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GENERAL POTENTIAL THEORY OF ARBITRARY WING SECTIONS

By T. TueoporsiEN and 1. E. Garrick

SUMMARY

This report gives an exact treatment of the problem of
determining the 2-dimensional potential flow around
wing sections of any shape. The treatment is based
directly on the solution of this problem as advanced by
Theodorsen in N. A. C. A. Technical Report No. 411.
The problem condenses into the compact form of an inte-
gral equation capable of yielding numerical solutions by
a direct process. '

An attempt has been made to analyze and coordinate
the results of earlier studies relating to properties of wing
sections.  The existing approximate theory of thin wing
sections and the Joukowsky theory with its numerous
generalizations are reduced to special cases of the general
theory of arbitrary sections, permitting a clearer perspec-
tive of the entire field. The method not only permits the
determination of the velocity at any point of an arbitrary
section and the associated lift and moments, but furnishes
also a scheme for developing new shapes of preassigned
aerodynamical properties. The theory applies also to
bodies that are not airfoils, and is of importance in other
branches of physics involving polential theory.

INTRODUCTION

The solution of the problem of determining the
2-dimensional potential flow of a nonviscous incom-
pressible fluid around bodies of arbitrary shape can be
made to depend on a theorem in conformal represen-
tation stated by Riemann almost a century ago,
known as the fundamental theorem of conformal rep«
resentation. 'This theorem is equivalent to the state-
ment that it is possible to transform the region
bounded by a simple curve into the region bounded by
a circle in such a way that all equipotential lines and
stream lines of the first region transform respectively
into those of the circle. The theorem will be stated
more precisely in the body of this report and its sig-
nificance for wing section theory shown—suflice it at
present to state that if the analytic transformation by
which the one region is transformed conformally into
the region bounded by the circle is known, the poten-
tial field of this region is readily obtained in terms of
the potential field of the circle.

A number of transformations have been found by
means of which it is possible to transform a circle into

& contour resembling an airfoil shape. It is obviously
true that such theoretical airfoils possess no particular
qualities which make them superior to the types of more
empirical origin. It was probably primarily because
of the difficulty encountered in the inverse problem,
viz, the problem of transforming an airfoil into a
circle (which we shall denote as the direct process)
that such artificial types came into existence. The
2-dimensionel theoretical velocity distribution, or what
i1s celled the flow pattern, is known only for some
special symmetrical bodies and for the particular class
of Joukowsky airfoils and their extensions, the out-
standing investigators ' being Kutts, Joukowsky, and
von Mises. Although useful in the development of
airfoll theory these theoretical airfoils are based solely
on special transformations employing only a small
part of the freedom permitted in the general case.
However, they still form the subject of numerous
isolated investigations.

The direct process has been used in the theory of
thin airfoils with some success. An approximate
theory of thin wing sections applicable only to the
mean camber line has been developed ? by Munk and
Birnbaum, and extended by others. However, at-
tempts * which have been made to solve the general
case of an arbitrary airfoil by direct processes have
resulted in intricate and practically unmanageable
solutions. Lamb, in his “Hydrodynamics’ (reference
1, p. 77), referring to this problem as dependent upon
the determination of the complex coefficients of a
conformal transformation, states: “‘The difficulty,
however, of determining these coefficients so as to
satisfy given boundary conditions is now so great as
to render this method of very limited application.
Indeed, the determination of the irrotational motion of
2 liquid subject to given boundary conditions is a
problem whose exact solution can be effected by direct
processes in only a very few cases. Most of the cases
for which we know the solution have been obtained by
an inverse process; viz, instead of trying to find a
value of ¢ or ¢ which satisfies [the Laplacian] v?¢=0
or v =0 and given boundary conditions, we take
some known solution of these differential equations

1 See bibliography given in reference 9, pp. 24, 84, and 583.
2 C{. fontnote 1.
7 See Appendix 1 of this paper.
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and inquire what boundary conditions it can be made
to satisfy.”

In a report (reference 2) recently published by the
National Advisory Committee for Aeronautics a gen-
eral solution employing a direct method was briefly
given. 1t was shown that the problem could be stated
in a condensed form as an integral equation and also
that it was possible to effect the practical solution of
this equation for the case of any given airfoil. A
formula giving the velocity at any point of the surface
of an arbitrary airfoil was developed. The first part
of the present paper includes the essential develop-
ments of reference 2 and is devoted to a more com-
plete and precise treatment of the method, in particu-
lar with respect to the evaluation of the integral
equation.

