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Abstract

We show the existence of dynamical zeros in the helicity amplitudes for neutrino-
electron elastic scattering at lowest order in the standard theory. In particular,
the λ = 1/2 non-flip electron helicity amplitude in the electron antineutrino
process vanishes for an incident neutrino energy Eν = me/(4sin

2θW ) and for-
ward electrons (maximum recoil energy). The rest of helicity amplitudes show
kinematical zeros in this configuration and therefore the cross section vanishes.
Prospects to search for neutrino magnetic moment are discussed
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The first νi(ν̄i)e
− → νi(ν̄i)e

− collision was observed in 1973 at Gargamelle [1].In

particular the observation of the process ν̄µe
− → ν̄µe− represented the discovery of

neutral currents, a milestone in the history of the standard model of electroweak

interactions. In the year 1976 the group of Reines [2] got the first signal of the

ν̄ee
− → ν̄ee

− process, using neutrinos from a nuclear reactor. Nowadays, there are

also data from νµe− → νµe
− and νee

− → νee
− reactions.

Needless to say, neutrino physics in general and these leptonic processes in partic-

ular play a crucial role in the study of the standard model of electroweak interactions,

as well as in searching for effects beyond the standard model: Charm II collaboration

has given values [3] of the electroweak mixing angle at a level of accuracy comparable

with LEP data, the ( destructive ) interference among charged and neutral currents

has been measured [4] in the reaction νee
− → νee

−, the laboratory bound on the

neutrino magnetic moment (µν < 2.4x10−10) has been set with ν̄ee
− → ν̄ee

− [2, 5, 6]

in reactor experiments. Besides, several new proposals plan to reach a 1% accuracy

in the value of sin2θW [7], to study the ν̄e magnetic moment at the level of 2x10−11

Bohr magnetons [8] or even to search for flavour changing neutral currents.

Let us concentrate in the neutrino magnetic moment experiments. The differential

cross section for ν̄ee
− → ν̄ee

− including the neutrino magnetic moment contribution

[5] and neglecting neutrino mass is given by

dσν̄e

dT
=

2G2me

π

[

g2

R + g2

L

(

1 − T

Eν

)2

− gLgR
meT

E2

ν

]

+
πα2µ2

ν

m2

e

(1 − T/Eν)

T
(1)

where G is the Fermi coupling constant, α the fine structure constant, µν the neutrino

magnetic moment in Bohr magnetons, me the electron mass, T the recoil kinetic

energy of the electron and Eν the antineutrino incident energy. In terms of sin2θW

the chiral couplings gL and gR can be written as

gL = 1

2
+ sin2θW ; gR = sin2θW . (2)

The first piece in the r.h.s of eq. (1) is the standard charged and neutral current

contribution ( for neutrinos one should exchange gL by gR ), the second one is due to

the neutrino magnetic moment, whose contribution adds incoherently. The magnetic
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moment contribution is enhanced with respect to the conventional contribution for

low values of T. Then, to extract information about the neutrino magnetic moment

term, it is extremely important to minimize the experimental threshold on the electron

recoil energy, which is a difficult task. But from eq. (1), due to the presence of the

gLgR term, we observe that a different strategy can be used , namely, to look for

kinematical configurations, if any, where the standard model contribution vanishes.

Instead of looking for regions where the new physics becomes large enough to be

comparable to the standard contribution we will look for configurations were the

standard contribution becomes small enough.

With this motivation , we study in this paper the dynamical zeros of the helicity

amplitudes for neutrino and antineutrino scattering with electrons at lowest order in

the standard model. By dynamical zeros we mean the ones which appear inside the

physical region of the kinematical variables describing the scattering [9]. The location

of these dynamical zeros depends on the values of the fundamental parameters of the

electroweak theory, namely, gL and gR in our case. Besides dynamical zeros, the

helicity amplitudes are constrained by the kinematical zeros [10] which appear at the

boundary of the physical region and do not depend on dynamical parameters.

On searching for dynamical zeros in neutrino and antineutrino electron scattering

one can make a first attempt by selecting a kinematical configuration where only

one spin amplitude contributes to the standard model cross section in eq. (1). In

particular, in a general collinear frame the helicity amplitude Mνi

λ′λ for νie
− → νie

−,

i = e, µ, τ , with λ = λ′ = −1/2 is the only one that contributes for backward

outgoing neutrino ( forward electron ), being λ and λ′ the initial and final electron

helicities respectively. This follows from angular momentum conservation arguments.

