NACA

RESEARCH MEMORANDUM

(x)

Mr9 Restren
for the
U. S. Air Force

INVESTIGATION OF A 1/4-SCALE MODEL OF THE REPUBLIC F-105
AIRPLANE IN THE LANGLEY 13-FOOT PRESSURE TUNNEL

INFLUENCE OF TRAILING-EDGE FLAP SPAN AND DEFLECTION

ON THE LONGITUDINAL CHARACTERISTICS

By Patrick A. Cancro and H. Neale Kelly

Langley Aeronautical Laboratory Langley Field, Va.

IONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON
SEP ?
(\forall) $209{ }^{\circ}$ ON 17

RESEARCH MEMORANDUM
for the
U. S. Air Force

INVESTIGATION OF A 1/4-SCALE MODEL OF THE REPUBLIC F-105
 AIRPLANE IN THE LANGLEY 19-FOOT PRESSURE TUNNEL

INFLUENCE OF TRAIIING-EDGE FLAAP SPAN AND DEFLECTION
ON THE LONGIIUDINAL CHARACTEERISTICS
By Patrick A. Cancro and H. Neale Kelly

SUMMARY

Development tests on a $1 / 4$-scale model of the Republic F-105 airplane are being conducted in the Langley 19 -foot pressure tunnel. The second phase, the results of which are presented herein, was made at a Reynolds number of 9.0×10^{6} and a Mach number of 0.20 . Exploratory tests were made at Reynolds numbers of $3,6,7$, and 8×10^{6} and corresponding Mach numbers of $0.06,0.13,0.16$, and 0.18 .

The purpose of the present tests was to obtain the longitudinal force and moment characteristics of the model equipped with trailingedge flaps of various spans and deflections. In addition, an investigation was made to show the effect of Reynolds number and also the effect of a transonic inlet with the original horizontal tail and with a larger span horizontal tail.

In order to expedite the issuance of the data for this airplane, no analysis of the data has been presented.

The F-105 airplane is a 45° sweptback, midwing, low-tail, supersonic fighter-bomber being developed by the Republic Aviation Corporation for the U. S. Air Force. At the request of the Air Force, development tests on a l/4-scale model of the F-l05 are being conducted in the Langley 19-foot pressure tunnel to determine the low-speed aerodynamic characteristics of the basic design and, if necessary, to develop modifications which will provide the model with satisfactory low-speed stability and control characteristics.

The initial longitudinal stability and control tests of a model of the F-105 airplane (ref. 1) indicated that the model possessed acceptable longitudinal stability characteristics as long as the trailing-edge flaps were neutral. With the trailing-edge flaps deflected, however, it was found that the model did not possess sufficient static margin at the most rearward anticipated center-of-gravity position (38 percent mean aerodynamic chord). Furthermore, because of the nonlinear lift characteristics of the horizontal tail and the associated pitch-up, satisfactory stability could not be obtained at the most forward center-of-gravity position (22 percent mean aerodynamic chord). Although various other modifications were attempted (see ref. l), satisfactory stability could only be obtained by reducing either the flap span or deflection, or both.

The primary purpose of the tests presented herein was to determine the greatest flap span and deflection that could be used and still retain an adequate static margin up to and including the landing angle of attack. These tests were made at tall incidences required to trim the model at an angle of attack of 12° for the 22 -percent and 38 -percent center-ofgravity locations. In addition, tests were made at various Reynolds numbers and with a transonic-type elliptical inlet and larger span horizontal tail. The model was tested through an angle-of-attack range of -40 through the stall.

COEFFICIENTS AND SYMBOLS
$C_{L} \quad$ Lift coefficient, Lift/qS
${ }^{C_{\text {max }}}$ maximum lift coefficient
$C_{D} \quad$ drag coefficient, Drag/qS
$C_{m} \quad$ pitching-moment coefficient, Pitching moment/qS \bar{c} (an additional subscript denotes location of center of gravity)

b	wing span, ft
c	local streamwise chord, ft
$\overline{\mathrm{c}}$	mean aerodynamic chord, $\frac{2}{S} \int_{0}^{b / 2} c^{2} d y$, ft
y	spanwise distance from plane of symmetry, ft
z	vertical distance from mean aerodynamic chord extended, ft
a	angle of attack, deg
δ_{f}	trailing-edge flap deflection, trailing edge down for positive deflection, deg
δ_{n}	drooped leading-edge flap deflection, leading edge down for positive deflection, deg
i_{t}	tail incidence relative to the wing-chord plane, trailing edge down for positive incidence, deg

MODEL
Model Description

The model was primarily of steel-reinforced wood construction; however, the inlets, trailing-edge flaps, and leading-edge flaps.were aluminum.

Basic model.- The basic model for the longitudinal stability and control tests was a $1 / 4$-scale model of the $\mathrm{F}-105$ airplane wing, fuselage, and vertical tail. Principal dimensions and design features of the model and a photograph of the model installed in the Langley 19-foot pressure tunnel are presented in table I and figures 1 and 2.

It should be noted here that between the tests reported in reference l and the tests presented herein, the model was sent back to Republic Aviation Corporation for the fitting of additional control-setting brackets and a revision to the lateral-control system. In the course of these modifications, the wing contour and flap positioning were rechecked. The flap gap was found to be unsymmetrical and the wing leading-edge radius was not in agreement with the specified airfoil section ordinates. In consequence, the trailing-edge flap positioning was altered slightly

and the forward 10 percent of the wing was reworked to bring it into agreement with the calculated airfoil ordinates to within ± 0.003 inch.

