

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

for the

U. S. Air Force

INVESTIGATION OF A 1/4-SCALE MODEL OF THE REPUBLIC F-105

AIRPLANE IN THE LANGLEY 19-FOOT PRESSURE TUNNEL

INFLUENCE OF TRAILING-EDGE FLAP SPAN AND DEFLECTION

ON THE LONGITUDINAL CHARACTERISTICS

By Patrick A. Cancro and H. Neale Kelly

SUMMARY

Development tests on a 1/4-scale model of the Republic F-105 airplane are being conducted in the Langley 19-foot pressure tunnel. The second phase, the results of which are presented herein, was made at a Reynolds number of 9.0 \times 10⁶ and a Mach number of 0.20. Exploratory tests were made at Reynolds numbers of 3, 6, 7, and 8 \times 10⁶ and corresponding Mach numbers of 0.06, 0.13, 0.16, and 0.18.

The purpose of the present tests was to obtain the longitudinal force and moment characteristics of the model equipped with trailingedge flaps of various spans and deflections. In addition, an investigation was made to show the effect of Reynolds number and also the effect of a transonic inlet with the original horizontal tail and with a larger span horizontal tail.

In order to expedite the issuance of the data for this airplane, no analysis of the data has been presented.

The F-105 airplane is a 45° sweptback, midwing, low-tail, supersonic fighter-bomber being developed by the Republic Aviation Corporation for the U. S. Air Force. At the request of the Air Force, development tests on a 1/4-scale model of the F-105 are being conducted in the Langley 19-foot pressure tunnel to determine the low-speed aerodynamic characteristics of the basic design and, if necessary, to develop modifications which will provide the model with satisfactory low-speed stability and control characteristics.

The initial longitudinal stability and control tests of a model of the F-105 airplane (ref. 1) indicated that the model possessed acceptable longitudinal stability characteristics as long as the trailing-edge flaps were neutral. With the trailing-edge flaps deflected, however, it was found that the model did not possess sufficient static margin at the most rearward anticipated center-of-gravity position (38 percent mean aerodynamic chord). Furthermore, because of the nonlinear lift characteristics of the horizontal tail and the associated pitch-up, satisfactory stability could not be obtained at the most forward center-of-gravity position (22 percent mean aerodynamic chord). Although various other modifications were attempted (see ref. 1), satisfactory stability could only be obtained by reducing either the flap span or deflection, or both.

The primary purpose of the tests presented herein was to determine the greatest flap span and deflection that could be used and still retain an adequate static margin up to and including the landing angle of attack. These tests were made at tail incidences required to trim the model at an angle of attack of 12° for the 22-percent and 38-percent center-ofgravity locations. In addition, tests were made at various Reynolds numbers and with a transonic-type elliptical inlet and larger span horizontal tail. The model was tested through an angle-of-attack range of -4° through the stall.

COEFFICIENTS AND SYMBOLS

CL	lift coefficient, Lift/qS
$c_{L_{max}}$	maximum lift coefficient
CD	drag coefficient, Drag/qS
Cm	pitching-moment coefficient, Pitching moment/qSc (an additional subscript denotes location of center of gravity)

b wing span, ft

c local streamwise chord, ft

ā mean aero

mean aerodynamic chord, $\frac{2}{S}\int_{0}^{b/2}c^{2}dy$, ft

y spanwise distance from plane of symmetry, ft

z vertical distance from mean aerodynamic chord extended, ft

 α angle of attack, deg

δ_f trailing-edge flap deflection, trailing edge down for positive deflection, deg

 δ_n drooped leading-edge flap deflection, leading edge down for positive deflection, deg

it tail incidence relative to the wing-chord plane, trailing edge down for positive incidence, deg

MODEL

Model Description

The model was primarily of steel-reinforced wood construction; however, the inlets, trailing-edge flaps, and leading-edge flaps were aluminum.

Basic model.- The basic model for the longitudinal stability and control tests was a 1/4-scale model of the F-105 airplane wing, fuselage, and vertical tail. Principal dimensions and design features of the model and a photograph of the model installed in the Langley 19-foot pressure tunnel are presented in table I and figures 1 and 2.

It should be noted here that between the tests reported in reference 1 and the tests presented herein, the model was sent back to Republic Aviation Corporation for the fitting of additional control-setting brackets and a revision to the lateral-control system. In the course of these modifications, the wing contour and flap positioning were rechecked. The flap gap was found to be unsymmetrical and the wing leading-edge radius was not in agreement with the specified airfoil section ordinates. In consequence, the trailing-edge flap positioning was altered slightly

and the forward 10 percent of the wing was reworked to bring it into agreement with the calculated airfoil ordinates to within ±0.003 inch.

Horizontal tail.- The horizontal tail was located at a tail height of 0.123b/2 below the mean-aerodynamic-chord plane extended, and it was possible to obtain tail-incidence settings of 7° , 3.5° , 0° , -3.5° , -9.5° , -14° , -20° , and -25° . A larger span horizontal tail was also tested. Details of the horizontal tails may be seen in figure 1 and table I.

<u>Trailing-edge flaps.</u> The wing was equipped with a single slotted trailing-edge flap which extended from 0.133b/2 to 0.800b/2. The flap was cut so that flaps extending from 0.133b/2 to 0.600b/2, 0.650b/2, and 0.700b/2 could also be tested. Hereinafter, the flap span is designated by the outboard end location in percent span. For example, the 0.133b/2 to 0.600b/2 span flap is identified as a 60-percent-span trailing-edge flap. The flap could be set at angles of 0° , 40° , and 46° perpendicular to the flap hinge line through the use of interchangeable steel positioning brackets. Details of the measured flap settings and gaps are compared with the design loft data furnished by Republic Aviation Corporation and may be seen in figure 3.

Leading-edge flaps. An inversely tapered drooped leading-edge flap with interchangeable deflection brackets of 0° , 7.5°, 20°, and 30° perpendicular to the hinge line was provided as a stall-control device. Details of the leading-edge flap may be seen in figure 3 and table I.

External stores.- Except for a few tests, external stores representative of 450-gallon pylon-mounted fuel tanks were attached at the 0.606b/2station. Details of the external stores can be found in figure 4 and table I.

Inlets.- The model was equipped with either a supersonic-type or a transonic-type elliptical wing-root inlet. Photographs of these inlets may be seen in figure 5.

Model Nomenclature

Listed below are the designations given to the various component parts of the model. The complete model configurations are obtained by combining the appropriate model components with the basic model.

A basic model (wing plus fuselage)

Е

external stores subscript: 0 indicates outboard location (0.606b/2) suffix: 450 indicates 450-gallon fuel tank

NACA RM S	5154H27
F	single slotted trailing-edge flap prefix: flap span (fraction of wing semispan) subscript: deflection, trailing edge down for positive deflection, deg
I	wing-root inlet subscript: SE indicates supersonic-type elliptical inlet TE indicates transonic-type elliptical inlet
N	inversely tapered drooped leading-edge flap subscript: deflection, leading edge down for positive deflec- tion, deg
Т	horizontal tail prefix: vertical position (fraction of wing semispan) subscript: incidence, trailing edge down for positive incidence, deg superscript: * indicates increased tail span

vertical tail

V

TESTS

All tests reported herein were conducted in the Langley 19-foot pressure tunnel at a tunnel pressure of approximately $2\frac{1}{3}$ atmospheres. For most of the tests, the Reynolds number, based on the mean aerodynamic chord, was 9.0×10^6 and the Mach number was 0.20. However, exploratory tests were made to determine the effect of Reynolds number. These tests were conducted at Reynolds numbers of 3.0, 6.0, 7.0, and 8.0×10^6 with corresponding Mach numbers of 0.06, 0.13, 0.16, and 0.18. The model was mounted on the normal three-support system at 0° angle of yaw and was tested through an angle-of-attack range of -4° through the stall.

Longitudinal characteristics of the model for the various flap span arrangements at a tail incidence required to trim this model at $\alpha = 12^{\circ}$ for the 0.22 \bar{c} and 0.38 \bar{c} center-of-gravity positions were obtained. A transonic-type elliptical inlet was tested and data were obtained with the original horizontal tail and with an increased span horizontal tail.

CORRECTIONS

Jet-boundary corrections determined by the method of reference 2 have been applied to all force and moment data. Corrections for support

tare and interference effects and for air-flow misalinement have not been applied. Internal drag of the inlets and duct system is included in the drag data presented herein.

PRESENTATION OF DATA

The comparison (fig. 6) of the results of tests for the flapsneutral condition presented herein with tests of a comparable configuration presented in reference 1 shows the two sets of results to be similar except for small differences at the higher angles of attack. This indicates that the reworking of the wing leading edge that occurred between the initial and present tests had little effect on the measured characteristics.

Similar comparisons (fig. 7) with $\delta_f = 46^\circ$ show noticeable stability changes at a lift coefficient of about 0.8 between the initial tests (ref. 1) and the tests presented herein. The differences in test results shown in figure 7 are attributed to the change in flap positioning that occurred between the initial and present tests. This effect should be kept in mind in comparing the flap-deflected results presented herein with those presented in reference 1.

The longitudinal stability characteristics about the 0.25c are summarized in tables II, III, and IV. The results of the tests about the 0.22c and 0.38c for the various flap configurations are contained in figures 8 to 21. A static-margin summary chart is presented in figure 22. The effect of various trailing-edge flap spans and the effect of various leading-edge flap deflections on the longitudinal stability characteristics may be seen in figures 23 and 24, respectively. Tests were made to determine the effect of Reynolds number on the longitudinal characteristics of the model, and the results are presented in figures 25 and 26. The data obtained with the transonic elliptical inlet can be found in figures 27 to 29. The results of a horizontal-tail span increase with the transonic elliptical inlet are presented in figure 30.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics, Langley Field, Va., August 12, 1954.

Patrick A. Cancro

Mechanical Engineer

H. Neale Kelly

Approved:

eba

Fugene C. Draley Aeronautical Research Scientist Chief of Full-Scale Research Division

Ċ

 Kelly, H. Neale, and Cancro, Patrick A.: Investigation of a 1/4-Scale Model of the Republic F-105 Airplane in the Langley 19-Foot Pressure Tunnel - Longitudinal Stability and Control of the Model Equipped With a Supersonic-Type Elliptical Wing-Root Inlet. NACA RM SL54F28, U. S. Air Force, 1954.

7

2. Sivells, James C., and Salmi, Rachel M.: Jet-Boundary Corrections for Complete and Semispan Swept Wings in Closed Circular Wind Tunnels. NACA TN 2454, 1951.

A State State State

TABLE 1.- DESIGN CHARACTERISTICS OF THE REPUBLIC F-105 AIRPLANE AND THE 1/4-SCALE MODEL OF THE F-105 AIRPLANE

Wing Assembly	Full-scale	1/4-scale
#TIB Y89CUDT		
Basic data:		
Root airfoil, measured parallel to airplane center line at 0.38b/2	. NACA 65A003.7	NACA 65A005.5 NACA 65A003.7
Angle of incidence, deg		••••
Geometric twist, deg		• • • •
Sweep of quarter-chord line (true), deg		45
Taper ratio		0.467 3.482
Dihedral, deg		-3-5
	• • • • • • • • • • • • • • • • • • • •	~e' è-b ÷ ÷
Dimensions:	т.	•
Root chord (theoretical), parallel to airplane center line, ft		3.750
Tip chord (theoretical), parallel to airplane center line, ft		1.750
Mean aerodynamic chord, parallel to airplane center line, ft		2.51 ^{1 • • •} \
Location of mean aerodynamic chord, spanwise (projected), ft		1.933
Span, measured normal to airplane center line, ft	• 34.934	8.34
Area.		
Wing area (excluding inlet area), sq ft	. 385.0	24.062
Horizontal-Tail Assembly		• • • •
Basic data:		••••
Root airfoil, streamwise	. NACA 65A006	NACA 65AC06
Tip airfoil, streamwise	. NACA 65A004	NACA 65AGO
Taper ratio:		
Basic horizontal tail		0.456
Modified horizontal tail	. 0.401	0.403 • •
Aspect ratio: - Basic horizontal tail	3.06	7 % (* * *
Modified horizontal tail		
)
	• •	***
Dimensions:		
Root chord (theoretical), ft	• 7.50	1.875
Basic horizontal tail, ft	. 3.42	0.855
Modified horizontal tail, ft	. 3.01	0.752
Mean aerodynamic chord (theoretical):		
Basic horizontal tail, ft		1.428
Modified horizontal tail, ft	. 5.58	1.395
Span: Basic horizontal tail. ft	16 (-	h 169
Basic horizontal tail, ft		4.168
Modified norizontal tail, it	. 18.33	4.582
Basic horizontal tail, ft	20,68	5.232
Modified horizontal tail, ft		5.302
Vertical location below fuselage center line, in.		-4.5