In a later part of this paper, a geometric treatment
of arbitrary airfoils, coordinating the results of earlier
investigations, is given. Special airfoil types have
also been studied on the basis of the general method
and their relations to arbitrary airfoils have been
analyzed. The solution of the inverse problem of
creating airfoils of special types, in particular, types of
specified aerodynamiecal properties, is indicated.

It is hoped that this paper will serve ax a step
toward the unification and ultimate simplification of
the theory of the airfoil.

TRANSFORMATION OF AN ARBITRARY AIRFOIL INTO
A CIRCLE

Statement of the problem.—The problem which this
report proposes to treat may be formulated as follows.
Given an arbitrary airfoil* inclined at a specified angle
in & nonviscous incompressible fluid and translated
with uniform velocity V. To determine the theoreti-
cal 2-dimensional velocity and pressure distribution at
all points of the surface for all orientations. and to
investigate the properties of the field of flow surround-
ing the airfoil. Also, to determine the important
acrodynamical parameters of the airfoil. Of further
interest, too, is the problem of finding shapes with
given aerodynamical properties.

Principles of the theory of fluid flow.—We shall
first briefly recall the known basic principles of the
theory of the irrotational flow ol a frictionless incom-
pressible fluid in two dimensions. A flow is termed
“2-dimensional’” when the motion is the same in all
planes parallel to a definite one, say xy. In this case
the linear veloeity components v and ¢ of a fluid
element are functions of x, i, and ¢ only.

The differential equation of the lines of flow in this
se s

vdr—udy -0

4 By an airfoil shape, or wing section, s ronp vy ineant an elongated stmooth shape
rounded at the leading edge and ensding in a sharpoedge at the rear. Al practieal
airfoils are characterized by a lack of abrupt change of curyvature except for s roumueded

nese and a small radius of curvature st the (il

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

and the equation of continuity is

ou_du_, du_o(-n)
p: Ty YR T Ty
- which shows that the above first equation is an exact
o differential.
If - cis the integral, then
00 e 2
U= oy and z= 52

This function @ is called tlre stream function, and
the lines of flow, or streamlines, are given by the equa-
tion Q- ¢, where ¢ is in general an arbitrary function
of time.

Furthermore, we note that the existence of the
stream function does not depend on whether the motion

is irrotational or rotational. When rotational its
vorticity 1s

.o _ou_ ¢ 0%

(= %c oy or T oy

which i1s twice the mean angular velocity or “rotation’”
of the fluid clement. Hence, in irrotational flow the
streain function has to satisfy

0°Q, Q _ "
bT*jyr“ (29
Then there exists a velocity potential > and we have
or_ oW
or ' oy .
or_ o0 W
oy  Ou
The equation of continuity is now
P P .
ot oY ()

Equations (1) show that

or 0@ dF ) _

or or " Oy oy

so that the Tamily of curves
I’ ==constant, Q= constant

cut orthogonally at all their points of intersection.
For steady flows, that is, flows that do not vary
with time, the paths of the particles coincide with the
streamlines so that no fluid passes normal to them.
The Bernoulli formula then holds and the total pres-
sure head I7 along a streamline is a constant, that 1s

Lp*+p' =11
where p’ is the static pressure, v the velocity, and p
the density. 1f we denote the undisturbed velocity
at infinity by V, the quantities p’—p’ . by p, and
% p V2 by g, the Bernoulli formula may be expressed as

() W
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The solutions of equations (2) and (27}, infinite in
number, represent all possible tvpes of irrotational
motion of a nonviscous incompressible fluid in two
dimensions.  For a given problem there are usoally
certain specifiecd boundary conditions to be satisfied
which may be sufficient to fix a unigue solution or a
family of solutions.  The problem of an airfoll moving
uniformly at a fixed angle of incidence in a fluid field
is identical with that of an airfoil fixed in position and
fluid streaming uniformly past it.  Our problem is
then to determine the functions I and @ so that the
veloeity at each point of the airfoil profile has a diree-
tion tangential to the surfuce (thut is, the airfoil con-
tour is itself a streantline) and so that at infinite dis-
tance from the airfoil the fluid has a constant veloeity
and direction.

The introduction of the complex variable, Ty,
simplifies the problem of determining I and . Any
analytic function w(z) of a complex variable z, that is,
funetion of z possessing a unique derivative in a

=

OF ARBITRARY

WING SECTIONS

cach real functions of z and y. Suppose now in the
zy complex plane there is traced a simple curve f(z).
(Fig. 1.)  Each value of z along the curve defines a
point w in the w plane and J(z) maps into a curve f(w)
or F(z).  Because of the special properties of analytic
funetions of a complex variable, there exist certain
speeinl relations between f(2) and F(2).