Horizontal tail.- The horizontal tail was located at a tail height of $0.123 \mathrm{~b} / 2$ below the mean-aerodynamic-chord plane extended, and it was possible to obtain tail-incidence settings of $7^{\circ}, 3.5^{\circ}, 0^{\circ},-3.5^{\circ},-9.5^{\circ}$, $-14^{\circ},-20^{\circ}$, and -25°. A larger span horizontal tail was also tested. Details of the horizontal tails may be seen in figure 1 and table I.

Trailing-edge flaps.- The wing was equipped with a single slotted trailing-edge flap which extended from $0.133 \mathrm{~b} / 2$ to $0.800 \mathrm{~b} / 2$. The flap was cut so that flaps extending from $0.133 \mathrm{~b} / 2$ to $0.600 \mathrm{~b} / 2,0.650 \mathrm{~b} / 2$, and $0.700 \mathrm{~b} / 2$ could also be tested. Hereinafter, the flap span is designated by the outboard end location in percent span. For example, the $0.133 \mathrm{~b} / 2$ to $0.600 \mathrm{~b} / 2$ span flap is identified as a 60 -percent-span trailingedge flap. The flap could be set at angles of $0^{\circ}, 40^{\circ}$, and 46° perpendicular to the flap hinge line through the use of interchangeable steel positioning brackets. Details of the measured flap settings and gaps are compared with the design lof't data furnished by Republic Aviation Corporation and may be seen in figure 3.

Leading-edge flaps.- An inversely tapered drooped leading-edge flap with interchangeable deflection brackets of $0^{\circ}, 7.5^{\circ}, 20^{\circ}$, and 30° perpendicular to the hinge line was provided as a stall-control device. Details of the leading-edge flap may be seen in figure 3 and table I.

External stores.- Except for a few tests, external stores representative of 450-gallon pylon-mounted fuel tanks were attached at the $0.606 \mathrm{~b} / 2$ station. Details of the external stores can be found in figure 4 and table I.

Inlets.- The model was equipped with either a supersonic-type or a. transonic-type elliptical wing-root inlet. Photographs of these inlets may be seen in figure 5 .

Model Nomenclature

Listed below are the designations given to the various component parts of the model. The complete model configurations are obtained by combining the appropriate model components with the basic model.

A basic model (wing plus fuselage)
E external stores subscript: 0 indicates outboard location ($0.606 \mathrm{~b} / 2$) suffix: 450 indicates 450-gallon fuel tank

F. single slotted trailing-edge flap
prefix: flap span (fraction of wing semispan)
subscript: deflection, trailing edge down for positive deflection, deg

I wing-root inlet
subscript: SE indicates supersonic-type elliptical inlet TE indicates transonic-type elliptical inlet

N
inversely tapered drooped leading-edge flap
subscript: deflection, leading edge down for positive deflection, deg
horizontal tail
prefix: vertical position (fraction of wing semispan) subscript: incidence, trailing edge down for positive incidence, deg
superscript: * indicates increased tail span
V vertical tail

TESTS

All tests reported herein were conducted in the Langley 19-foot pressure tunnel at a tunnel pressure of approximately $2 \frac{1}{3}$ atmospheres. For most of the tests, the Reynolds number, based on the mean aerodynamic chord, was 9.0×10^{6} and the Mach number was 0.20 . However, exploratory tests were made to determine the effect of Reynolds number. These tests were conducted at Reynolds numbers of $3.0,6.0,7.0$, and 8.0×10^{6} with corresponding Mach numbers of $0.06,0.13,0.16$, and 0.18 . The model was mounted on the normal three-support system at 0° angle of yaw and was tested through an angle-of-attack range of -40 through the stall.

Longitudinal characteristics of the model for the various flap span arrangements at a tail incidence required to trim this model at $\alpha=12^{\circ}$ for the $0.22 \bar{c}$ and $0.38 \bar{c}$ center-of-gravity positions were obtained. A transonic-type elliptical inlet was tested and data were obtained with the original horizontal tail and with an increased span horizontal tail.

CORRECTIIONS

Jet-boundary corrections determined by the method of reference 2 have been applied to all force and moment data. Corrections for support
tare and interference effects and for air-flow misalinement have not been applied. Internal drag of the inlets and duct system is included in the drag data presented herein.

PRESENTATION OF DATA

The comparison (fig. 6) of the results of tests for the flapsneutral condition presented herein with tests of a comparable configuration presented in reference 1 shows the two sets of results to be similar except for small differences at the higher angles of attack. This indicates that the reworking of the wing leading edge that occurred between the initial and present tests had little effect on the measured characteristics.

Similar comparisons (fig. 7) with $\delta_{f}=46^{\circ}$ show noticeable stability changes at a'lift coefficient of about 0.8 between the initial tests (ref. 1) and the tests presented herein. The differences in test results shown in figure 7 are attributed to the change in flap positioning that occurred between the initial and present tests. This effect should be kept in mind in comparing the flap-deflected results presented herein with those presented in reference 1.