7

NACA RM SL54H27

TABLE I DESIGN CHARACTERISTICS OF THE REPUBLIC F-105 AIRPLANE AND THE 1/4-SCALE MODEL OF THE F-105 AIRPL	ANE - CONTINUED	NACA RM
Horizontal-Tail Assembly - Concluded	Full-scale	
Area:		1/4-всаle SL учн . 5.685
Horizontal-tail area (theoretical): Basic, sq ft	90.97 96.32	5.685 H2 7 6.020 7
Horizontal-tall area (exposed): Basic, sq ft	60.77 66.13	3.798 4.133
Vertical-Tail Assembly		••••
Basic data: Root airfoil, measured parallel to airplane center line at 0.167b/2		NACA 65A006 NACA 65A004 45 1.593
Taper ratio (theoretical)	0.365 29.358 32 to -32	0.365 29.358 0,12,24,35
Dimensions: Root chord (theoretical), ft Tip chord (theoretical), ft Mean aerodynamic chord (theoretical), ft 0.25ē of wing to 0.25ē of vertical tail (theoretical), ft Vertical-tail height, measured from fuselage center line, ft Rudder chord (average), ft Rudder span, measured normal to fuselage center line, ft	$ \begin{array}{r} 10.03 \\ 3.67 \\ 7.34 \\ 17.40 \\ 10.92 \\ 1.86 \\ 6.85 \end{array} $	2.508 0.9175 1.835 4.412 2.729 0.458 1.708
Area: Vertical-tail area (theoretical), sq ft	74.8 48.0 11.39	4.670 3.000 0.712.
Fuselage		•••
Length, ft	62.0 4.375 6.50 1142 39.672 346 24.7	15.049 1.094 1.625 17.87 9.918 21.6 1.542

9

)

•	(4) 14. (1997) 19. (1997)			
		·		
	가 있는 것 같은 것 같			
. '				
		· · ·		
	TABLE I DESIGN CHARACTERISTICS OF THE REPUBLIC F-105 AIRPLANE AND THE 1/4-SCALJ	E MODEL OF THE F-105 A	IRPLANE - CONCLUDED	ч
•		-		0
·				
		Full-scale	1/4-scale	
	Trailing-Edge Flaps		,	
	Basic data:			
	Type	Single slotted	Single slotted	•••
	Deflection, measured in a plane normal to 0.82c line, deg	•••• 0 to 46.2	0,30,35,40,46	••••
		· · · · · · · · · · · · · · · · · · ·		•
	Dimensions (maximum span flap):			
	Average chord, measured parallel to airplane center line	•••• 0.25c	0.25c	
	Span (one flap), measured normal to airplane center line, ft		2.925	
	Location of outboard edge, measured normal to airplane center line, in		L• <i>J</i> E <i>J</i>	. :
	Location of inboard edge, measured normal to airplane center line, in.		6,963	
•			0.909	
· •	Area (maximum span flap):		•	• •
·	Area of both trailing-edge flaps, sq ft	69.6	4.35	
	inch of boom draffing-cage finge, by to	••••	+•))	
	Leading-Edge Flaps	·	·	
-	Heading-hage riaps		•	
4	Basic data:		•	
		Drooped nose	Dreamed water	
	Type		Drooped nose	
			0,7.5,15,20,25,30	
- 3	Location of inboard edge, measured normal to airplane center line, in.		20.537	
	Location of outboard edge, measured normal to airplane center line, in	••• 199.78	49.945	
	Dimensions:		_	
•	Average leading-edge flap chord (streamwise)	•••• 0.12c	0.12c	
	Span (one flap), measured normal to airplane center line, ft	• • • 9.8	2.45	***
			•	••••
	Area:			
	Area of both leading-edge flaps, sq ft	••• 22.7	1.419	
			• •	
	External Tanks (450-gallon capacity)			N
				NACA
	Length, in	227.55	56.89	Ă
	Diameter (max.), in		7.25	
	Angle of incidence, relative to fuselage center line, deg		-3.0	RM
	Spanwise location, measured from fuselage center line, in		31.75	
	Vertical location of nose of tank, measured below fuselage center line, in	-40.04	-10.01	Ę
	Longitudinal location of nose of tank, measured from fuselage station Ó, in	391.16	97.79	¥
· ,			21-12	ST 274 H5
!				27

. ۲۰۰۱ (۱۹۹۵)


s y

AND A SUPERSONIC ELLIPTICAL INLET

Wing,	aspect ratio	• • •		. 3.18 .	Fuselage basic
Tail,	aspect ratio	• • •	• • • • •	. 3.06	Inlet supersonic-type elliptical

Win	g configuration	defle		at and	conf	il Iguratic		C _L	¢ _L	a at	(C characteristics
T.E. device	Stall-control device	Horis- ontal, deg	Vert- ical, deg	Stor	Height 2z/b	NACA airfoil section	1t, deg	a=12ª		c at ^C L _{max}	(C _m charactoristics Fig.
Rone	None	0.	Ō	None		65A series	0	0.63	0.95	26.7 26.8	C _L O C _L C _L C C _L C C C C C C C C C C C C C
Single slotted flap 0.1373/2 0.6005/2 d = 4.6	L.E. flap 0.362b/2 to 0.950b/2 $0 = 20^{9}$	Ο	O	450 gal	-0.123	65A Borios	-3.5 off 3.5	0.99 1.01 1.07 1.06 1.08	1.21 1.15 1.29	19.4 18.3 19.8	1 ti dig -7.3 -7.5 0rr 8 9 7.0 9
Single slotted flap 0.4550b/2 0.6550b/2 0 = 460	L.E. flap 0.3820/2 to 0.9505/2 0 = 20°	0	0	450 gal	-0.123	65A series	-3.5 orr 3.5	1.02 1.03 1.11 1.10 1.14	1.26 1.19 1.31	_	1, 4, 4, 4, 4, 4, 4, 4, 4
Single slotted flap 0.133b/2 to 0.700b/2 8 = 46°	L.E. flap 0.3825/2 to 0.9505/2 $\delta = 20^{\circ}$	o		450 gal	-0.123	65A serios	-7.3 off 0.1	1.02 1.05 1.13 1.10 1.15	1.27 1.20 1.32	29.0* 18.4 21.0	14. deg -9.7 -7.3 0rr 0.1 3.5

ø Highest angle of test.

:

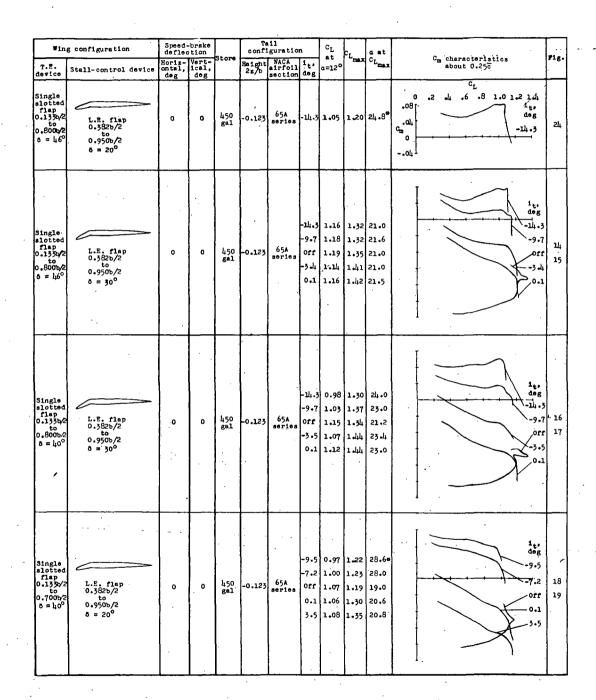

:

TABLE II.- SUNGARY OF THE LONGITUDINAL STABILITY CHARACTERISTICS OF A 1/A-SCALE MODEL OF THE F-105 AIRPLANE WITH A TAIL ASPECT RATIO OF 3.06 AND A SUPERSONIC ELLIPTICAL DULET - Continued

:.:

0

:

Highest angle of test.

12

... TABLE II .- SUMMARY OF THE LONG FUDDINAL STABILITY CHARACTERISTICS OF A 1/4-SCALE MODEL OF THE F-105 AIRPLANE WITH A TAIL ASPECT RATIO OF 3.06

:

÷

...

. :

...

AND A SUPERSONIC ELLIPTICAL INLET - Concluded

Speed-brake deflection Tail configuration Wing configuration C_L at Horiz- Vert-ontal, ical, deg deg Cm characteristics about 0.25c Height NACA 2z/o section deg CL mair Fig T.E. device a=12° Stall-control device сľ .4 .6 .8 1.0 1.2 1.4 ٥ •12 .08 .04 1_t, deg 0.96 1.22 29.0* Single slotted flap 0.133b/2 to 0.650b/2 0 = 40 -7.2 C ... 0 -3.5 0.99 1.28 21.4 -7.2 20 L.E. flap 0.382b/2 to 0.950b/2 0 = 20⁰ 450 gal -0.123 65A series -.04 orr 1.05 1.19 18.6 0 0 -3.5 21 3.5 1.07 1.33 21.0 -.08 orr 7.0 1.10 1.39 21.0 **~.1**2 3.5 .0 -.16 - .20 - _{- 24}] it: deg L.E. flap 0.382b/2 to 0.950b/2 0.= 7.5° -0.123 65A series -3.5 0.66 1.16 28.6 -3.5 None 0 0 26 None

Highest angle of test.

٠

.

••• OF THE LONGITUDINAL STABILITY CHARACTERISTICS OF A 1/4-SCALE

MODEL OF THE F-105 AIRPLANE WITH A TAIL ASPECT RATIO OF 3.06

AND A TRANSONIC ELLIPTICAL INLET

Wing, sapect ratio	Puselage basic
Tail, aspect ratio	Inlet transonic-type elliptical

Win	ng configuration	defiel	brake		conf	il Iguratio		C _L at	c _{r.}	a at	C _m characteristics	
T.E. device	Stall-control device	Horiz- ontal, deg	Vert- ical, deg	Store	Height 2g/o	NACA airfoil section	i _t , deg	a=12°	"max	c at ^C L _{max}	about 0.250	Fig.
Noné	L.E. flap 0.382b/2 to 0.950b/2 8 = 7.5°	O	0	None	-0.123	65A 307108	-3.5 0 0fr	0.62	0.92	28.8* 28.7* 28.7		27
Single slotted flap 0.1354/2 to 0.700p/2 0 = 46°	L.E. flap 0.382b/2	0	0	450 gal	-0.123	65A 807103	-7.2 Off -0.1		1.23 1.16 1.22	27.4	1;, deg -9.5 -7.2 0ff -0.1 5.6	28 29

TABLE IV.- SUMMARY OF THE LONGITUDINAL STABILITY CHARACTERISTICS OF A $1/4\text{-}\mathsf{SCALE}$

MODEL OF THE F-105 AIRPLANE WITH A TAIL ASPECT RATIO OF 3.49

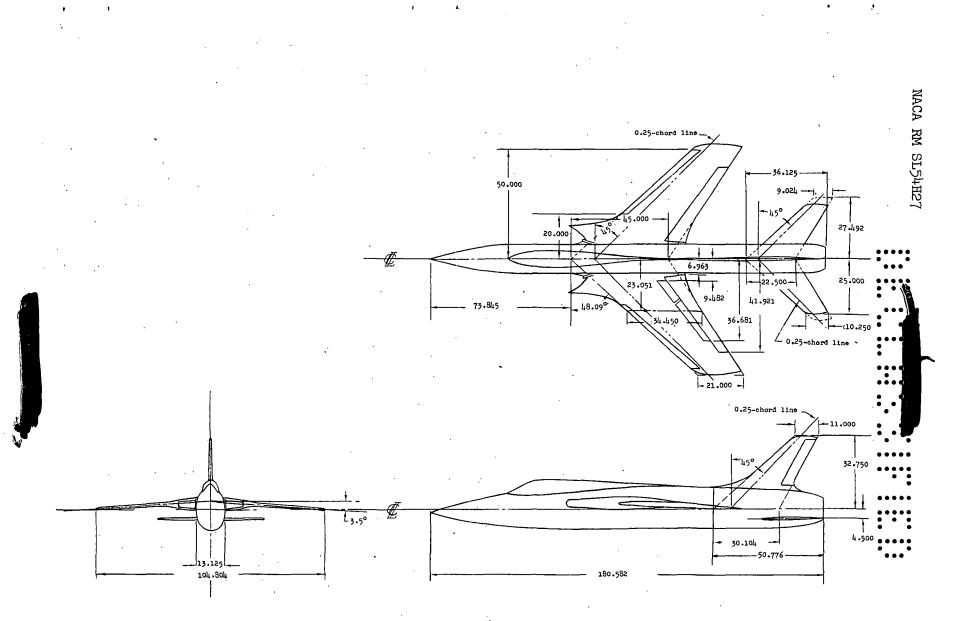
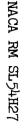
AND & TRANSONIC RELEPTICAL INLET

Wing, aspect ratio	Fuselage basic
Tail, aspect ratio	Inlet transonic-type.elliptical

Win	g configuration	defler	-brake tion		conf	ail Iguratio	n	CL	C _{T.}	a at	0	
T.E. device	Stall-control device	Horiz- ontal; deg	Vert- ical, deg	Store	Height 2z/b	NACA mirfoil section	1 _t , deg	at a=12 ⁰	"ma.t	a et ^C L _{max}	C _m characteristics about 0.25c	Fig
Single slotted flap 0.1335/2 to 0.7005/2 8 = 46°	L.E. flap 0.382b/2	0	0	450 gal	-0.123	65A series	3•7	1.16	1.32	20.9	CL CL CL CL CL CL CL CL CL CL	30

"Highest angle of test

COLUMN T

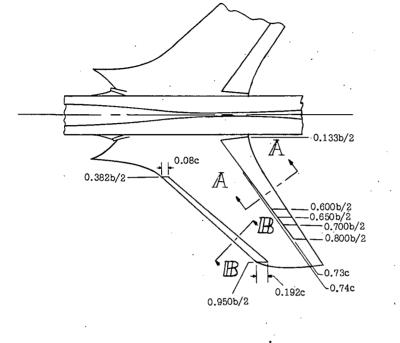
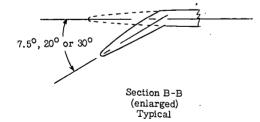
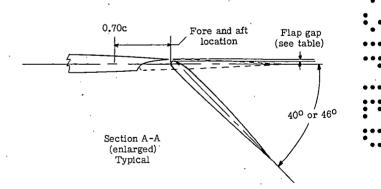
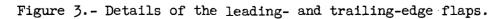

Figure 1.- Three-view drawing of a 1/4-scale model of the F-105 airplane. (Dimensions in inches unless otherwise noted.)

