septum/Diagonal 
band 

MS jj! ++ + 

 HDB/MCPO jj! + + 

 VDB jj! + - 

Striato-pallidum VP Q! + !

 SL jjj! ++ + 

 SI jj! ++ + 

 IPAC Q! 0 0 
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  MeA MePV MePD 

THALAMUS ! ! ! !

 PVA/PV jjbj! ++/+ +/- 

 PVP jjj! +++ ++ 

 Re jj! ++ + 

 MD Q! 0 0 

 MHb Q! - 0 

 ZI j! - + 

 pv jjj! ++ ++ 

 SPF jjj! ++ ++ 

 SPFPC jj! ++ ++ 

 PIL jjj! +++ +++ 

 SG jj! + - 

 PP jjj! +++ ++ 

 MGM j! + - 

HYPOTHALAMUS     

Preoptic MPA Q! 0 - 

 MPO j! + ++ 

 LPO Q! 0 - 

Anterior AH j! + + 

 Pa Q! 0 - 

Tuberal VMH jj! ++ + 

 DM Q! - 0 

 LH j! + + 

 Arc Q! 0 - 

 TC Q! + - 

Mammilary PMD/PMV  Mbj! 0/+++ 0/++++ 
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  MeA MePV MePD 

 SuM Q! + - 

 PH jj! ++ + 

BRAINSTEM AND 
MIDBRAIN 

    

 PAG Q! - - 

 VTA Q! 0 0 

 RLi Q! 0 0 

 DR j! + + 

 IP Q! 0 0 

 MnR - - - 

 PB jj! ++ + 

 

3.2.2.1 Retrograde labelling after FG injections into the anterior subdivision of the 

medial amygdaloid nucleus (MeA) 

Nine injections were aimed at the MeA, four of which were restricted to this subnucleus 

(see Figs. 6A-C and 6I). In addition, five more injections were centred in the MeA but 

extended to some neighbouring structures such as the substantia innominata (M1242), 

the anterior amygdaloid area (M1248), the MePD (cases M1316 and M1314) or the 

MePV (M1317). The pattern of labelling was similar in all four restricted injections 

(case M1310 is illustrated in Fig. 7), and the labelling in non-restricted injections is 

fully consistent with the pattern described. 

In general, the density of labelled cells was high in areas of the olfactory systems and in 

several nuclei of the amygdala and bed nucleus of the stria terminalis (BST), moderate 

in the hippocampal formation and scarce in the neocortex. Within the subcortical 

telencephalon, labelled cells were also present in the septum and basal forebrain. In 

addition, several populations of labelled cells were seen in several nuclei of the 

thalamus, hypothalamus as well as in some midbrain and brainstem centres.  
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Retrograde labelling in the olfactory systems  

As expected, injections of FG in the MeA gave rise to very dense retrograde labelling 

throughout the mitral cell layer of the accessory olfactory bulb (MiA) (Figure 7A, Table  

 

Fig. 6 Injection sites in the anterior, posteroventral and posterodorsal subdivisions 
of the medial amygdaloid nucleus in mice. (A–H) Schematic drawings representing 
the extent of the tracer injections in the anterior medial amygdaloid nucleus (MeA), 
posteroventral medial amygdaloid nucleus (MePV) and posterodorsal medial 
amygdaloid nucleus (MePD). The MeA injections are represented in panels A-C; MePV 
injections are shown in panels D, E (injections M1312 and M1313 were almost 
identical, and therefore one drawing illustrates both) and MePD injections are 
represented in panels G, H. Single injections are identified with the animal code. Note 
that no injection site is present in panel (F), shown only for the sake of the rostro-caudal 
continuity of the figure. (I-K) Fluorescent photomicrographs through the amygdala 
showing representative injections sites of Fluorogold. (I) Injection site in MeA, case 
M1310. (J) Injection site in MePV, case M1303. (K) Injection site in MePD, case 
M1257. For abbreviations, see list. Scale bar in I, valid for I-K = 500 µm 

 

2), which represents one of the main sources of inputs to the MeA. In addition, the main 

olfactory bulb also displayed labelled mitral cells, mainly located in the medial and 

lateral aspects of the bulb (see Table 2). Labelling density in the MOB is relatively 

higher in case M1256, in which the injection is centred in the superficial layer of MeA, 
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and in the non-restricted injection M1242, which involved the external layer of the 

MeA.  

Secondary olfactory centres also showed remarkable retrograde labelling. Thus, a 

moderate number of labelled cells was observed in the dorsal tenia tecta (DTT, layer III)  

(Figure 8A), while the ventral tenia tecta (VTT) showed scarce labelling mainly located 

in its layer II. The piriform cortex (Pir) showed a heterogeneous pattern of retrograde 

labelling, from very scarce in the anterior Pir to dense in its caudal portion (Figure 7B-J; 

Fig. 8C). Labelling was distributed in layers II and III but, occasionally, labelled cells 

were seen in layer I, just below the lateral olfactory tract (lo) (Figure 7B-D). In addition, 

the endopiriform nucleus, especially its dorsal portion (DEn), also showed retrograde 

labelling, with a heterogenous antero-posterior distribution (Figure 7B-J, Figure 8C).  

Retrograde labelling in the amygdala 

The amygdala (together with the BST) presented the densest populations of retrogradely 

labelled cells, and the most intensely labelled neurons. Labelling was present in the 

chemosensory nuclei, as well as in deep nuclei belonging to the basolateral/amygdalo-

hippocampal or central divisions. 

Within the chemosensory amygdala, labelling was dense in the PMCo (Fig. 7H-K), the 

only vomeronasal nucleus that does not receive direct olfactory projections. In general, 

this nucleus showed a very dense labelling, with labelled somata located in the cellular 

layers (layers II and III). Retrogradely labelled neurons appeared heterogeneously 

distributed: labelling was very dense in the rostral PMCo (adjacent to the MePV, Fig. 

7H), moderate in intermediate levels, where labelled cells were located mainly in the 

lateral aspect of the nucleus (Figure 7I, J), and very dense in the caudal edge of the 

nucleus (Figure 2K).  

With regard to the mixed chemosensory amygdala, within the nuclei with vomeronasal 

predominance, labelling was present in the different divisions of the Me, the bed 

nucleus of the accessory olfactory tract (BAOT) and the anterior amygdaloid area (AA) 

(Table 2). Within the Me very dense labelling was observed in the non-injected portions 

of the MeA, including the dense-celled regions of the anteroventral (MeAV) and the 

anterodorsal (MeAD) parts of the MeA, which are rostral to the injection site (Fig. 7F). 

The MePV showed a heterogeneous pattern of labelling along its antero-caudal axis, 
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Fig. 7 Semi-schematic drawings of parasagittal (A) and frontal (B-L) sections 
through the mouse brain showing the distribution of retrogradely labelled somata 
following a Fluorogold tracer injection in the anterior medial amygdaloid nucleus. 
The injection site is depicted in panel (G). The semi-schematic drawings are based on 
the case M1310, which presented the largest restricted injection. B is rostral, L is 
caudal. For abbreviations, see list.  
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very dense at rostral levels (Fig. 8C) and less so caudally (Figure 7H, I). Finally, the 

MePD presented, in general, moderate labelling with a conspicuous heterogeneity in the  

distribution of labelled cells (Figure 7H, I). As figure 8C illustrates, at least at rostral 

levels of the MePD, labelled cells apparently lined up the outer boundary of the cell 

layer, with deeper regions showing a lower density of stained cells. In addition, the 

BAOT showed also very dense labelling with darkly stained somata (Figure 7F), 

whereas the ventral and dorsal divisions of the AA (AAV, AAD) presented a moderate 

density of retrograde labelling.  

Regarding to the olfactory amygdala (Table 2), the posterolateral cortical amygdaloid 

nucleus (PLCo) displayed a high density of labelled cells (Fig. 7H-J), most cells being 

located in layer II and to a lesser degree in layer III (see Fig. 8C). By contrast, the 

amygdalo-piriform transition area (APir) showed a moderate density of labelled cells 

(Table 2, Figure 7K).  

Among the nuclei of the mixed chemosensory amygdala with olfactory predominance 

(Table 2), the anterior cortical amygdaloid nucleus (ACo) showed a dense population of 

labelled neurons in the cell layer (Figure 7E-G, Figure 8C). The cortex-amygdala 

transition zone (CxA) displayed moderate labelling density, with the labelled somata 

mainly located in layer II (Fig. 7E). Finally, the nucleus of the lateral olfactory tract 

(LOT) showed just a few retrogradely labelled cells confined to layer I (Fig. 7E).  

Within the multimodal or deep amygdala (Table 2), in the basolateral complex, the 

anterior and posterior parts of the basomedial amygdaloid nucleus (BMA, BMP 

respectively) showed a heterogeneous labelling density (dense, in average). In both 

nuclei dense labelling was present in their rostral parts while in their posterior parts the 

labelling decreased to moderate (Figure 7E-J). In the basolateral amygdaloid nucleus, 

the anterior (BLA), ventral (BLV) and posterior (BLP) parts showed scarce labelling 

(Figure 7F-K). In the lateral amygdaloid nucleus labelling was scarce in its 

ventromedial and ventrolateral parts (LaVM, LaVL) and very scarce in its dorsolateral 

part (LaDL) (Figure 7H-J). Finally, in the amygdalo-hippocampal area (AHi) labelling 

was denser in the rostral half than its caudal aspect (Fig. 7I-K). 

To complete the description of retrograde labelling in the amygdala, scarce or very 

scarce labelling was observed in the central amygdaloid nucleus (Table 2), mainly in its  
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Fig. 8 Photomicrographs of frontal sections illustrating the retrograde labelling 
through the mouse telencephalon of animals receiving a Fluorogold injection in the 
anterior medial amygdaloid nucleus. The images correspond to the retrograde 
labelling presented in the cases M1310 (A, B, E) and M1319 (C, D, F). (A) Retrograde 
labelling in the prelimbic and infralimbic areas of the prefrontal cortex and the rostral 
areas of the septum. (B) Retrogradely labelled neurons in the ventromedial 
hypothalamus. (C) Numerous labelled cells in the posterodorsal and posteroventral 
subnuclei of the medial amygdala, as well as in the anterior and posterolateral cortical 
amygdaloid nuclei. (D) Retrogradely labelled cells in the midline thalamus and 
posterior hypothalamus. The inset shows the Golgi-like stained neurons observed in the 
posterior hypothalamic area. (E) Retrogradely labelled neurons in the posterior 
intralaminar thalamic complex. (F) Retrograde labelling in the parabrachial nucleus of 
the brainstem.  For abbreviations, see list. Scale bar in A (valid for B-E): 500 µm. Scale 
bar in F: 250 µm. Scale bar in inset in D: 500 µmmedial division (CeM, Fig. 7F-H), and 



!))!

in the intercalated nuclei of the amygdala (I), including the main intercalated nucleus 
(IM; Figs. 7F and 7H).  

 

Labelling in the bed nucleus of the stria terminalis (BST)   

Within the BST complex, the posterior part of the medial subdivision presented the 

strongest labelling (Figure 7D). The posterointermediate part of the medial division of  

the BST (BSTMPI) showed dense labelling whereas in the posteromedial (BSTMPM) 

and posterolateral (BSTMPL) parts labelled cells were relatively scarcer (Fig. 9A, D). 

Other parts of the BST (results not shown) display a low number of labelled cells, 

including the ventral (BSTMV) and anterior parts of the medial BST (BSTMA), and the 

posterior and ventral parts of the lateral BST (BSTLP and BSTLV, respectively; Table 

2). Finally, the intraamygdaloid part of the BST (BSTIA) showed dense labelling with 

the stained cells located more frequently in its medial aspect adjoining the MePD (Figs. 

7H, I and 8C). 

Retrograde labelling in the Cortex and Hippocampal formation 

In the neocortex, labelling was scarce and restricted to the prefrontal and perirhinal 

regions. Thus labelled neurons were observed in the medial orbital (MO), prelimbic 

(PrL), infralimbic (IL) and dorsal peduncular cortices (DP) (Figure 7B, Figure 8A, 

Table 2). Except for case M1257, in which the IL presented a moderate number of 

labelled cells, the rest of the areas in the medial prefrontal cortex showed very scarce 

labelling. Likewise, the lateral orbital cortex (LO), claustrum (Cl) and perirhinal cortex 

(PRh) displayed very few labelled cells (Figure 7D-K). In contrast, a moderate density 

of labelled cells appeared in the ventral and posterior parts of the agranular insular 

cortex (AIV, AIP respectively), with labelled somata located in layer V (Figure 7C-G). 

More caudally, a moderate number of labelled neurons were seen in the lateral 

entorhinal cortex (LEnt; Figure 7I-K), where labelling was especially dense 

immediately caudal to the APir.  

Regarding to the hippocampus, a dense population of labelled somata appeared 

restricted to the ventralmost region of the field CA1 of the caudal hippocampus (CA1) 

(Fig. 7K).  
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Labelling in the septum and ventral forebrain  

In the septal complex, a moderate density of labelling appeared in the rostral 

septohippocampal nucleus (SHi), just ventral to the DTT (Figure 7B, Figure 8A). The 

intermediate part of the lateral septum (LSI) displayed scarce labelling, with the labelled 

somata located next to the medial septal nucleus (MS) (Figure 7B-C). In the rest of the 

complex, we observed very scarce labelling in the dorsal and ventral part of the lateral 

septum (LSD, LSV respectively).  

The vertical and horizontal limb of the diagonal band (VDB, HDB respectively) and the 

MS presented a moderate number of labelled somata lining up at the boundary with the 

LSI (Figure 7C). At the rostral HDB, labelled somata clustered in the lateral edge of the 

HDB, next to the olfactory tubercle (Tu; Figure 7C). In contrast, more caudally 

intensely labelled somata were distributed homogeneously in the caudal HDB and 

adjacent magnocellular preoptic nucleus (MCPO; Figure 7D). Within the basal cerebral 

hemispheres, at rostral levels a number of darkly stained cells were observed in the 

territory located between the nucleus accumbens (Acb) and the Tu (not shown). In 

addition, a group of intensely labelled cells was observed in the semilunar nucleus (SL; 

Figure 7B, 8A). Finally, the substantia innominata (SI) presented moderate labelling, 

and the ventral pallidum (VP) and interstitial nucleus of the posterior limb of the 

anterior commissure (IPAC) showed a few, scattered labelled somata (Figure 7C-E). 

Retrograde labelling in the thalamus  

After FG injections in the MeA, retrograde labelling was observed in the anterior, 

midline and posterior-intralaminar-peripeduncular thalamic regions. Within the anterior 

thalamus the paraventricular thalamic nucleus (PVA) displayed a large number of 

labelled cell bodies (Figure 7D, E; Fig. 9A), with a very striking heterogeneous 

distribution (Table 2). In its rostral edge, it presented a very dense labelling with darkly 

stained cells. At intermediate rostro-caudal levels, the labelling decreased to scarce 

(Figure 7E-G), and even more caudally, the posterior paraventricular thalamic nucleus 

(PVP) showed a high density of intensely labelled cells (Fig. 7H, I; 8D).   

In addition, a low density of labelled cells could be observed in the mediodorsal nucleus 

(MD) and medial habenula (MHb). In one injection (M1256), the central medial 

thalamic nucleus and the lateral habenular nucleus also showed a few labelled cells. 
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Ventrally, a group of labelled neurons appeared in nucleus reuniens (Re; Fig. 7E-G; Fig. 

9D) and the zona incerta (ZI) also showed a few labelled cell bodies (Figure 7F, G). 

In the caudal thalamus, dense retrograde labelling appeared in the SPF, and a group of 

labelled cells appeared near the midline, among the tracts of the pv, apparently 

connecting the cell groups in the PVP and SPF (Figs. 7I and 8D). Within the SPF, a 

small group of labelled cell bodies extended caudo-laterally into its parvocellular part 

(SPFPC; Fig. 7J). Even more caudally, a high density of retrogradely labelled cells was 

seen in the posterior intralaminar (PIL) and peripeduncular nucleus (PP). Retrogradely 

labelled cells appeared also in the medial division of the medial geniculate nucleus 

(MGM) (Figure 7K, Figure 8E) and the suprageniculate nucleus (SG), where labelling 

was scarcer. 

Retrograde labelling in the hypothalamus  

In the hypothalamus labelled cells were present from preoptic to mammillary levels, but 

their density was quite low with two exceptions, the ventromedial hypothalamic nucleus 

(VMH) and the posterior hypothalamic nucleus (PH).   

In the preoptic hypothalamus, sparse labelled neurons were present in the medial 

preoptic nucleus (MPO) and the medial and lateral preoptic areas (MPA, LPO; Fig. 7D, 

Table 2). At anterior levels, sparse labelled cell bodies were seen in the anterior 

hypothalamic area (AH) and paraventricular (Pa). At tuberal levels the VMH showed a 

moderate number of labelled cells (Figure 7G-H) bilaterally, with clear ipsilateral 

dominance (Fig. 8B). In addition, sparse labelled cells appeared in the dorsomedial 

(DM) and arcuate nucleus (Arc), in the tuber cinereum (TC) and in the lateral 

hypothalamic area (LH; Figs. 7E-I and 8B).  

Within the mammillary hypothalamus, labelled cells were present in the PH (Fig. 7H-J), 

mainly at caudal levels. In addition, retrograde labelling was scarce in the ventral 

premammillary nucleus (PMV). Finally, the supramammillary nucleus (SuM) displayed 

a few, sparse retrogradely labelled cells (Figure 7K).  

Retrograde labelling in the midbrain and brainstem 

Labelled cells were very scarce and scattered in diverse nuclei of the midbrain and 

brainstem, including the ventral tegmental area (VTA), interpeduncular nucleus (IP), 
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periaqueductal gray (PAG), rostral linear nucleus of the raphe (RLi) and the dorsal (DR) 

and median raphe nuclei (MnR) (Table 2). The few retrogradely labelled cells found in 

the PAG were scattered across its different subdivisions. In addition, the parabrachial 

nucleus (PB) presented a moderate density of labelled cells, both in its medial and 

lateral divisions (Figure 7L, Figure 8F).  

 

Fig 9 Photomicrographs of frontal sections illustrating the retrograde labelling 
present in the medial subdivision of the bed nucleus of the stria terminalis (BSTM) 
after Fluorogold injections in the medial amygdaloid nucleus. (A, D) Retrograde 
labelling after an injection in the anterior part of the medial amygdala, case M1318, 
showing the resulting dense labelling in the posterointermediate part of the BSTM (A is 
rostral, D is caudal). (B, E) Retrograde labelling after an injection in the posteroventral 
part of the medial amygdala, case M1303, illustrating the dense labelling observed in 
the posterointermediate part of the BSTM and the heterogeneous labelling present by 
the posteromedial part of the BSTM (B is rostral, E is caudal). (C, F) Retrograde 
labelling after an injection in the posterodorsal part of the medial amygdala, case 
M1257, illustrating the dense labelling showed by the posteromedial part of the BSTM 
(C is rostral, F is caudal). Note also the dense labelling in the anterior paraventricular 
thalamic nucleus in A and B. For abbreviations, see list. Scale bar in (A) valid for (B-
F): 500 µm 
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Contralateral labelling  

Although FG injections in the MeA gave rise mainly to ipsilateral retrograde labelling, 

labelled cells were also observed in the side of the brain contralateral to the injection. In 

general, these nuclei were the contralateral counterparts of the ipsilateral structures that 

presented very dense or dense labelling. Thus contralateral labelling was scarce in the 

amygdaloid PLCo and PMCo, the thalamic SPF, PIL and PP, the VMH in the 

hypothalamus and the PB in the brainstem. Occasional (very scarce) labelling was also 

observed in the contralateral LEnt, in the hippocampal formation; the LSI, VDB, and 

HDB in the septal complex; the SL and SI in the striato-pallidum; numerous structures 

in the amygdala and BST (MeA, BLA, BMP, APir, BSTMPM, BSTMPI); the PVA, Re, 

ZI, pv and SPFPC in the thalamus; the MPO, Pa, PH, PMV and Arc in the 

hypothalamus; and the PAG, AH and DR in the midbrain and brainstem. 