The longitudinal stability characteristics about the $0.25 \overline{\mathrm{c}}$ are summarized in tables II, III, and IV. The results of the tests about the $0.22 \bar{c}$ and $0.38 \bar{c}$ for the various flap configurations are contained in figures 8 to 21. A static-margin summary chart is presented in figure 22. The effect of various trailing-edge flap spans and the effect of various leading-edge flap deflections on the longitudinal stability characteristics may be seen in figures 23 and 24 , respectively. Tests were made to determine the effect of Reynolds number on the longitudinal characteristics of the model, and the results are presented in figures 25 and 26. The data obtained with the transonic elliptical inlet can be found in figures 27 to 29. The results of a horizontal-tall span increase with the transonic elliptical inlet are presented in figure 30.

Langley Aeronautical Laboratory,
National Advisory Comittee for Aeronautics, Langley Field, Va., August 12, 1954.

Patrick A. Cancro
Approved:

eba

1. Kelly, H. Neale, and Cancro, Pattrick A.: Investigation of a 1/4Scale Model of the Republic $\mathrm{F}-105$ Airplane in the Langley 19-Foot Pressure Tunnel - Longitudinal Stability and Control of the Model Equipped With a Supersonic-Type Elliptical Wing-Root Inlet. NACA RM SL54F28, U. S. Air Force, 1954.
2. Sivells, James. C., and Salmi, Rachel M.: Jet-Boundary Corrections for Complete and Semispan Swept Wings in Closed Circular Wind Tunnels. NACA TN 2454, 1951.
Basic data

1ne at $0.38 \mathrm{~b} / 2$

ip airfoil, measured parallel to airplane center line

Angle of incidence, de

Sweep of quarter-chord ilne (true), deg

Taper ratio

Aspect ratio (excluding inlet area)

Dihedral, deg

Root chord (theoretical), parallel to alrplane center line, ft

ip chord (theoretical), parailel to airplane center line, ft

15.000
7.000

Mean aerodynamic chord, parallel to airplane center line, ft

Location of mean aerodymamic chord, spanwise (projected), ft

Span, measured normal to airplane center line, ft

Area:

Wing area (excluding inlet area), iq f.t

Horizontal-Tail Assembly

Root airfoll, streamwise Tip airfoil, streamwise
Taper ratio:
Basic horizontal tail 40
Aspect ratio: Basic horizontal tail 3.06
thedral, deg 3.49
0
Dimensions: Root chord (theoretical), ft 7.50
Basic horizoretical) 3.42
Modified horizontal tall, ft 3.01

Mean aerodynamic chord (theoretical): Basic horizontal tail, ft

ft. 5.71
5.58
Basic horizontal tail, it 16.67
Lodified horizontal tail, ft 18.33

 保

 dodifi horlzontal tall,
 ertical location below fuselage centier line, in -18.00

NACA $65 A 005.5$
NACA
$65 A 003.7$
0
0
45
0.467
3.182
-3.5

15.000
7.000
11.485
7.690
34.934

385.0
ail 0

42
Modified horizontal tail, ft

5

$.25 \bar{c}$ of wing to $0.25 \bar{c}$ of horizontal, tail (theoretical):