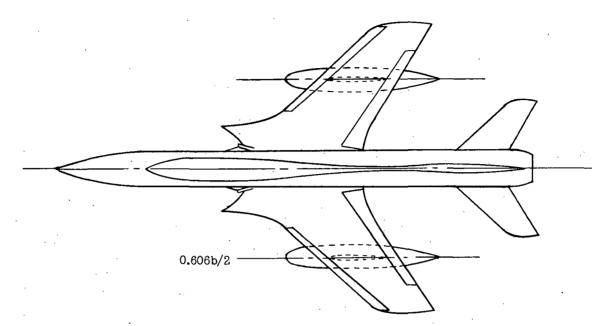
Figure 2.- The 1/4-scale model of the F-105 airplane mounted on the normal three-support system of the Langley 19-foot pressure tunnel.

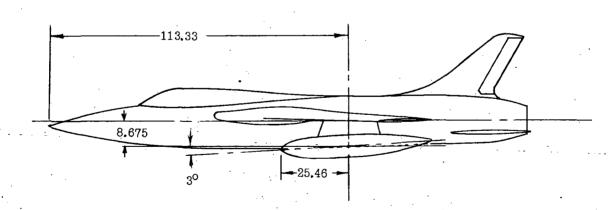


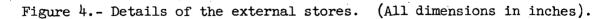


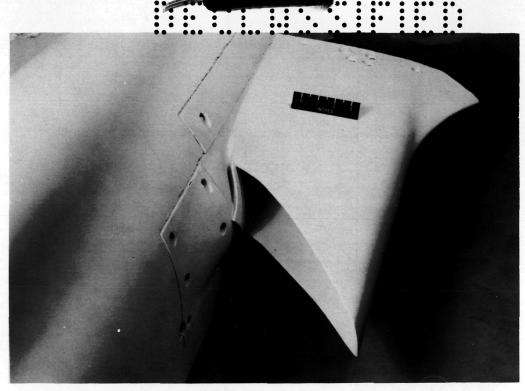

Wing Flap Data (46⁰ deflection only)

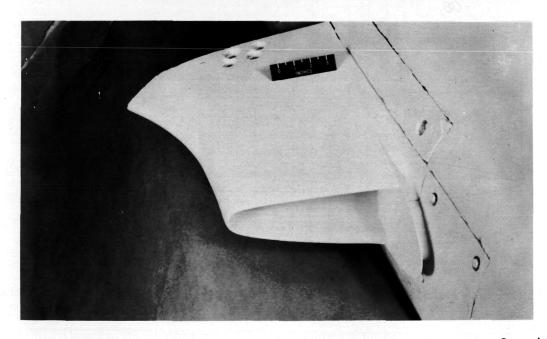
	D	eflection		Flap	gap, i	nches	Fore and aft position, inches			
Flap station	· Ac	tual		Act	ual		Ac	•		
b/2	L.H.	R.H.	Loft	L.H.	R.H.	Loft	L.H.	R.H.	Loft	
0.242	46 ⁰ 49'	46 ⁰ 26'	46 ⁰ 13	0.41	0.40	0.415	2.72	2.73	2.72	
.415	46 ⁰ 42	46 ⁰ 45	46 ⁰ 13'	.31	.32	.350	2.92	2.91	2.90	
.647	46034'	46 ⁰ 54'	46 ⁰ 13'		·					
.669			·	.345	.34	.295	2.45	2.47	2.47	




(a) Leading-edge flap. (b) Trailing-edge flap.




ຍ



(a) Supersonic-type elliptical inlet. L-85123

L-85124

(b) Transonic-type elliptical inlet.

Figure 5.- Wing-root inlets of the 1/4-scale model of the F-105 airplane (without wing).

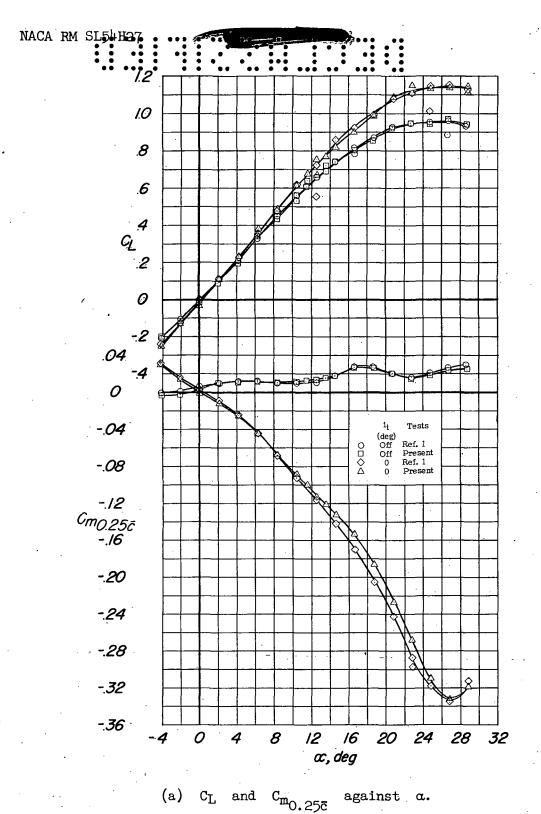


Figure 6.- Longitudinal characteristics of the model obtained during the

present tests and the tests of reference 1. Configuration: $A + V + I_{SE} + (-0.123)T$; center-of-gravity location, 0.25c.

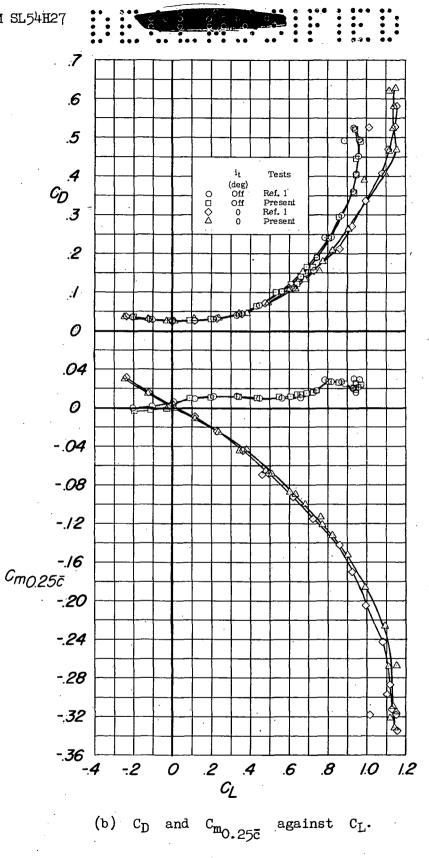
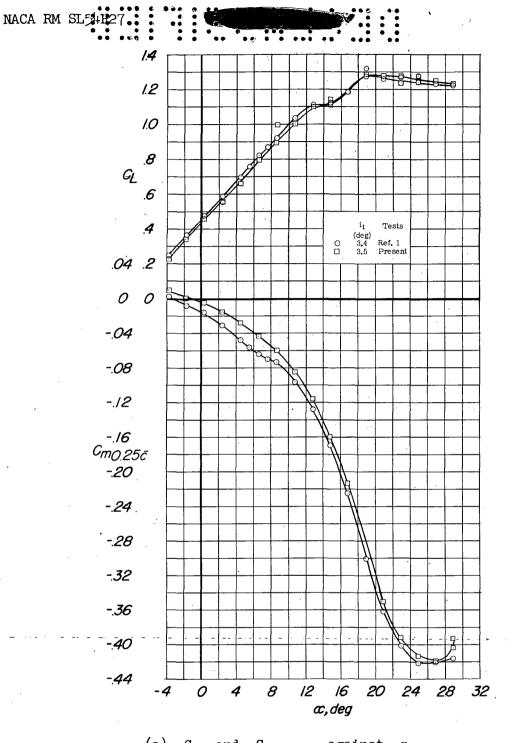
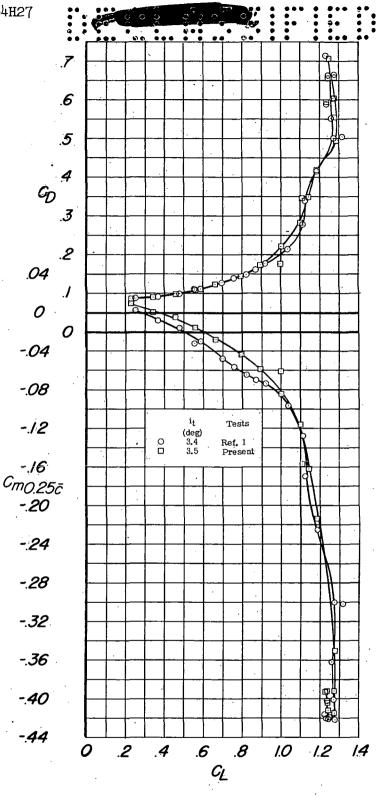




Figure 6. - Concluded.

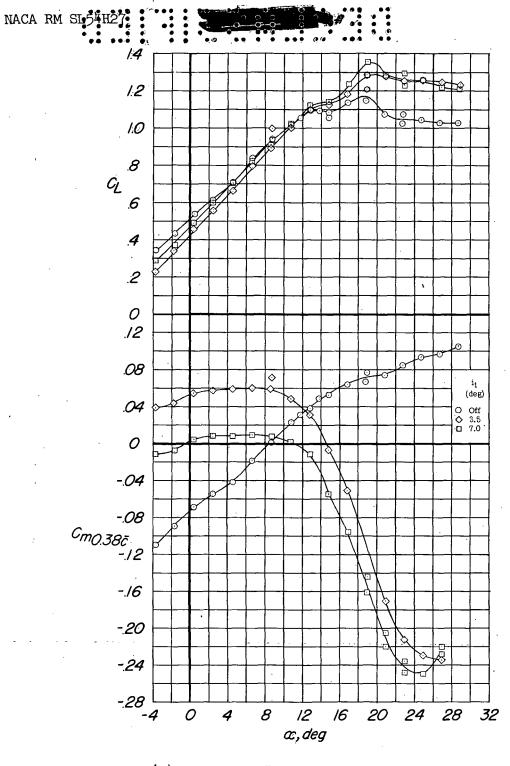

(a) C_{L} and $C_{m_{0.25c}}$ against α .

Figure 7.- Longitudinal characteristics of the model with 60-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20° obtained during the present tests and the tests of reference 1. Configuration: A + V + I_{SE} + (-0.123)T + 0.60F46 + N₂₀ + E₀450; center-of-gravity location, 0.25 \overline{c} .

(b) C_D and $C_{m_{O.25\overline{c}}}$ against C_L .

Figure 7.- Concluded.

(a) C_L and $C_{m_{O.38\bar{c}}}$ against α .

Figure 8.- Longitudinal characteristics of the model with 60-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20° . Configuration: A + V + ISE + (-0.123)T + 0.60F46 + N₂₀ + E₀450; center-of-gravity location, 0.38c.

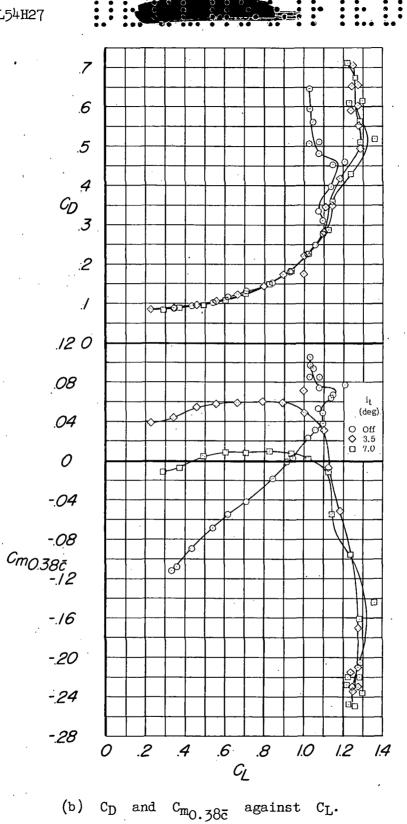


Figure 8.- Concluded.