3.3.2.2. Retrograde labelling after FG injections into the posteroventral subdivision of 

the medial amygdaloid nucleus (MePV) 

Six injections of FG involved the MePV, three of which were restricted to this 

subnucleus (cases M1303, M1312 and M1313; Fig. 6D, E and J) and the remaining 

encompassed also adjoining regions such as the caudal MeA (M1249), the ventral 

MePD (M1259) and the ACo and PMCo (M1301). The results of non-restricted 

injections are consistent with the pattern of labelling revealed by restricted cases, which 

is described below.  

Experiment M1303 is illustrated as representative case of retrograde transport of FG 

from the MePV (Fig. 10). In general, retrograde labelling was present in the same nuclei 

observed after FG injections in the MeA. Differences pertained to the relative density of 

labelled cells and their distribution within the nucleus in some centres of the olfactory 

systems, cortex, septum, striato-pallidum, thalamus and hypothalamus (see Table 2). 

Therefore, we will focus our description on those differences. 

Retrograde labelling in the olfactory systems  

As in the case of FG injections in the MeA, very dense labelling was observed 

throughout the MiA of the AOB (Figures 10A and 11A). In contrast, no labelling 

appeared in the MOB.  
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Among the secondary olfactory centres, the observed retrograde labelling was in 

general less dense than after the injection in the MeA. Thus, the DTT and anterior Pir 

presented scarce labelling (Figure 10B-D), and only in the caudal part of the Pir (next to 

the PLCo), we observed a moderate density of retrogradely labelled cells (mainly in 

layer II, Figure 10H-J). Similar to the Pir, the DEn showed scarce labelling in its rostral 

part and moderate labelling caudally (Figure 10C-J). Last of all, the VEn showed 

moderate labelling (Figure 10D-J). 

Retrograde labelling in the amygdala 

Within the vomeronasal amygdala, as described in the injections in the MeA, the PMCo 

showed in general a very dense labelling with darkly stained somata (Table 2). The 

intranuclear distribution of labelled stomata was heterogeneous (although not as 

conspicuous as in the case of MeA injections), with labelling being dense rostrally and 

caudally but moderate at intermediate levels (Figs. 10J, K and 11D).  

Regarding to the mixed nuclei with vomeronasal predominance (Table 2), the MeA 

showed also a very dense labelling (Figures 10H and 11C). Within the MeA, the 

labelling presented a heterogeneous distribution, with moderate and dense labelling 

observed in the MeAD and MeAV respectively (Figures 10G and 11B). The MePD 

showed in general a dense labelling (Table 2), with a heterogeneous distribution of 

labelled somata (Figure 10I, J). Darkly stained somata were aligned along the most 

medial part of the cellular layer in the limit with the external layer. The inner part of the 

cellular layer presented moderate labelling (which was denser than that observed in the 

same location after the MeA injections) (Figure 10I, Figure 7H respectively). In 

addition, the BAOT presented very dense labelling (Figures 10G and 11B) and the 

AAV and AAD, showed moderate and scarce labelling respectively (Figure 10E, F).  

Within the olfactory amygdala (including the mixed nuclei with olfactory 

predominance) the retrograde labelling observed was very similar to that obtained 

following the injection in the MeA (Table 2). Thus, the PLCo (Figure 10I, J) and ACo 

(figures 10F-I and 11B, C) presented dense labelling, while the APir (Figure 11D) and 

CxA (figure 10E-H) showed scarce labelling. Finally, in the LOT we observed very 

scarce labelling with the labelled neurons present in layer I (Figure 10F). 
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Fig. 10 Summary of the distribution of retrograde labelling following a Fluorogold 
injection in the posteroventral medial amygdaloid nucleus, plotted onto semi-
schematic drawings of parasagittal (A) and frontal (B-L) sections through the 
mouse brain. The injection site is depicted in panel (I). A is rostral, L is caudal. The 
semi-schematic drawings are based on the case 1303, which presented the largest 
restricted injection. For abbreviations, see list.  
 



!*'!

Within the basolateral complex (Table 2), the BMA and BMP showed in general a 

moderate labelling (Table 2) with a heterogeneous distribution. In the BMA the 

labelling was mainly located in its anterior part (Figure 10F-I), whereas in the BMP 

retrogradely labelled cells were more frequent in its posterior aspect (Figure 10I-K). 

Within the lateral amygdaloid nucleus, the LaVM presented scarce labelling and only a 

few cells were present in the LaDL and LaVL (Fig. 10I, J). Retrograde labelling was 

also scarce in the basolateral nucleus, where it was mainly observed in the BLP and 

BLV (Figure 10H-K). 

With regard to the AHi, as observed following MeA injections, it showed a moderate 

amount of labelling (Table 2), present mainly in its rostral part (Figure 10J, K). 

Finally, the central amygdala and associated intercalated cell masses showed almost the 

same pattern of retrograde labelling that we observed following the MeA injections 

(Table 2), with only a few labelled cells observed mainly in the CeM, the IM and I 

(Figure 10F-H, Table 2). 

Labelling in the bed nucleus of the stria terminalis (BST)   

The labelling obtained in the BST followed the same pattern described after the 

injections in the MeA (Table 2). The densest labelling was present in the posterior 

aspect, where retrogradely cells were mainly present in the BSTMPI (Figs. 9B, E and 

10D, E). In the BSTMPM we observed a moderate density of labelled cells, mainly 

found in its anterodorsal part (Figs. 9B, E and 10D, E). In addition, very scarce labelling 

was present in the BSTMA and the BSTLV (Table 2). Finally, the BSTIA showed a 

moderate amount of retrogradely labelled cells, with darkly stained somata located 

along its limit with the MePD (Figure 10I).  

Retrograde labelling in the cortex and hippocampal formation 

In general, the retrograde labelling resulting from the MePV injections was less dense 

than the one observed in the MeA injections (Table 2). Scarce retrogradely labelled 

cells were present in the MO and DP, with only a few cells observed in the IL, PrL and 

AI (Figure 10B-H). Within the hippocampal formation, the CA1 showed moderate 

labelling, with the labelled cells restricted to its ventral part (Fig. 11D). Some of these 

labelled cells were darkly stained. By contrast, the LEnt presented scarce labelling 

(Figure 10J, K).  
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Labelling in the septum and ventral forebrain  

As described for the cortex, the septum and striatum showed less retrograde labelling 

than that observed after the MeA injections (Table 2). The SHi presented scarce 

labelling (Table 2), with darkly stained somata mainly clustered dorsal to the SL (as 

shown in the MeA injections, see figure 8A). The LSI and LSV showed scarce or very 

scarce labelling respectively (Figure 10C, Table 2), whereas no labelling appeared in 

the LSD.  

In the MS, VDH and HDB/MCPO, the location and distribution of the labelled somata 

was similar to that previously described for the MeA injections (see description above). 

The main difference was a relatively scarcer number of labelled cells in the diagonal 

band (Figure 10C-E). 

In the rostral striato-pallidum, as described in the MeA injections, a group of darkly 

stained somata were located between the Tu and the Acb (see Figure 10B).  In addition, 

the SL presented moderate labelling (Table 2), with some darkly stained cells. More 

caudally, a few labelled cells were present in the VP (Figure 10C). Finally, the SI 

showed also moderate labelling (Figure 10D-F). 

Retrograde labelling in the thalamus  

The PVA, PV, PVP and Re showed the same densities and distribution of retrograde 

labelling described in the MeA injections (see the description above, Table 2). Briefly, 

the PVP and PVA showed dense and moderate labelling respectively, with only scarce 

labelling observed at intermediate levels (PV) between the PVA and the PVP (Figures 

9B, E and 10D-J). The Re presented a moderate number of retrogradely labelled cells.  

Regarding to the structures of the posterior intralaminar thalamus (SPFPC, PIL, PP and 

MGM), all showed the same densities of labelling, distribution of labelled somata, and 

presence of darkly stained somata as described in the MeA injections (see the 

description above, Table 2). In summary, the PIL and PP showed dense labelling, the 

SPFPC presented moderate labelling and the MGM showed scarce labelling (Fig. 10J, 

K).  
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Finally, the pv, SPF and SG presented also the same distribution of labelled somata than 

that described in the MeA injections, but with less density of labelling (Table 2, Fig. 

10J, K).   

 

Fig. 11 Photomicrographs of parasagittal (A) and frontal (B-D) sections through 
the mouse telencephalon, illustrating the retrograde labelling observed in animals 
receiving a Fluorogold injection in the posteroventral medial amygdaloid nucleus. 
The images correspond to the retrograde labelling presented in the cases M1313 (A, D) 
and M1303 (B, C). (A) Retrogradely labelled mitral cells in the accessory olfactory 
bulb. (B) Numerous labelled cells in the anterodorsal and anteroventral subdivisions of 
the anterior medial amygdaloid nucleus, as well as in the bed nucleus of the accessory 
olfactory tract, the anterior cortical amygdaloid nucleus and the basomedial nucleus. (C) 
Very dense retrogradely labelled cells in the anterior medial amygdaloid nucleus, just 
rostral to the injection site. (D) Retrogradely labelled cells in the posteromedial cortical 
amygdaloid nucleus and in the ventral hippocampus. For abbreviations, see list. Scale 
bar in A (valid for B–D): 500 µm. 

 

Retrograde labelling in the hypothalamus  

The VMH, MPO, AH, LH and DM presented the same densities of retrograde labelling 

(Table 2) and distribution of labelled somata previously described for the MeA 

injections (see description above). Briefly, the VMH showed moderate labelling. In the 
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MPO, AH and LH we observed scarce labelling, and only very few cells appeared in the 

DM (Fig. 10D-J). 

The most relevant difference with the retrograde labelling observed after the injection in 

the MeA is the dense labelling with darkly stained somata present in the PMV of the 

mammillary hypothalamus (Figure 10J, Table 2). We also observed minor differences in 

the PH, SuM and TC. In the case of the PH, the labelling was moderate (as in the MeA 

injections) but labelled cells were strikingly clustered ventrally to the pv and dorsally to 

the PMD (Fig. 10I, J). In the cases of the SuM and the TC, both showed scarce labelling 

(Table 1 and Figure 10G, H). 

Retrograde labelling in the midbrain and brainstem 

The PB showed a moderate density of labelled cells with the somata mainly located 

between its rostral part and the beginning of the fourth ventricle (Figure 10L). In 

addition, the DR presented a low number of retrogradely labelled cells (Figure 10L) and 

only very scarce labelling was present in the PAG and the MnR (Table 2). 

Contralateral labelling  

As described in the injection in the MeA, the retrograde labelling resulting from the 

MePV injections was mostly ipsilateral, although some structures showed bilateral 

labelling. We observed moderate labelling in the contralateral PMCo, PIL and PP, and 

scarce labelling in the VMH and PB. In addition, we observed very scarce labelling in 

several amygdaloid structures (MeA, MePV, AVV, ACo and BMA), in some BST 

subnuclei (BSTMPM and BSTMPI), in the hippocampal CA1, in the septum and ventral 

forebrain (LSI, MS, HDB, VDB, SL and SI), in the thalamus (PVA, PV, PVP, pv, Re, 

ZI, SPF and SPFPC), in the hypothalamus (MPO, LH, Arc and PH) and finally in the 

PAG and Mn of the midbrain and brainstem.  

3.2.2.3 Retrograde labelling after FG injections into the posterodorsal division of the 

medial amygdaloid nucleus (MePD) 

We obtained six injections in the MePD; three restricted and three non-restricted. Figure 

6G, H shows the location and extension of the restricted injections (cases M1209, 

M1257 and M1320). All these injections affected the cellular layer of the caudal half of 

the MePD. Figure 1K illustrates the location of the FG injection in case M1257, which 
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served to illustrate the observed retrograde labelling throughout the brain (Figure 12). 

The non-restricted injections affected adjoining structures, such as the MePV (case 

M1307), the MeA (case 1308) or the BMA (case M1307), but were useful to 

corroborate the observed labelling. 

The three restricted injections gave rise to a similar pattern of retrograde labelling, 

described below and summarize in Table 2. In general, a smaller number of neural 

structures presented labelling and they showed less density of labelled cells compared 

with the MeA and MePV injections. Differences were mainly observed in the AOB and 

some centres of the amygdala, BST and hypothalamus (see Table 2). We will focus our 

description on those differences. 

Retrograde labelling in the olfactory systems  

In contrast to the results obtained following the injections in the MeA and MePV, the 

retrograde labelling observed in the AOB was strikingly heterogeneous, being much 

denser in the rostral than in the caudal MiA (Figs. 12A and 13A). Regarding to the 

MOB, in two injections (cases M1257 and M1209), the Mi presented very scarce 

labelling, with lightly stained somata observed in the lateral and medial aspects of the 

MOB (Table 2).  

In the secondary olfactory centres, including the DTT, Pir and endopiriform nucleus, the 

distribution of retrograde labelling was similar to that observed after the injections in 

the MePV (Figure 12B-H), although a lesser amount of retrogradely labelled cells was 

observed (Table 2).   

Retrograde labelling in the amygdala 

In the vomeronasal amygdala, the injections in the MePD resulted only in a moderate 

amount of retrogradely labelled cells in the PMCo. This contrasts with the result 

obtained after MeA and MePV injections, in which the PMCo presented very dense 

labelling. The intranuclear distribution of the retrograde labelling follows the same 

pattern described following the injections in the MeA and MePV, that is, dense in its 

rostral and caudal parts (Figure 12G, I and 13C), and moderate at intermediate levels 

(Figure 12H).  
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Fig. 12 Semi-schematic drawings of parasagittal (A) and frontal (B-J) sections 
through the mouse brain showing the distribution of retrogradely labelled somata 
following a Fluorogold injection in the posterodorsal medial amygdaloid nucleus. 
The injection site is depicted in panel (G). A is rostral, J is caudal. The semi-schematic 
drawings are based on case M1257, which presented the largest restricted injection. For 
abbreviations, see list.  

 

Within the mixed chemosensory nuclei with vomeronasal predominance (Table 2), the 

MeA showed very dense labelling, with labelled cells located mainly at the caudal MeA 

(Figure 12F). Noteworthy, in contrast to the results obtained following injection in the 

MeA and MePV, at rostral levels the MeAD and MeAV subnuclei showed only 

moderate and very scarce labelling, respectively (Fig. 12E). More caudally, the MePV 

presented very dense labelling (Fig. 12G). The BAOT presented dense labelling (Figure 

12E), with darkly stained cells.  Finally, the AAV and AAD showed very few labelled 

cells, in contrast with the moderate labelling observed after MeA and MePV injections 

(Table 1). 
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The structures composing the olfactory amygdala, including the mixed nuclei with 

olfactory predominance, showed less density of labelling following the injections in the 

MePD than after the injections in the MeA and MePV (Table 2). The densest labelling 

was observed in the ACo, mainly present in the caudal aspect of the nucleus (Figure 

12E, F). The PLCo presented moderate labelling, with darkly stained cells located 

mainly in the medial part of the layer II (Figs. 12G, H and 13B). In addition, the APir 

(Fig. 12I) and the LOT presented only a few labelled cells. Noteworthy, the CxA was 

devoid of labelled somata, in sharp contrast to what we observed in the case of MeA 

and MePV injections (Table 1, Figure 12E, F). 

Compared with the MeA and MePV injections, the basolateral complex was almost 

devoid of labelled cells with the exception of the BMA, which showed a moderate 

density a labelling (Figure 12E, F). Finally, within the deep amygdaloid nuclei, the AHi 

presented, in general, a denser labelling than that observed following injection in the 

MeA and MePV, with retrogradely labelled cells located mainly in its rostral and medial 

aspect (Figure 12G-H, Figure 13C).  

Finishing with the description of the amygdala, within the central amygdala the CeM 

showed a low number of retrogradely labelled cells (as observed after injections in the 

MeA and MePD, Table 2), while the I and IM presented very scarce labelling (Figure 

12E, G). 

Labelling in the BST   

Within the BST complex, unlike the MeA and MePV injections, only the BSTMPM, the 

BSTMPI and the BSTIA presented retrograde labelling (Table 2). In addition, the 

density of labelled cells in the BSTMPM and BSTMPI differed from the observed 

density of labelled cells after the MeA and MePV (Table 2). Figure 9C, F illustrates the 

labelling observed in the BSTMPM and BSTMPI. The BSTMPM presented very dense 

labelling, with more labelled neurons present in its dorsal part (Fig. 9C and 12C). In 

contrast, the BSTMPI presented moderate labelling (Figure 12C, D). Finally, the 

BSTIA showed a moderate number of retrogradely labelled cells (Figure 12G, H).  

Retrograde labelling in the cortex and hippocampal formation 

The retrograde labelling in neocortical structures was very scarce following the 

injections in the MePD (and scarcer if compared with the results of injections in the 
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MeA and MePD), with a few cells present in the MO, IL, DP, Cl and PRh (Table 2).  

Within the hippocampal formation, similar to the findings after injections in the MeA 

and MePD, the CA1 showed moderate labelling, with the labelled cells restricted to its 

ventral part (Fig. 12I), and a low number of labelled cells were observed in the LEnt 

(Fig. 12I). 

Labelling in the septum and ventral forebrain  

The distribution of the labelled somata within these areas was similar to what we 

observed in the MeA and MePD injections. In the lateral septum, the LSI showed scarce 

labelling, and only a few labelled cells appeared in the LSV and SHi (Figure 12B, Table 

2). The MS and HDB/MCPO showed scarce labelling while the VDB presented very 

scarce labelling (Figure 12B-D). Within the striato-pallidum, the SL and SI displayed 

scarce labelling.  

Retrograde labelling in the thalamus  

The injections in the MePD gave rise to a smaller number of retrogradely labelled cells 

in the anterior midline thalamus, but the location and distribution of labelled cells 

follow a similar pattern to that described following the injections in the MeA and MePV 

(Table 2, Figs 12C-G and 9C). In the posterior intralaminar thalamic complex the 

distribution and density of the observed labelling in the SPFPC, PIL and MGM was 

very similar to that described following the MeA and MePV injections (Fig. 12G-I). In 

contrast, the PP and SG presented less labelled cells (Table 1).  

Retrograde labelling in the hypothalamus  

Retrograde labelling in the hypothalamus following the MePD injections differed from 

the one observed after the tracer injections in the MeA and MePD mainly in the PMV, 

the MPO and the VMH (Table 2). Within the preoptic hypothalamus, the MPO showed 

moderate labelling (only scarce labelling was obtained after the injections in the MeA 

and MePV), with darkly stained cells mainly located next to the BSTMPM (Figure 12C, 

D, Table 2). Within the tuberal hypothalamus, the VMH presented scarce labelling 

(Figure 12E, F), compared to the moderate labelling showed after the MeA and MePV 

injections (Table 2). Within the mammillary hypothalamus, the PMV showed very 

dense labelling (Figs. 12H and 13D), compared with the few labelled cells found after 

the MeA injections. Finally, in the anterior hypothalamus, and the rest of structures of 
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the tuberal and mammillary hypothalamus, the observed labelling was very similar to 

that described after the injection in the MeA and MePV (Table 2).  