The outstanding property of functions of a complex
variable analytic in a region is the existence of a unique
derivative at every point of the region.

dw

dz

lim w—w' .
= pelr
"= pe

-_}3

or
dw = pe'rdz

This relation expresses the fact that any small curve
through the point z is transformed into a small
curve through the point w by a magnification p
and a rotation v; i. ¢, in Figure 1 the tangent t will
coincide in direction with 7 by a rotation y—g8—a.

et

w’

H
z Plore w Plare \
N N /S a+ 3h
R g - Scareh
Yy Yy =4 8= a+h
§ T (//
- \R=a+t3h
‘\R=a+2h
R=a+h

A=a

7 x 4 £ o x

Firivre L-- Conformal property of analytic funetions

region of the complex plane, mayv be separated into its
real and imaginary parts as w(@)=w@+i) =", 1)
+iQ(r, ), determining functions 2 and @ which may
represent the velocity potential and stream function of
a possible fluid motion.  Thus, analytic functions of
complex variable possess the special property that the

component functions 2 and @ satisfy the Cauchy-<

Riemann equations (eqq. (1)), and each therefore also
satisfies the equation of Laplace (eq. (2)).  Conversely,
any function P, y) +iQ(r, ) for which P and ¢
satisfy relations (1) and (2) may be written as wiz +
iyy=w(z). 'The cssential difficulty of the problem is
to find the particular funetion w(z) which satisfies the
special boundary-flow conditions mentioned above for
a speeified airfoil.

The method of conformal representation, a geomet-
rie application of the complex variable, is well adapted
to this problem. The fundamental properties of trans-
formations of this type may be stated as follows:
Consider a function of a complex variable z=xz+1y,
say w(z) analytic in & given region, such that for each
value of z, w(z) is uniquely defined. The funetion
w(z) may be expressed as w=£+in where £ and 5 are

Fiovre 2. —0Orthogonal network oblained by a conformal transformation

This is also true for any other pair of corresponding

curves through = and w, so that in general, angles
between corresponding curves are preserved. In par-

. I
{

ticular, zz’’ orthogonal to transforms
into a curve ww’’ orthogonal to ww’.

It has been seen that an analytic function f(z) may
be written ’(x, )+ 1Q(r, ) where the curves P =con-
stant and @ --constant form an orthogonal system.
If then f(2) is transformed conformally into f(w)
= P{E 7)) +1Q(E, 7) that is into flw(2)]=F(2)—=R(x, y)
+14S5(r, ¥), the curves P(r, i) = constant, Q(x, y) = con-
stant map into the orthogonal network of curves
R(r, y) - constant, S(r, y) = constant. (Fig.2.) Ifthe

the trans-

L curve

do! . .
mn"mh(‘f:txonJ‘ (l~£ p 1s zero at a point w,

formation at that point is singular and ceases to be
conformal.

We may use the method of conformal transforma-
tions to find the motion about a complicated boundary
from that of a simpler boundary. Suppose w(z) is a
function which corresponds to any definite fluid motion
in the z plane, for instance, to that around a circle.
Now if a new variable { is introduced and z set equal
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to any analytic function of ¢, say z=£({), then w(z)
becomes w{f({)] or W({) representing a new motion in
the ¢ plane. This new motion is, as has been seen,
related to that in the z plane in such a way that the
streamlines of the z plane are transformed by z=f(¢)
into the streamlines of the { plane. Thus, the con-
tour into which the circle is transformed represents
the profile around whieli the motion W(¢) exists. The
problem of determining the flow around an airfoil is
now reduced to finding the proper conformel transfor-
mation which maps a curve for which the flow is known
into the airfoil.  The eristence of such a function was
first shown by Riemann.

We shell first formulate the theorem for a simply
connected region ® bounded by a closed curve, and
then show how it is readily applied to the region
external to the closed curve. The guiding thought
leading to the theorem is simple.  We have seen that
an analytic function may transform a given closed
region into another closed region. But suppose we
are given two separate regions bounded by closed
curves—does there exist an analytie transformation
which transforms one region conformally into the
other? This question is answered by Ricmann’s
theorem as follows:

Riemann’s theorem.—The interior T of any simply
connected region (whose boundary contains more than
one point, but we shall be concerned only with regions
having closed boundaries, the boundary curve being
composed of piecewise differentiable curves [Jordan
curve], corners at which two tangents exist being per-
mitted) can be mapped in a one-to-one confornial
manner on the interior of the unit circle, and the
analytic ® function ¢=f(z) which eonsumunates this
transformation becomes urigue when a given interior
point z, of T and a direction through z, are chosen to
correspond, respectively, to the center of the circle and
a given direction through it. By this transformation
the boundary of 7 is transformed uniquely and con-
tinuously into the circumference of the unit cirele.