).

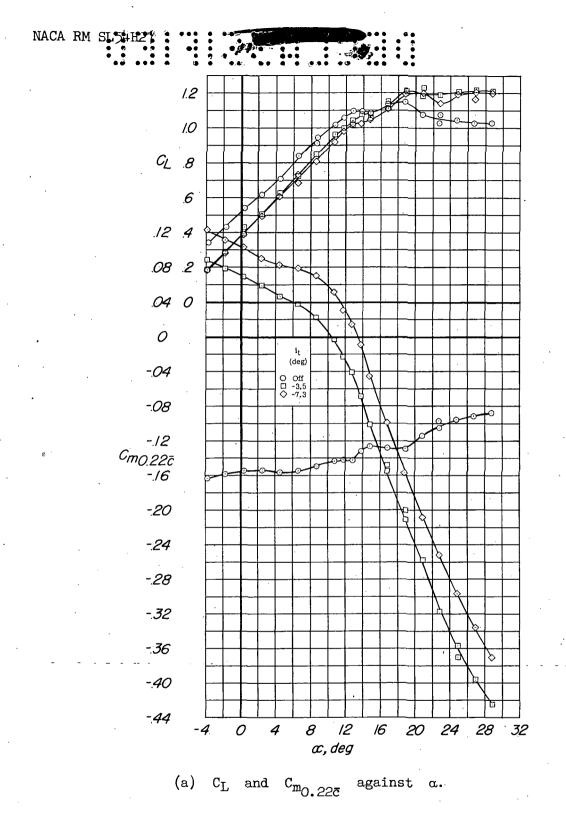
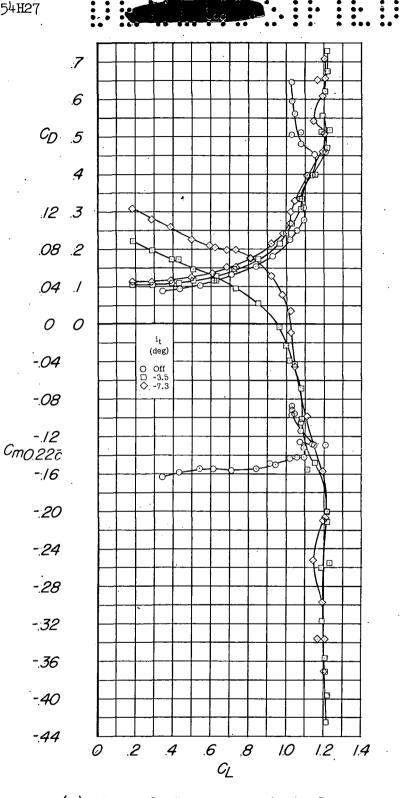



Figure 9.- Longitudinal characteristics of the model with 60-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20° . Configuration: A + V + ISE + (-0.123)T + 0.60F₄₆ + N₂₀ + E₀450; center-of-gravity location, 0.22 \overline{c} .

(b) $C_{\rm D}$ and $C_{\rm m}_{\rm O.22\bar{c}}$ against $C_{\rm L}.$

Figure 9.- Concluded.

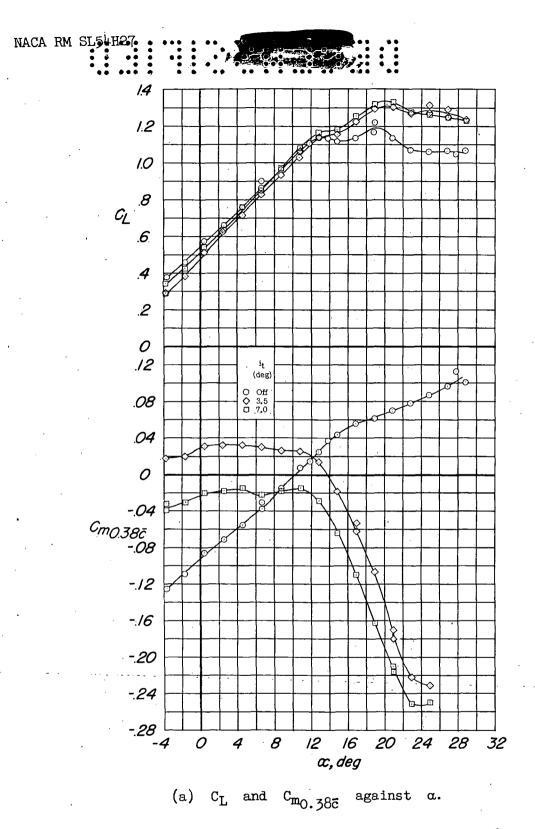
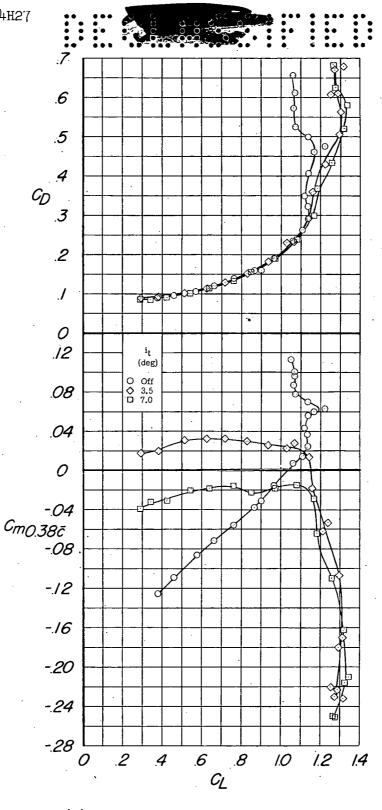
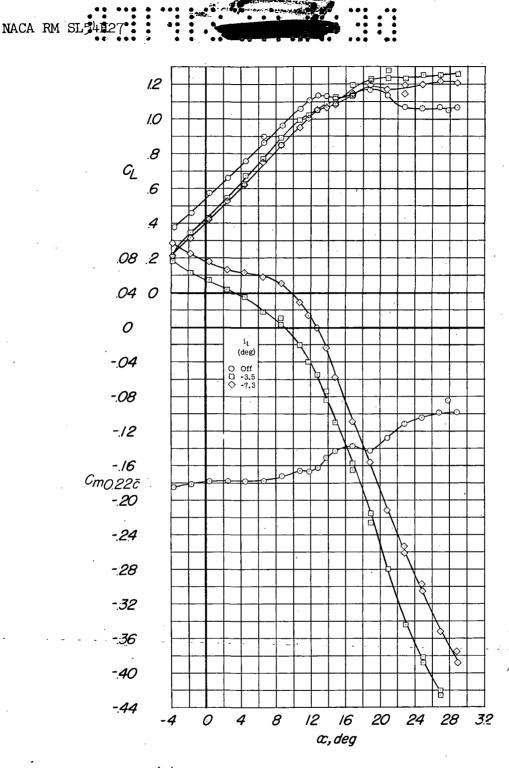



Figure 10.- Longitudinal characteristics of the model with 65-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: A + V + I_{SE} + (-0.123)T + 0.65F₄₆ + N_{20} + E₀450; center-of-gravity location, 0.38c.



(b) C_D and $C_{m_{0.38\bar{c}}}$ against C_L .

Figure 10.- Concluded.

(a) $C_{\rm L}$ and $C_{\rm m_{O},22\bar{c}}$ against $\alpha.$

Figure 11.- Longitudinal characteristics of the model with 65-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20° . Configuration: A + V + I_{SE} + (-0.123)T + 0.65F₄₆ + N₂₀ + E₀450; center-of-gravity location, 0.22 \overline{c} .

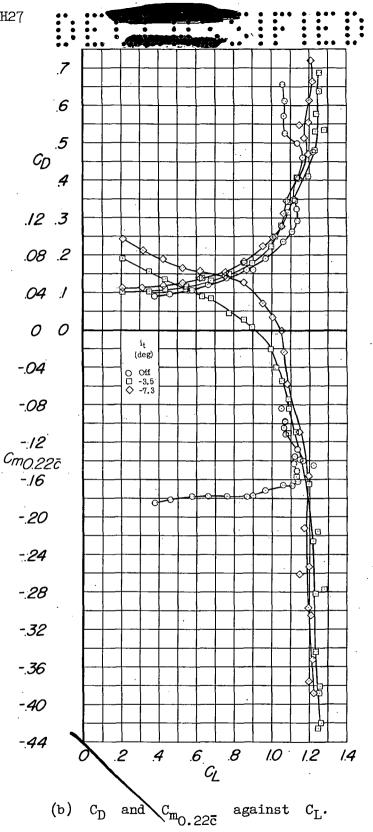
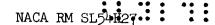



Figure 11.- Concluded.

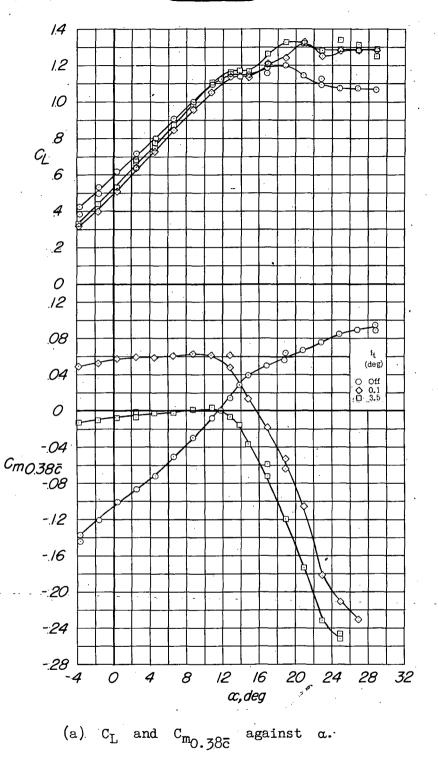


Figure 12.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: $A + V + I_{SE} + (-0.123)T + 0.70F_{46} + N_{20} + E_0^{450}$; center-of-gravity location, 0.38c.

A starting of the starting of

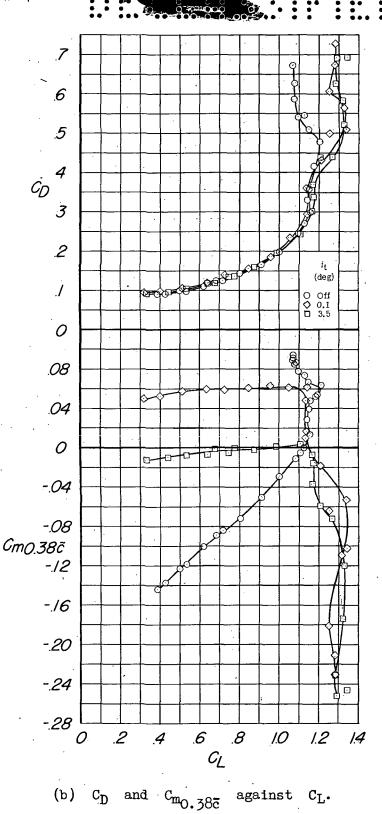
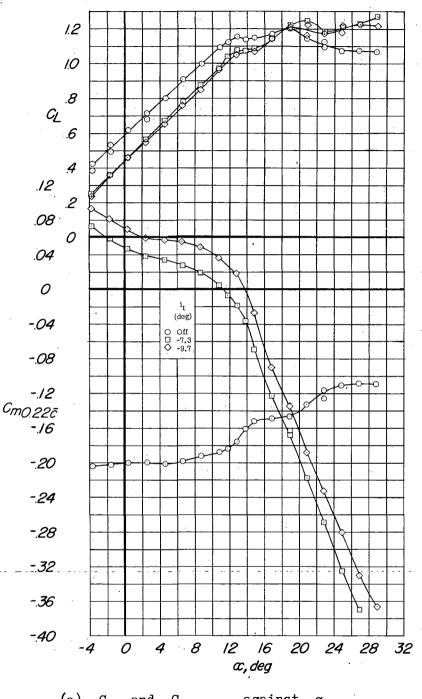



Figure 12.- Concluded.

(a) C_{L} and $C_{m_{O.22\bar{c}}}$ against α .

Figure 13.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20°. Configuration: A + V + I_{SE} + (-0.123)T + 0.70F₄₆ + N_{20} + E₀450; center-of-gravity location, 0.22 \overline{c} .