 

 

Fig. 13 Photomicrographs of parasagittal (A) and frontal (B-D) sections through 
the mouse forebrain, illustrating the retrograde labelling present in animals 
receiving a Fluorogold injection in the posterodorsal medial amygdaloid nucleus 
(MePD). The images correspond to the retrograde labelling presented in the cases 
M1257 (A, B) and M1302 (C, D). (A) Retrogradely labelled mitral cells in the 
accessory olfactory bulb, mainly present in its anterior part. (B) Numerous labelled cells 
in the posteroventral medial amygdaloid subnucleus, as well as in the posterolateral 
cortical amygdaloid nucleus. Note that only scarce labelling is present at this level in the 
posteromedial cortical amygdaloid nucleus. (C) Dense retrograde labelling in the lateral 
aspect of the posteromedial cortical amygdaloid nucleus and in the medial part of the 
amygdalo-hippocampal area. (D) Retrogradely labelled cells in the ventral 
premammillary nucleus of the hypothalamus. For abbreviations, see list. Scale bar in A 
(valid for B–D): 500 µm 
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Retrograde labelling in the midbrain and brainstem 

The retrograde labelling obtained was virtually identical to that observed following the 

injections in the MePV (Figure 12H-J, Table 2), with the PB being the only exception. 

It showed scarce labelling and the labelled cells located mainly in its medial and lateral 

divisions (Figure 12J).  

Contralateral labelling  

As described before in the MeA and MePV injections, the retrograde labelling found 

after FG injection in the MePD was mainly ipsilateral but a few labelled neurons were 

present in the contralateral hemisphere. Within the contralateral amygdala, the PMCo 

and MePV presented scarce labelling with darkly stained somata, and a few labelled 

cells were also present in the MeA, MePV and PLCo. In the BST, the BSTMPM and 

BSTMPI presented very scarce labelling. Within the septum and ventral forebrain, the 

MS, HBD and SL showed a very low number of labelled cells. Regarding to the 

thalamus, the SPF displayed scarce labelling, while the PVA, Re, SPFPC, PP and PIL 

presented only occasional labelling. Finally, within the hypothalamus, brainstem and 

midbrain the Arc, VMH, LH, TC, PMV, PH, PAG and PB showed a few scattered 

labelled cells.   

 

3.2.3 Discussion  
!

The results presented in this work describe for the first time, using restricted 

injections of retrograde tracers, the pattern of afferent projections to the main 

subdivisions of the Me in female mice. The results obtained confirm the general pattern 

of afferents to the Me (as a whole) inferred from a number of anterograde tracing 

studies in other rodents, mainly male rats and hamsters (see Pitkanen 2000). This 

indicates that, in spite of the interspecies and intersexual differences in sociosexual 

behaviours in which the Me is likely to be involved, the connectivity of the Me is 

common. In addition, the analysis of the centripetal connections to the three subnuclei 

the medial amygdala reveals that, although a small number of differences in the inputs 

to the anterior, posteroventral and posterodorsal subdivisions of the Me exists, a 

common pattern of inputs predominate. The MePD is the subnucleus that shows more 
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important differences in connectivity compared to the MeA and MePV, with these two 

subnuclei being more similar (see discussion below). The projections to all three medial 

amygdaloid subnuclei are mainly ipsilateral, although some of the afferent inputs are 

bilateral with ipsilateral predominance.  

Projections to the medial amygdaloid nucleus from the olfactory system  

Our results confirm and extend previous works that demonstrated that the Me receives 

convergent projections arising from the AOB and the MOB (Pro-Sistiaga et al. 2007; 

Kang et al. 2009; Cadiz-Moretti et al. 2013,). The AOB provides massive inputs to the 

three subnuclei of the Me. These projections are a direct source of pheromonal 

information to the Me (Zufall and Leinders-Zufall 2007). In addition, our results reveal 

that the MePD is dominated by inputs from the anterior AOB, whereas the remaining 

divisions of the Me show similar afferents from both AOB divisions. Similar results 

have been reported in rats (Mohedano-Moriano et al. 2007). In addition, the work of 

Mohedano-Moriano et al. (2007) also showed that the AOB efferent to the BSTMPM is 

originated by the rostral part of the AOB.  The preferential projection from the anterior 

AOB to the MePD was not found in previous tracing studies in mice (retrograde: 

Salazar and Brannan, 2001; anterograde: von Campenhausen and Mori 2000). However, 

Salazar and Brennan (2000) injected retrograde tracers only in the MeA and MePV, and 

therefore could not observe the differential retrograde labelling in the AOB. In the case 

of the injections of anterograde tracers in the rostral and caudal AOB divisions, it is 

difficult to detect a difference in the density of the anterograde labelling. However, a 

careful examination of the terminal fields in the MePD shown in the figure 4 of von 

Campenhausen and Mori (2000) suggests that the injections in the rostral AOB gave 

rise to a denser anterograde labelling in the MePD layer I.  

Therefore, the anterior part of the AOB projects more strongly to the MePD and the 

BSTMPM, two structures strongly interconnected (present results, Pardo-Bellver et al. 

2012). The rostral part of the AOB receives inputs from vomeronasal sensory neurons 

expressing the V1 type of receptors (V1R), which are activated by small, volatile 

molecules with pheromonal activity (Leinders-Zufall et al. 2000; Fortes-Marco et al. 

2013). In contrast, the posterior AOB receives inputs from vomeronasal sensory 

neurons expressing the V2 type of receptors, which are activated by nonvolatile 

proteinaceous compounds of high molecular weight (Krieger et al. 1999; Fortes-Marco 
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et al, 2013). Volatiles detected by V1R induce neuroendocrine effects (e.g. oestrous 

induction, puberty acceleration or delay; see Halpern and Martínez-Marcos 2003) and 

therefore the MePD and BSTMPM may be particularly involved in mediating the 

effects of these volatile pheromones.  

Regarding to the MOB, our results of retrograde tracing confirm that it sends moderate 

projections to the MeA and very weak projections to the MePD (Kang et al. 2009; 

Cadiz-Moretti et al. 2013).  

Among the structures receiving direct projections from both the AOB and MOB, the 

strongest degree of convergence is found in the MeA. Thus, on anatomical grounds, the 

MeA is the most important place of integration of vomeronasal and olfactory 

information within the amygdaloid complex (Petrulis 2013).  In this regard, an 

unanswered question is the nature of the olfactory information relayed to the Me. An 

interesting possibility is that only mitral cells receiving information from sensory 

neurons with specialist receptors, such as those expressing TRPM5 (Thompson et al. 

2012) innervate the Me. By this pathway, information about semiochemicals detected 

by the MOB may be integrated in the Me with the vomeronasal information relayed by 

the AOB. In agreement with this view, it has been shown that mitral cells of the MOB 

projecting to the Me are activated by male urinary volatiles in female mice, but not by 

female urinary volatiles or by predator odours (Kang et al. 2009). Moreover, olfactory 

sensory cells expressing a particular receptor, OR37C, innervate mitral cells that project 

specifically to the MePD (Bader et al. 2012). The sensory cells expressing receptors of 

the OR37 family respond to the presence of long-chain fatty aldehydes (Bautze et al. 

2012), some of which are present in anal gland secretions (Bautze et al. 2014). These 

data reinforce the idea that the Me receives an olfactory input carrying information 

about specific semiochemicals.  

Within the olfactory system, the olfactory cortex sends more projections to the MeA 

compared to the MePV, while it sends only very light projections to the MePD, in 

agreement with McDonald (1998). Regarding to the input from the Pir, the Me received 

stronger projections arising from the posterior Pir compared to the anterior Pir, 

corroborating previous descriptions (Christensen and Frederickson 1998).  

Haberly (2001) suggested that the Pir functions more as an associative cortex than a 

primary sensory region. The posterior Pir presents more bidirectional connections with 
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the amygdala than the anterior Pir (Haberly 2001). In addition, electrophysiological data 

revealed that, while the anterior Pir process sensory information of the odorants, the 

posterior Pir shows associative encoding characteristics (Calu et al., 2006). Thus, the 

posterior Pir may act as an associative cortex that sends, mainly to the MeA and to a 

less extent to the MePV, highly processed olfactory information that includes the 

behavioural significance of the odorant.   

Intramygdaloid projections to the medial amygdaloid nucleus. 

In agreement with our previous anterograde study (Pardo-Bellver et al. 2012), the 

injections of retrograde tracers in the different Me subnuclei confirmed the existence of 

a dense and intricate set of intranuclear connections. Previous anatomical and functional 

data obtained in hamsters (Meredith and Westerry 2004; Maras and Petrulis 2010a,b,c) 

and mice (Choi et al. 2005; Samuelson and Meredith 2009a,b) have suggested that the 

MeA would act as a filter for the chemosensory information received from the bulbs. 

From the MeA, conspecific-related information would be sent through the MePD and 

predator-related information through the MePV. Our results show that the 

interconnections between the MePD and MePV allow the activity in each one of these 

subnuclei to influence the other. In addition, both the MePV and the MePD project back 

to the MeA (as shown previously in rats, Canteras et al. 1995), and therefore the 

information flow through the Me is, by no means, unidirectional.   

The Me shows also an important set of intraamygdaloid inputs, originated mainly in 

other nuclei of the chemosensory amygdala (Gutiérrez-Castellanos et al. 2010). As 

shown by previous anterograde (rat: Canteras et al. 1995; mice: Gutiérrez-Castellanos et 

al. 2014), and retrograde (hamster: Coolen and Wood 1998) tracing studies, the PMCo 

gives rise to an important projection to all three Me subnuclei, allowing strong 

intraamygdaloid processing of vomeronasal information. The Me is composed to a large 

extent by neurons originated in subpallial territories (Bupesh et al. 2011), whereas the 

PMCo is a cortical structure (Gutiérrez-Castellanos et al. 2014). The projection from the 

PMCo to the Me can therefore be interpreted as a cortico-subcortical pathway within the 

vomeronasal system. This view is supported by retrograde tracing experiments with 

sodium selenide, revealing that the projection from the PMCo to the Me is originated by 

zinc-positive (putative glutamatergic) cells (Christensen and Frederickson 1998). Like 

in other circuits of the cerebral hemispheres, the cortical component, the PMCo, is 
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mainly involved in intratelencephalic pathways (Gutiérrez-Castellanos et al. 2014), 

while the subcortical element (the Me) gives rise to the major extratelencephalic outputs 

(Canteras et al. 1995; Pardo-Bellver et al. 2012). Our results also indicate that the 

projection from the PMCo to the MePD is apparently less dense than to the other Me 

subnuclei (thus confirming previous anterograde tracing data, Gutiérrez-Castellanos et 

al. 2014) and arises preferentially from a specific portion of this nucleus, suggesting the 

possibility of a topographical organization of this cortico-subcortical pathway within the 

vomeronasal system. This possibility, however, needs experimental confirmation. 

The Me also receives projections from the rest of amygdaloid structures receiving a 

predominant input from the AOB, namely the BAOT and AA. In the latter case, 

however, it is noteworthy that the projection from the AA innervates mainly the anterior 

and posteroventral Me subnuclei. Although there is little information available on the 

connections and function of the AA (Martínez-García et al. 2012), this finding suggests 

that it is more related to the MeA and MePV than to the MePD, which in turn is the Me 

subnucleus more strongly involved in reproductive-related functions (Simerly 2002).  

In contrast with the strong inputs to the Me originated in the vomeronasal amygdala, the 

olfactory amygdaloid nuclei are heterogeneous regarding their projections to the Me. 

The PLCo and CoA give rise to important projections to the Me, whereas the CxA, APir 

and LOT originate only a light projection to the Me. The inputs from the CxA, APir and 

LOT target mainly the MeA and MePV, as exemplified by the projection from the APir 

(see Table 2). Therefore, on anatomical grounds, the MePD is less influenced by the 

olfactory information processed in the amygdaloid nuclei. Similar results regarding the 

projections from the olfactory amygdala to the Me were observed in rats and hamsters 

(Coolen and Wood 1998; Pitkänen 2000; Majak and Pitkänen 2003). 

The deep structures of the amygdala, namely the basolateral complex and the central 

nucleus, originate only minor projections to the Me, with the exception of the 

basomedial nucleus, which has an important interconnections with the MeA (present 

results; Petrovich et al. 1996; Pardo-Bellver et al. 2012). The MePV receives also a 

moderate projection from the basomedial nucleus, whereas the MePD shows only very 

minor afferents from the basolateral amygdaloid complex. In contrast, the MePD 

receives an important projection from the AHi, in agreement with previous anterograde 

data (Canteras et al. 1992a). This is consistent with the interpretation that the AHi is 
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strongly related to the vomeronasal system (see Swanson and Petrovich 1998; Martinez-

García et al, 2012). Regarding the central amygdala, its medial subdivision originates a 

very light projection to the Me. This afferent reciprocates a much denser projection 

from the Me to the medial Ce (Pardo-Bellver et al. 2012). We hypothesize that this 

connection may play a role in the fear behaviour elicited by predator-derived chemicals. 

In fact, recent findings show that the Me is critically involved in the acquisition (and 

expression) of olfactory conditioned fear (Cousens et al. 2012). In addition, lesions of 

the basolateral complex (encompassing the lateral nucleus and neighbouring structures) 

also abolish olfactory fear conditioning (Cahill and McGaugh 1990; Cousens and Otto 

1998). Since both the Me and the basolateral complex play a key role in olfactory fear 

conditioning, the direct interconnections between the Me and the basomedial nucleus 

(present results, Canteras et al. 1995, Petrovich et al. 1996; Pardo-Bellver et al. 2012) 

may provide the link allowing the information related to the odour-shock association to 

be integrated in both structures. 

Afferent projections to the medial amygdaloid nucleus from the bed nucleus of the 

stria terminalis. 

The BST is one the main targets of the efferent projections of the Me (Gomez and 

Newman 1992; Canteras et al. 1995; Coolen and Wood 1998; Dong et al. 2001; Pardo-

Bellver et al. 2012). By contrast, the present experiments show that the projections from 

the BST back to the Me are not so important, with the exception of the posteromedial 

subdivisions of the BST. Only the BSTMPI and the BSTMPM (and the BSTIA) give 

rise to substantial projections to the Me subnuclei. These projections are 

topographically organized: the BSTMPI projects preferentially to the MeA and MePV, 

whereas the BSTMPM innervates preferentially the MePD. The reciprocal projection 

between the BSTMPM and the MePD reinforces the view that these nuclei are part of 

the network of sexually dimorphic nuclei (Guillamon and Segovia 1997; Gu et al. 2003) 

enriched in receptors for sexual steroids (Simerly et al. 1990; Mitra et al. 2003) that 

control socio-sexual behaviours (Newman 1999; Swann et al. 2009).  The reciprocal 

projection between the BSTMPI and the MeA is consistent with the mixed projections 

of both structures to the defensive and reproductive behavioural control columns of the 

hypothalamus (Canteras et al. 1995; Pardo-Bellver et al. 2012; Swanson 2000). The 

MePV, as in other cases, is similar in this respect to the MeA. The compartment-

specific interconnections between the Me and posteromedial subdivisions of the BST 
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suggest the existence of two subsystems within the medial extended amygdala. On the 

one hand, the MePD-BSTMPM is strongly dominated by a vomeronasal input (reaching 

both nuclei) mainly arising from V1R-expressing sensory neurons (see above: 

“Projections to the Me from the olfactory system”). This subsystem of the medial 

extended amygdala shows a clear sexual dimorphism attaining the size and cell number 

(Morris et al. 2008; Tsukahara et al. 2011). On the other hand, the MeA is 

interconnected mainly with the BSTMPI, where sexual dimorphism is less apparent, but 

affects at least a population of vasopressinergic cells (Rood et al. 2013; Otero-Garcia et 

al. 2014). This subsystem received mixed olfactory and vomeronasal inputs (reaching 

only the MeA). Finally, the MePV shows intermediate features, as it is interconnected 

with both BSTMPM and BSTMPI. 

Afferent projections to the medial amygdaloid nucleus from cortical areas and the 

hippocampus  

Within the entire cortex, the prefrontal cortex was almost the only cortical area that 

presented projections to the Me. The prefrontal cortex sends more inputs to the MeA 

than to the MePV and MePD, with the last two nuclei receiving very light inputs.  

Among the different subdivisions of the prefrontal cortex, the AI was the region that 

presented more projections to the MeA, showing moderate retrograde labelling. The 

existence of this projection has been previously shown with anterograde tracing 

experiments in rats (McDonald et al. 1996, 1998; Shi and Cassell 1998). The 

projections from the AI to the MeA may be involved in the relay of multimodal sensory 

information (McDonald 1998; Shi and Cassell 1998). The projection to the Me is also 

originated by the posterior AI (not part of the prefrontal cortex), which probably relays 

somatosensory information that may play a role in the relay of footshock information 

(unconditioned stimulus) in fear conditioning paradigms (Shi and Davis 1999). An 

additional prefrontal projection to the Me arises from the IL (present results in mice; 

Hurley et al. 1991 and McDonald et al. 1996, 1998, in rats). The IL projection to the 

amygdala is involved in the extinction of fear conditioning (Sierra-Mercado et al. 2011), 

and therefore the projection of the IL to the Me may play a similar role in the case of 

olfactory fear conditioning, which depends on the Me (Cousens et al. 2012).  

Regarding to the hippocampal formation, we found that CA1, ventral subiculum and 

LEnt send more projections to the MeA than to the MePV, with the MePD apparently 
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receiving the lightest projection. Previous works described a similar pattern of 

projections in the rat, using both retrograde (Christensen and Frederickson 1998) and 

anterograde tracer experiments (Canteras and Swanson 1992; McDonald 1998; Kishi et 

al. 2006; Cenquizca and Swanson 2007). These projections are reciprocal, since the Me 

also projects to the ventral CA1, subiculum and LEnt (Canteras et al., 1995; Pardo-

Bellver et al. 2012). Although there are no functional data indicating a possible role of 

the ventral CA1 projections to the Me, it seems that the ventral hippocampus is 

specifically involved in defense/fear-related behaviour (Kjelstrup et al. 2002), probably 

in relation with the processing of the contextual stimuli (Maren and Fanselow 1995, 

Zhang et al 2001). This subregion of the ventral CA1 is also connected with the PMCo 

and projects to the AOB (de la Rosa-Prieto et al. 2009). We hypothesized that the 

anatomical interconnections described between the vomeronasal system and the ventral 

hippocampus allow pheromonal and spatial information to be integrated, and 

consequently modulate the behavioural response to chemicals signals as a function of 

the spatial context (e.g., own versus alien territory). 

Afferent projections to the medial amygdaloid nucleus from the basal telencephalon 

Within the septum and striatum, the medial septum, diagonal band/MCPO, SL and SI 

presented the most important inputs to the Me (showing a moderate to scarce 

projection).  

Previous works have described that the MCPO (Nitecka 1981) and HDB (Ottersen 

1980) send projections to the Me, although these works did not differentiated between 

the subdivisions of the Me. Our results confirm and extend these findings. Similar to the 

inputs described for the cortex, the MeA receives the strongest projection, the MePD the 

weakest, and the MePV is intermediate between those two.  

The MS, diagonal band and MCPO are classified as the medial group of the septal 

region (Risold 2004). This region has important connections with the ventral (temporal) 

hippocampal field, entorhinal and prefrontal cortex (Risold 2004), areas that send, as 

described in the present work, projections to the Me (predominantly to the MeA). The 

MS may have a role in maintaining the arousal level required for sexual activity (Gulia 

et al., 2008), and consequently its input to the Me may influence the activity of this 

nucleus in this context.  
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Projections to the medial amygdaloid nucleus from the hypothalamus  

Our results show that the Me receives relatively minor projections arising from 

hypothalamic nuclei, with four exceptions: the PMV, VMH, PH and MPO. The PMV 

sends massive projections to the MePV and MePD. The VMH and PH send moderate 

projections to the MeA and MePV, and finally the MPO sends moderate projections to 

the MePD.  