The unit cirele in this theorem is, of course, only a
convenient normalized region. For supposc the re-
gions 77 in the ¢ plene »nd T, in the w plane are
transformed into the unit cirele in the z plane by
$=f(2) and w= F(z), respectively, then 7T, is trans-
formed into 7, by {=®(w), obtained by eliminatiny =
from the two transformation equations.

In airfoil theory it is in the region external to a closed
curve that we are interested. Such a region can he
readily transformed conformally into the region in-
ternel to a closed curve by an inversion. Thus, let us
suppose & point z, to be within a closed curve B whose

! A region of the complen plane is simply connected when any closed contour tying
entirely within the recion may e shrunk tou point without passing eut of the region.
. relerence 3. p. 367, where a proof of the theorem based on Green's function s
given.

© Attention is here directed to the fact that an analytic inction is developable at
a paint in a power series convergent in any circle ubout the point and entirely
within the region.
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externel region is T, and then choose a constant &
such that for every point z on the boundary of T,
z— 2y >k. Then the inversion transformation w=

~_kz_o will transform every point in the external region
I' into a point internal to a closed region T’ lying
entirely within B, the boundary B mapping into the
boundary of 1", the region at infinity into the region
near z. We may now restate Riemann’s theorem as
follows:

One and only one analytic function ¢ =£(z) exists by
means of which the region I' external to a given curve
B in the ¢ plane is transformed conformally into the
region external to a cirele € in the z plane (center at
z=0) such that the point = = goes into the point

df(z)
dz

= and also =1 at infinity. This function can
be developed in the external region of ('in a uniformly
convergent series with complex coeflicients of the form

F—m ——f(z)—m*—:—i-(—':ﬁ-gi (4)

by means of which the radius R and also the constant
m are completely determined. Also, the boundary B
of I' is transformed continuously and uniquely into the
circumf{erence of (.

It should be noticed that the, transformation (4) is
a normalized form of a more general series

i a;
Com=daota_z+ '+ o+
~ “

and is obtained from it by a finite translation by the
vector qo and a rotation and expansion of the entire
field depending on the coefficient a_;. The condition
a_;=1 13 necessary and sufficient for the fields at
infinity to coineide in magnitude and direction.

The constunts ¢; of the transformation are functions
of the shape of the boundary curve alone and our
problem is, really, to determine the complex coeffi-
ciends defining a given shape. With this in view, we
proceed first to a convenient intermediate trans-
formation.

The transformation §‘::’+Z;-—'I‘his initial trans-

formation, although not essential to a purely mathe-
matical solution, is nevertheless very useful and
important, as will be seen. It represents also the key
transformation leading to Joukowsky airfoils, and is
the basis of nearly all approximate theories.

Let us define the points in the ¢ plane by ¢=rx+iy
using rectanguler coordinates (z. y), and the points in

the 2 plane by 2z’ =ae¥** using polar coordinates
{ue¥, 8). The constant ¢ may conveniently be con-

sidered unity and is added to preserve dimensions.
We have
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and substituting z’ = qe¥* %
¢ =2a cosh (¢ +10)
¢ =2a cosh ¢ cos 8+ 2ia sinh ¢ sin ¢

we obtain
or
Since ¢ =z +1dy, the coordinates (z, i) are given by

z=2a cosh ¢ cos 8

(6)
That is, if P

y=2a sinh ¢ sin ¢

If ¢y =0, then 2’ =ae” and ¢ =2a cos 6.

and P’ are corresponding points in the { and 2’ planes, '
respectively, then as I’ traverses the z axis from 2a to

—2a, P’ traverses the circle ¢e® from =0 to 6=,
and as P retraces its path to {=2a, P’ completes the
circle. The transformation (5) then may be seen to

map the entire ¢ plane external to the line 4a uniquely
into the region external (or internal) to the circle of
radius e about the origin in the 2’ plane.