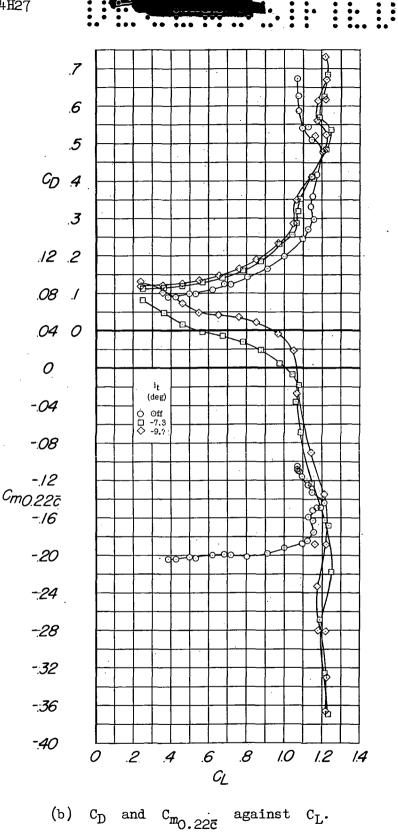


Figure 13. - Concluded.

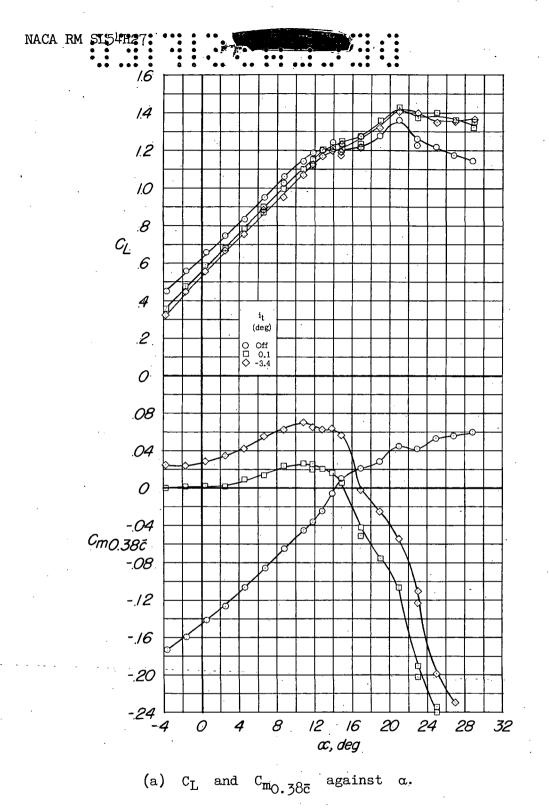


Figure 14.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 30° . Configuration: A + V + I_{SE} + (-0.123)T + 0.80F₄₆ + N_{30} + E_0 450; center-of-gravity location, 0.38 \bar{c} .

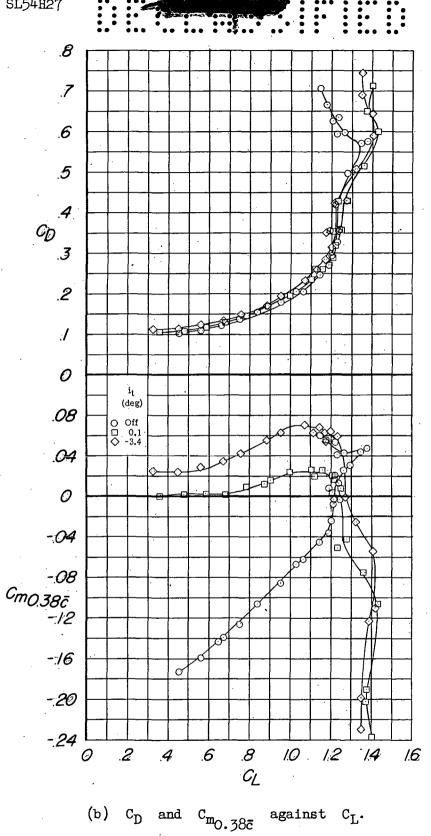


Figure 14.- Concluded.

NACA RM SL54H27

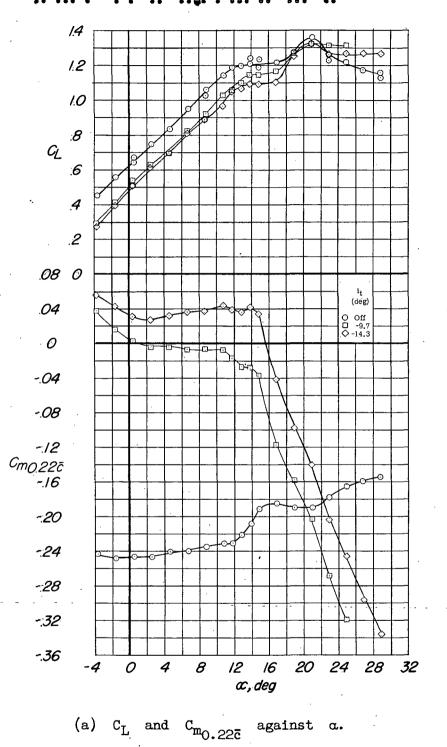


Figure 15.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 46° and the leading-edge flaps drooped 30° . Configuration: A + V + I_{SE} + (-0.123)T + 0.80F46 + N_{30} + E_0 450; center-of-gravity location, 0.22 \overline{c} .

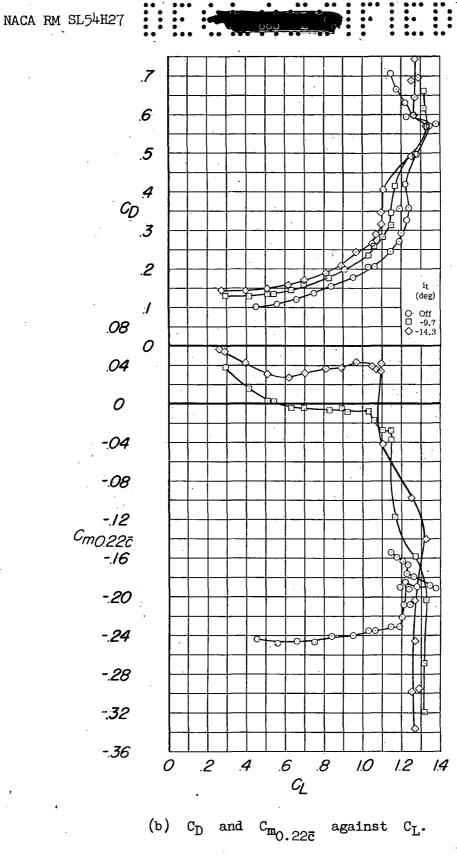
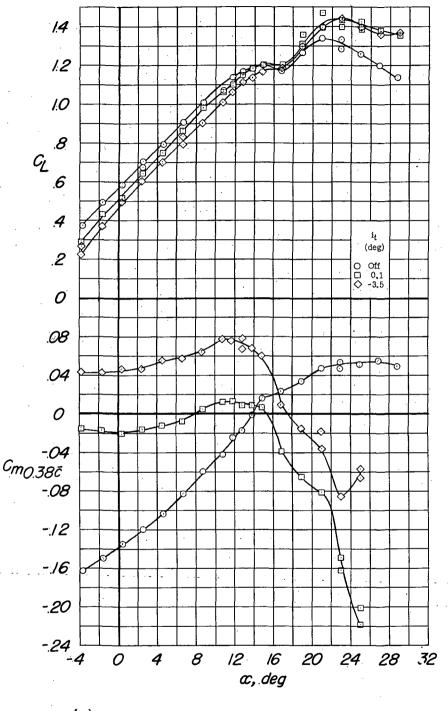



Figure 15.- Concluded.

NACA RM SL54H27

(a) C_{L} and $C_{m_{0.38\overline{c}}}$ against α .

Figure 16.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 30° . Configuration: A + V + I_{SE} + (-0.123)T + 0.80F₄₀ + N₃₀ + E₀450; center-of-gravity location, 0.38 \bar{c} .

1

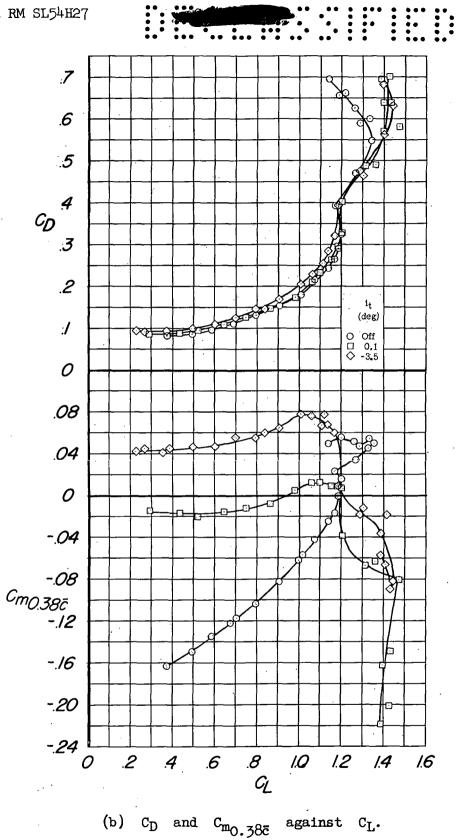


Figure 16.- Concluded.

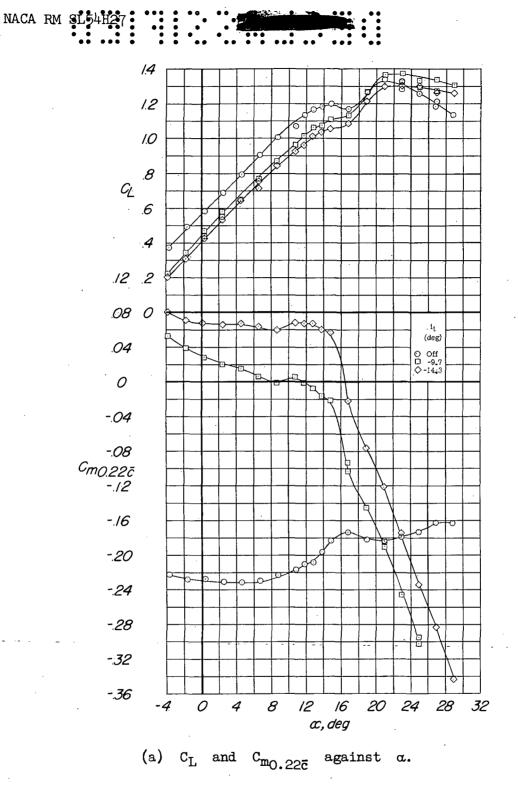


Figure 17.- Longitudinal characteristics of the model with 80-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 30° . Configuration: A + V + I_{SE} + (-0.123)T + 0.80F₄₀ + N_{30} + E₀450; center-of-gravity location, 0.22 \overline{c} .

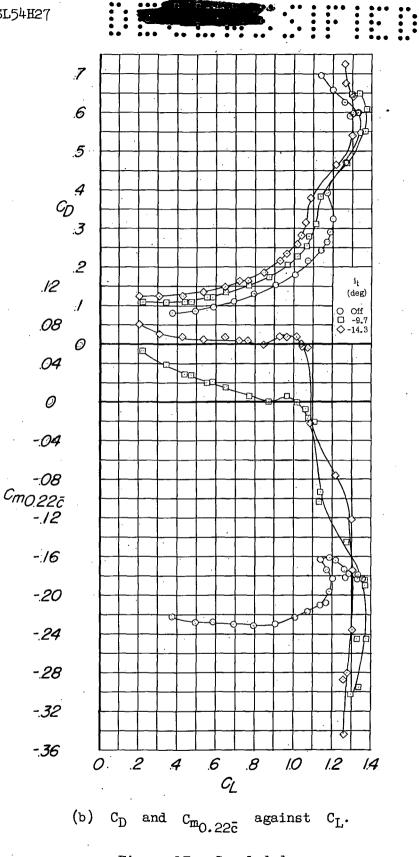


Figure 17.- Concluded.

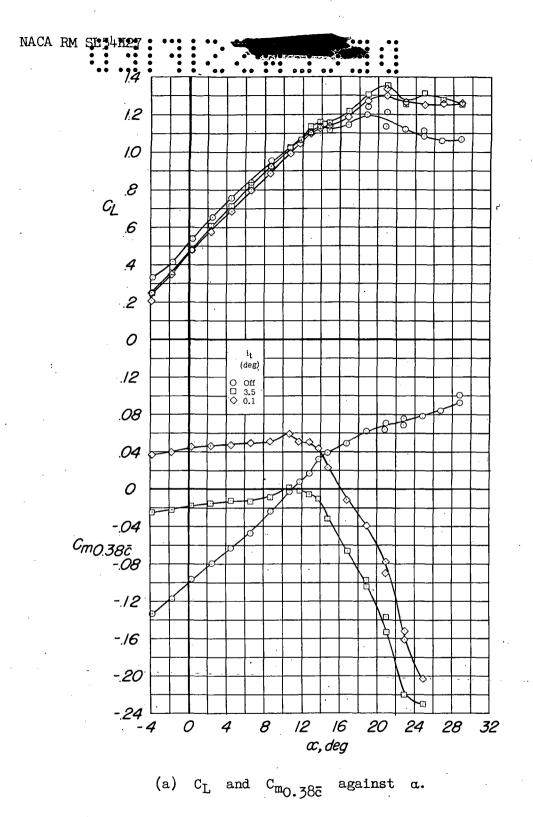
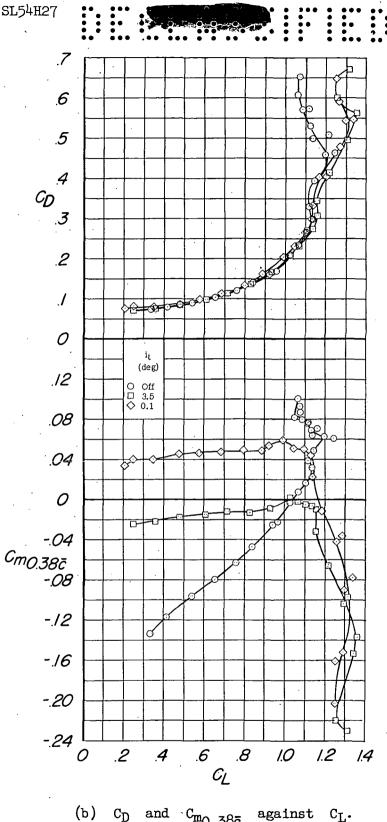



Figure 18.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20° . Configuration: A + V + I_{SE} + (-0.123)T + 0.70F₄₀ + N_{20} + E_0 450; center-of-gravity location, 0.38 \bar{c} .