Modified horizontal tail, ft
Full-scale

1/4-scale

ARD A SUPERSONIC EILIPTICAL THLET

Wing configuration		Speed-brake deflection		store	$\begin{gathered} \text { TAII } \\ \text { configuretion } \end{gathered}$			$\left\{\left.\begin{array}{c} c_{L} \\ \text { et } \\ a=12^{\circ} \end{array} \right\rvert\,\right.$	$\mathrm{C}_{\mathrm{L}_{\max }} \mid$	$\begin{aligned} & a \text { at } \\ & c_{L_{\text {max }}} \end{aligned}$	$C_{\text {m }} \text { charactoristics }$	F18.
$\begin{gathered} \text { T.E. } \\ \operatorname{dovice} \end{gathered}$	Stall-control dovice	$\begin{gathered} \text { Horlz } \\ \text { ontal, } \\ \text { dog } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Yort } \\ \text { ical } \\ \text { dog } \end{array} \\ \hline \end{gathered}$		$\begin{array}{\|c\|c\|} \hline 801 \\ 2 x & \overbrace{0} t \\ \hline \end{array}$	$\begin{array}{\|c\|} \begin{array}{c} \text { NACA } \\ \text { arfoin } \\ \text { Boction } \end{array} \\ \hline \end{array}$	$\begin{aligned} & i_{t} \\ & d e^{2} \\ & \hline \end{aligned}$					
Fone	Hose	0	0	None	$\left\|\begin{array}{c} 1 \\ -0.123 \end{array}\right\|$	¢0r10s	$\begin{gathered} \\ \text { ort } \\ 0 \end{gathered}$	0.63 0.70	$\left.\begin{array}{l} 0.95 \\ 1.25 \end{array}\right)$	$\begin{aligned} & 26.7 \\ & 26.8 \end{aligned}$		6
$\begin{aligned} & \text { Single } \\ & \text { slotted } \\ & \text { fiep } \\ & 0.135 \mathrm{~b} / 2 \\ & \text { to } \\ & 0.600 \mathrm{~b} / 2 \\ & 0=46^{\circ} \end{aligned}$	$\begin{aligned} & \text { L.E. rlap } \\ & 0.382 \mathrm{~b} / 2 \\ & 0.9500 \mathrm{ol} \\ & 0=20^{\circ} \end{aligned}$	0	0	$\begin{gathered} 450 \\ \mathrm{gal} \end{gathered}$	-0.123	$\begin{gathered} 65 A \\ \text { serios } \end{gathered}$	$\left\|\begin{array}{r} -7.3 \\ -3.5 \\ 0.5 f \\ 3.5 \\ 7.0 \end{array}\right\|$	$\left\|\begin{array}{l} 0.99 \\ 1.01 \\ 1.07 \\ 1.06 \\ 1.09 \end{array}\right\|$	$\begin{aligned} & 1.20 \\ & 1.21 \\ & 1.15 \\ & 1.29 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 20.6 \\ & 19.4 \\ & 18.3 \\ & 19.8 \\ & 19.4 \end{aligned}$		8
Single siotted flap $0.1330 / 2$ to $0.6504 / 2$ 0.46°	$\begin{aligned} & \text { L.R. } 27 \mathrm{ap} \\ & 0.382 \mathrm{~b} / 2 \\ & \text { to } \\ & 0.950 \mathrm{~b} / 2 \\ & 0=20^{\circ} \end{aligned}$	0	0	$\begin{aligned} & 450 \\ & 881 \end{aligned}$	-0.123	$65 A$ serles	$\left.\begin{array}{r} -7.3 \\ -3.5 \\ 0.5 \\ 3.5 \\ 7.0 \end{array} \right\rvert\,$	$\begin{aligned} & 1.02 \\ & 1.03 \\ & 1.11 \\ & 1.10 \\ & 1.14 \end{aligned}$	$\left(\left.\begin{array}{l} 1.22 \\ 1.26 \\ 1.19 \\ 1.31 \\ 1.34 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 28.0 \\ & 28.6^{\circ} \\ & 19.0 \\ & 20.4 \\ & 20.0 \end{aligned}$		10
$\left\lvert\, \begin{gathered} \text { singlo } \\ \text { siotted } \\ \text { flap } \\ 0.1330 / 2 \\ \text { to } \\ 0.700 \square 2 / \\ 0=46^{\circ} \end{gathered}\right.$	$\begin{aligned} & \text { L.E. } 1 \text { R1ap } \\ & 0.3820 / 2 \\ & t 0 \\ & 0.9500 / 2 \\ & 0=20^{\circ} \end{aligned}$	0	0	$\begin{aligned} & 450 \\ & \mathrm{gaI} \end{aligned}$	-0.223	$\begin{gathered} 65 A \\ \operatorname{sorlog} \end{gathered}$	-9.7 -7.3 0.81 0.1 3.5	$\begin{aligned} & 1.02 \\ & 1.05 \\ & 1.13 \\ & 1.10 \\ & 1.15 \end{aligned}$	1 1.22 1.27 1.20 1.32 1.33	$\begin{gathered} 25.0 \\ 29.0^{\circ} \\ 18.4 \\ 21.0 \\ 19.8 \end{gathered}$		12 13

[^0]nODEL OF THE F-105 AIRPLARE WITH A TAIL ASPECT RATITO OF 3.06
and a suprrsonic elliptical Inlert - Contimued