Let us invert equations (6) and solve for the elliptic
(Fig. 3.)

coordinates ¢ and 6. We have

z' Flane

F16urE 3.—Transformation by elliptic coordinates

T

cosh '/':2(1 cos @
. - Yy

sinh ¢_2a sin 8

and since cosh *y —sinh 2y =1

2 2
()~
2a cos 6 2a sin @

or solving for sin®¢ (which can not become negative),

2Sln20:p+\/p2+(;—l> (7
2 2
where p:l—(%) —(%1)
Similarly we obtain
LAY y P
<2a c0§57> +(2(1 sinh ¢> =1
or solving for sinh 2y }
2 sinh 2y — — p+ \/1)2 + (g)z 8)

We note that the system of radial lines 8= constant
become confocal hyperbolas in the { plane. The circles
¢ = constant become ellipses in the { plane with major
axis 2a cosh ¥ and minor axis 2e¢ sinh¢. These orthog-
onal systems of curves represent the potential lines and
streamlines in the two planes. The foci of these two
confocal systems are located at (+2q, 0).

Equation (8) yields two values of ¢ for a given
point (r, ), and one set of these values refers to the
correspondence of (r, y) to the point (ae¥, 8) external to
a curve and the other set to the correspondence of
(r, ) to the point (ee ¥, —6) internal to another curve.
Thus, in Figure 3, for every point external to the
ellipse , there is a corresponding point external to the
circle €}, and also one internal to C,’.

The radius of curvature of the ellipse at the end of

3 2
sinh *y or for small value- of ¢,

p=2ay®. The leading edge is at

2
2a cosh n,bz:?a(l + %);'Q(H g

Now if there is given an airfoil in the ¢ plane (fig. 4),
and it is desired to transform the airfoil profile into a
curve as nearly circular as possible in the 2z plane by
using only transformation (5), it is clear that the axes
of coordinates should be chosen so that the airfoil
appears as nearly elliptical as possible with respect to
the chosen axes. It was seen that a focus of an
elongated ellipse very nearly bisects the line joining
the end of the major axis and the center of curvature
of this point; thus, we arrive at a convenient choice of
origin for the airfoil as the point bisecting the line of
length 4, which extends from the point midway be-
tween the leading edge and the center of curvature of
the leading edge to & point midway between the
center of curvature of the trailing edge and the trailing
edge. This latter point practically coincides with the
trailing edge.

The curve B, defined by ae¥*, resulting in the 2’
plane, and the inverse and reflected curve B’, defined
by ae *~*, are shown superposed on the [ plane in
Figure 4. The convenience and usefulness of trans-

Frivke 4. —-Transformation of airfoil into a nearly circular contour

formation (5) and the choice of axes of coordinates
will become evident after our next transformation.

®
Cn
Z o
02

!

=2ze

The transformation z .—Consider the trans-

formation z’ = ze/® where f(2) = 2 (-; Each exponential
0

Cn

4

n . .
term ¢ “ represents the uniformly convergent series

a1 /el 1 /e \™
rgg(3) (@ o
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where the coeflicients e, = .1, i, are complex num- |

|
bers. For f(z) convergent at all points in a region
external to a certain circle, = has a unique real abso- |
lute value {z]e”@1 in the region and its imaginary part |
is definitely defined except for integral multiples of
When ==, =’ The constant ¢ =4+
Biy 1s then the determining factor at infinity, for the
atield t infinity is magnified by e and rotated by the
angle By, Tt is thus clear that if it 1s desired that the
regions at infinity be identical, that is, 2=z at infinity,
the constant ¢, must be zero.  The constants e; and ¢
also play important réles, as will be shown later.
We shall now transform the closed curve ™ =/
into the cirele z=we¥t (radius ae¥o, origin at center)
by means of the general transformation {reference 23

REIN 2= ze™.

sqge¥i

o ) |
z (10)
1~

Je

which leaves the fields at infinity unaltered, and we
shall obtain expressions for the constants .4, B3, and
Yo.  The justification of the solution will be assured by

Cn
~N

@
~

the actual convergence of » sinee if the solution

exists it 1s unique.
By definition, for the correspondence of the bound-
ary points, we have

2t (0= 0) (o |
S, iy |
Also P i
Consequently

n

b Yok 18- ¢) =SB
1 <

where sesaedytte

On writing
have

R(cos

¢l sin ¢) where IE--ue¥,, we

=+ 10— ) — .“:r:(A,z + I'B,,)I—l—{n(('os N — 8N ng)
1

Equating the real and imaginary parts of this relation,
we obtain the two conjugate Fourier expansions:

¢ o :% [}‘f‘ cos net ﬁ: sin ngﬁjl (11)
0—p-= gl’, B;j; COS N %;2 sin n ga] (12}
From equation (11), the values ol the coefficients 11?2:

?]?;3’ and the constant ¢, are obtained as follows:
};:=l ?}rw cos ne de (a)

T
o

5;’:=71r T{x]/ sin ne de (b)

T Unless otherwise stated, ¢ and @ will now be used in Lhis restricted sense, i, e, a8
Hefining the Fonndary curve itself, aed nor all points in the 27 plane.
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)

&
¢0=.)Lf¢d‘ﬂ (e)
i 0

The evaluation of the infinite mumber of constants
ax represented by equations (a) and (b) can be made
to depend upon an important single equation, which
we shall obtain by eliminating these constants from
equation (12).