NACA RM SL54H27

and $\ensuremath{^C_{m_0.38\bar{c}}}$ against $\ensuremath{^C_{\rm L}}\xspace$ c_{D}

Figure 18.- Concluded.

i\$

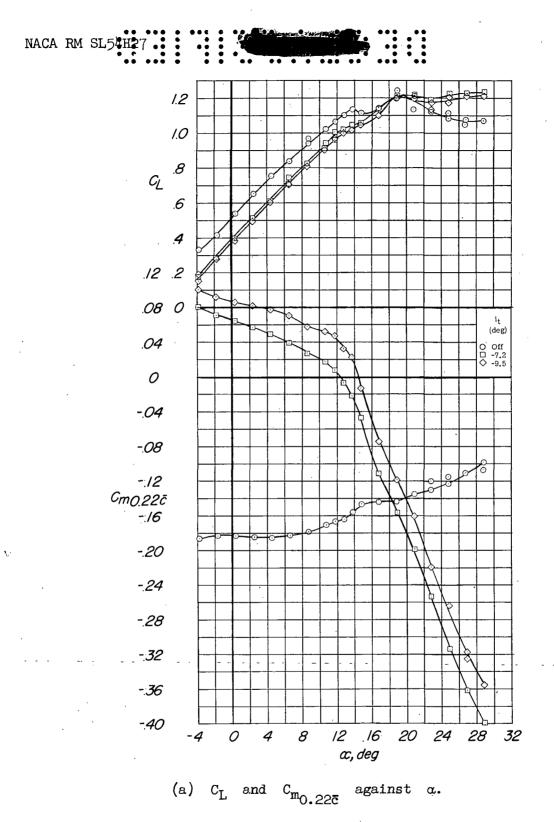


Figure 19.- Longitudinal characteristics of the model with 70-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20° . Configuration: A + V + I_{SE} + (-0.123)T + 0.70F₄₀ + N_{20} + E₀450; center-of-gravity location, 0.22 \bar{c} .

NACA RM SL54H27

١

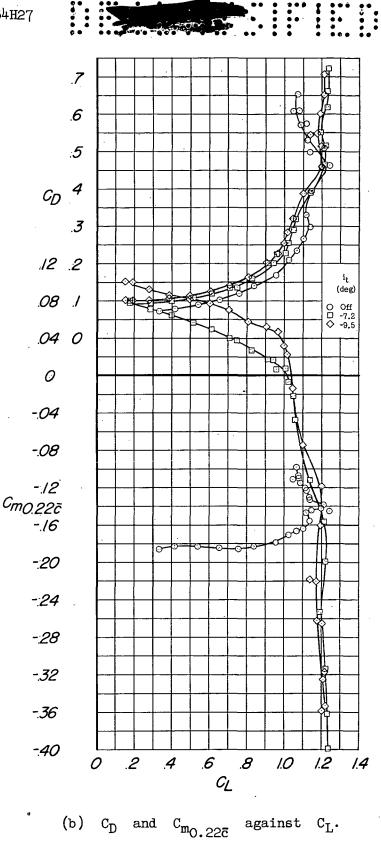
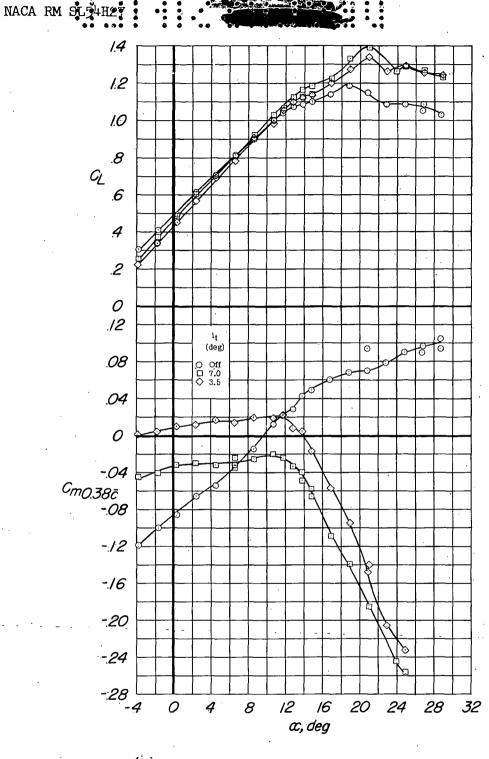



Figure 19.- Concluded.

ς.

(a) C_L and $C_{m_{0.38\bar{c}}}$ against α .

Figure 20.- Longitudinal characteristics of the model.with 65-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20° . Configuration: A + V + I_{SE} + (-0.123)T + 0.65F₄₀ + N_{20} + E_0 450; center-of-gravity location, 0.38c.

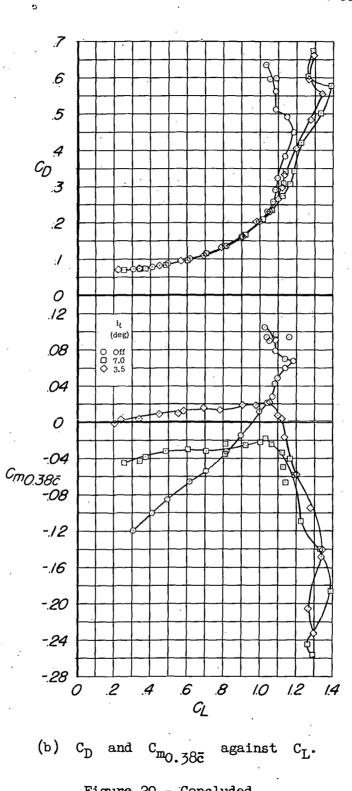
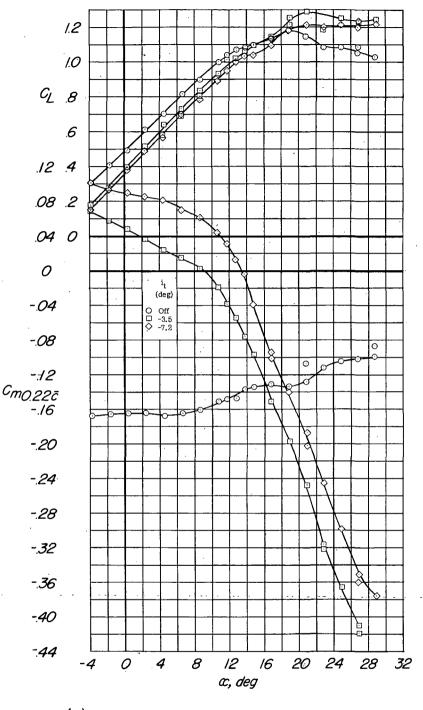
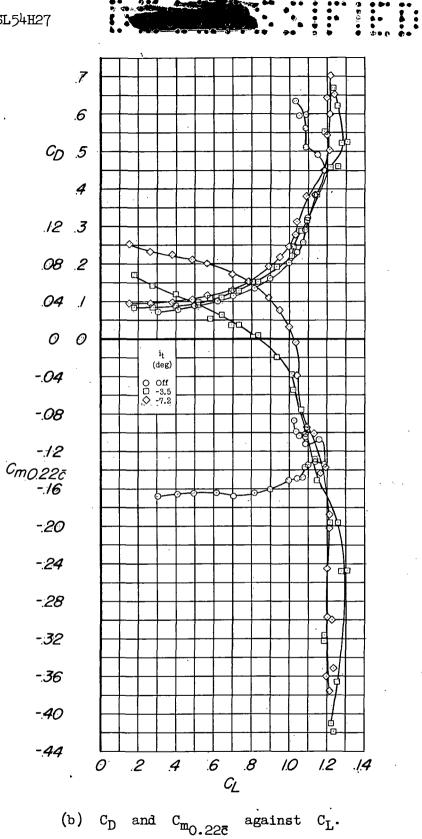
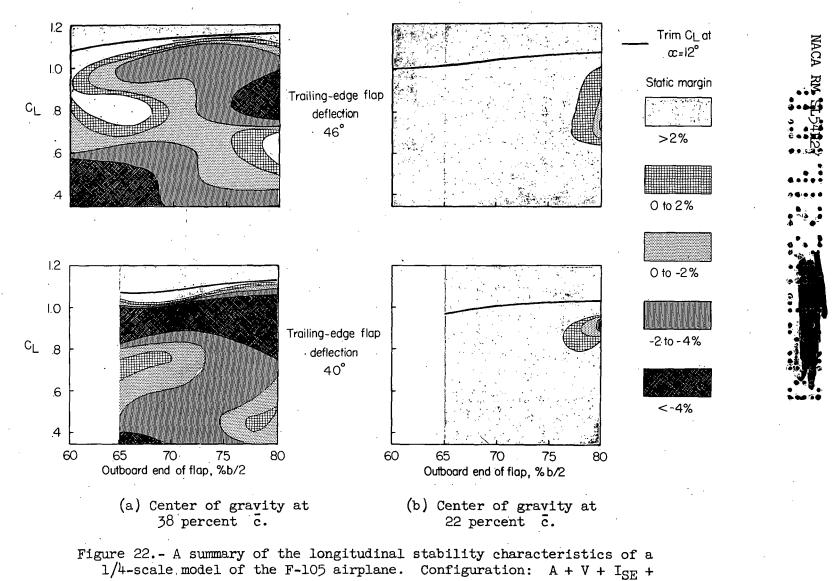



Figure 20. - Concluded.

2



(a) C_{L} and $C_{m_{O.22\bar{c}}}$ against α .


Figure 21.- Longitudinal characteristics of the model with 65-percentspan trailing-edge flaps deflected 40° and the leading-edge flaps drooped 20° . Configuration: A + V + I_{SE} + (-0.123)T + 0.65F₄₀ + N₂₀ + E₀450; center-of-gravity location, 0.22 \tilde{c} .

NACA RM SL54H27

F + N + -0.123T.