Wing configuration		Speod-brake deflection		store	Thil conflguration			$\left\|\begin{array}{c} c_{L} \\ a t \\ a=12^{\circ} \end{array}\right\|$	$C_{L_{\max }}$	$\begin{array}{ll} a & a t \\ c_{L_{\max }} \end{array}$	$\begin{aligned} & \mathrm{c}_{\mathrm{m}} \text { charactoristics } \\ & \text { about } 0.25 \overline{\mathrm{c}} \end{aligned}$	Fig*
$\begin{gathered} \text { T.E. } \\ \text { device } \end{gathered}$	Stail-control device	$\begin{array}{c\|} \hline \text { Hor } 1 z- \\ \text { antal, } \\ \text { deg } \end{array}$	$\begin{aligned} & \text { Vorti, } \\ & \text { ical, } \end{aligned}$ deg		$\left\lvert\, \begin{gathered} \text { He } 1 g_{0} t \\ 2 \approx \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \text { NACA } \\ \text { airfoll } \\ \text { section } \\ \hline \end{array}$	$\left[\begin{array}{l} 1 t \\ d \in g \\ \hline \end{array}\right.$					
$\left\{\begin{array}{l} \text { single } \\ \text { slotted } \\ \text { flap } \\ 0.1350 / 2 \\ \text { too } \\ 0.8000 / 2 \\ 0=46^{\circ} \end{array}\right.$	$\begin{aligned} & 1.8 . \quad \text { 11ap } \\ & 0.3826 / 2 \\ & 0.9500 / 2 \\ & 0=20^{\circ} \end{aligned}$	0	-	$\begin{aligned} & 450 \\ & \mathrm{gal} \end{aligned}$	-0.123	$\begin{aligned} & 65 A \\ & \operatorname{sor} 10 \mathrm{~s} \end{aligned}$	-14.3	1.05	1.20	$24.8{ }^{\text {* }}$		24
$\left(\begin{array}{l} \text { Singlo } \\ \text { siottod } \\ \text { flap } \\ 0.1350 / 2 \\ \text { to } \\ 0.800 \mathrm{~b} / 2 \\ 0=46^{\circ} \end{array}\right.$	$\begin{aligned} & \text { L.E. Flap } \\ & 0.382 b / 2 \\ & \text { to } \\ & 0.950 b / 2 \\ & 0=30^{\circ} \end{aligned}$	0	0	$\begin{aligned} & 450 \\ & 8 \mathrm{sil} \end{aligned}$	-0.123	$\begin{aligned} & 65 \mathrm{~A} \\ & \operatorname{serles} \end{aligned}$	$\left(\left.\begin{array}{c} -14.3 \\ -9.7 \\ 0.7 \\ -3.4 \\ 0.1 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 1.16 \\ & 1.18 \\ & 1.19 \\ & 1.14 \\ & 1.16 \end{aligned}$	1.32 1.32 1.35 1.41 1.42	$\begin{aligned} & 21.0 \\ & 21.6 \\ & 21.0 \\ & 21.0 \\ & 21.5 \end{aligned}$		$\begin{aligned} & 14 \\ & 15 \end{aligned}$
$\begin{aligned} & \text { Single } \\ & \text { siottod } \\ & \text { f1ap } \\ & 0.1330 / 2 \\ & 0.800 \\ & 0.800 / 2 \\ & 8=40^{\circ} \end{aligned}$	$\begin{aligned} & \text { L.E. } 1.1_{\mathrm{ap}} \\ & 0.382 \mathrm{~b} / 2 \\ & \text { to } \\ & 0.950 \mathrm{~b} / 2 \\ & 0=30^{\circ} \end{aligned}$	0 \because	0	$\begin{aligned} & 450 \\ & \mathrm{gay} \end{aligned}$	-0.123	$\begin{aligned} & 65 A \\ & \text { serlos } \end{aligned}$	$\begin{gathered} -14.3 \\ -9.7 \\ \text { off } \\ -3.5 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.98 \\ & 1.03 \\ & 1.15 \\ & 1.07 \\ & 1.12 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.37 \\ & 1.34 \\ & 1.24 \\ & 1.44 \end{aligned}$	24.0 23.0 21.2 23.4 23.0		1 16 17
$\left\{\begin{array}{l} \text { singlo } \\ \text { siotted } \\ \text { r1ap } \\ 0.13302 \\ \text { to } \\ 0.70082 \\ 0=40^{\circ} \end{array}\right.$	$\begin{aligned} & \text { L.E. flap } \\ & 0.382 \mathrm{~b} / 2 \\ & 0.9500 / 2 \\ & 0=20^{\circ} \end{aligned}$	0	0	$\begin{aligned} & 450 \\ & \mathrm{gal} \end{aligned}$	$\|-0.123\|$	$65 A$ series	$\begin{array}{r} -9.5 \\ -7.2 \\ 0.2 \\ 0.1 \\ 3.5 \end{array}$	0.97 1.00 1.07 1.06 1.08	$\left\|\begin{array}{l} 1.22 \\ 1.23 \\ 1.19 \\ 1.30 \\ 1.35 \end{array}\right\|$	$\begin{aligned} & \\ & 28.6 \\ & 28.0 \\ & 19.0 \\ & 20.6 \\ & 20.8 \end{aligned}$		- 18 19

*Highest angle of test.
table II.- slmmary of tais loncinionul stability cearacteristics of a $1 / 4$-scale
MODEL OF THE F-105- AIRPLAARE UTTH A TAIL ASPECT RATIO of 3.06
AND A SUPERSONIC ELLIFTICAL TNLET - Concluded

Wing conriguration		Speod-brake deflection Horiz- ontal, Yert deg		sters	Te 11 configuration			$\left\{\begin{array}{c} c_{L} \\ e t \\ a=12^{\circ} \end{array}\right.$	$\mathrm{C}_{\mathrm{L}_{\max }}$	$\left\|\begin{array}{ll} a & a t \\ { }^{c^{\prime}} & t \\ \max \end{array}\right\|$	$C_{\text {mbout }} \begin{aligned} & \text { characteristics } \\ & \text { absen } \end{aligned}$	P18.	
$\left\{\begin{array}{c} \text { T.R. } \\ \text { device } \end{array}\right.$	Stall-control device			$\begin{gathered} \text { Ho } 1 \text { ght } \\ 2 z \% \end{gathered}$	$\left[\begin{array}{c}\text { NACA } \\ \text { airfoll } \\ \text { section }\end{array}\right]$	$\begin{aligned} & 1 t^{\prime} \\ & \operatorname{cog} \end{aligned}$							
$\begin{aligned} & s i n g i z \\ & \text { siottod } \\ & \text { flap } \\ & 0.133 \mathrm{t} / 2 \\ & 0.650 \mathrm{~m} / 2 \\ & 0=40^{\circ} \end{aligned}$	$\begin{aligned} & \text { L.E. } \mathrm{flap} \\ & 0.382 \mathrm{~b} / 2 \\ & \text { to } \\ & 0.950 \mathrm{~b} / 2 \\ & 0=20^{\circ} \end{aligned}$	0	0		$\begin{array}{r} 450 \\ \mathrm{gal} \end{array}$	($\begin{gathered} 65 \mathrm{~A} \\ \text { merloa } \end{gathered}$	$\left.\begin{gathered} -7.2 \\ -3.5 \\ \text { orf } \\ 3.5 \\ 7.0 \end{gathered} \right\rvert\,$	$\begin{aligned} & 0.96 \\ & 0.99 \\ & 1.05 \\ & 1.07 \\ & 1.10 \end{aligned}$	$\left\|\begin{array}{l} 1.22 \\ 1.28 \\ 1.19 \\ 1.33 \\ 1.39 \end{array}\right\|$	29.0° 214 18.6 21.0 21.0		20
Hone	$\begin{aligned} & \text { L.E. Flap } \\ & 0.382 \mathrm{~b} / 2 \\ & \text { to } \\ & 0.950 \mathrm{~b} / 2 \\ & 0 .=7.5^{\circ} \end{aligned}$	0	0	None	-0.123		$\|-3.5\|$	0.66	$\begin{array}{r} -1 \\ 1.26 \\ \\ \end{array}$	28.6		26	
Highost anglo of test.													