Substitution of (a) and (b) for the coeflicients of
equation (12) gives

RE

(0—¢)’ cos ne' f Y(e) sin nede
0

~l4s

2r
=sin ng’ S ¢(¢) cos np de
0

where () =y and (8~ ¢)’ represents 8—¢ as a func-
tion of ¢', and where ¢’ is used to distinguish the angle
kept constant while the integrations are performed.
The expression may be readily rewritten as

9
12~ . .
(8*(,9)’:; ‘.1, J Y () (sin neg cos ng’ —cos nesin ny’ jde
8]
1 o 271'
=_ T S sinnle—¢) de
1 U '
But
o
n 1 s cos (2n+1) (—‘€—~_)‘p)
Ssin e - ¢’y =5 cot 4 H e e —
! - - 2sin ¥ %
2
Then
1' ] 27]’ ) 7
g e lim ) 1 . Y@
0 ¢) s o0 |90 l‘)/'\//(tp) cot 9 de
— A
| 27 cos(2n+1) fe - ¢)
—on S ¥(e) = de
=0 sin £ 5

The first integral is independent of n, while the latter
one becomes identically zero.
Then finally, representing ¢ —6 by a single quantity
€, Viz. ¢ P =e¢=¢(p), we have
1 27
S ¥(e) cot ¥
0
By solving for the cocfficients in equation (12) and
substituting these in equation (11) it may be seen that
a similar relation to equation (13) holds for the func-
tion ¢ (¢).

’
—¢

2_

elg') =~ de (13)

2w

1 O
5= J e(g) cot
il

o—¢
2

23
, . 1°T )
¥le) de+ ‘:’[)f Ylp)ydy (14)
The last term is merely the constant iy, which is, as
has been shown, determined by the condition of mag-
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nification of the z and 2 The

‘)
corresponding mtvgml—— f e(¢) de does not appear in

fields at infinity.

equation (13), being zero as a necessary consequence
of the coincidence of directions at infinity and, in
general, if the region at infinity is rotated, is a constant
different from zero.

Investigation of equation (13).—This equation is
of fundamental importance. A discussion of some of
its properties is therefore of interest. It should be
first noted that when the function ¢(¢) is considered
known, the equation reduces to a definite integral.
The function ® () obtained by this evaluation is the
“conjugate’’ function to ¥(¢), so called because of the
relations existing between the coefficients of the
Fourier expansions as given by equations (11) and (12).
For the existence of the integral it is only necessary
that ¥(¢) be piecewise continuous and differentiable,
and may even have infinities which must be below
first order. We shall, however, be interested only in
continuous single-valued functions having a period 2w,
of a type which result from continuous closed curves
with a proper choice of origin.

If equation (13) is regarded us a definite integral, it is seen
to be related to the well-kuown Poisson integral which solves
the following boundary-value problem of the circle. (Reference
3.) Given, say for the z plane a single-valued function u(R,r)
for points on the circuinference of a circle w= Reir (center at
origin), then the single-valued continuous potential function
u(r,e) in the external region z=re® of the circle which assumes
the values u (R, 7) on the circumference is given by

- R2

TZORr cos (a—r) d

ulra) =y, f ulker) g
and similarly for the conjugate function v(r,0)

/‘ v 1)/ dr

v(r, a)—-——

rt— R?
R4 18— 2Rr cos (o—71)

These may be written as a single equation

z+w

u(r,o) +ivir,o) f(z)—;(Jf w) dw

where the value f(2) at a point of the external region z=re' is
expressed in terms of the known values f(w) along the cireum-

ference w=Ke'". In pnrticular, we may nhote that at the
boundary itself, since z +z: cot (i: 7), we have
; i 2m - (o—1)
u(R,0) +iv(R,0) = —_—,;f fulR,)-+iv(l,7)] cot 5~ dr,
=70

which is a special form of equations (13) and (14).