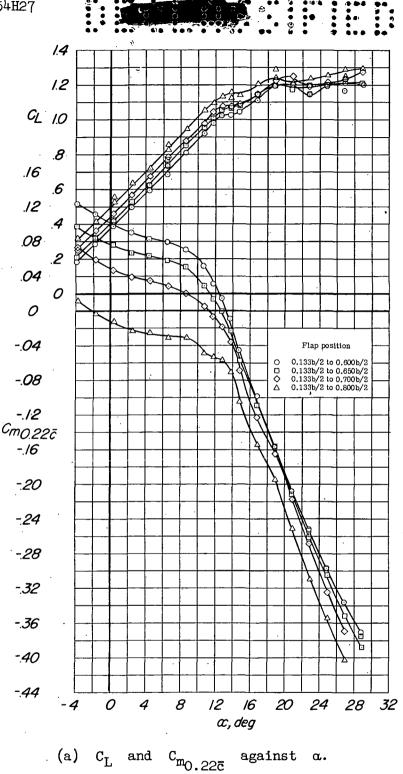
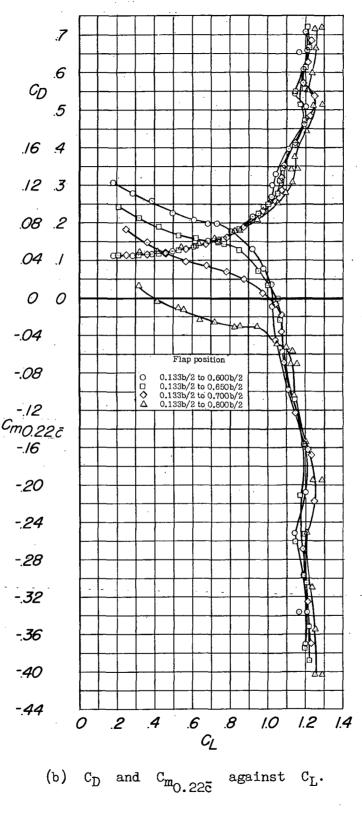
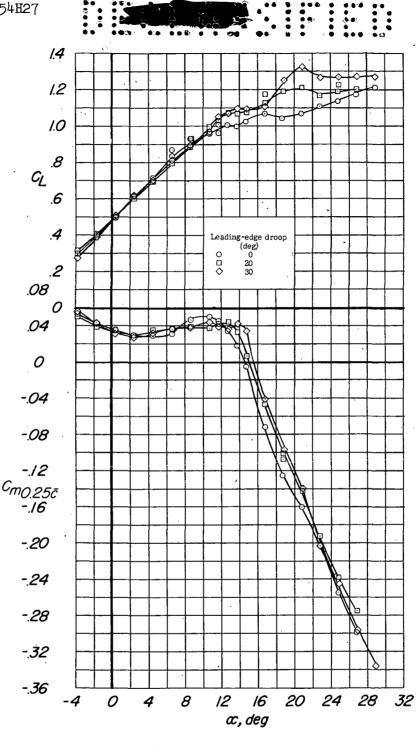
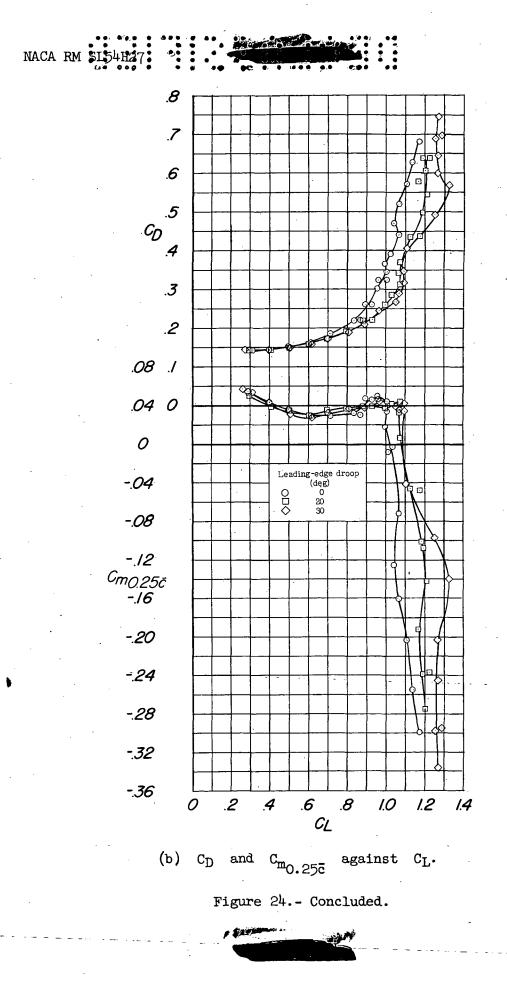


Figure 23.- Longitudinal characteristics of the model with various span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 20° . Configuration: A + V + I_{SE} + $(-0.123)T_{-7.3}$ + F_{46} + N_{20} + E_0^{450} ; center-of-gravity location, 0.22c.


Figure 23.- Concluded.

A CARGE CONTRACTOR

(a) C_{L} and $C_{m_{0.25\bar{c}}}$ against α .

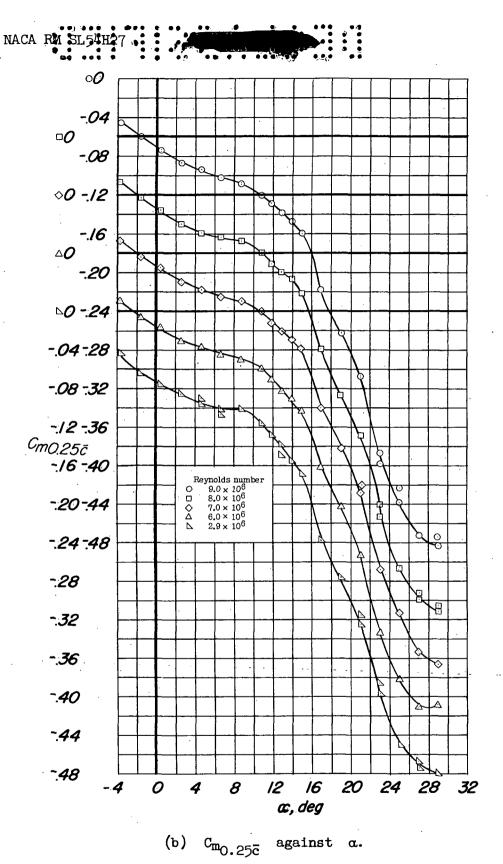
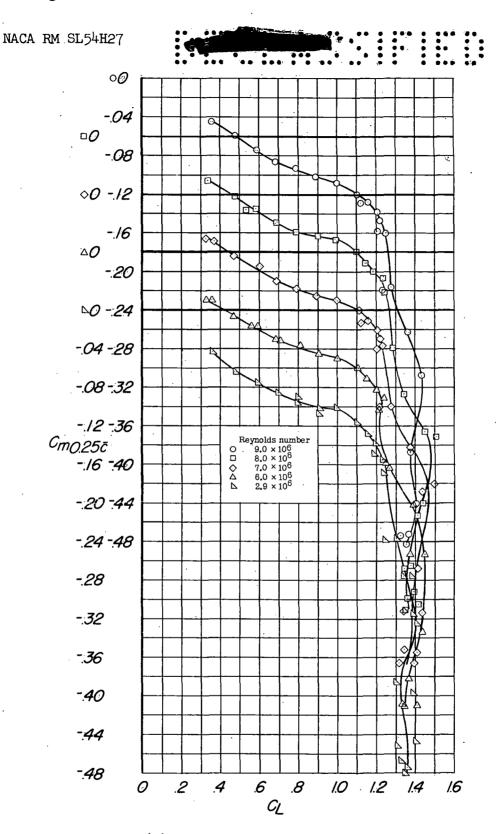
Figure 24.- Longitudinal characteristics of the model with 80-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped various amounts. Configuration: A + V + I_{SE} + (-0.123)T_{-14.3} + 0.80F₄₆ + N + E₀450; center-of-gravity location, 0.25c.

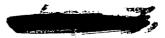
16 ſ. 0 1.4 B 0 Ō \Diamond $\overline{\Diamond}$ C 1:2 10 Reynolds number $\begin{array}{c} 9.0 \times 10^{6} \\ 8.0 \times 10^{6} \\ 7.0 \times 10^{6} \\ 6.0 \times 10^{6} \\ 2.9 \times 10^{6} \end{array}$ 0 8 \Diamond СL Δ Δ 6 4 :2 0 00 4 8 12 16 20 24 28 32 4 0 0000 8 28 32. 12 20 0 0 4 16 24 6 Δ æ, deg (a) C_L against α .

Figure 25.- Longitudinal characteristics at various Reynolds numbers of the model with 80-percent-span trailing-edge flaps deflected 46° and the leading-edge flaps drooped 30° . Configuration: A + V + I_{SE} + $(-0.123)T_{-0.2} + 0.80F_{46} + N_{50} + E_0450$; center-of-gravity location, 0.25 \bar{c} .

ଯ

NACA RM SL54H27


Figure 25. - Continued.

-

(c) $C_{m_{0.25\overline{c}}}$ against C_{L} .

Figure 25.- Continued.

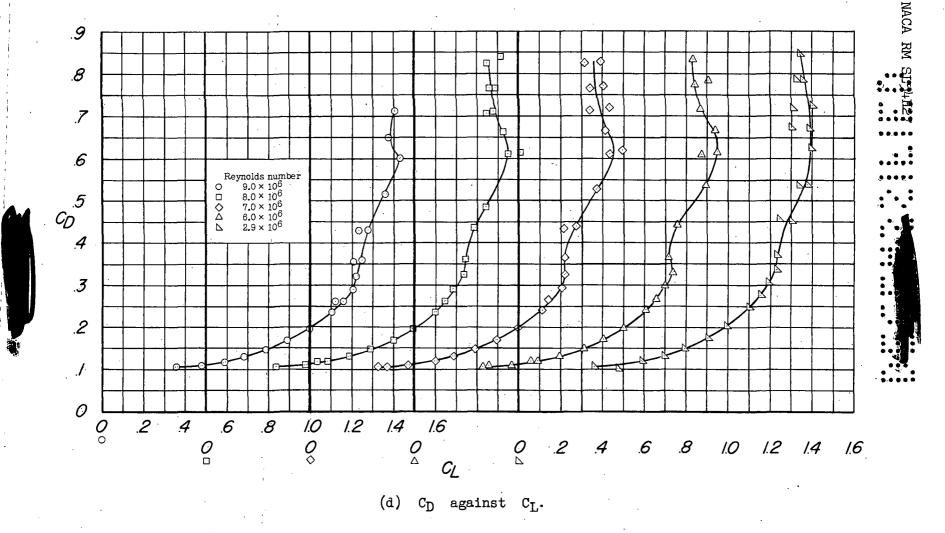
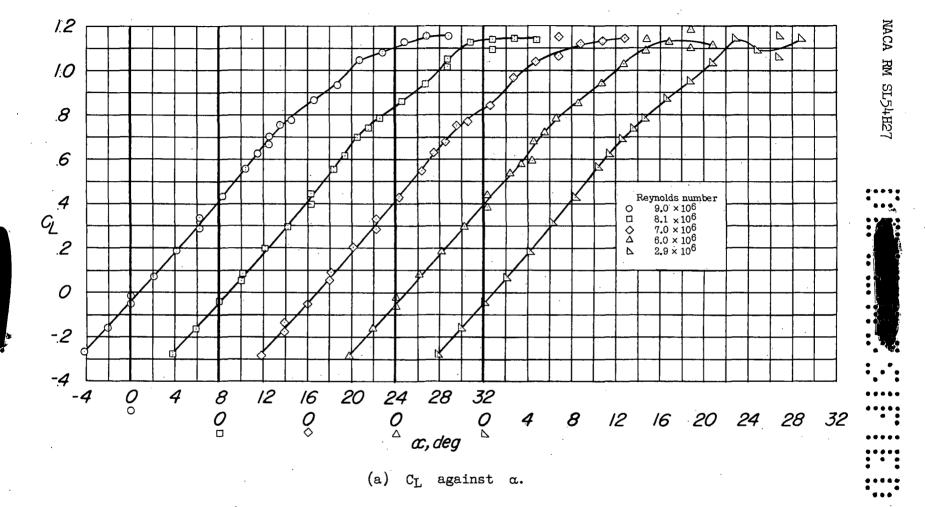
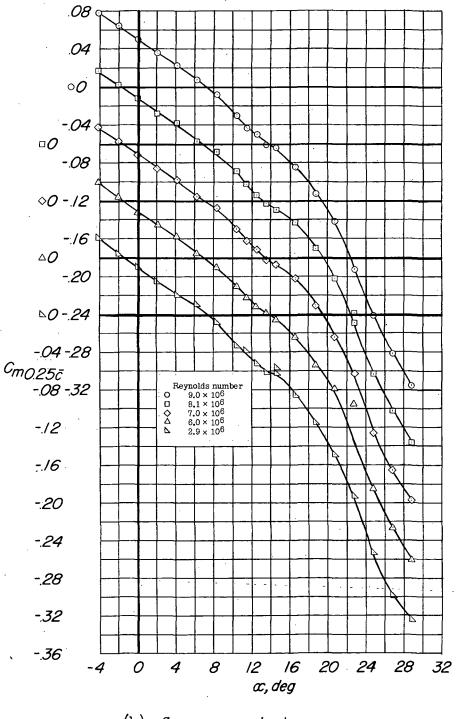
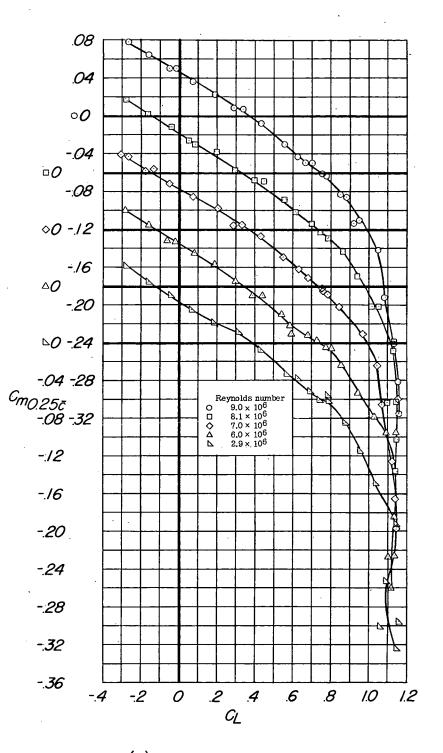
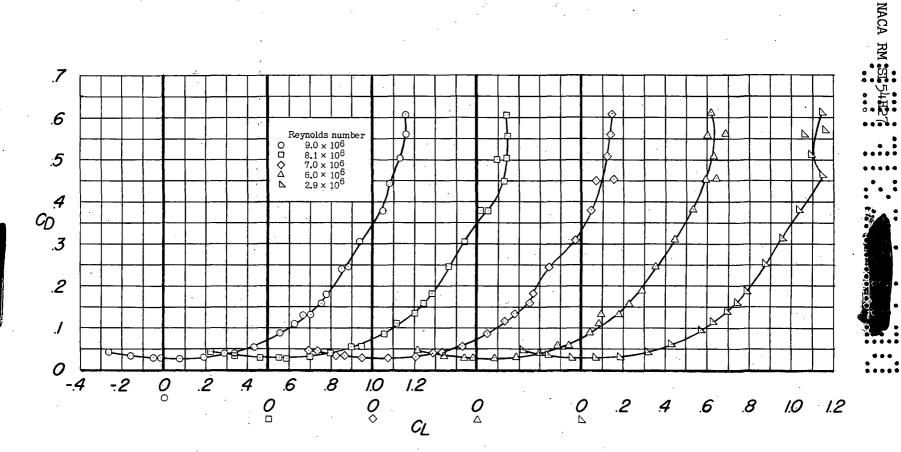


Figure 25.- Concluded.