Within the entire hypothalamus, only the PMV projects massively to the Me. This 

nucleus shows strong projections to the MePD and MePV, while it presents only light 

projections to the MeA. The important projection arising from the PMV to the MePD is 

consistent with previous works in male rats (Ottersen 1980; Canteras et al. 1992b). 

Canteras et al. (1992b) described also a moderate projection to the rostral part of the 

MeA, which we observed as scarce in our preparations, probably as a result of the small 

size of our injections. In contrast to our results, Canteras et al. (1992b) found no 

projection from the PMV to the MePV in male rats. Possible explanations of this 

discrepancy may be either interspecific differences or sexual dimorphism, since we used 

female mice our experiments. Further studies are needed to clarify these inconsistencies. 

The PMV displays strong bidirectional connections with the MePD and MePV (present 

findings, Canteras et al. 1995; Pardo-Bellver et al. 2012), and with sexually dimorphic 

areas related to reproductive and aggressive behaviours, as well as to neuroendocrine 

zones of the hypothalamus (Canteras et al. 1992b). It is part of a hypothalamic circuit 

involved in the control of reproductive behaviour (Swanson 2000), and in fact it is 

strongly influenced by gonadal steroid hormones (Canteras et al. 1992b). The PMV 

shows high levels of c-fos expression in male mice exposed to female soiled bedding 

(Yokosuka et al. 1999), but also in female rats during maternal aggression experiments 

(Motta et al. 2013). Furthermore, in male hamsters it is activated by both mating and 

agonistic interactions (Kollack-Walker and Newman 1995). Therefore, as suggested by 

Yokosuka et al (1999), this nucleus may play an important role in the control of the 

motivation of copulatory and/or aggressive behaviour. Thus, the PMV, by means of its 

massive feedback input to the MePV and MePD may be modulating the chemosensory 

processing in these subdivisions of the Me, probably in relation with the behavioural 

response (reproductive or aggressive) that the animal is executing.  
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Regarding the afferents from the preoptic hypothalamus, consistent with our results a 

projection from the MPO to the Me was described previously in rats (Ottersen 1980). 

We extend this finding showing that the MPO projects mainly to the MePD, and to a 

lesser extent also to the MeA and MePV. Since the MPO is part of the reproductive-

related hypothalamic circuit (Swanson 2000), this finding further supports the 

hypothesis that the MePD is more related with sexual behaviour. 

The VMH and PH send moderate projections to the MeA and MePV and scarce 

projections to the MePD. Previous works have reported that the VMH projects more 

densely to the rostral part of the MeA compared to the other Me subnuclei, and 

described that these projections to the Me originate mainly from the central and the 

dorsomedial parts of the VMH (Ottersen 1980; Canteras et al. 1994). Our results in 

female mice partially contrast with these data in male rats, since we found that the MeA 

and MePV receive more projections from the VMH than the MePD, and found no 

differences in the origin of these projections according to the VMH subdivisions. The 

ventrolateral division of the VMH has been proposed to be part of the reproductive 

behavioural control column of the hypothalamus, whereas its dorsomedial division 

would be part of the defensive circuit (Swanson 2000; Choi et al. 2005). However, 

recent electrophysiological data and optogenetic activation experiments have revealed 

that within the ventrolateral VMH there are neuronal populations involved in mating 

and conspecific aggression (Lin et al. 2011; Falkner et al. 2014). Therefore, without 

further characterization of the properties of the retrogradely labelled cells in the VMH, 

it is not possible to known whether the feedback projection they provide to the Me is 

related to sexual or aggressive behaviours. 

Previous works have reported projections arising from the PH to the medial amygdala 

(Nitecka 1981; Vertes et al. 1995), which in turn projects (although lightly) to the PH 

(Pardo-Bellver et al. 2012). The PH projects to a number of subcortical and cortical 

"limbic-related" structures, and it has been suggested to be involved in various 

components of emotional behaviour, including emotional learning (Vertes et al. 1995). 

In this regard, it integrates cardiorespiratory and motor responses and controls the theta 

rhythm of the hippocampus (Vertes et al. 1995).  

Finally, with regard to the minor hypothalamic afferents to the Me, previous works in 

the rat have reported, consistent with our results, light projections arising from the AH 
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(Risold et al. 1994), DM (Thompson et al. 1996), Arc (Ottersen 1980; Krieger et al. 

1979) and LH (Nitecka 1981; Ottersen 1980; Veening 1978) to the Me. A minor 

discrepancy with the present results is the presence of a moderate projection from the 

TC to the Me (Nitecka 1981; Canteras et al. 1994), which we observed to be scarce.  

Projections from the thalamus and brainstem to the medial nucleus of the amygdala 

The thalamic afferents to the Me arise mainly from the midline and posterior 

intralaminar nuclei. These afferents are common to the three Me subnuclei, although the 

projection to the MePD tends to be somewhat lighter than that of the MeA and MePV 

(Table 2). The midline thalamic nuclei that project to the Me are the paraventricular and 

reuniens, both of which also receive projections from the Me (Canteras et al. 1995; 

Pardo-Bellver et al. 2012).  The afferent projection from the paraventricular thalamic 

nucleus to the Me has been previously described in rats (Li and Kirouac 2008; Vertes 

and Hoover 2008). This thalamic nucleus is related to arousal and attention processes, 

and therefore its input to the Me may modulate the attention towards the chemical 

signals processed in the Me. 

The afferent projections from the posterior intralaminar thalamic complex 

(encompassing the SG, MGM, PIN, SPF, PIL and PP) to the Me are very similar to 

those described from the same structures to the central and lateral nuclei of the 

amygdala (Turner and Henkerham 1991). These projections have been shown to relay 

auditory (LeDoux et al. 1990a), somatosensory (LeDoux et al. 1987; Bordi and LeDoux 

1994; Lanuza et al. 2008) and visual (Doron and LeDoux 1999; Linke et al. 1999) 

information, and play a key role in the acquisition of fear conditioning (LeDoux et al. 

1990b). It is not known whether the same neurons of the posterior intralaminar thalamic 

complex project to both the Me and the central and lateral amygdaloid nuclei. In any 

case, it is likely that this thalamic projection sends (at least) somatosensory information 

to the Me, given that it is necessary in the acquisition of olfactory fear conditioning 

(Cousens et al. 2012) and shows increased expression of c-Fos following the delivery of 

footshock (Pezzone et al. 1992; Rosen et al., 1998). 

A very different kind of somatosensory information that has been shown to activate the 

medial amygdala is that derived from vaginocervical stimulation (Erskine 1993; Pfaus 

et al. 1993, 1996; Polston and Erskine 1995, Tetel et al, 1993). The somatosensory 

genital information may reach the Me through the thalamic SPF (Veening and Coolen 
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1998). The convergence of genital somatosensory information with chemosensory 

information (about odorants and pheromones) would take place in the Me, thus 

allowing the association of chemical cues with the reinforcing mating experience. This 

kind of olfactory-genitosensory learning in the Me may be the reason that explains why 

sexually experienced animals with lesions of the vomeronasal organ show very small 

deficits in sexual behaviour (Meredith 1986). 

Finally, within the brainstem the main afferent projection to the Me is originated by the 

parabrachial nucleus. This nucleus may relay visceroceptive (from its medial aspect) 

and nociceptive information (from its lateral aspect) (Fulwiler and Saper 1984; 

Bourgeais et al. 2001; Lanuza et al. 2004). We found retrogradely labelled neurons both 

in the medial and lateral parabrachial nucleus, mainly following tracer injections in the 

MeA. This afferents may relay sensory information relevant to associate chemical 

stimuli with aversive learning (such as olfactory fear conditioning).  

The medial amygdala connections and its role in defensive and sociosexual 

behaviours 

The results of the present study show that the three subdivisions of the Me receive a 

similar pattern of afferent projections, with some quantitative differences in the density 

of the neural inputs from particular structures. Previous works studying the efferent 

projections of the Me have emphasized these differences, and moreover functional data 

relate the MePD with reproductive-related behaviours and the MePV with defensive 

behaviours. However, both for the afferents (present results) and for the efferents 

(Canteras et al. 1995; Pardo-Bellver et al. 2012), minor connections are observed 

between the MePD and hypothalamic nuclei related with defensive behaviour, such as 

the anterior hypothalamic area and the dorsomedial VMH. In the same vein, moderate 

connections are present between the MePV and the hypothalamic reproductive-related 

nuclei, such as the MPO, the ventrolateral part of the VMH and the PMV. Therefore, on 

anatomical grounds, the segregation between these two systems is not clear. Instead, the 

differences between the connectivity of the MePD and MePV are only a matter of 

relative density, with basically the same pattern of connections shared by both 

subnuclei. Regarding the anterior part of the Me, it is very similar to the MePV, i.e., it 

shows relevant connections with hypothalamic nuclei related to reproductive and 

defensive behaviours.  
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In agreement with the anatomical data showing that the MeA and MePV are 

interconnected with circuits related with both sexual and defensive behaviours, male 

mice exposed to female urine show an increase c-Fos expression in all subdivisions of 

the Me (Samuelsen and Meredith 2009a,b), and the same result was obtained in female 

mice exposed to male-soiled bedding (Halem et al. 1999; Moncho-Bogani et al. 2005). 

In addition, odours from heterospecifics (including predators and non-predators) were 

observed to induce c-Fos expression in the MeA (Meredith and Westberry 2004; 

Samuelsen and Meredith 2009a,b). A specific c-fos induction in the MePV was found in 

rats (Dielenberg et al. 2001) and mice (Choi et al. 2005) exposed to cat odours, 

although, as detailed above, the MePV also respond to conspecifics of the same and 

opposite sex (Meredith and Westberry 2005; Samuelsen and Meredith 2009a,b). A 

recent multisite extracellular recording study in mice in the MePD and MePV found 

that, although neurons responding to conspecific stimuli were more often located 

dorsally in the posterior Me, and neurons responding to predator urinary stimuli were 

more often located ventrally, there were also individual cells distributed throughout the 

posterior Me responding to conspecific and defensive stimuli (Bergan et al. 2014). In 

summary, the chemical cues described to activate the MeA and MePV (in addition to 

sexually related odours and odours from same sex conspecifics), include odours from ill 

conspecifics (Arakawa et al. 2010), and from predators (Takahashi, 2014). Consistent 

with these functional data, the MeA and MePV have been suggested to play a general 

role in the categorization of the chemical cues detected (mainly) by the vomeronasal 

organ and acting as a filter to convey appropriate chemosensory information to the 

MePD or other downstream targets (Meredith and Westberry 2004; Samuelsen and 

Meredith 2009a,b; Maras and Petrulis 2010a,b,c). In contrast, the MePD, according to 

both anatomical and functional data, has been proposed to be specifically involved in 

the control of sexual behaviour (Swann et al. 2009). However, in rats the MePD is also 

activated following aggressive encounters between males (Veening et al. 2005), and 

thus it may play a role also in agonistic interactions. Finally, we want to note that the 

Me (as a whole) is involved in olfactory fear conditioning, as well as in learning to fear 

the context where the predator odours were presented (Takahashi et al. 2007). 

In summary, the Me is involved in the unconditioned responses elicited by social and 

sexual cues, as well as predator-derived chemicals, and also in learning to associate 

olfactory cues with aversive (and maybe appetitive) experiences. 
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3.3.1 Introduction 
!
The amygdaloid complex is an important structure controlling social, sexual and 

maternal behaviours in rodents. It has been proposed to be a key structure in associative 

emotional learning, as it has been demonstrated for olfactory fear conditioning, where 

neutral or conditioned stimuli, such as odours, are associated with unconditioned 

aversive stimuli, such as foot-shock (Cousen and Otto, 1998). In addition to its role in 

this kind of aversive learning, the amygdala may also play an important role in 

appetitive learning. In these learning the unconditioned appetitive stimuli (e.g. 

pheromones) can be associated with other neutral olfactory stimuli, since the amygdala 

received strong direct projections arising from the main and accessory olfactory bulbs.  

The main olfactory bulb (MOB) receives projection from the main olfactory epithelium 

which is activated by volatile stimuli, while the accessory olfactory bulb (AOB), 

received projections from the vomeronasal organ, which is mainly activated by non-

volatile molecules (Krieger et al. 1990), although a number of volatile vomeronasal 

stimuli have also been described (Leinders-Zufall et al. 2000). Some of these non-

volatile molecules are detected by the vomeronasal system and act as innate attractive 

chemical cues (sexual pheromones, Martínez-Ricos et al. 2008). It has been showed that 

naïve female mice only displayed sexual attraction to male-derived volatile odours after 

they have experienced both, non-volatile and volatile stimuli derived from males (see 

Martinez-García et al. 2009). Thus, this indicates that female mice display a learned 

attraction for male volatiles after they associated them with the non-volatile male 

derived chemicals, namely sexual pheromones. Since the MOB (that is activated by 

odours) and the AOB (that is activated by pheromones) project to the amygdaloid 

complex, this is a highly probable place where this appetitive associative learning can 

take place.  

The projections arising from the MOB and AOB converge in some corticomedial 

amygdaloid nuclei, such as the medial amygdaloid nucleus (Me), the anterior cortical 

amygdala (ACo) and the cortex-amygdala transition zone (CxA) (Pro-Sistiaga et al., 

2007; Kang et al. 2009; Cadiz-Moretti et al. 2013). Therefore, these nuclei are possible 

candidates where the pheromonal and olfactory stimuli can be associated to generate a 

learned sexual attraction for male volatiles (Cadiz-Moretti et al. 2013).  
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Within these nuclei, the Me has been by far the most studied, since it was early reported 

as an amygdaloid area receiving convergent projections from the MOB and AOB 

(Scalia and Winans, 1975) and in addition, the lesion of the Me was shown to mediate 

the chemosensory control of sexual behaviours (Lehman and Winans, 1980). Regarding 

to the other nuclei receiving convergent projections, there are no studies focused in the 

CxA and very few in the ACo. However, it is possible that these nuclei also play a role 

in associative emotional learning and/or, other types of socio-sexual behaviours, due to 

its connections with the olfactory and vomeronasal systems. 

To our knowledge, previous studies that described the afferent connections to the ACo 

and CxA presented some limitations. On one hand, detailed descriptions of the afferent 

connections of the ACo were based on non-restricted injections that extended to the 

BMA (Ottersen and Ben-Ari, 1979; Ottersen, 1980; 1982). On the other hand, recent 

studies that showed retrograde tracer injections restricted to the CxA (in rat, Pro-

Sistiaga et al. 2007) or ACo (in mice, Kang et al. 2009), were used to corroborate the 

afferent projections arising from the AOB and MOB, and lacked a detailed description 

of the resulting labelling. Regarding to functional studies, it has been reported in female 

mice that the ACo exhibit Fos immunoreactive cells induced by the exposure to male 

urinary odours, indicating that ACo neurons are activated by these volatiles (Martel and 

Baum, 2009; Brock et al. 2012). Majkutewicz et al. (2010) showed that ACo, in 

addition with other mesolimbic structures, displayed an increased Fos expression after 

electrical stimulation of the ventral tegmental area (VTA). These authors suggested that 

ACo might play a role in eating and exploratory behaviours by means of processing the 

reinforcing properties of olfactory stimuli.  

The aim of this work is to describe the afferent connections to the ACo and CxA, which 

are currently unknown. With this description, we want to highlight the possible 

importance of these structures in the processing of convergent vomeronasal and 

olfactory information, as well as to clarify what other inputs influence the processing of 

chemosensory information in these brain areas. 

3.3.2 Results 
!
For the description of the results, we followed the cytoarchitecture and nomenclature by 

Paxinos and Franklin (2004). The divisions of the bed nucleus of the stria terminalis are 
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the same considered in Chapter 2. To make easier the description of the 

intraamygdaloid afferents, the amygdaloid complex was divided following the 

architecture proposed by Martínez-García et al. (2012) and the functional divisions of 

the chemosensory amygdala proposed by Gutierrez-Castellanos et al. (2010): olfactory 

and vomeronasal nuclei, receiving inputs only from the MOB or AOB, respectively; and 

mixed nuclei, receiving inputs from both bulbs, with either olfactory or vomeronasal 

predominance (see Table 3). 

As explained in Chapter 2, the extent and boundaries of the injection sites were 

delineated with fluorescence microscopy (Fig. 15). In addition, retrograde labelling in 

structures adjoining the injection sites were analysed in fluorescence material.  

In this section the distribution and relative density of retrogradely labelled cells are 

described for the CxA and ACo injections. In addition, an injection located in the rostral 

Pir was obtained and is used as a control for the CxA injections.  

3.3.2.1 Description of the cytoarchitecture of the CxA and ACo.  

To determine the boundaries, extension and cytoarchitectonic organization of the CxA 

and ACo, we worked with two parallel series of the brain of an animal, one stained with 

the Nissl technique and the other processed with the acetyl cholinestarase (AChase) 

histochemistry (Fig. 14).  

The CxA displayed a moderate reactivity to the AChase histochemistry, with a clear 

boundary with the ACo and a more diffuse boundary with the piriform cortex (Pir), 

which showed a low AChase reactivity (Fig 14A, B, C, D). The rostral edge of the CxA 

accordingly with the AChasa staining, lies between the anterior amygdala and the 

rostral Pir and dorsal to the lateral olfactory tract (lo; not shown). More caudally, the 

CxA lies between the ACo and the Pir. The intensity of the AChasa reactivity gradually 

diminish until it presented a light reactivity similar to that of the Pir, so the caudal edge 

it is not clear distinguishable. According to the intensity of the AChase staining, we 

considered as the caudal edge of the CxA the level illustrated in the Fig 14D. The CxA 

shows the trilaminar organization typical of paleocortical structures, forming a 

continuum with the Pir (Fig 14A', B', C', D').  
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The ACo presented a negative AChase reactivity, with clear boundaries with the CxA 

and nucleus of the lateral olfactory tract (LOT) in its rostral part (14A, B, C) and  

 

Fig 14. Photomicrographs of the acetyl-cholinesterase (AChasa) histochemistry 
and Nissl staining in parallel series of a mouse brain (A-D'). AChasa reactivity at 
different antero-posterior levels of the amygdaloid complex (A, B, D, E) and Nissl 
staining of its parallel series (A', B', C', D'). Note the differences in AChasa reactivity 
between the cortex-amygdala transition zone and anterior cortical amygdala (A-D) and 
the differences in their laminar definition (A'- D'). (D') Inset of the ACo showing its 
loosely laminar organization. Scale bar in A, valid for A-D and A'- D': 1mm. Scale bar 
in D' inset: 100 µm 
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caudally with no clear boundary with the anterior subdivision of the Me (MeA) (Fig 

14D). It showed a trilaminar organization, although much less clear than that of the 

CxA (Fig 14A', B', C', D'). Superficially, an outer molecular layer, layer I, was present 

(Fig 1D', inset). Deep to layer I, layer II presented a dense population of cell bodies 

loosely organized compared to the layer II of CxA (Fig 14D', inset). Finally, an inner 

layer III, which showed more sparse cell bodies than layer II (Fig 14D', inset), can be 

recognized. 

 

Table 3. Semiquantitative rating of the density of the retrograde labelling resulting after 
tracer injections in rostral and caudal parts of the cortex-amygdala transition zone and in 
the anterior cortical amygdaloid nucleus. 

  ++++ very dense; +++ dense; ++ moderate; + scarce; - very scarce; 0 not found. 