The quantity ¢ is immediately given as a function
of 8 when a particular closed curve is preassigned, and
this is our starting point in the direct process of trans-
forming from airfoil to eircle. We desire, then, to find
the quantity ¥ as a function of ¢ from equation (13),
and this equation is no longer a definite integral but an

«I'his function will be called “conformal angular distortion’ function, for reasons
evident later.

integral equation whose process of solution becomes
more intricate. It would be surprising, indeed, if
anything less than a functional or integral equation
were involved in the solution of the general problem
stated. The evaluation of the solution of equation (13)
is readily accomplished by a powerful method of suc-
cessive approximations. It will be scen that the
nearness of the curve ae*** to a circle is very signifi-
cant, and in practice, for airfoil shapes, one or at most
two steps in the process is found to be sufficient for
great accuracy.

The quantities ¥ and e considered as functions of ¢
have been denoted by ¥{(¢) and e(p), respectively.
When these quantities are thought of as functions of ¢
they shall be written as ¢(6) and €(8), respectively.

Then, by definition
¥ (6) =¢le(6)] (15)
wnd ) =d(0)
Since ¢ —f=¢, we have
8(p) = o —e(o) .
() =0+%(0) } (16)

We are seeking then two functions, ¢(¢) and e(e),
conjugate in the sense that their Fourier series expan-
stons are given by (11) and (12), such that Yie @] -
¥(0) where ¢(8) is a known single-valued function of
period 2.

Integrating equation (13) by parts, we have

27

j‘ log sin =" ¢ d¢(¢) do

1 Q7
== 13
ele”) - (137
- ‘P,
2
¢=27+ ¢, but we may use the interval 0 to 2= for ¢
with the understanding that only the real part of the
logarithm is retained.

Let us write down the following identity:
=log sin

The term log sin ¢ is real only in the range ¢ =¢” to

. ¢
log sin *;

a)—(8+&)
08 (ﬂel»
+log ——— —Td
s e

A 0+e)

+log " 0+e)—(0+e1)'
‘)

e — 2 - 17)
.o ~log OTE) @Tany) (7
9
&) —(0+&) O (0+e’
ICRESENURES PGS BED
+log o —tlog T e
| i O &) ~ (05 &) sin @& —OF 8

2

‘ where in the last term we recall that §-+€@)=¢(8); and
i where it may be noted that each denominator is the
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numerator of the preceding term. The symbols &
(k=1, 2, ..., n) represent functions of 8, which thus
far are arbitrary.®

Since by equation (15) ¢(8)
corresponding elements d8 and de

d¥le) 4, .. 00
T«p d(p-- de de
Then multiplying the left side of equation (17) by

:' dw(‘p) de and the right side by - dlﬁlgﬂ

blatmg over the ]wrlod 0 to 27 we obtain

8- 077 d¢(0) do+

dé# and inte-

elo(0))=¢(0 f log sin
. ((9+ &) — (0+e)
L2 i S A3 0)
f log . g = 6Ty do T
sin 5
> 0t E) — (B ted)’
<= 2 dy (8) o
f l"' (0+en)—(o+ &) do e (18)
where k=1,2, . . . a.
We now choose the arbitrary functions &/(6°) so that
&) =0
and

O+ea )—(B+e_,) dg@)
T ‘de dé

1‘21r

@) == S log sin (19)
‘II’O P4

where k=1,2, . . ., n.

Equation (18) may then be written
) =ttat(&—a) . . .t (G &)+(E—a) (20)
or €O =N+NF .. Mt

where A\ (0’) =& —&_; and 1s in fact the & termn of
equation (18). The last term we denote by A

From equation (19) we see that the function (9’) is
obtained by a knowledge of the preceding function
é-1(8'). For convenience in the evaluation of these
functions, say

B+e)— (0+e) d%(

ex41(0) = f log sin— 5 ! do
we introduce a new variable ¢, defined by

ec(8) =0+ €.(0) k=12,...,n)
Then

E1[0(p"r )] =¥ (0’0

_l ( er— @'y dﬂe(ﬂﬂk)] des @

™ 2 d(p
From the definition of ¢, as
er(0) =8+ &(8)

log sin 2=

? The symbol (8+ex)’ represznts & +¢x(¢) and is used to denote the same function
of & that 8+é4(M) is of 6. The variables 8 and & are regarded as independent of each
other
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=y[e(0)] we have for

we may also define the symbol ¢,(¢,) by

8(es)

= o~ exleon)

where
&(0) =0 (6)]

It is important to note that the symbols &, ¢, e*
denote the same quantity considered, however, as a
function of 8, ¢, v«_\, respectively.