MODEL OF THB F-105 AIRPIANE WITH A TAIL ASPDCT RATIO of 3.06
abi a transonic mlimptcal inley

Wing, aupect ratio 3.18 Tail, aspect ratio 3.06	Fusalago basic Inlet . . . transonic-typo olliptical

Wing conliguration		Speed-brake derlection		Store	Teil configuration			$\left\{\begin{array}{c} c_{I} \\ \text { at } \\ a=12^{\circ} \end{array}\right\}$	$c_{L_{\max }}$	$\left\|\begin{array}{l} a_{a} \in t \\ C_{L_{\text {max }}} \end{array}\right\|$	$\begin{gathered} \mathrm{C}_{\mathrm{m}} \text { charactoristics } \\ \text { about } 0.25^{\mathrm{c}} \end{gathered}$	P1g.
$\begin{gathered} \text { T.F. } \\ \text { device } \end{gathered}$	Stall-control device	$\begin{gathered} \text { Hor1z- } \\ \text { ontal, } \\ \text { dog } \end{gathered}$	$\begin{gathered} \text { Yort- } \\ \text { ical } \\ \text { deg } \\ \hline \end{gathered}$		$\left.\begin{array}{\|c\|} \mathrm{He} 1 \mathrm{ght} \\ 2 \mathrm{gan} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \text { NACA } \\ \text { aircoil } \\ \text { section } \\ \hline \end{array}$	$\begin{aligned} & i_{t}, \\ & \text { deg } \end{aligned}$					
None	$\begin{aligned} & L . E=\text { flap } \\ & 0.382 \mathrm{~b} / 2 \\ & \text { to } \\ & 0.950 \mathrm{~b} / 2 \\ & 8=7.5^{\circ} \end{aligned}$	0	0	Nono	$\left\lvert\, \begin{gathered} \\ -0.123 \mid \end{gathered}\right.$	$\begin{gathered} 65 \mathrm{~A} \\ \mathrm{serles} \end{gathered}$	$\left\|\begin{array}{c} -3.5 \\ 0 \\ 0.5 \end{array}\right\|$	$\begin{aligned} & 0.65 \\ & 0.62 \\ & 0.68 \end{aligned}$	$\left\|\begin{array}{l} 1.12 \\ 0.92 \\ 1.10 \end{array}\right\|$	$\left\|\begin{array}{l} 28.8^{*} \\ 28.7^{*} \\ 28.7 \end{array}\right\|$		27
Single siottod flap $0.133 \dot{2} / 2$ to $0.7000 / 2$ $0=46^{\circ}$	$\begin{aligned} & \text { L. B. } \quad \text { Tlap } \\ & 0.382 \mathrm{~b} / 2 \\ & 0.950 \mathrm{~b} / 2 \\ & 0=20^{\circ} \end{aligned}$	0 0	0	$\begin{aligned} & 450 \\ & \mathrm{gaI} \end{aligned}$	-0.123	$\begin{aligned} & 654 \\ & \text { serfes } \end{aligned}$	$\left.\begin{array}{r} -9.5 \\ -7.2 \\ 0.8 \\ -0.1 \\ 3.6 \end{array} \right\rvert\,$	$\left(\left.\begin{array}{l} 1.02 \\ 1.04 \\ 1.12 \\ 1.10 \\ 1.13 \end{array} \right\rvert\,\right.$	$\left(\begin{array}{l} \mathrm{L} .21 \\ 1.23 \\ 1.16 \\ 1.22 \\ 1.31 \end{array}\right.$	$\left\lvert\, \begin{aligned} & 28.9^{4} \\ & 28.9^{9} \\ & 18.0 \\ & 27.4 \\ & 21.0 \end{aligned}\right.$		$\begin{aligned} & 28 \\ & 29 \end{aligned}$

 MODKS OF THE F-105 AIRPLANE WTIT A TAII ASPECT RATTO OF 3.49 aND a trarsosic gitiplical mint

[^1]

Figure 1.- Three-view drawing of a $1 / 4$-scale model of the $F-105$ airplane.
(Dimensions in inches unless otherwise noted.)

$$
L-84117
$$

Figure 2.- The $1 / 4$-scale model of the F-105 airplane mounted on the normal three-support system of the Langley 19-foot pressure tunnel.