  CxA caudal 
CxA 

ACo 

OLFACTORY 
SYSTEM 

    

Accessory Olfactory 
Bulb 

MiA + + ++ 

Main Olfactory Bulb Mi ++++ ++++ ++++ 

Olfactory Cortex DTT/VTT jbM! ++/++ ++/+ 

 AOL M! 0 + 

 AOM M! + - 

 AOP Q! + + 

 rostral Pir jj! +++ ++ 

 caudal Pir j! ++++ +++ 

 DEn/VEn jjbj! ++/++ +++/++ 

AMYGDALA AND 
BST 

    

Vomeronasal PMCo Q! + +++ 

Olfactory PLCo j +++ +++ 
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  CxA! )48?49#
2J<# 

ACo 

 APir 0 + ++ 

Vomeronasal 
predominance  

MeA + ++ ++ 

 MeAV/MeAD jbj! jbj! jjbjj!

 MePV Q! ++ ++ 

 MePD M! - ++ 

 BAOT jj! - ++++ 

 AAV/AAD +/+ ++ ++/++ 

Olfactory 
predominance 

ACo jj! ++ injection 

 CxA -&51,'-)&! -&51,'-)&! +++ 

 LOT j! + +++ 

Central CeC 0 0 0 

 CeL M! 0 - 

 CeM Q! + + 

 I M! 0 - 

 IM M! 0 - 

Basolateral complex BLA M! + - 

 BLP M! 0 + 

 BLV M! + + 

 BMA Q! ++ ++ 

 BMP M! +++ ++ 

 LaDL/LaVM/LaVL 0 +++ +/0/0 

Amygdalohippocampal 
transition area 

AHi 0 - + 

BSTL BSTLP 0 0 - 

 BSTLV M! 0 - 
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  CxA! )48?49#2J<# ACo 

BSTM BSTMA M! 0 - 

 BSTMV M! 0 - 

 BSTMPM M! 0 + 

 BSTMPI M! - ++ 

 BSTMPL M! - + 

 BSTIA M! 0 ++ 

CORTEX AND 
HIPPOCAMPAL 

FORMATION 

! ! ! !

 AID/AIV 0 -/+ +/+++ 

 AIP Q! + ++ 

 PrL M! + + 

 Cl M! - - 

 MO M! + + 

 LO M! - 0 

 IL M! 0 - 

 DP M! 0 - 

 PRh M! + + 

 Ect M! + + 

Hippocampal 
formation 

LEnt j! ++ ++ 

 CA1 M! + + 

 S 0 0 + 

 CA3 0 - + 

SEPTUM/STRIATUM ! ! ! !

Lateral septal 
complex 

LSI M! 0 - 

 LSD M! 0 0 
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  CxA caudal CxA  ACo 

 LSV M! 0 0 

 SHi Q! + +++ 

Medial 
septum/Diagonal 
band 

MS M! 0 + 

 HDB/MCPO jj! ++ ++ 

 VDB j! + + 

Striato-pallidum VP j! + + 

 SL j! ++ - 

 SI Q! + + 

 IPAC Q! + - 

THALAMUS ! ! ! !

 PVA/PV M! 0 +/- 

 PVP M! 0 ++ 

 Re M! + + 

 CM M! - 0 

 IMD M! - 0 

 Rh M! - 0 

 MD M! 0 0 

 MHb M! 0 0 

 ZI M! - - 

 pv M! + ++ 

 SPF M! + ++ 

 SPFPC M! - +++ 

 PIL M! 0 +++ 

 SG M! 0 - 

 PP M! 0 + 
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  CxA caudal CxA  ACo 

 MGM M! 0 + 

HYPOTHALAMUS     

Preoptic MPA M! 0 - 

 MPO M! 0 - 

 LPO M! 0 0 

 RCh M! - 0 

Anterior AH M! 0 - 

 Pa M! 0 0 

Tuberal VMH M! + + 

 DM M! - 0 

 LH M! - + 

 Arc M! 0 0 

 TC M! - - 

Mammilary PMD/PMV  M! 0/- -/- 

 SuM M! 0 - 

 PH M! 0 ++ 

BRAINSTEM AND 
MIDBRAIN 

    

 PAG M! - + 

 RPC M! 0 0 

 SNC M! 0 0 

 SNR M! 0 0 

 VTA jj! + + 

 RLi Q! 0 - 

 DR j! ++ + 

 IP M! + 0 

 PB M! - ++ 
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  CxA caudal CxA  ACo 

 LC M! - + 

 PnO M! 0 - 

 

3.3.2.2 Retrograde labelling after FG injections into the cortex-amygdala transition 

zone (CxA) 

Four restricted injections were obtained in the CxA (Fig 15A-C, I), two of which 

involved the most ventral part of its layer I and probably the lo (1311 and 1329). The 

other two (1324 and 1331) were centred in cell-dense layer II. Also, in three of these 

injections (1329, 1324, 1311), a small deposit of the tracer could be observed along the 

micropipette track involving the ventral endopiriform nucleus (VEn), the interstitial 

nucleus of the posterior limb of the anterior commissure (IPAC) and the caudate-

putamen (CPu; Fig 2B). In addition, five more injections were centred in the CxA, three 

of them extended to the Pir and the other two to the ACo. The pattern of labelling was 

similar in all the restricted injections (case 1324 is illustrated in Fig 16) and the 

labelling in the non-restricted injections was consistent with the pattern observed. 

Since the size of the tracer injections had to be small to avoid affecting the adjoining 

Pir, in general, the retrogradely labelled cell bodies presented a few granules of DAB 

precipitate in the perinuclear cytoplasm, and the density of labelling was scarce along 

the brain. The olfactory system presented the highest density of labelled cells. In 

addition, some nuclei showed a moderate number of labelled somata in other brain 

structures, such as the bed nucleus of the accessory olfactory tract (BAOT) and ACo in 

the amygdala, the nucleus of the horizontal limb of the diagonal band (HDB) and 

magnocellular preoptic nucleus (MCPO) in the septum and the VTA in the brainstem. 

Retrograde labelling in the olfactory system 

Injections of FG into the CxA gave rise to a very dense labelling throughout the mitral 

cell layer of the main olfactory bulb (Mi) (Table 3). The somata were darkly stained and 

in some cases, the labelling extended to the proximal dendritic tree (Fig 16A and Fig 

17A). Few labelled cells were also observed in the external and internal plexiform 

layers (EPl and IPl) of the MOB. In the injections of FG located in the layer II of the 
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CxA (cases 1324 and 1331), the mitral cell layer of the AOB (MiA) presented scarce 

labelling (Table 3, Fig 16A and Fig 17B), whereas in the injections located in the layer I 

and extending into the lo (cases 1311 and 1329), the MiA presented a dense labelling 

(not illustrated).  

 

Fig. 15 Injection sites in the cortex-amygdala transition zone and anterior cortical 
amygdala in mice. (A–J) Schematic drawings representing the extent of the tracer 
injections in the cortex-amygdala transition zone (CxA) and anterior cortical amygdala 
(ACo). The injections in the rostral CxA are represented in panels A-C; the injection in 
the caudal CxA are shown in panels G, H and the ACo injections are represented in 
panels D, E and G, H. Single injections are identified with the animal code. Panels B 
and F depict the tracer deposits along the micropippete track after the injections 1324 
and 1311 (B) and 1339 and 1321 (F). (I, J) Fluorescent photomicrographs through the 
amygdala showing representative injections sites of Fluorogold. (I) Injection site in 
rostral CxA, case 1324. (J) Injection site in ACo, case 1339. Scale bar in I, valid for J = 
200 µm 
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Within the olfactory cortex, the Pir showed a heterogeneous labelling with its rostral 

part presenting a moderate density of labelled cells and its caudal part showing scarce or 

very scarce labelling (Table 3, Fig 16B-E). In the rostral part of the Pir, the labelled 

somata were mainly located in the external part of the layer II and presented a few 

granules inside each cell body (Fig 17C). Some darkly stained somata were also present 

in the layer IA next to the lo and in the layer III. The dorsal endopiriform nuclei (DEn) 

and the VEn presented also a heterogeneous labelling, with their rostral parts showing 

more labelled somata than their caudal parts (Table 3, Fig 16B-E). The DEn showed 

some darkly stained somata. Finally, the dorsal tenia tecta (DTT) and the posterior part 

of the anterior olfactory nucleus (AOP) showed only a few retrogradely labelled cells 

(Table 3).  

Retrograde labelling in the amygdala  

Within the nuclei with olfactory predominance (Table 3), the ACo presented in general 

a moderate density of labelled cells (table 3), with its rostral part showing more 

labelling than its caudal aspect (Fig 16C, D and Fig 17D, E). The LOT showed scarce 

labelling, with the labelled somata mainly located in the layer II (Fig 16C). Within the 

nuclei with vomeronasal predominance (Table 3), the BAOT presented a moderate 

density of labelling (Fig 16D and Fig 17D), although in the injections located 

superficially (likely affecting the lo) more numerous labelled cells were observed. The 

dorsal and ventral part of the anterior amygdaloid area (AAD and AAV, respectively) 

and the MeA showed a scarce number of labelled cells and the posteroventral 

subdivision of the medial amygdala (MePV) showed very scarce labelling (Table 3, Fig 

16C-E, Fig 17D). Within the olfactory nuclei (Table 3), the posterolateral cortical 

amygdaloid nucleus (PLCo) showed a heterogeneous labelling.!The labelled cells were 

mainly located in its rostral part, in layer I and II (Fig 16E and Fig 17E), while the 

caudal part of the PLCo was almost devoid of labelling.  To finish with the 

chemosensory amygdala, the posteromedial cortical amygdaloid nucleus (PMCo) 

showed very scarce labelling (not showed). In the rest of the amygdaloid complex, only 

the medial division of the central amygdaloid nucleus (CeM) and the anterior part of the 

basomedial amygdaloid nucleus (BMA) showed very scarce labelling (Table 3, Fig 

16D, E). 
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Fig. 16 Semi-schematic drawings of parasagittal (A) and frontal (B-F) sections 
through the mouse brain showing the distribution of retrogradely labelled somata 
following a Fluorogold tracer injection in the cortex-amygdala transition zone. The 
injection site is depicted in panel (C). The semi-schematic drawings are based on the 
case 1324, which presented the largest restricted injection located in layer II. B is 
rostral, F is caudal. For abbreviations, see list. 

 

Retrograde labelling in the Cortex including the Hippocampal formation 

Within the cortex, only the lateral entorhinal cortex (LEnt) and the posterior part of the 

agranular insular cortex (AIP) presented some labelled somata (Table 3, Fig 16B, C). In 
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the two superficial injections, very scarce labelling was also observed in the ventral part 

of the agranular insular cortex (AIV; not shown, Table 3).  

Retrograde labelling in the Septum and Striatum 

Within the diagonal band, the HDB and MCPO presented a moderate density of 

labelling. In the rostral part of the HDB, the labelled somata were located in its limit 

with the olfactory tubercle (Tu), while more caudally, when it is adjoining the MCPO, 

the labelling was homogeneously distributed (Fig 16B, C). In addition, the ventral 

horizontal diagonal band (VDB) showed scarce labelling (Table 3). Within the striato-

pallidum, the ventral pallidium (VP) and semilunar nucleus (SL) showed scarce labelled 

cells (Table 3, Fig 16B, C) and the substantia innominata (SI) and the IPAC presented 

very scarce labelling (Table 3, Fig 16B, C). Finally, the septohypothalamic nucleus 

(SHi) also presented very scarce labelling (Table 3). 

Retrograde labelling in the midbrain and brainstem 

Within the midbrain, the ventral tegmental area (VTA) presented a moderate number of 

labelled somata (Table 3, Fig 16F and Fig 17F). In addition, in the brainstem, the dorsal 

raphe (DR) and the rostral linear nucleus of the raphe (RLi) showed scarce and very 

scarce labelling respectively (Table 3). The three injections that presented a deposit of 

the tracer along the micropipette track affecting the CPu, showed labelled cells in the 

substantia nigra, which were present both in its pars compacta and pars reticulata 

(Table 3, Fig 16F). Remarkably, the injection without this leaking in the CPu did not 

show labelled cells in these structures. 

Contralateral labelling 

Although the FG injections gave rise mainly to ipsilateral retrograde labelling, very few 

labelled cells (with very few granules of DAB precipitate) were also observed in the 

contralateral Pir and LOT.  

3.3.2.3 Retrograde labelling after a FG injection in the caudal edge of the CxA 

One restricted injection of FG was obtained in the caudal edge of the CxA, centred in 

layer II (Fig 15G, H). Although its location was considered to be part of the caudal CxA 

taking into account the AChase histochemistry (Fig 14D), the retrograde labelling 
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yielded by this injection differed from the labelling pattern observed in the more rostral 

injections of CxA. This injection was also larger than the rostral ones. Taking into 

account the different sizes between the rostral and caudal injections, the following 

description is based mainly on the differences in the pattern of projections and in some 

important differences in density (Table 3).  

Regarding to the olfactory system, the labelling observed in the Pir was homogenously 

distributed throughout the external and internal parts of its layer II. This destribution 

contrast with the external labelling presented in the layer II of the Pir in the rostral 

injections of the CxA. Also, not only the AOP presented labelled cells, but in addition, 

the medial part of the anterior olfactory nucleus (AOM) presented a scarce amount of 

labelling (Table 3). Remarkable, this injection presented scarce labelling in the MiA, 

similar to the injections that were located in the layer II of the rostral CxA (Table 3, Fig 

15B, C and G, H). 

Regarding to the amygdala, within the chemosensory amygdala, the PLCo presented a 

dense labelling (Table 3) and the PMCo showed a heterogeneous labelling ranging from 

very scarce in its anterior part to a moderate density of labelled cells in its caudal part 

(not shown). In the basolateral complex (Table 3), the caudal CxA injection gave rise to 

an important labelling in some nuclei in contrast to the almost un-existing labelling 

showed by the rostral CxA injections. The lateral amygdaloid nucleus (La) showed 

dense labelling mainly located in its ventral part. The anterior and posterior part of the 

basomedial amygdaloid nucleus (BMA and BMP, respectively) presented a moderate 

density of labelled cells and the anterior and ventral parts of the basolateral amygdaloid 

nucleus (BLA and BLV, respectively) showed scarce labelling (Table 3). Within the 

extended amygdala, the posterointermediate and posterolateral parts, of the medial 

division of the bed nucleus of the stria terminalis (BSTMPI and BSTMPL, respectively) 

presented a very scarce amount of labelled cells (Table 3).  

Regarding to the cortex, this injection gave rise to scarce or very scarce labelling in 

some parts of the frontal cortex such as, the dorsal part of the AI (AID) and AIV, the 

prelimbic cortex (PrL), the medial and lateral orbital cortex (MO and LO, respectively) 

and in more caudal cortical areas such as the perirhinal cortex (PRh), the ectorhinal 

cortex (Ect) and in the pyramidal cell layer CA1 and CA3 of the hippocampal formation 

(Table 3). 
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Fig. 17 Photomicrographs of frontal sections illustrating the retrograde labelling 
through the mouse telencephalon of animals receiving a Fluorogold injection in the 
cortex-amygdala transition zone. The images correspond to the retrograde labelling 
presented in the cases 1324 (A, B, D, E), 1331 (C) and 1311 (F). (A) Retrograde 
labelling in the main olfactory bulb (MOB). The inset in (A) depicts the darkly stained 
somata of mitral cells, which in some cases also show the proximal dendrites labelled. 
(B) A few retrogradely labelled neurons in the accessory olfactory bulb. The 
arrowheads indicate retrogradely labelled cells in the mitral cell layer. (C) Labelling in 
the rostral part of the piriform cortex (Pir) and magnocelluar preoptic nucleus. The inset 
illustrates the labelled cells in layer II of the Pir, mainly located in its external part. (D) 
Moderate amount of retrogradely labelled cells in the bed nucleus of the accessory 
olfactory tract (BAOT) and anterior cortical amygdaloid nucleus (ACo). (E) 
Retrogradely labelled neurons in the posterolateral cortical amygdaloid nucleus (PLCo). 
The inset shows the labelling mainly located in the layer I and II of the PLCo. (F) 



! #%*!

Retrograde labelling in the ventral tegmental area (VTA).  For abbreviations, see list. 
Scale bar in A, 1mm. Scale bar in B, valid for C: 500 µm. Scale bar in inset in A and C: 
100 µm. Scale bar in D, valid for (E, F): 250 µm. Scale bar in inset in E: 50 µm 

 

In contrast to the injections in the rostral CxA, which did not give rise to thalamic or 

hypothalamic labelling, this injection in the caudal CxA resulted in scarce or very 

scarce labelling in some thalamic nuclei including the reuniens thalamic nucleus (Re), 

the central medial thalamic nucleus (CM), the intermediodorsal thalamic nucleus 

(IMD), the rhomboid thalamic nucleus (Rh), the zona incerta (ZI), the periventricular 

fiber system (pv), the subparafascicular thalamic nucleus (SPF) and parvicellular part of 

the SPF (SPFPC) (Table 3). In addition, in the hypothalamus scarce labelling was 

observed in the ventromedial hypothalamic nucleus (VMH) and very scarce labelling in 

the retrochiasmatic area (RCh), the dorsomedial hypothalamic nucleus (DM), the lateral 

hypothalamic area (LH), the tuber cinereum area (TC) and the ventral part of the 

premammillary nucleus (PMV) (Table 3).  

Lastly, in the midbrain and brainstem, in addition to the labelled cells presented by the 

VTA and DR, scarce labelling was observed in the interpeduncular nucleus (IP), the 

periaqueductal grey (PAG), the locus coeruleus (LC) and the parabrachial nucleus (PB), 

which were not labelled after the CxA injections (Table 3). 

3.3.2.4 Control injections 

Two restricted injections were obtained in the ventral Pir, rostral to the CxA injections. 

In one injection, the FG tracer was used and it was centred in layer III, involving also 

layer II, in the other, BDA tracer was used and it was centred in layer I involving the lo. 

Both injections were of similar sizes to those described for the rostral CxA.  

In general the labelling observed after the Pir injections presented a similar pattern of 

labelling to the one described for the CxA injections, with some differences in the 

density of labelling in a few structures. In summary, the most important differences 

were observed in the amygdala, brainstem and midbrain, and are described in more 

detail below. In contrast, the olfactory system, the cortex, hippocampal formation, 

septum and striatum presented a similar pattern of labelling distribution with some 
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differences relative to the density of the labelled cells in some centres. Finally, similar 

to the CxA injections, the hypothalamus and thalamus did not show labelled cells. 

Regarding the most important differences with the injections in the rostral CxA, within 

the nuclei of the amygdala with olfactory predominance, the LOT showed a moderate 

density of labelled cells, with a higher amount of darkly stained somata and an 

important contralateral labelling. The ACo presented very scarce labelling. Within the 

nuclei with vomeronasal predominance, the MeA presented very scarce labelling and 

the posterodorsal subdivision of the Me (MePD), MePV and BAOT did not showed 

labelled cells. In the basolateral complex, the BLA and BMP showed a few labelled 

cells. And finally within the brainstem and midbrain, the DR presented a moderate 

number of labelled cells and the VTA showed a few number of labelled cells. 

With regard to minor differences with the CxA injections, within the olfactory system, 

in the olfactory bulbs the MiA was completely devoid of labelled cells. The Pir showed 

a dense labelling, with the labelled cells mainly located in the inner part of the layer II, 

contrasting with the external location of the labelled cells in the CxA injections. The Pir 

also showed an important contralateral labelling. Also, a moderate density of labelling 

was observed in the ventral tenia tecta (VTT; mainly located in the layer II and III) and 

AOM, which also presented contralateral labelling. Finally, within the prefrontal cortex, 

very scarce labelling was observed in the MO and LO.  