For ν̄ie
− → ν̄ie

− the helicity amplitude M ν̄i

1/2,1/2
is the only one that contributes for

backward neutrino.

In the LAB frame, the backward cross section for νie
− → νie

− can be written as

follows

(

dσνi

dT

)

back

=
2G2me

π

[

gi
L − gi

R

me

2Eν + me

]2

(3)

which is proportional to | Mνi

−1/2,−1/2
(back) |2. Eq. (3) is easily obtained from the
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standard piece of eq. (1) considering that the value of T in the backward configuration

is

Tmax =
2E2

ν

2Eν + me

. (4)

In eq. (3) there are no dynamical zeros for this backward cross section with ge
L

and ge
R satisfying ge

L > ge
R > 0, which is the case for νe as seen from equation (2). On

the other hand, for ν̄ie
− backward elastic scattering we have

(

dσν̄i

dT

)

back

=
2G2me

π

[

gi
R − gi

L

me

2Eν + me

]2

(5)

which is proportional to | M ν̄i

1/2,1/2
(back) |2 and vanishes for ν̄e at

Eν =
me

4sin2θW

. (6)

Therefore we have found that for the antineutrino energy Eν given by equation (6)

and the corresponding maximum electron recoil energy given by equation (4) the

differential cross section for ν̄ee
− → ν̄ee

− vanishes exactly at leading order. It is

worthwhile to emphasize that Eν ≃ me lies inside the range of reactor antineutrino

spectra and T = Tmax ≃ 2

3
me is in the range of the proposed experiments to detect

recoil electrons [8].

For νµ and ν̄µ elastic scattering ( or ντ and ν̄τ ) the corresponding gµ
L, gµ

R param-

eters are

gµ
L = −1

2
+ sin2θW ; gµ

R = sin2θW (7)

These values prevent the corresponding cross sections from dynamical zeros for

backward neutrinos. It is therefore evident that the contribution of charged currents

to the values of gi
L and gi

R is essential in the existence of the dynamical zeros given

by eqs. (4) and (6) in ν̄ee
− scattering.

In what follows we will present a systematic analysis of the dynamical zeros of

the helicity amplitudes for neutrino and antineutrino - electron scattering at lowest

order in electroweak interactions. As a consequence of this analysis one obtains all
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the information about dynamical zeros for polarized and unpolarized differential cross

sections.

For νie
− → νie

− the helicity amplitudes are

Mνi

λ′,λ =
G√
2
(gi

LMνi

L + gi
RMνi

R ) (8)

where

Mνi

L = [ū′

e(λ
′)γα(1 − γ5)ue(λ)][ū′

νi
γα(1 − γ5)uνi

]
Mνi

R = [ū′

e(λ
′)γα(1 + γ5)ue(λ)][ū′

νi
γα(1 − γ5)uνi

]
(9)

We carry out the explicit calculation in the LAB frame, by using a standard rep-

resentation of the Dirac matrices and spinors [11]. The final result for the helicity

amplitudes reads as follows

Mνi
+,+ = Ngi

R

(

1 + T
| ~p′ |

)

sinθ
2cosβ

2

Mνi
−,− = N

[

gi
L

(

1 + T
| ~p′ |

)

sinθ − β
2 + gi

R

(

1 − T
| ~p′ |

)

cosθ
2sinβ

2

]

Mνi
+,− = N

[

−gi
L

(

1 − T
| ~p′ |

)

cosθ − β
2 + gi

R

(

1 + T
| ~p′ |

)

sinθ
2sinβ

2

]

Mνi
−,+ = Ngi

R

(

1 − T
| ~p′ |

)

cosθ
2cosβ

2

(10)

where N = 8G
√

EνE ′
νme(T + 2me), | ~p′ | is the outgoing electron momentum and θ

and β are the counterclockwise angles in the scattering plane of the final electron and

neutrino with respect to the incoming neutrino direction. We note that the helicity

of the target electron ( at rest ) is referred to the backward direction. In eq. (10) we

have used the helicity signs instead of its values.

We have the following relation between neutrino and antineutrino helicity ampli-

tudes

M ν̄i

λ′,λ(g
i
L, gi

R) = (−)λ′
−λMνi

−λ′,−λ(g
i
R, gi

L) (11)
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i.e., apart from the phase factor (−)λ′
−λ, one has to replace gi

R ↔ gi
L and change the

sign of helicities going from neutrino to antineutrino amplitudes.