Wing Flap Data (46° deflection only)									
Flap station b/2	Deflection			Flap gap, inches			Fore and aft position, inches		
	Actual		Loft	Actual		Loft	Actual		Loft
	L.H.	R.H.		L.H.	R.H.		L. H.	R.H.	
0.242	$46^{\circ} 49^{\prime}$	$46^{\circ} 26^{\prime}$	$46^{\circ} 13^{\prime}$	0.41	0.40	0.415	2.72	2.73	2.72
. 415	$46^{\circ} 42^{\prime}$	$46^{\circ} 45^{\text {! }}$	$46^{\circ} 13^{\prime}$. 31	. 32	. 350	2.92	2.91	2.90
. 647	$46^{\circ} 34^{\prime}$	$46^{\circ} 54{ }^{\prime}$	$46^{\circ} 13^{\prime}$	- -	- -	--	--	- -	--
. 669	- -	--	- -	. 345	. 34	. 295	2.45	2.47	2.47

(a) Leading-edge flap.

(b) Trailing-edge flap.

Figure 3.- Details of the leading- and trailing-edge flaps.

Figure 4.- Details of the external stores. (All dimensions in inches).

NACA RM SL54H27

(a) Supersonic-type elliptical inlet.

L-85123

L-85124
(b) Transonic-type elliptical inlet.

Figure 5.- Wing-root inlets of the $1 / 4$-scale model of the F-105 airplane (without wing).

Figure 6.- Longitudinal characteristics of the model obtained during the present tests and the tests of reference l. Configuration: $A+V+$ $\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}$; center-of-gravity location, $0.25 \overline{\mathrm{c}}$.

(b) C_{D} and $C_{m_{0.25 c}}$ against C_{I}.

Figure 6.- Concluded.

Figure 7.- Longitudinal characteristics of the model with 60-percent-span trailing-edge flaps deflected 460 and the leading-edge flaps drooped 20° obtained during the present tests and the tests of reference 1. Configuration: $A+V+I_{S E}+(-0.123) T+0.60 F_{46}+N_{20}+E_{0} 450$; centerof'gravity location, $0.25 \bar{c}$.

NACA RM SL54H27

(b) C_{D} and $C_{m_{0.25}^{c}}$ against C_{L}.

Figure 7.- Concluded.

(a) C_{L} and $C_{m_{0.38}}$ against a.

Figure 8. - Longitudinal characteristics of the model with 60-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: $A+V+I_{S E}+(-0.123) T+0.60 F_{46}+N_{20}+E_{0} 450$; center-of-gravity location, $0.38 \bar{c}$.

(b) C_{D} and $C_{m_{0.38}}$ against C_{L}.

Figure 8.- Concluded.

Figure 9.- Longitudinal characteristics of the model with 60-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.60 \mathrm{~F}_{46}+\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0.22}}$ against C_{L}.

Figure 9.- Concluded.

(a) C_{L} and $C_{m_{0.3}}$ against α.

Figure 10.- Longitudinal characteristics of the model with 65-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 200. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.65 \mathrm{~F}_{46}+$ $\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.38 \overline{\mathrm{c}}$.

(b) C_{D} and $C_{m_{0.38}}$ against C_{L}.

Figure 10.- Concluded.

(a) C_{L} and $C_{m_{0.22}}$ against a.

Figure ll.- Longitudinal characteristics of the model with 65 -percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20 ${ }^{\circ}$. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.65 \mathrm{~F}_{46}+$ $\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

Figure ll.- Concluded.

(a) C_{L} and $C_{m_{0.38}}$ against α.

Figure l2.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20 . Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.70 \mathrm{~F}_{46}+$ $\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.38 \overline{\mathrm{c}}$.

(b) C_{D} and $C_{m_{0.38 c}}$ against C_{L}.

Figure 12.- Concluded.

(a) C_{L} and $C_{m_{0.22}}$ against α.

Figure 13.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.70 \mathrm{~F}_{46}+$ $\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0.2} \overline{\mathrm{c}}}$ against C_{L}.

Figure 13.- Concluded.

(a) C_{L} and $C_{m_{0.38}}$ against α.

Figure 14.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 30°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.80 \mathrm{~F}_{46}+$ $N_{30}+E_{0} 450$; center-of-gravity location, $0.38 \bar{c}$.

(b) C_{D} and $C_{m_{0.38 \bar{c}}}$ against C_{L}.

Figure 14.- Concluded.

Figure 15.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 30°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.80 \mathrm{~F} 46+$ $\mathrm{N}_{30}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0.22 \bar{c}}}$ against C_{L}.

Figure 15.- Concluded.

Figure 16. - Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 30°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.80 \mathrm{~F}_{40}+$ $N_{30}+E_{0} 450$; center-of-gravity location, $0.38 \bar{c}$.

(b) C_{D} and $C_{m_{0.38}}$ against C_{L}.

Figure 16.- Concluded.

(a) C_{L} and $C_{m_{0.22 \bar{c}}}$ against α.

Figure 17.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 30°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.80 \mathrm{~F}_{40}+$ $N_{30}+E_{0} 450$; center-of-gravity location, $0.22 \overline{\text { e }}$.

Figure 17.- Concluded.

(a) C_{L} and $C_{m_{0.38}}$ against α.

Figure 18.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.70 \mathrm{~F}_{40}+$ $N_{20}+E_{0} 450$; center-of-gravity location, $0.38 \bar{c}$.

NACA RM SL54H27

(b) C_{D} and $C_{m_{0}} 38 \bar{c}$ against C_{L}.