3.3.2.5 Retrograde labelling after FG injections into the anterior cortical amygdaloid 

nucleus (ACo) 

Five injections were aimed at the ACo, three of which were restricted to this nucleus 

(Fig 15D-H). Two of the restricted injections involved the superficial layer I (cases 

1339 and 1245) and one was mainly located in layer II (case 1321). In two of the three 

injections, a small deposit of tracer could be observed along the micropippete track in 

the CPu, the lateral globus pallidus and the central amygdaloid nucleus (Ce; cases 1321 

and 1339, Fig 15F). Additionally, two more injections were centred in ACo, but 

extended to CxA. The pattern of labelling was similar in all the restricted injections 

(case 1339 is illustrated in Fig 18) and the labelling in the non-restricted injections was 

consistent with the pattern observed. 
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In general, the ACo injections gave rise to a high density of retrograde labelling in the 

olfactory system, the chemosensory amygdala and the posterior intralaminar thalamus. 

In addition, the central and basolateral complex of the amygdala, several nuclei of the 

BST complex, some cortical areas including the hippocampal formation, the septum and 

striatum, and several hypothalamic, mesencephalic and brainstem nuclei presented 

retrograde labelling in a degree from moderate to very scarce.  

Retrograde labelling in the olfactory system 

After the retrograde injections in the ACo, a very dense labelling was observed 

throughout the Mi with darkly stained somata (Table 3, Fig 18A and Fig 19A). 

Moreover, few labelled cells were present in the IPl, EPl and glomerular layer of the 

MOB. The AOB also showed retrograde labelling in the MiA and few labelled cells in 

its glomerular layer (Table 3, Fig 18A and 19A). Similar to the retrograde labelling 

observed in the CxA injections, the density of labelling in the MiA depended on which 

layer of the ACo was centred the injection. The superficial injections (cases 1245 and 

1339) gave rise to a dense labelling in the MiA, while the deep injection (case 1321) 

gave rise to a scarce labelling. 

Regarding the olfactory cortex, some areas showed a remarkably retrograde labelling. 

The Pir presented a heterogeneous pattern of labelling (Fig 18B-F), presenting in its 

rostral part a moderate number of labelled cells (Table 3). These labelled somata were 

mainly located in the inner part of layer II (Fig 18B) contrasting with the external 

location of the retrograde labelling observed after the CxA injections (Fig 16B, D and 

Fig 17C). In layer I, few labelled cells were located surrounding the lo. In the 

intermediate levels, the labelling was dense and the labelled cells distributed 

homogeneously between the layers II and III and finally, in its caudal part, the density 

of labelling was moderate (Fig 18C-F and 19C, D). Noteworthy, in the most rostral 

injection (case 1339), the density of labelling along the Pir was higher than the other 

two injections. The DEn also presented a heterogeneous labelling, showing more 

labelled somata in its rostral part than in its caudal part, while the VEn showed a 

moderate number of labelled cells along its extension (Table 3, Fig 18B-F and Fig 19C, 

D). Both nuclei presented darkly stained somata. The DTT presented a moderate 

number of labelled somata mainly located in its layer III (Table 3, Fig 19B) and the 

VTT showed scarce labelling with the labelled somata mainly located in layer II (Table 
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3, not shown). Finally, the lateral part of the anterior olfactory nucleus (AOL), the AOP 

and AOM presented a few labelled somata (Table 3, Fig 19B).  
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Fig. 18 Summary of the distribution of retrograde labelling following a Fluorogold 
injection in the anterior cortical amygdaloid nucleus, plotted onto semi-schematic 
drawings of parasagittal (A) and frontal (B-H) sections through the mouse brain. 
The injection site is depicted in panel (C). B is rostral, H is caudal. The semi-schematic 
drawings are based on the case 1339, which presented the largest restricted injection. 
For abbreviations, see list.  
 

Retrograde labelling in the amygdala  

Within the amygdaloid complex, the chemosensory amygdala presented the densest 

population of retrograde labelled cells. In addition, within the deep nuclei, the Ce, 

basolateral and the amygdalohippocampal area (AHi) showed retrograde labelling, 

contrasting with the almost absence of labelled cells in these nuclei after the CxA 

injections.  

In the olfactory amygdala (Table 3), the injections gave rise to a heterogeneous 

labelling in the PLCo, with the labelled somata distributed along all its layers but more 

densely located in its layer II. This nucleus showed more labelled cells in its rostral part 

than in its caudal part (Fig 18D-F and Fig 19C, D). The amygdalopiriform transition 

area (APir) presented a moderate number of labelled cells (Table 3, Fig 18F, G and Fig 

19D).  

With regard to the nuclei with olfactory predominance (Table 3), the CxA and LOT 

showed dense labelling (Table 3). In the CxA, all the layers presented labelled cells but 

layer II presented a higher number of them, while in the LOT the labelled cells were 

almost strictly located in its layer II (Fig 18C-D). 
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In the vomeronasal amygdala (Table 3), the injections gave rise to a heterogeneous 

labelling in the PMCo, with the labelled somata located in its cellular layer (Fig 18E-G). 

Its rostral part was almost depleted of retrograde labelling (Fig 18E and 19C), while its 

caudal part showed a dense number of labelled somata (Fig 18F, G and 19D).  

Regarding to the nuclei with vomeronasal predominance, the BAOT showed a very 

dense labelling after the superficial injections (Table 3, not shown), while in the deep 

injection it showed a moderate to dense labelling (not shown). The AAV, AAD and the 

three subdivisions of the Me presented a moderate number of labelled cells (Table 3, 

Fig 18C-E and Fig 19C). In the Me, the labelled cells were mainly located in its cellular 

layer. In addition, the posterodorsal subdivision of the Me (MePD) presented a 

conspicuous heterogeneity in the labelling distribution, with the labelled somata mainly 

aligned along the limit of its cellular and external layer (Fig 19C).  

Within the deep amygdala, in the basolateral complex, the BMA and BMP presented a 

moderate density of labelled cells (Table 3, Fig 18C-F and Fig 19C, D), with the BMA 

showing more labelled cells in its rostral (Fig 18C, D) than in its caudal part (not 

shown). The posterior part of the basolateral amygdaloid nucleus (BLP) and BLV 

presented scarce labelling and the BLA showed very scarce number of labelled cells 

(Table 3, Fig 18D-F and Fig 19C, D). Within the lateral amygdaloid nucleus, only the 

dorsolateral part of the La (LaDL) showed labelling, with a scarce number of labelled 

somata (Table 3, Fig 18D, E). Regarding to the Ce, it showed in general few labelled 

cells (Table 3, Fig 18D, E). As a final point, the AHi presented also scarce labelling 

(Table 3, Fig 18E-G and Fig 19D). 

Retrograde labelling in the bed nucleus of the stria terminalis (BST) 

In general, the BSTMPI and the intraamygdaliod division of the BST (BSTIA) 

presented the strongest labelling among the entire BST complex, while the rest of the 

complex presented scarce cells. In two of the three injections, the BSTMPI showed a 

moderate number of labelled somata and the posteromedial part of the medial division 

of the BST (BSTMPM) and BSTMPL showed scarce labelling (Table 3, Fig 18C). The 

remaining division of the BST complex that showed labelling were the ventral and 

anterior parts of the medial division (BTSMV and BTSMA, respectively), the ventral 

and posterior parts of the lateral division (BTSLV and BTSLP, respectively), which 
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presented very scarce labelled cells (Table 3). Finally, the BSTIA, showed a moderate 

density of labelling (Fig 18E, Fig 19C).   

Retrograde labelling in the Cortex including the Hippocampal formation 

In the neocortex, only the AI showed and important amount of labelling, while few 

labelled cells were observed in the prefrontal and the perirhinal regions. Thus, within 

the cortex, the PrL, MO, dorsal peduncular cortex (DP), infralimbic cortex (IL), 

claustrum (Cl), PRh and Ect display scarce or very scarce labelling (Table 3, Fig 18B-

G). Regarding to the AI, it displayed a striking heterogeneous labelling. The AIV 

presented dense labelling, while the AID showed scarce labelling with the labelled cells 

mainly located in layer V in both parts (Table 3, Fig 18B). The posterior part of the AI 

(AIP) displayed a moderate density of labelling (Table 3, Fig 18C, D). 

Within the hippocampal formation, the LEnt presented a moderate density of labelling 

(Table 3, Fig 18F, G) and the CA3, CA1 and subiculum (S) showed scarce labelled 

somata located in their ventral parts (Table 3, 18G). The observed labelled somata in the 

CA1 and CA3 were located in the Py.  

Retrograde labelling in the Septum and Striatum 

In general, the injections in ACo gave rise to scarce labelling in the septum and 

striatum, with exception of the SHi in the septum and the HDB/MCPO in the striatum. 

The SHi presented dense labelling and darkly stained somata just ventral to the DTT 

(Table 3, not shown), while caudally it presented few labelled cells (Fig 18B). 

Within the diagonal band, the HDB and MCPO showed a moderate density of labelling 

with some darkly stained somata, while the VDB presented a scarce number of labelled 

cells (Table 3, not shown). In the VDB and rostral part of the HDB, the retrograde 

labelling was mainly present in their limits with the Tu. Finally, few labelled somata 

were observed in the medial septal nucleus (MS) lining up at the boundary with the 

intermediate part of the lateral septal nucleus (Table 3, Fig 18B).  

Within the striato-pallidum, the SL, VP and IPAC also showed a few, scattered labelled 

somata (Table 3, Fig 18B, C). In addition, the SI presented scarce labelling with 

labelled cells mainly located between the BSTMPL and the anterior amygdaloid nucleus 
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(Fig 18C). To finish with the description of straitum, at its rostral level, darkly stained 

cells were observed in the territory located between the AOP and the Tu (Fig 19B). 

 

Fig. 19 Photomicrographs of parasagittal (A) and frontal (B-F) sections through 
the mouse telencephalon, illustrating the retrograde labelling observed in animals 
receiving a Fluorogold injection in the anterior cortical amygdaloid nucleus. The 
images correspond to the retrograde labelling presented in the cases 1339 (A-D) and 
1245 (E, F). (A) Retrogradely labelled mitral cells in the main olfactory bulb. Inset in A 
shows retrograde labelling in the mitral and glomerular cell layer (see arrowheads) of 
the accessory olfactory bulb. (B) Retrograde labelling present in the territory between 
the posterior part of the anterior olfactory nucleus and the olfactory tubercle. (C) 
Numerous labelled cells in the caudal piriform cortex and dorsal part of the 
endopiriform nucleus within the olfactory system. In the amygdala, dense labelling is 
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present in the posterolateral cortical amygdaloid nucleus, and a moderate density of 
labelled cells is shown by the posteroventral and posterodorsal subdivision of the 
medial amygdaloid nucleus (MePV and MePD, respectively), the intraamygdaloid 
division of the bed nucleus of the stria terminalis and the posterior part of the 
basomedial amygdaloid nucleus. Note the heterogeneous distribution of the retrograde 
labelling in the MePD, with the labelled cells mainly located in the external part its 
cellular layer. At this level, the posteromedial cortical amygdaloid nucleus is almost 
devoid of labelling. (D) Dense retrograde labelling in the caudal part of the 
posteromedial cortical amygdaloid nucleus and moderate density of retrogradely 
labelled cells in the amygdalopiriform transition area. Within the olfactory cortex, dense 
labelling is present in the posterior part of the piriform cortex. (E) Important labelling in 
the posterior intralaminar thalamic region. (F) Retrogradely labelled cells in the medial 
and lateral parabrachial nucleus and the locus coeruleus. For abbreviations, see list. 
Scale bar in A: 1 mm. Scale bar in inset en A: 250 µm. Scale bar in B (valid for B–F): 
500 µm.  

 

Retrograde labelling in the Thalamus 

After the FG injections, retrograde labelling was observed in the paraventricular and the 

posterior intralaminar thalamic regions. The anterior paraventricular thalamic nucleus 

(PVA) showed a striking heterogeneous labelling. In its rostral edge, it presented a 

moderate density of labelled cells lining up in its medial and ventral aspects (Fig 18C). 

In its intermediate levels and more caudally it showed very scarce labelling, with the 

labelled somata located in its most dorsal aspect (Table 3, Fig 18D, E). Finally, in the 

posterior part of the paraventricular thalamic nucleus (PVP), the labelling density 

increases to moderate (Table 3, Fig 18F). In addition, the Re and ZI showed few 

labelled cells (Table 3, Fig 18D-F) 

In the caudal thalamus, a moderate density of labelling was observed next to the midline 

along the pv, lining up between the PVP and the SPF, which also presented a moderate 

density of labelling (Table 3, Fig 18F). Laterally, within the posterior intralaminar 

thalamic complex, the SPFPC showed dense labelling, which was also observed in the 

posterior intralaminar thalamic nucleus (PIL; Table 3, Fig 18F, G and Fig 19E). In 

addition, the peripeduncular nucleus (PP) and medial part of the medial geniculate 

nucleus (MGM) presented a scarce number of labelled cells and the suprageniculate 

thalamic nucleus (SG) very scarce labelling (Table 3, Fig 18G and Fig 19E).  
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Retrograde labelling in the Hypothalamus 

In general, the hypothalamus displayed only sparse and scattered retrograde labelling. 

Thus, in the preoptic and anterior hypothalamus, the medial preoptic area (MPA), the 

medial preoptic nucleus (MPO) and the anterior hypothalamic area (AH) presented very 

scarce number of labelled cells (Table 3, Fig 18C, D). Within the tuberal hypothalamus, 

the VMH and LH present scarce labelling and the TC very scarce labelled cells (Table 

3, Fig 18D, E). Finally, at mammillary levels, the posterior hypothalamic area (PH) 

presented a moderate density of labelling along its extension (Table 3, Fig 18E, F) and 

the PMV, the dorsal part of the premammillary nucleus (PMD) and supramammillary 

nucleus (SuM) showed very scarce labelling (Table 3, Fig 18F).  

Retrograde labelling in the Midbrain and Brainstem 

To finish with the description of the observed retrograde labelling, the midbrain and 

brainstem showed few labelled cells, with the exception of the PB in the brainstem, 

which presented a moderate density of labelling in its medial and lateral divisions 

(Table 3, Fig 18H and Fig 19F).  

In the remaining nuclei of the midbrain and brainstem, the PAG, VTA, DR and LC 

showed scarce labelling (Table 1, Fig 18G, H) and the RLi and the oral part of the 

pontine reticular nucleus (PnO) very scarce labelled cells (Table 3, not shown). In 

addition, in the cases where tracer deposits appeared along the micropipette tract in the 

CPu, labelled cells were observed in the sustantia nigra (Fig 18F, G; shown with star 

forms).  

Contralateral retrograde labelling  

Although the observed retrograde labelling was mostly ipsilateral to the FG injections, a 

few labelled cells were also present in some contralateral nuclei. In the olfactory 

system, the rostral Pir presented moderate labelling located in its layer II and few sparse 

labelled somata in its caudal part. The DTT showed very scarce number of labelled cells 

in its layer III. Within the amygdala, the PLCo showed scarce labelling and the PMCo 

and BMA very scarce labelled somata. In the hippocampal formation, the LEnt 

displayed a few labelled cells. The diagonal band and SI showed very scarce labelling. 

Within the thalamus, the SPF, SPFPC and PP presented scarce labelling and the PIL, 

PVA, PVP, pv, Re and ZI showed very scarce labelled cells. The hypothalamus 
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displayed a few labelled cells in the VMH, LH and PH. Finally, scarce number of 

labelled cells was also observed in the PAG, VTA, CLi and PB.  

3.3.3 Discussion 
!
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4. General Disscussion 

The projections from the MOB to the corticomedial nuclei of the amygdala lack a 

topographic organization. This raises the question about the nature of the olfactory 

inputs received by these amygdaloid nuclei. One option is that specific populations of 

mitral cells distributed along the mitral cell layer of the MOB, deliver specific types of 

semiochemical information to the amygdaloid complex. The projections from the mitral 

cells to the Pir, in contrast, send a broad range of general odour information from inputs 

originated throughout the entire mitral cell layer. For example, mitral cells that are 

innervated by olfactory sensory cells expressing the particular receptor OR37C, project 

specifically to the MePD (Bader et al. 2012). These sensory cells, respond to the 

presence of long-chain fatty aldehydes (Bautze et al. 2012), some of which are present 

in anal gland secretions (Bautze et al. 2014). Other (non-exclusive) possibility is that the 

same mitral cells that projects to the Pir also projects to the amygdaloid complex, 

delivering to both general information about an odour. Kang et al. (2011) showed that 

mitral axons from the MOB send collaterals to the anterior and posterior Pir, ACo, MeA 

and PLCo. This suggests that the same odour information is transmitted to the Pir and to 

these nuclei of the amygdaloid complex. Therefore, from the anatomical point of view, 

it is likely that the corticomedial amygdaloid nuclei play a role associating a broad 

range of odours with a particular emotional experience.  

The MeA receives the highest degree of convergent projections arising from the main 

(MOB) and accessory (AOB) olfactory bulbs (Pro-Sistaga et al. 2007; Cadiz-Moretti et 

al. 2013). The ACo and CxA present minor convergent projections with the strongest 

projection arising from the main olfactory bulb. In contrast, the PMCo do not show 

convergent projections from the MOB and AOB and receive important projections from 

the latter one. Therefore, the neuroanatomical connections suggest that the MeA may be 

a key structure in the association of vomeronasal and olfactory information, although 

functional data obtained in different behavioural experiments and species are not fully 

consistent. Lesion studies in female mice have shown that the posterior part of the Me is 

more relevant for the attraction towards male volatiles (DiBenedictis et al. 2012). In 

contrast, in male hamsters both lesions of the anterior and posterior Me reduced the 

preference for male-derived odours (Maras and Petrulis, 2006). It should be taken into 
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account that in these studies the response of the experimental animals requires no 

learning. In this regard, previous results presented by Moncho-Bogani et al. (2005) on 

c-fos expression in the amygdala of female mice showed that the Me is activated with 

the exposure of male-soiled bedding (when learning takes place), but not when the 

olfactory-vomeronasal memory is expressed. In this case, only the anterior part of the 

basolateral amygdaloid nucleus (BLA) shows c-Fos expression, suggesting that the Me 

is involved in the learning phase but not in the expression of the acquired memory. 

Regarding to the intraamygdaloid connections, the Me, ACo and PMCo (Gutierrez-

Castellanos et al. 2014) are highly interconnected among them and with the rest of 

chemosensory amygdala, while the CxA shows less connections with the chemosensory 

amygdaloid nuclei. In addition, all these nuclei show poor connections with the deep 

amygdaloid nuclei. The only exception is the basomedial nucleus, which projects to the 

Me and ACo and in a minor extent to the PMCo (Gutierrez-Castellanos et al. 2014). 

Regarding to the chemosensoy amygdala, the high interconnection among its nuclei 

suggests that the vomeronasal-olfactory information is integrated in a network-like 

manner within all these nuclei, with none of them being strictly involved in one 

particular aspect of sociosexual and reproductive behaviours. This may explain why 

corticomedial nuclei show an increase c-fos reactivity during the expression of a variety 

of sociosexual behaviours (Knapska et al. 2007), including maternal behaviours in rats 

(Fleming et al. 1994), exposure to chemicals cues derived from males in female mice 

(Moncho-Bogani et al. 2005) and following sexual experience (Pfaus et al. 1993).  