From eqs. (10) and (11) it is clear that the amplitudes Mνi
±,− and M ν̄i

±,+ are the

only ones that get contribution from both ML and MR. Therefore, these are the only

amplitudes which may have dynamical zeros, while the others will not exhibit any

unless gi
R or gi

L vanish. The conditions that define the dynamical zeros for the helicity

amplitudes are the following:

Mνi
±,− = 0 ↔ cosθ = ∓ me + Eν

me
gi

R

gi
L

− Eν
(12)

and

M ν̄i
±,+ = 0 ↔ cosθ = ± me + Eν

me
gi

L

gi
R

− Eν
(13)

Taking into account that the physical region is restricted by 0 ≤ cosθ ≤ 1, and

the gi
L and gi

R values it is straightforward to arrive to the following conclusions:

i) M ν̄e
++ shows dynamical zeros given by eq. (13) in the energy range

0 ≤ Eν ≤ me/4sin2θW . The upper value corresponds to the phase space point cosθ = 1.

At this end point the other three helicity amplitudes have kinematical zeros as can

be explicitly seen from eq. (10). This is the reason why this dynamical zero shows up

in the unpolarized cross section in the backward configuration as we already pointed

out in eqs. (5) and (6).

ii) M
ν̄µ,ν̄τ

−+ show dynamical zeros given by eq. (13) in the whole range of energies

0 ≤ Eν < ∞ . In this case the helicity amplitudes never vanish simultaneously. Then,

the dynamical zeros will only show up in polarized cross sections.

iii) There are no more solutions of eqs. (12) and (13) in the physical region.

These results are summarized in figure 1, where the dynamical zeros are plotted

in the plane (Eν , cosθ) , together with the kinematical zeros.

It seems difficult to design a ν̄ee
− experiment where electron polarizations are

involved. So we shall concentrate in the dynamical zero defined by eqs. (4) and (6);
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the only one we consider relevant for realistic experimental proposals.

The fact that the weak backward cross section for ν̄ee
− → ν̄ee

− vanishes at leading

order for Eν = me/(4sin2θW ) clearly points out that this kinematical configuration

must be a good place to study new physics or even higher order electroweak radiative

corrections [12]. It is worthwhile to emphasize once again that backward neutrinos

correspond to forward electrons with maximum recoil kinetic energy which is a very

interesting situation from the experimental point of view. This configuration, showing

the dynamical zero, is of particular interest to look for those contributions which add

incoherently to the standard amplitude.

To illustrate the interest of this dynamical zero we shall concentrate in the pos-

sibility of searching for neutrino magnetic moment . In Figure 2 we denote by

(dσW /dT )back the standard contribution in the r.h.s. of eq. (1) and by (dσM/dT )back

the magnetic moment contribution , both for T = Tmax. The solid line represents

the boundary where (dσW /dT )back = (dσM/dT )back for ν̄ee
− → ν̄ee

−. The regions

below the other lines are those for which (dσM/dT )back > (dσW /dT )back for the rest

of neutrino species. It is quite apparent from this figure that electron antineutrinos

with energies around 0.5 MeV give the possibility of studying low values for neutrino

magnetic moment. With other kind of neutrinos this is only possible by going to

much lower values of neutrino energy.

In conclusion we have discussed all the dynamical zeros in the helicity amplitudes

for neutrino (antineutrino)-electron scattering. Particularly interesting is the electron

antineutrino backward configuration, where the only allowed helicity amplitude has

a dynamical zero for Eν = me/(4sin2θW ), so the backward unpolarized cross section

vanishes at lowest order in the standard theory. This result clearly points out a

favourable kinematical configuration to look for new physics in ν̄ee
− → ν̄ee

−. Results

have been presented for the expectations to search for neutrino magnetic moment.
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Figure Captions.

• Fig. 1) Kinematical and dynamical zeros for the helicity amplitudes in the

plane (Eν , cosθ).

• Fig. 2) Regions of dominance of weak or magnetic backward differential cross

sections in the plane (µν , Eν) for ν̄e; there are three different zones divided by

the solid line. For the rest of (anti-)neutrinos there are only two regions, being

the magnetic backward cross section dominant above the corresponding line

( long-dashed for νe, dashed-dotted for ν̄µ and short-dashed for νµ ) and the

opposite below the line.
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