- Figure 18.- Concluded.

Figure 19.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.70 \mathrm{~F}_{40}+$ $N_{20}+E_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0.22}}$ against C_{L}.

Figure 19.- Concluded.

Figure 20. - Longitudinal characteristics of the model.with 65-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.65 \mathrm{~F}_{40}+$ $\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.38 \overline{\mathrm{c}}$.

(b) C_{D} and $C_{m_{0.38 \bar{c}}}$ against C_{L}.

Figure 20.- Concluded.

(a) C_{L} and $C_{m_{0.22 \bar{c}}}$ against α.

Figure 21.- Longitudinal characteristics of the model with 65-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+(-0.123) \mathrm{T}+0.65 \mathrm{~F}_{40}+$ $N_{20}+E_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0.22 \bar{c}}}$ against C_{L}.

Figure 21.- Concluded.

(a) Center of gravity at 38 percent \bar{c}.
(b) Center of gravity at 22 percent \bar{c}.

Figure 22.- A summary of the longitudinal stability characteristics of a 1/4-scale, model of the $\mathrm{F}-105$ airplane. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+$ $\mathrm{F}+\mathrm{N}+-0.123 \mathrm{~T}$.

Figure 23.- Longitudinal characteristics of the model with various span trailing-edge. flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: $A+V+I_{S E}+(-0.123) T_{-7.3}+\mathrm{F}_{46}+\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0.22 \bar{c}}}$ against C_{L}.

Figure 23.- Concluded.

(a) C_{L} and $\mathrm{C}_{\mathrm{m}_{0.25 \bar{c}}}$ against α.

Figure 24.- Longitudinal characteristics of the model with 80-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped various amounts. Configuration: $A+V+I_{S E}+(-0.123) T-14.3+$ $0.80 \mathrm{~F}_{46}+\mathrm{N}+\mathrm{E}_{0} 450$; center-of-gravity location, 0.25 c .

мем м

(b) C_{D} and $C_{m_{0.25 \bar{c}}}$ against C_{L}.

Figure 24.- Concluded.

(a) C_{L} against a.

Figure 25.- Longitudinal characteristics at various Reynolds numbers of the model with 80-percent-span trailing-edge flaps deflected 460 and the leading-edge flaps drooped 30°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{SE}}+$ $(-0.123) \mathrm{T}_{-0.2}+0.80 \mathrm{~F}_{46}+\mathrm{N}_{30}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.25 \bar{c}$.

(b) $\mathrm{C}_{\mathrm{m}_{0.25}} \overline{\mathrm{c}}$ against α.

Figure 25.- Continued.

Figure 25.- Continued.

(d) C_{D} against C_{L}.

Figure 25.- Concluded.

(a) C_{L} against a.

Figure 26.- Longitudinal characteristics at various Reynolds numbers of
the model with the leading-edge flaps drooped 7.5°. Configuration:
$A+V+I_{S E}+(-0.123) T_{-3.5}+N_{7.5}$; center-of-gravity location, $0.25 \overline{\mathrm{c}}$.

(b) $C_{m_{0.25}} \bar{c}$ against α.

Figure 26.- Continued.

(c) $\mathrm{C}_{\mathrm{m}_{0.25 \bar{c}}}$ against C_{L}.

Figure 26.-Continued.

(d) C_{D} against C_{L}.

Figure 26.- Concluded.

Figure 27.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet and leading-edge flaps drooped 7.5°. Configuration: $A+V+I_{T E}+(-0.123) T+N_{7.5}$; center-of-gravity location, $0.25 \overline{\mathrm{c}}$.

(b) C_{D} and $C_{m_{0}} .25 \bar{c}$ against C_{L}.

Figure 27.- Concluded.

Figure 28.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet, 70 -percent-span trailingedge flaps deflected 46°, and the leading-edge flaps drooped 20°. Configuration: $A+V+I_{T E}+(-0.123) T+0.70 F_{46}+N_{20}+E_{0} 450$; center-of-gravity location, $0.38 \bar{c}$.

(b) C_{D} and $C_{m_{0 .}} 38 \bar{c}$ against C_{L}.

Figure 28.- Concluded.

Figure 29.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet, 70-percent-span trailingedge flaps deflected 46°, and the leading-edge flaps drooped 20°. Configuration: $A+V+I_{T E}+(-0.123) T+0.70 F_{46}+N_{20}+E_{0} 450$; center-of-gravity location, $0.22 \bar{c}$.

(b) C_{D} and $C_{m_{0}} .22 \bar{c}$ against. C_{L}.

Figure 29.- Concluded.

```
NACA RM SL54H27
```


Figure 30.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet, an increased span horizontal tail, 70 -percent-span trailing-edge flaps deflected 46°, and the leading-edge flaps drooped 20°. Configuration: $\mathrm{A}+\mathrm{V}+\mathrm{I}_{\mathrm{TE}}+$ $(-0.123) T+0.70 \mathrm{~F}_{46}+\mathrm{N}_{20}+\mathrm{E}_{0} 450$; center-of-gravity location, $0.38 \overline{\mathrm{c}}$.

(b) C_{D} and $C_{m_{0.38}}$ against C_{L} :

Figure 30.- Concluded.

[^0]: "Highest engle of teat.

[^1]: *ighest angle or test