With regard to the interconnections between the chemosensory and deep amygdaloid 

nuclei, the BMA present the strongest connections between these two systems, and may 

act as a link between the olfactory and vomeronasal information, on the one hand, and 

the emotional learning processes taking place in the BLA and lateral nucleus (La), on 

the other. Therefore, it is possible that the corticomedial nuclei and BLA/La play a 

complementary role in these associative processes. The circuitry of the amygdala may 

be acting similar to the other learning/memory circuits; the cortical nuclei may act as 

the hippocampus where instable memories are formed. Then these memories are 

transferred, through the BMA, to the BLA, where the stable memories are stored. In this 

analogy, the BMA would act as the entorhinal cortex, and the BLA would be analogous 

to the cortex. Further studies are needed to corroborate this hypothesis.  
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The amygdaloid and the BST complex seem to relay the chemosensory information to 

the hypothalamus, which is the main behavioural effector area (Swanson 2000). By 

contrast, the hypothalamus lacks an important direct feedback connection back to the 

amygdaloid complex, with the exception of some nuclei that project to the Me. This 

raises the question of whether the processing of chemical information in the amygdaloid 

complex is modulated by the hypothalamus. One possibility is that the information 

about the hypothalamic activity reaches the amygdala by means of indirect feedback 

projections. For example, the posterior part of the medial division of the BST (BSTMP) 

shows important efferent connections to the Me and ACo (Dong et al. 2004). This 

nucleus together with the Me and the hypothalamus are key structures related with 

sociosexual and defensive behaviours (Canteras 2002). Thus, it is possible that the 

BSTMP acts a relay centre, delivering information from the hypothalamus to the 

amygdala. The afferent connections of the BSTMP are unknown, so further studies are 

needed to corroborate this hypothesis. Other possibility is that the amygdaloid complex 

senses the hypothalamic activity by means of hormone receptors. The Me and ACo 

display high levels of receptors for steroid hormones, which may be activated by the 

sexual hormones influenced by the hypothalamic activity (Simerly et al. 1990). A third 

possibility is that the hypothalamus sends its feedback projections to the amygdala 

through the Me. Since this nucleus presents the highest amount of afferents arising from 

the hypothalamus compared to other amygdaloid nuclei, it may relay hypothalamic 

information to the rest of the amygdaloid complex. Further studies are needed to 

highlight the functional relation between the hypothalamus and the amygdala.  

The Me and ACo receive important projections arising from the posterior 

paraventricular thalamus, posterior intralaminar thalamus and the parabrachial nucleus 

within the brainstem. On the other hand, other cortical nuclei such as the PMCo and 

CxA do not present afferent connections arising from these areas. The projections 

arising from the thalamus and brainstem to the Me and ACo may relay somatosensory 

information related to fear conditioning paradigms!in the case of the paraventricular and 

posterior intralaminar thalamus (O(+-]26;&]!1'!;3#!$??/k!Cousens et al. 2012; Rosen et 

al. 1998; W-!1'!;3#!/M$AH, somatosensory information related to genital stimulation in the 

case of the parvicellular part of the subparafascicular thalamic nucleus (Veening and 

Coolen 1998; O))31&! 1'! ;3#! $??L) and information related with 

gustarory/viscerosensorial stimulation for the case of the parabrachial nucleus (<1(&;(*!
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1'! ;3#! $??"H. Regardless of the functional implication of each of these projections, 

which to our knowledge is unknown, it is possible that the Me and ACo function as 

integrative centres where vomeronasal and olfactory information is contextualized with 

somatosensory stimuli.  

In conclusion, the ACo and Me seem to be nuclei where olfactory and vomeronasal 

information is integrated with highly processed somatosensory information. In addition, 

it is possible that they act like the first structures where synaptic plasticity takes place to 

associate olfactory and vomeronasal stimuli, working in synergy with the BLA where 

this learned association is finally stored. The CxA may be involved in odour processing 

similar to the olfactory processing performed by the Pir. The PMCo may function as the 

vomeronasal cortex of the amygdala, mainly processing the raw vomeronasal 

information and relaying it to the rest of the amygdaloid complex, similar to the role of 

the CxA/Pir with the odour stimuli within the olfactory cortex. The PLCo is the last 

cortical nuclei of the amygdala for which information about its connections is poorly 

described. It would be useful to describe its anatomical relations with the rest of the 

amygdala and brain structures to have a more complete picture of the amygdala 

connectivity. 
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5. GENERAL CONCLUSIONS 
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5. General Conclusions 

1. The main (MOB) and accessory (AOB) olfactory bulbs send 

convergent projections to a restricted area of the anterior piriform 

(Pir) cortex, which is part of the olfactory cortex. 

2. Within the amygdaloid complex, both olfactory bulbs project to the 

ventral part of the anterior amygdaloid area (AAV), the anterior 

(MeA) and posterodorsal (MePD) subdivisions of the medial 

amygdaloid nucleus, the bed nucleus of the accessory olfactory tract 

(BAOT), the anterior cortical amygdaloid nucleus (ACo), the cortex-

amygdala transition zone (CxA) and the nucleus of the lateral 

olfactory tract (LOT). The ACo, CxA and LOT receive a 

predominant olfactory input, whereas the MeA, MePD, BAOT and 

AAV receive a predominant vomeronasal input.  

3. Among the nuclei of the chemosensory amygdala, the MeA, MePD, 

ACo and CxA receive projections from the MOB and AOB that 

reach their layer II, and therefore may have a major functional 

relevance. The MeA display the highest amount of convergent 

projections from both olfactory bulbs. 

4. The three subdivisions of the medial amygdaloid nucleus, the MeA, 

MePV and MePD, show in general a similar pattern of afferent 

connections, although minor differences were present among them.  

5. The afferent connections to the MePD display the most important 

differences compared to the MeA and MePV, while these last two 

subdivisions are more similar between them. The MePD is more 

connected with the sexually dimorphic brain circuit, while the MeA 
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and MePV are, in a less specific manner, connected with areas 

related with reproductive and defensive behaviours.    

6. The projections arising from the bulbs to the Me, ACo and CxA lack 

a topographic organization, with the exception of the projections 

originated by AOB to the MePD. In this case, the rostral part of the 

AOB sends more projections to the MePD than the caudal part of the 

AOB.  

7. The three subdivisions of the medial amygdaloid nucleus (Me) and 

the ACo show an important afferent connection from the 

chemosensory amygdala, while the deep amygdaloid nuclei present 

minor afferent connections, with the exception of the basomedial 

nucleus. In addition, the subdivisions of the Me present a strong 

interconnection between them. On the other hand, the CxA shows 

moderate to scarce projections arising from the chemosensory 

amygdala, while the deep nuclei of the amygdala do not project to 

the CxA. 

8. The bed nucleus if the stria terminalis (BST) does not send 

projections to the CxA and only the posterior part of the medial 

division and the intraamygdaloid division (BSTIA) of the BST 

present important projections to the Me and ACo. The 

posteriointermediate part of the medial division of the BST 

(BSTMPI) and BSTIA send more projections to the MeA, MePV 

and ACo compared to the MePD. On the other hand, the 

posteriomedial part of the medial division of the BST (BSTMPM) 

display more projections to the MePD than to the other corticomedial 

amygdaloid nuclei mentioned above. 
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9. The basal forebrain is a common input to the corticomedial nucleus 

of the amygdala. In general, the medial septum, diagonal band and 

striato-pallidum regions send afferent connections to the three 

subdivisions of the Me and to the ACo and CxA (with the exception 

of the medial septum which does not project to the CxA). 

10.  The hypothalamus sends, with few exceptions, minor projections to 

the Me and the ACo and does not send projections to the CxA. The 

ventral part of the premmamillary nucleus showed strong afferent 

connections to the posterior Me. The ventromedial hypothalamic 

nucleus mainly projects to the MeA and MePV, while the medial 

preoptic nucleus mainly projects to the MePD. Finally, the posterior 

hypothalamic area sends a moderate afferent projection to the MeA, 

MePV and ACo.  

11.  Within the thalamus and brainstem, the Me and ACo receive 

important projections arising from the posterior part of the 

paraventricular thalamus, posterior intralaminar thalamus and the 

parabrachial nucleus.  
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J;(;!12'+*-;(!3;2!=;212!;&;'qF-,;2!*1!12'1!'-I)!*1!;I(1&*-R;51T!&)2!I3;&'1;F)2!3)2!
2-B+-1&'12!)=51'-E)2!12I1,d:-,)2V!!

>:E%6=C;# !V! '(;R;*)! *1! ,)&1P-)&12! *1! 3;2! I()81,,-)&12! *12*1! 13!>9<! 8! 79<! 1&!
&r,31)2! ,)('-,;312! 8! &)! ,)('-,;312! *1! 3;! ;FdB*;3;! 1! -*1&'-:-,;,-q&! *1! 3;2! I)2-=312!
s(1;2!*1!,)&E1(B1&,-;!*1!12';2!I()81,,-)&12#!

W)2! (12+3';*)2! *1! 3)2! 1PI1(-F1&')2! 331E;*)2! ;,;=)! I;(;! 3)B(;(! 12'1! )=51'-E)T!
-&*-,;()&! g+1T! *1! 3)2! &r,31)2! ,)('-,;312! *1! 3;! ;FdB*;3;T! 3;! I;('1! ;&'1(-)(! *1! 3;!
;FdB*;3;!F1*-;3! G>17HT! 3;!I;('1!I)2'1()*)(2;3!*1! 3;! ;FdB*;3;!F1*-;3! G>1J@HT! 13!
s(1;!*1! '(;&2-,-q&!,q('-,)Q;F-B*;3-&;! GOP7H!8! 3;!;FdB*;3;! ,)('-,;3!;&'1(-)(! G7O)H!
(1,-=1&!I()81,,-)&12! ,)&E1(B1&'12!*13!79<!8!>9<#!7! 3;! 3+R!*1! 12')2! (12+3';*)2T!
&)2!I3;&'1;F)2!3)2!*)2!2-B+-1&'12!)=51'-E)2!*1!3;!'12-2V!

>:E%6=C;#+V! *12,(-I,-q&! *1! 3;2! I()81,,-)&12! ;:1(1&'12! ;! 3;2! '(12! *-E-2-)&12! *1! 3;!
;FdB*;3;!F1*-;3V!3;!I;('1!;&'1(-)(!G>17HT!3;!I;('1!I)2'1()*)(2;3!G>1J@H!8!3;!I;('1!
I)2'1()E1&'(;3!G>1JKH#!!

X3! &r,31)!F1*-;3! *1! 3;! ;FdB*;3;! 12T! *12*1! 13! I+&')!*1!E-2';! ,+;3-';'-E)T! 13!F;8)(!
(1,1I')(!*1!I()81,,-)&12!,)&E1(B1&'12!*1!;F=)2!2-2'1F;2!)3:;')(-)2#!X2!I)(!';&')!



!#*+!

13! I(-&,-I;3! ,;&*-*;')! I;(;! 5+B;(! +&! I;I13! ,3;E1! 1&! 13! ;I(1&*-R;51! )3:;'-E)Q
E)F1()&;2;3#!J;(;!I)*1(!-&'1(I(1';(!13!I;I13!*1!12'1!&r,31)!12!&1,12;(-)!,)&),1(!
13! (12')! *1! 2+2! ;:1(1&,-;2T! 8! 1&! I;('-,+3;(! 13! *1';331! *1! *-,6;2! ;:1(1&,-;2! ;! 2+2!
*-:1(1&'12!2+=*-E-2-)&12T!I;(;!3;2!g+1!21!6;&!I()I+12')!*-:1(1&'12!:+&,-)&12!GO6)-!
1'!;3#!/MM.H#!X2'1!12'+*-)!,)FI31';!3;!*12,(-I,-q&!*13!I;'(q&!*1!,)&1P-)&12!*1!3;2!
2+=*-E-2-)&12!*1! 3;!;FdB*;3;!F1*-;3T!*;*)!g+1! 3;2!I()81,,-)&12!1:1(1&'12!21!6;&!
12'+*-;*)!I(1E-;F1&'1!1&!&+12'()!3;=)(;')(-)!GJ;(*)Q<133E1(!1'!;3#!/M$/H!

>:E%6=C;#,V!*12,(-I,-q&!*13!3;2!;:1(1&,-;2!*1!OP7!8!7O)#!!

W;2! *)2! 12'(+,'+(;2! *1! 3;! ;FdB*;3;! ,)('-,;3! )3:;'-E;! g+1! (1,-=1&! ';F=-c&! +&;!
I()81,,-q&!*12*1! 13!79<! 2)&!OP7!8!7O)#!7F=;2! 2)&! 12'(+,'+(;2!I;(;! 3;2! g+1! 21!
*12,)&),1!2+!I;'(q&!*1!,)&1P-)&12#!O)F)!I(-F1(!I;2)!I;(;!1E;3+;(!*12*1!13!I+&')!
*1! E-2';! ;&;'qF-,)! 13! I)2-=31! I;I13! *1! OP7! 8! 7O)! 1&! 13! ;I(1&*-R;51! )3:;'-E)Q
E)F1()&;2;3T! 8! 1&! ,)61(1&,-;! ,)&! 13! 9=51'-E)! /T! *12,(-=-F)2! 13! I;'(q&! *1!
;:1(1&,-;2!*1!12';2!*)2!12'(+,'+(;2#!!

W)2!(12+3';*)2!*1!3)2!1PI1(-F1&')2!(1;3-R;*)2!I;(;!;3,;&R;(!13!)=51'-E)!$!6;&!2-*)!
8;! I+=3-,;*)2! GOs*-RQ>)(1''-! 1'! ;3#! /M$"H#! W)2! (12+3';*)2! (13;,-)&;*)2! ,)&! 13!
9=51'-E)!/!21!6;&!(1F-'-*)!,)F)!F;&+2,(-')!I;(;!2+!1E;3+;,-q&!;!3;!(1E-2';!7B%!"*#
5'BHD'HB,# %"@# ?H"D'!)"T! 8! 21! 1&,+1&'(;&! 1&! 21B+&*;! (1E-2-q&#! W)2! (12+3';*)2!
(13;,-)&;*)2!,)&!13!9=51'-E)!"!6;&!*;*)!3+B;(!;!+&!F;&+2,(-')!g+1!21!(1F-'-(s!1&!
=(1E1!;!3;!F-2F;!(1E-2';#!!

6.2 Metodología  

7&-F;312!

J;(;!12'1!'(;=;5)T!+'-3-R;F)2!$M.!(;')&12!61F=(;!G2H&!NH&DH(H&T!O@$H!*1!1&'(1!NQ
/L!21F;&;2!*1!1*;*!g+1!I12;=;&!1&'(1!/ATLQ."T/!B#!C+1()&!12';=+3;*;2!1&!,;5;2!
,)&!,)F-*;!8!;B+;!%@#(!M!'HN*#=;5)!+&!,-,3)!$/6!*d;V&),61!;!/.Q/4°O#!!

O-(+Bd;!1!-&81,,-)&12!*1!'(;R;*)(12!

W)2!I(-F1()2!/?!;&-F;312! :+1()&!;&12'12-;*)2! ,)&! -&81,,-)&12! -&'(;I1(-')&1;312!
G%JH!*1!+&;!2)3+,-q&!"V/!*1!]1';F-&;!8!F1*)')F1*-&;!GL4FBb]BHT!,)FI31F1&';*;!
,)&!+&;! -&81,,-q&!*1!;'()I-&;! GMTMAFBb]BT! %JH!I;(;! (1*+,-(! 3;!*1I(12-q&! ,;(*-)Q



! #*"!

(12I-(;')(-;#! W)2! L4! ;&-F;312! (12';&'12! :+1()&! )I1(;*)2! +2;&*)! +&! 2-2'1F;! *1!
;&12'12-;! B;21)2;! 1&! *)&*1T! ;! '(;Ec2! *1! +&;! F;2,;(;! ;&12'c2-,;T! 3)2! (;')&12!
-&6;3;=;&! 13! ;&12'c2-,)! -2):3+)(;&)! G/Q/#.tH! *-2+13')! 1&! )PdB1&)! G$Q$#"! WbF-&H#!
a)*)2!3)2!;&-F;312!(1,-=-1()&!+&;!-&81,,-q&!2+=,+'s&1;!*13!;&;3Bc2-,)!=+')(:;&)3!
G.FBb]BH#! @12I+c2! *1! :-5;(! 3;! ,;=1R;! 1&! 13! ;I;(;')! 12'1(1)'sP-,)T! (1;3-R;F)2! +&!
I1g+1u)!;B+51()!1&!13!,(s&1)!2)=(1!3;!12'(+,'+(;!*-;&;#!!

-J5%'=A%(6;#!B#J;(;!12'+*-;(!3;2!I()81,,-)&12!1:1(1&'12!*12*1!13!=+3=)!)3:;')(-)!
;,,12)(-)! G79<H! 8! 13! =+3=)! )3:;')(-)! I(-&,-I;3! G>9<HT! "L! ;&-F;312! (1,-=-1()&!
-&81,,-)&12! -)&'):)(c'-,;2! *1! +&;! *1P'(;&;F-&;! ,)&5+B;*;! ,)&!
'1'(;F1'-3()*;F-&;!8!=-)'-&;!Ga<@7H!*-3+-*;!;3!.t!1&!';FIq&!:)2:;')!GJ<k!MTM$>T!
I_!NTMH!

-J5%'=A%(6;# +V! J;(;! 12'+*-;(! 3;2! ;:1(1&,-;2! ;! 3;2! '(12! 2+=*-E-2-)&12! *1! 3;!
;FdB*;3;!F1*-;3T! /N! ;&-F;312! (1,-=-1()&! -&81,,-)&12! -)&'):)(c'-,;2! *13! '(;R;*)(!
(1'()B(;*)!:3+)(12,1&'1!C3+)()QD)3*!GCDH!*-3+-*)!;3!/t!1&!;B+;!*12'-3;*;#!

-J5%'=A%(6;# ,B# J;(;! 12'+*-;(! 3;2! ;:1(1&,-;2! ;! 3;! R)&;! *1! '(;&2-,-q&! ,)('-,)Q
;F-B*;3-&;! GOP7H! 8! ;! 3;! ;FdB*;3;! ,)('-,;3! ;&'1(-)(! G7O)HT! AM! (;')&12! (1,-=-1()&!
-&81,,-)&12! -)&'):)(c'-,;2! *13! '(;R;*)(! (1'(qB(;*)! CD#! 7*-,-)&;3F1&'1T! I;(;!
F-&-F-R;(!13!+2)!*1! (;')&12!8!12'+*-;(! 3;2!I()81,,-)&12!1:1(1&'12!*1!OP7!8!7O)T!
-&81,';F)2!1&!13!61F-2:1(-)!,)&'(;3;'1(;3T! 13! '(;R;*)(!;&'1(qB(;*)!*1P'(;&;F-&;!
,)&5+B;*)!,)&!=-)'-&;!G<@7H!*-3+-*)!;3!.t!1&!J<!GMTM$>T!I_!NTMH!G3)2!(12+3';*)2!
*1! 3;2! I()81,,-)&12! 1:1(1&'12! *1! 12')2! &r,31)2! 21(s&! ;&;3-R;*)2! 1&! +&! 12'+*-)!
I)2'1(-)(H#!

W)2! '(;R;*)(12! :+1()&! -&81,';*)2! ;! '(;Ec2! *1! F-,()I-I1';2! *1! E-*(-)! ;I3-,;&*)!
I+32)2! *1! ,)((-1&'1! I)2-'-E;#! J;(;! 1E-';(! 3;! *-:+2-q&! *13! '(;R;*)(! ;! 3)! 3;(B)! *13!
(1,)((-*)!*1!3;!I-I1';T!;I3-,;F)2!,)((-1&'1!*1!(1'1&,-q&!;3! -&'()*+,-(!8!1P'(;1(! 3;!
F-,()I-I1';#!7*-,-)&;3F1&'1T!*15;F)2!3;!I+&';!1&!13!3+B;(!*1!3;!-&81,,-q&!*+(;&'1!
.Q$M!F-&+')2!I;(;!1E-';(!13!(1:3+5)!*13!'(;R;*)(#!W;2!,))(*1&;*;2!*1!-&81,,-q&!I;(;!
13!79<T!>9<T!>17T!>1J@T!>1JKT!OP7!8!7O)!:+1()&!F)*-:-,;*;2!I;(;!3;!,1I;!O@$!;!
I;('-(!*13!;'3;2!*1!(;'q&!GJ;P-&)2!8!C(;&]3-&T!/MMAH#!

