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Abstract. This paper analyses the behaviour of five rainfall
indicators (maximum intensity, cumulative rainfall, irregu-
larity, probability of rain and persistence of rain) over dif-
ferent observation timescales ranging from 5 min to 24 h. It
covers a large area on the Mediterranean side of the Iberian
Peninsula (River J́ucar Water Authority, 43 000 km2) on a
continuous basis over a period of 14 years (1994–2007). The
results show that the behaviour of extreme Mediterranean
rainfall is heavily dependent on the observation timescale.
There are a number of turning points in the indicator trends
which occur on different timescales (1 and 6 h in the case of
rain intensity and irregularity, 6 h for cumulative rainfall and
between 15 and 30 min for the persistence of rain) and may
be relevant for the determination of thresholds used in water
management.

1 Introduction

Mediterranean storms are characterised by high values for
rainfall intensity and great irregularity in their space-time
distribution (Romero et al, 1999; Llasat, 2001; Peñarrocha
et al., 2002; Beguerı́a et al., 2009). In the Spanish Mediter-
ranean region, storms frequently exceed 100 mm/h at their
greatest intensity, and can on occasion reach intensities of
more than 375 mm/h (Camarasa, 1994). Average annual
rainfall has often been doubled or even tripled in a single
storm (Gil Olcina, 1989). These magnitudes are critical in
hydrology as they affect rainfall-runoff conversion processes
due to their impact on initial soil infiltration capacity and
runoff and coefficients thresholds (Yair and Lavee, 1985; Ca-
marasa and Segura, 2001; Cammeraat, 2004), thus making
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flash floods more likely. Furthermore, there are large num-
bers of ephemeral streams in Mediterranean environments
where runoff production is highly dependent on rainfall (Bull
et al., 1999; Camarasa and Tilford, 2002; Kokknen et al.,
2004; Cudennec et. al, 2007).

It is well known that the structure of rainfall differs ac-
cording to the timescale used for observation (Waymire and
Gupta, 1981; Vald́es et al., 1985; Jebari et al., 2007; Dunker-
ley, 2008) so that a reduction in the observation interval in-
creases the values for intensity and irregularity. Nonetheless,
it is by no means clear what the most appropriate time inter-
val for measuring rainfall intensity is. In terms of resource
and risk management, it is imperative to have an observation
scale that is appropriate both for the type of phenomenon be-
ing dealt with and also for the specific objectives concerned.
Thus, further studies are required to describe the behaviour
of maximum rainfall intensities in different observation in-
tervals.

This paper analyses the behaviour of five rainfall indi-
cators (maximum intensity, cumulative rainfall, irregularity,
probability of rain and persistence of rain) over different ob-
servation periods ranging from 5 min to 24 h. The study was
carried out using a database covering fourteen years (1994–
2007) in a large area on the Mediterranean side of the Iberian
Peninsula.

2 Study area and data

The study area (Fig. 1) covers the geographical territory of
the River J́ucar Water Authority (43,000 km2) in Spain. It is
a geographical area of contrasts - it has a topographic height
difference of more than 2000 m, is open to the Mediterranean
Sea and is exposed to humid winds from the east, which are
responsible for the most intense rain events.
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Fig. 1. Study area.

Rainfall data was collected by the SAIH network (Auto-
matic Hydrological Information System) every five minutes
from 147 rain gauges. The study period covers fourteen un-
interrupted years (1994–2007).

3 Methodology

The rainfall data, originally recorded every 5 min, was fil-
tered and rescaled using moving averages to intervals of
fifteen minutes, thirty minutes, one hour, two hours, three
hours, four hours, six hours, twelve hours and twenty-four
hours.

The following indicators were calculated for each rain
gauge and each time interval:

a) Maximum intensity in mm/h.
b) Cumulative rainfall in mm
c) Irregularity. The irregularity estimation was based on

the Concentration Index of Precipitation calculation put for-
ward by Mart́ın-Vide (2004) using the Gini Coefficient. Us-
ing this methodology, the statistical structure of rainfall in-
tensity can be analysed using concentration curves that relate
the cumulative rainfall percentages with the cumulative in-
terval percentages in which the rainfall occurred. The Con-
centration Index ranges from 0 (minimum irregularity) to 1

(maximum irregularity) and enables data from different ob-
servatories for different observation timescales to be com-
pared.

d) Probability of rain. The probability that a rain interval
will occur.

e) Persistence of rain. The probability that it will rain
in two consecutive observation intervals, in other words the
probability of rain after it has rained.

Next, the maximum values of each indicator were selected
for each observation interval from each rain gauge. Based
on these values, the average of the maximums for each indi-
cator by interval (in order to have a solid measure of max-
imum values) and absolute maximums (to find out the ex-
tremes reached) were obtained. Based on the values obtained
in the various observation intervals, trend curves were then
estimated which make it possible to analyse each indicator’s
behaviour model as per these time intervals.

4 Results and conclusions

Figure 2 shows the trend curves obtained for each statistic in
terms of both absolute maximum values and the average of
the maximums. In all cases the adjustments show r2 determi-
nation coefficients greater than 0.9, which means that data is
heavily dependent on the observation interval.

The maximum intensity indicator shows a downward po-
tential trend. Two critical observation interval have been
identified at 1 and 6 h. Thus, for observation scales from
5 min to 1 h very high absolute maximums have been
recorded (274 mm/h and 101 mm/h respectively); for obser-
vation scales of 6 h, an absolute maximum of 56 mm/h was
registered; and finally, lower maximums have been recorded
for higher observation scales with 19 mm/h at 24 h.

The cumulative rainfall indicator has an upward logarith-
mic trend with a single turning point at 6 h, which makes it
possible to differentiate between two behaviour patterns: a)
one from 5 min (with a maximum of 22 mm) to 6 h (with a
maximum of 337.6 mm/h), and another, b), from 6 h to 24 h
with a maximum of 461 mm.

The irregularity index follows a downward potential trend,
with a pattern similar to rainfall intensity. Its highest irregu-
larity values are between 5 min (0.5) and one hour (0.3) fol-
lowed by a second section between 1 h and 6 h (0.15). After
6 h the rain becomes much more regular, reaching a value of
0.05 at 24 h.

The probability of rain indicator follows an upward poten-
tial trend and has no significant turning points.

As for the persistence of rain, it presents a downward po-
tential trend. The behaviour of this indicator can be bet-
ter tracked using the “average of the maximums” variable,
where it can be seen that the time intervals which have a
higher persistence of rain are 15 and 30 min, in relation to
the average duration of convective cells, and can become
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Fig. 2. Rainfall indicators of Maximum Intensity, Cumulative Rainfall, Irregularity and Persistence of Rain.

prolonged up to 1 h. After three hours, the persistence of
rain values decrease by less than expected.

This paper has made it possible to confirm the strong de-
pendence of rainfall data on the measurement interval and
to develop empirical trend curves for the 5 parameters stud-
ied using the data recorded at 147 automatic rain gauges that
record data every 5 min. The curves obtained are widely ap-
plicable as they present both the absolute maximum values
and the average values recorded during the series of years
available and can be used as a reference for the determi-
nation of rainfall thresholds applied to water management
tasks. However, because of the extension and variability of
the study area, rainfall characteristics varies also spatially.
Therefore it would be convenient to define homogeneous ar-
eas from the point of view of rainfall behaviour and to calcu-
late specific curves for every of them.
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