Figure 26.- Longitudinal characteristics at various Reynolds numbers of the model with the leading-edge flaps drooped 7.5° . Configuration: A + V + I_{SE} + (-0.123)T_{-3.5} + N_{7.5}; center-of-gravity location, 0.25 \bar{c} . NACA RM SL54HP7

(b) $C_{m_{0.25c}}$ against α .


Figure 26.- Continued.

(c) $C_{m_{0.25\vec{c}}}$ against C_{L} .

Figure 26.- Continued.

(d) C_D against C_L .

Figure 26.- Concluded.

.

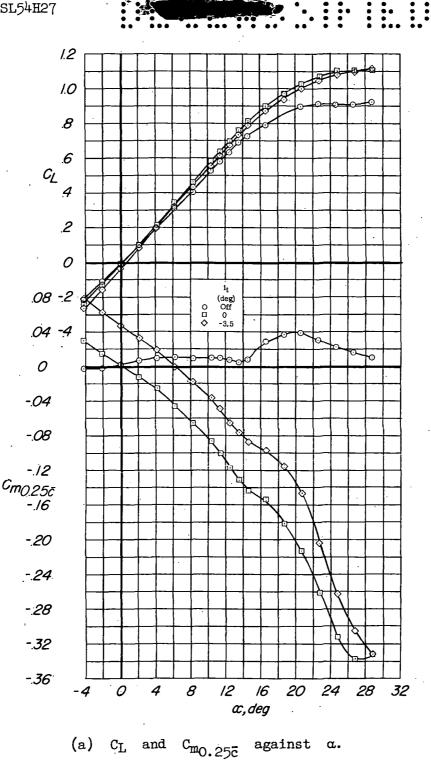
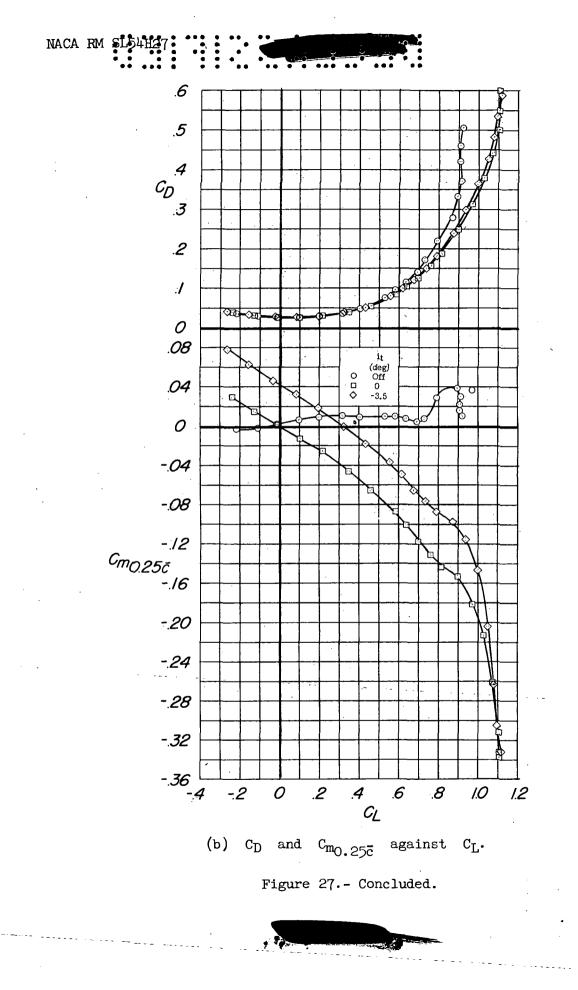



Figure 27.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet and leading-edge flaps drooped 7.5°. Configuration: $A + V + I_{TE} + (-0.123)T + N_{7.5}$; center-of-gravity location, 0.25c.

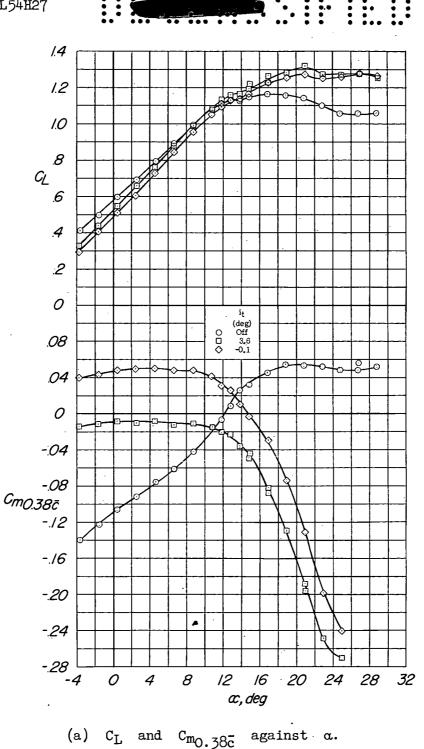
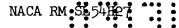



Figure 28.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet, 70-percent-span trailing-edge flaps deflected 46° , and the leading-edge flaps drooped 20° . Configuration: A + V + I_{TE} + (-0.123)T + 0.70F46 + N₂₀ + E₀450; center-of-gravity location, 0.38c.

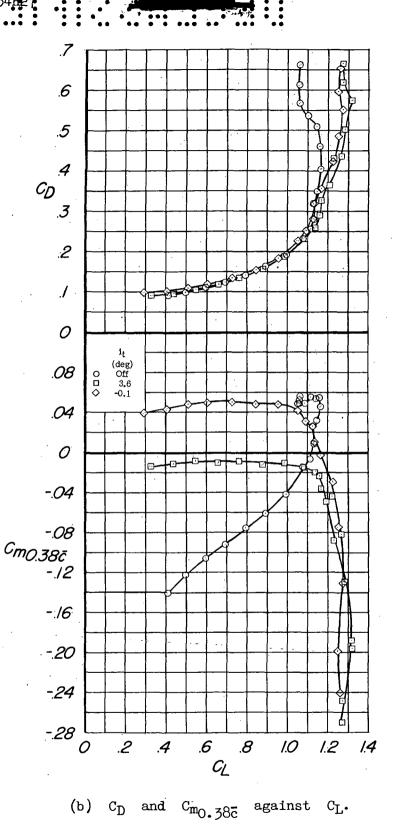
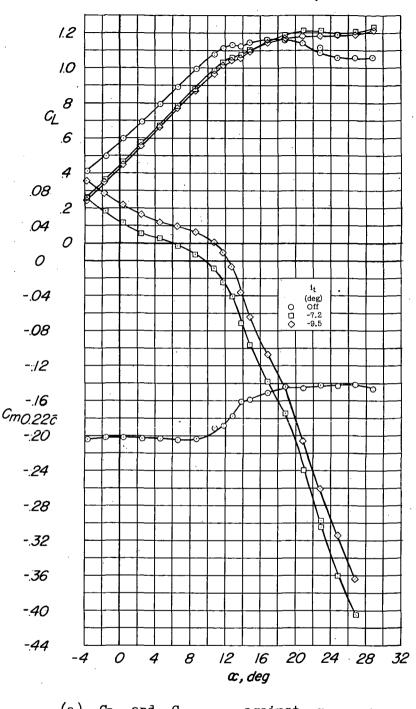



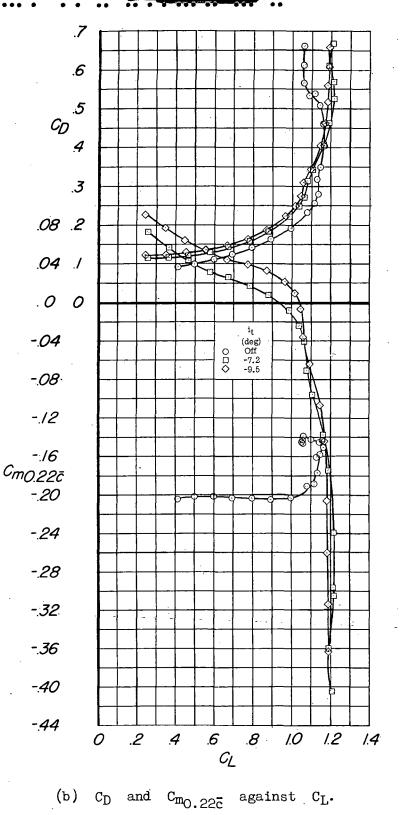
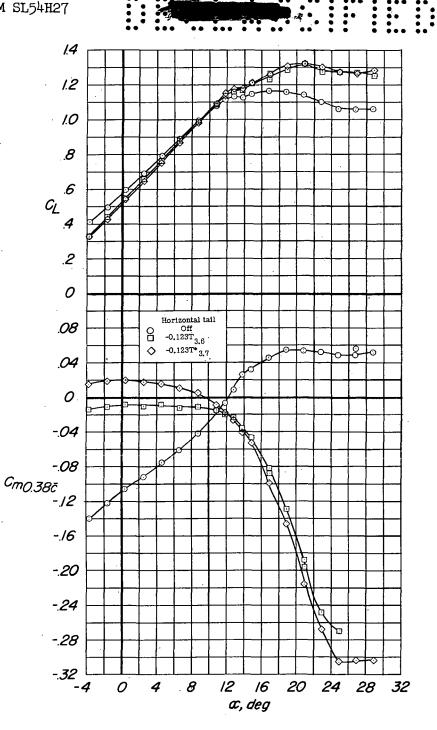
Figure 28.- Concluded.

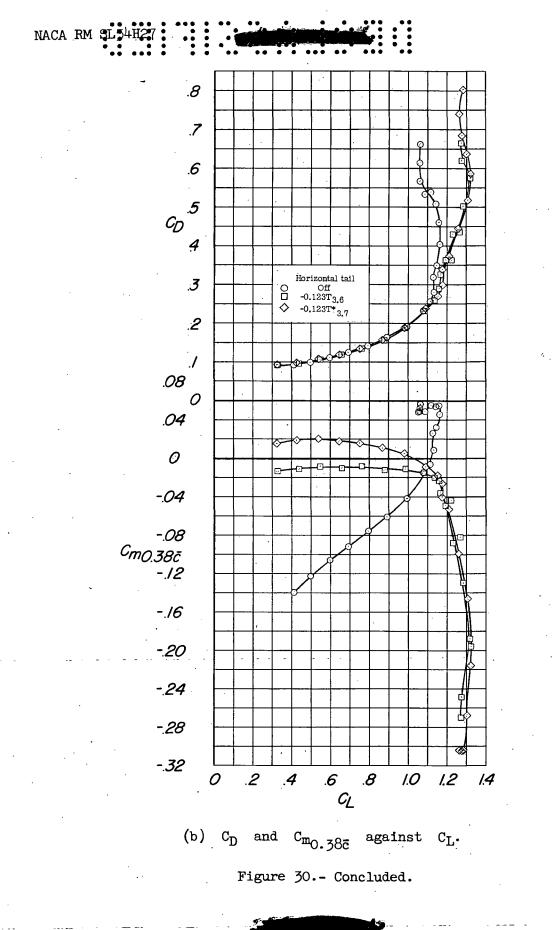
NACA RM SL54H27

(a) C_L and $C_{m_{O.22\bar{c}}}$ against α .

Figure 29.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet, 70-percent-span trailing-edge flaps deflected 46° , and the leading-edge flaps drooped 20° . Configuration: A + V + I_{TE} + (-0.123)T + 0.70F46 + N20 + E_0^{450} ; center-of-gravity location, 0.22 \bar{c} .

NACA RN SL54H27


Figure 29.- Concluded.

Ч

(a) C_{L} and $C_{m_{O.38c}}$ against a.

Figure 30.- Longitudinal characteristics of the model equipped with a transonic-type elliptical wing-root inlet, an increased span horizontal tail, 70-percent-span trailing-edge flaps deflected 46° , and the leading-edge flaps drooped 20° . Configuration: A + V + I_{TE} + $(-0.123)T + 0.70F_{46} + N_{20} + E_0450$; center-of-gravity location, $0.38\overline{c}$.

.

ŝ