@12I+c2!*1!:-&;3-R;(! 3;2! -&81,,-)&12T!,1((;F)2! 3;!I-13!*13!,(s&1)!,)&!_-2');,(83!8!
1&! 13! ,;2)! *1! ;g+133)2! ;&-F;312! g+1! )I1(;F)2! ,)&! ]1';F-&;bF1*)')F1*-&;T!



!#+$!

,)3),;F)2!+&;! -&81,,-q&! -&'(;F+2,+3;(!*1!;'-I;F1R)3!G$F3bUBH!I;(;!(1E1('-(! 3)2!
1:1,')2!*1!3;!F1*)')F1*-&;#!@+(;&'1!')*)!13!I(),1*-F-1&')T!F;&'+E-F)2!13!,;3)(!
,)(I)(;3! *1! 3)2! (;')&12! )I1(s&*)3)2! 2)=(1! +&;!F;&';! 'c(F-,;! 8! 6-*(;';F)2! 2+2!
)5)2!,)&!B)';2!),+3;(12#!

_-2')3)Bd;!

@12I+c2!*1!"Q.!*d;2! *1! 2+I1(E-E1&,-;! I;(;! 13! 1PI1(-F1&')!$! 8! 4QN!*d;2! I;(;! 3)2!
1PI1(-F1&')2!/!8!"T!312!-&81,';F)2!;!3)2!(;')&12!+&;!2)=(1*)2-2!*1!I1&')=;(=-';3!
2q*-,)! G?M! FBb]BT! %JH! 8! 3)2! I1(:+&*-F)2! '(;&2,;(*-;3F1&'1! ,)&! 2+1()! 2;3-&)!
GMT?tH! 8! +&;! 2)3+,-q&! *1! :-5;*)(;! *1! I;(;:)(F;3*16d*)! ;3! At!1&!J<! GMTM$>T! I_!
LT4H#! a(;2! 3;!I1(:+2-q&T! 1P'(;5-F)2! 3)2! ,1(1=()2!*13! ,(s&1)T! 3)2!I)2'Q:-5;F)2! 1&! 3;!
F-2F;!2)3+,-q&!:-5;*)(;!8!3)2!,(-)I()'1B-F)2!1&!+&;!2)3+,-q&!*1!2;,;()2;!;3!"Mt!
1&! J<! GMTM$>T! I_! LT4H#! O)&! +&! F-,()')F)! *1! ,)&B13;,-q&T! ,)(';F)2! 21,,-)&12!
I;(;2;B-';312! *1! 3)2! =+3=)2! G"M! µFH! 8! ,)()&;312! GAM! µFH! *13! (12')! *1! 1&,c:;3)!
)='1&-1&*)!,+;'()!21(-12!I;(;313;2#!

J;(;!E-2+;3-R;(!3;!a<@7!8!<@7T!I(-F1()!-&;,'-E;F)2!3;2!I1()P-*;2;2!1&*qB1&;2!*13!
'15-*)!,)&!+&;!2)3+,-q&!*1!_/9/!;3!$t!1&!';FIq&!a(-2!2;3-&)!Ga<Zk!MTM.>T!I6!LT4H!
*+(;&'1!$.!F-&+')2!8!3+1B)!3;2!-&,+=;F)2!1&!13!,)FI315)!7<O!*-3+-*)!$V.M!1&!a<ZQ
aP!Ga(-')&!pQ$MM!M#"t!1&!a<Z!M#M.!>!I_!L#4H!;!'1FI1(;'+(;!;F=-1&'1!*+(;&'1!?M!
F-&+')2#!J)2'1(-)(F1&'1T! 3;E;F)2!3;2!21,,-)&12!,)&!a<Z!8!(1E13;F)2!3;!;,'-E-*;*!
I1()P-*;*;! ,)&! +&;! 2)3+,-q&! *1! *-;F-&)=1&R-*-&;! ;3! MTM/.tT! _/9/! ;3! MTM$t! 8!
2+3:;')! *1! ;F)&-)! 8! &dg+13! ;3! MT$t! 1&! J<! GM#$! >T! I_! N#MHT! )='1&-1&*)! +&!
I(1,-I-';*)!&1B()#!!

X&! 3)2! ,;2)2! 1&! 3)2! g+1! (1;3-R;F)2! -&81,,-)&12! *1! CDT! I(-F1()! E-2+;3-R;F)2! 3;!
3),;3-R;,-q&!*1!3;!-&81,,-q&!F-(;&*)!3;2!21(-12!1&!+&!F-,()2,)I-)!*1!:3+)(12,1&,-;!
I;(;! I)2'1(-)(F1&'1! I(),1*1(! ;! *1'1,,-q&! *13! CD! ;! '(;Ec2! *1! +&;!
-&F+&)I1()P-*;2;#!J;(;!6;,1(!12')T!I(-F1()!-&;,'-E;F)2!3;!I1()P-*;*;!1&*qB1&;!
*13! '15-*)! ,)F)! *12,(-=-F)2! ;&'1(-)(F1&'1! I;(;! 3;! <@7#! X&! ;g+133)2! ,;2)2! 1&!
*)&*1!(1;3-R;F)2!+&;! -&81,,-q&!,)&'(;3;'1(;3!*1!<@7T!&)!(1I1'-F)2!12'1!I;2)!8;!
g+1! 3;! *1'1,,-q&! *1! 3;! <@7! 3;! (1;3-R;F)2! I(1E-;F1&'1! ,)F)! *12,(-=-F)2! 1&! 13!
Is((;:)!;&'1(-)(#!W+1B)T!-&,+=;F)2!3;2!21(-12!1&!+&;!2)3+,-q&!*1!=3)g+1)!*1!a<ZQ
aP!g+1!,)&'1&d;!2+1()!&)(F;3!*1!,;=(;!GYDZH!;3!Nt!8!21();3=+F-&;!=)E-&;!G<Z7H!



! #+#!

;3!At!*+(;&'1!*)2!6)(;2!;! '1FI1(;'+(;!;F=-1&'1#!7!,)&'-&+;,-q&T! -&,+=;F)2! 3;2!
21,,-)&12! 21,+1&,-;3F1&'1! 1&V! 13! ;&'-,+1(I)! I(-F;(-)! ;&'-QC3+)()D)3*! *-3+-*)! ;!
$V"MMM!1&!a<ZQaP!,)&!YDZ!;3!At!8!<Z7!;3!/t!*+(;&'1!3;!&),61!;!A°Ok!13!;&'-,+1(I)!
21,+&*;(-)!G%BD!*1!,;=(;!;&'-Q,)&15)H!=-)'-&-3;*)!*-3+-*)!$V/MM!1&!a<ZQaP!,)&!YDZ!
;3!At!*+(;&'1!*)2!6)(;2!;!'1FI1(;'+(;!;F=-1&'1k!8!7<O!13-'1!*-3+-*)!$V.M!1&!a<ZQ
aP!*+(;&'1!/!6)(;2!;!'1FI1(;'+(;!;F=-1&'1#!C-&;3F1&'1!(1E13;F)2!3;!I1()P-*;*;!
1&!+&;!2)3+,-q&!*1!*-;F-&)=1&R-*-&;!;3!MTM/.t!8!_/9/!;3!MTM$t!1&!J<!GM#$!>T!I_!
N#MHT!)='1&-1&*)!+&!I(1,-I-';*)!,;:c#!!

>)&';F)2! 3;2! 21(-12! 1&! I)(';2! B13;'-&-R;*)2! 8! 3+1B)! 3;2! *126-*(;';F)2!
B(;*+;3F1&'1! 1&! ;3,)6)312T! 3;2! ;,3;(;F)2! 1&! P-31&)! 8! 3;2! ,+=(-F)2! ,)&!X&'133;&#!
J;(;! :;,-3-';(&)2! 3;! -*1&'-:-,;,-q&! *1! 3;2! 12'(+,'+(;2! g+1! F)2'(;=;&! F;(,;51!
;&'1(qB(;*)! )! (1'(qB(;*)T! 1&! 13! 1PI1(-F1&')! $! ;&'12! *1! ,+=(-(! 3)2! I)(';2!
,)&'(;2';F)2! 13! '15-*)! ,)&! 3;! '-&,-q&! *1! Y-223#! X&! 3)2! 1PI1(-F1&')2! /! 8! "T! 1&! 3;!
F;8)(d;!*1!3)2!,;2)2T!I(),12;F)2!+&;!21B+&*;!21(-1!I;(;!3;! -&F+&)6-2')g+dF-,;!
*13! CD! 8! 3;2! ,)&'(;2';F)2! ,)&! 3;! '-&,-q&! *1!Y-223! G1PI1(-F1&')! /H! )T! 1&! ;3B+&)2!
,;2)2T! I(),12;F)2! +&;! 21B+&*;! 21(-1! ,)&! 13! Fc')*)! *1! Y-223! ,)&! 13! )=51'-E)!
E-2+;3-R;(!3;!,-');(g+-'1,'+(;!G1PI1(-F1&')!"H#!!

7*g+-2-,-q&!8!I(),12;F-1&')!*1!-FsB1&12!

9=21(E;F)2! 3;2! 21,,-)&12! +'-3-R;&*)! +&! F-,()2,)I-)! 938FI+2! OpA$0CQ.! 8! 3;2!
:)')B(;:-;F)2!,)&!+&;!,sF;(;!*-B-';3!938FI+2!pO.M#!W;2! -FsB1&12! :3+)(12,1&'12!
*1!3)2!2-'-)2!*1!-&81,,-q&!*1!CD!3;2!')F;F)2!,)&!+&!F-,()2,)I-)!*1!:3+)(12,1&,-;!
1g+-I;*)! ,)&! +&;! ,sF;(;! *-B-';3#! W;2! -FsB1&12! :+1()&! I(),12;*;2! ,)&! 7*)=1!
J6)')26)I!8!3;2!-3+2'(;,-)&12!8!I;&1312!*1!:-B+(;2!3;2!6-,-F)2!1&!7*)=1!J6)')Z6)I!
1!%33+2'(;')(#!!

6.3 Conclusiones  

$# X3! =+3=)! )3:;')(-)! I(-&,-I;3! G>9<H! 8! ;,,12)(-)! G79<H! I()81,';&!
,)&E1(B1&'1F1&'1! ;! +&! s(1;! *13! ,q('1P! )3:;')(-)#! v2';! 12! +&;! s(1;!
(12'(-&B-*;!*13!3;!,)('1R;!I-(-:)(F1!GJ-(H!;&'1(-)(#!!

/# @1&'()! *13! ,)FI315)! ;F-B*;3-&)T! ;F=)2! =+3=)2! )3:;')(-)2! I()81,';&! ;! 3;!
;FdB*;3;! ;&'1(-)(! E1&'(;3! G77KHT! ;! 3;! 2+=*-E-2-q&! ;&'1(-)(! G>17H! 8!
I)2'1()*)(2;3!G>1J@H!*1! 3;!;FdB*;3;!F1*-;3T!;3!&r,31)!*13! '(;,')!)3:;')(-)!
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;,,12)(-)! G<79aHT! ;! 3;! ;FdB;3;! ,)('-,;3! ;&'1(-)(! G7O)HT! ;! 3;! ,)('1R;! *1!
'(;&2-,-q&! ;F-B*;3-&;! GOP7H! 8! ;3! &r,31)! *13! '(;,')! )3:;')(-)! 3;'1(;3! GW9aH#!
W;2!12'(+,'+(;2!7O)T!OP7!8!W9a!(1,-=1&!I()81,,-)&12!I(1*)F-&;&'1F1&'1!
)3:;')(-;2T! F-1&'(;2! g+1! >17T! >1J@T! <79a! 8! 77K! (1,-=1&! I()81,,-)&12!
I(1*)F-&;&'1F1&'1!E)F1()&;2;312#!!

"# @1&'()!*1!3)2!&r,31)2!;F-B*;3-&)2!g+-F-)21&2)(-;312T!3;!>17T!>1J@T!7O)!8!
OP7!(1,-=1&!I()81,,-)&12!I()E1&-1&'12!';&')!*13!>9<!,)F)!*13!!79<T!g+1!
'1(F-&;&!1&!2+!,;I;!%%!8!I)(!3)!';&')!12!I()=;=31!g+1!21;&!:+&,-)&;3F1&'1!
(131E;&'12#! W;! >17! I(121&';! 13! F;8)(! B(;*)! *1! ,)&E1(B1&,-;! *1! 3;2!
I()81,,-)&12!I()E1&-1&'12!*1!;F=)2!=+3=)2!)3:;')(-)2#!!

A# W;2! '(12! 2+=*-E-2-)&12!*1! 3;! ;FdB*;3;!F1*-;3! G>1HT!g+1! ,)((12I)&*1&!;! 3;!!
>17T!>1JK!8!>1J@!I(121&';&T!1&!B1&1(;3T!+&!I;'(q&!*1!;:1(1&,-;2!2-F-3;(!
,)&!;3B+&;2!*-:1(1&,-;2!F1&)(12!1&'(1!133;2#!

.# 73! ,)FI;(;(! 3;2! ;:1(1&,-;2! ;! 3;2! '(12! 2+=*-E-2-)&12! *1! 3;! >1T! 3;! >1J@!
F+12'(;!3)2!-&I+'2!Fs2!*-:1(1&'12!1&'(1!133;2!F-1&'(;2!g+1!3;2!;:1(1&,-;2!;!
3;!>17!8!>1JK!2)&!2-F-3;(12!1&'(1!2d#!W;!>1J@!12's!Fs2!,)&1,';*;!,)&!13!
,-(,+-')! ,1(1=(;3! 21P+;3F1&'1! *-Fq(:-,)T! !F-1&'(;2! g+1! 3;!>17! 8! 3;!>1JK!
12's&T!*1!+&;!F;&1(;!F1&)2!12I1,d:-,;T!,)&1,';*;2!,)&!s(1;2!(13;,-)&;*;2!;!
,)&*+,';2!(1I()*+,'-E;2!8!*1:1&2-E;2#!

4# W;2!I()81,,-)&12!I()E1&-1&'12!*13! 3)2!=+3=)2!;! 3;!>1T!7O)!8!OP7!&)!12's&!
)(B;&-R;*;2! *1! +&;! F;&1(;! ')I)B(s:-,;T! ,)&! 3;! 1P,1I,-q&! *1! 3;2!
I()81,,-)&12!)(-B-&;*;2!*12*1!13!79<!;3!>1J@#!X&!12'1!,;2)T!3;!I;('1!()2'(;3!
*1!79<!1&Ed;!F;2!I()81,,-)&12!;3!>1J@!g+1!3;!I;('1!,;+*;3!*13!79<#!

L# W;2! '(12! 2+=*-E-2-)&12! *1! 3;! >1! 8! 13! 7O)! (1,-=1&! +&;! ,)&1P-q&! ;:1(1&'1!
-FI)(';&'1! *12*1! 3;! ;FdB*;3;! g+-F-)21&2)(-;3T! F-1&'(;2! g+1! 3;2!
I()81,,-)&12!*1!3;!;FdB*;3;!I():+&*;!6;,-;!12')2!&r,31)2!2)&!F1&)(12T!,)&!
3;!1P,1I,-q&!*13!&r,31)!=;2)F1*-;3#!7*-,-)&;3F1&'1T! 3;2!'(12!2+=*-E-2-)&12!
*1!3;!>1!12's&!:+1('1F1&'1!-&'1(,)&1,';*;2#!J)(!)'()!3;*)T!3;!OP7!F+12'(;!
I()81,,-)&12! F)*1(;*;2! )! 12,;2;2! I()E1&-1&'12! *1! 3;! ;FdB*;3;!
g+-F-)21&2)(-;3T! F-1&'(;2! g+1! 3)2! &r,31)2! ;F-B*;3-&)2! I():+&*)2! ! &)!
I()81,';&!;!OP7#!

N# X3! &r,31)! *1! 3;! 12'(d;! '1(F-&;3-2! G<ZaH! &)! I()81,';! ;! OP7! 8! 2)3)! 3;! I;('1!
I)2'1(-)(! *1! 2+! *-E-2-q&! F1*-;3! 8! 2+! *-E-2-q&! -&'(;;F-B*;3-&;! G<Za%7H!
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I(121&';&! ;:1(1&,-;2! -FI)(';&'12! ;! 3;! >1! 8! 7O)#! W;! I;('1!
I)2'1()-&'1(F1*-;! *1! 3;! *-E-2-q&! F1*-;3! *1! <Za! G<Za>J%H! 8! <Za%7!
I()81,';&!F;2!;!>17T!>1JK!8!7O)!,)FI;(;*;!,)&!2+!I()81,,-q&!;!>1J@#!
J)(! 13! ,)&'(;(-)T! 3;! I;('1! I)2'1()F1*-;3! *1! 3;! *-E-2-q&! F1*-;3! *13! <Za!
G<Za>J>H!I()81,';!Fs2!;!>1J@!g+1!;!3)2!)'()2!&r,31)2!,)('-,);F-B*;3-&)2!
F1&,-)&;*)2!;&'1(-)(F1&'1#!

?# X3!I()21&,c:;3)!=;2;3!I()81,';!*1!F;&1(;!,)Fr&!;!3)2!&r,31)2!;F-B*;3-&)2#!
X&! B1&1(;3T! 13! 21I'+F! F1*-;3T! 3;! =;&*;! *-;B)&;3! 8! 3;2! (1B-)&12! 2'(-;')Q
I;3-*;312!I(121&';&!;:1(1&,-;2!;!3;2!'(12!2+=*-E-2-)&12!*1!3;!>1!8!1&!F1&)(!
B(;*)!;3!7O)!8!3;!OP7!G,)&!1P,1I,-q&!*13!21I'+F!F1*-;3T!g+1!&)!I()81,';!;!
3;!OP7H#!

$M# X3! 6-I)'s3;F)T! &)! I()81,';! ;! OP7T! F-1&'(;2! g+1! I(121&';! I()81,,-)&12!
F1&)(12!;!>1!8!7O)T!,)&!;3B+&;2!1P,1I,-)&12#!W;!I;('1!E1&'(;3!*13!&r,31)!
I(1F;F-3;(!F+12'(;!;:1(1&,-;2! -FI)(';&'12!;! 3;!I;('1!I)2'1(-)(!*1!>1#!X3!
&r,31)! E1&'()F1*-;3! 6-I)';3sF-,)! I()81,';! I(-&,-I;3F1&'1! ;! 3;! >17! 8!
>1JKT!F-1&'(;2!g+1!13!&r,31)!F1*-;3!I(1qI'-,)!I()81,';!I(-&,-I;3F1&'1!;!
3;! >1J@#! C-&;3F1&'1T! 13! s(1;! 6-I)';3sF-,;! I)2'1(-)(! I(121&';! ;:1(1&,-;2!
F)*1(;*;2!;!3;!>17T!>1JK!8!7O)#!

$$# !012I1,')! ;3! 's3;F)! 8! ;3! '()&,)! *13! 1&,c:;3)T! 3;! >1! 8! 7O)! (1,-=1&!
I()81,,-)&12! -FI)(';&'12! I()E1&-1&'12! *13! 3;! I;('1! I)2'1(-)(! *13! 's3;F)!
I;(;E1&'(-,+3;(T!;2d!,)F)!*1!3;!I;('1!I)2'1(-)(!*13!'s3;F)!-&'(;3;F-&;(!
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J;(*)Q<133E1(! OT! O;*-RQ>)(1''-! <T! Y)E15;(g+1! 7T! >;('-&1RQD;(,-;! CT! W;&+R;! X!
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