The quantitics (¢,—&.,) in equation (20) rapidly
approach zero for wide classes of initial curves ¢(8),
i. e, ¢¥[0(¢)] very nearly equals ¢[6(gc.s)] for even
small &’'s.  The process of solution of our problem is
then one of obtaining successively the functions ¢(8),
¥o(e)], Plo(e)], ¥(6(en)] where ¢[6(¢,)] and
€.[0(p,)] become more and more “conjugate.” The
process of obtaining the successive conjugates in prac-
tice is explained in a later paragraph. We first pause
to state the conditions which the functions ¢, are sub-
ject to, necessary for a one-to-one correspondence of
the boundary points, and for a one-to-one corre-
spondence of points of the external regions, i. e., the
conditions which are necessary in order that the
transformations be conformal.

In order that the correspondence between boundary
points of the circle in the z plane and boundary points
of the contour in the z’ plane be one-to-one, it is
necessary that 8(¢) be a monotonic increasing function
of its argument. This statement requires a word of
explanation. We consider only values of the angles
between 0 and 2x. For a point of the circle boundary,
that is, for one value of ¢ there can be only one value
of 6,1. ¢., 8(p) is always single valued. However, ¢(8),
in general, does not need to be, as for example, by a
poor choice of origin it may be many valued, a radius
vector from the origin intersecting the boundary more
than once; but since we have already postulated that
¥{0) is single valued this case can not occur, and ¢(8)
is also single valued. If we decide on a definite direc-

. . . .. de
tion of rotation, then the inequality deo 2 0 expresses

the statement that as the radius vector from the origin
sweeps over the boundary of the circle C, the radius
vector in the 2’ plane sweeps over the boundary of B
and never retraces its path.

The inequality

do_, delo)
de~ 17 dp 20
corresponds Lo
de(p) |
de

Also, the condition

de _ de(8)
do =1+ 20

corresponds to
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d By e i ) w ‘e e ; he
Mult\plvm;_ dé h\ de o ot .I_V cqunflon (10" \\e‘hnu on the boundary of the
l do circle, g(Re'*) = — Yy — te, and
de( de 6) Vo
<el) (14049 9 iy dl(e) ~ic(o)]
1) (%) Sz BT T Ree do
This r(‘luti(m is shown in Figure 5 as a rectangular ,
e  dele)  dyly)
=——po
l Epd de de
1’ the first term on the right-hand side being real and the
last term a pure imaginary. We have already postu-
tated the condition

2

/ i

L - de

2t Aol s dg |
s ; .

.2 i

f

N S ood . gl
Firo.UkE 7. -The quantity fl:: as a function nfli;

hyperbola.  We may notice then that the monotonie |

. , . de .
behavior of ¢(8) and #(¢) requires that do remaimn on

the lower branch ' of the hyperbola, 1. e.,
de e
C=le= ! (22)
It will be seen later that the limiting values
(le(«:) (l€(¢)_ Cwofi e (le= - glE: ‘1')
dg =1 dg ( “CrdeT Trde

correspond to points of infinite velocity and of zero
velocity, respectively, arising from sharp corners in the
original curve,

The condition for a one-to-one conformal corre-
spondence hetween points of the external region of the
circle and of the external region of the contour,in the
2 plane may be given (reference 3, p. 98 and reference
6, Part 11) as follows: There must be a one-to-one |
boundary point correspondence and the derivative of

$ Cn
- n
the analytic function 2" =ze' 7 given by equation (10)

must not vanish in the region.  That is, writing ¢(z)

@

Y
forx =n
1 ~M

2

we have

or since

7
(.li =@ 1~z
12
the integral transcendental function 2@ does not vanish
in the entire plane, the condition is equivalent to

z(l{’l(:i);é —1 for || >R

) #=0 for |z| >R

I The valtes of the upper Lrunch of the hyperbola arise when the region internal
to the curve ge v =8 is transformed into the externsl region of a cirele, but may also
there be avoided by defininz e =y 18 instead of p—8

TN 34 13

o< de

<
=de= !

as necessary for a one-to-one boundary point corre-

dg(2)

Now by writing z=£+in and =z 'd\;:

biQ(¢,m), we note that (Alfi(fl

spondence.

I’(f,ﬂ) .

values of a harmonic funetion P(,n) and therefore this
funetion assumes its maximum and minimum values
on the boundary of the eircle itself.  (Reference 3, p.

dg(2)

Hence 2z
dz

gives the boundary

223.) can never become —1 in the

’

externak region, 1. e., %ﬁ can never vanish in this
region.

At each step in the process of obtaining the succes-
sive conjugates we desire to maintain a one-to-one
correspondence between 6 and ¢, i. e., the functions
8(ee) and ¢ (8) should be monotonie increasing and are
henece subject to n restriction similar to equation (22),
viz,

—de (227)
“de T )

The process may be summed up as follows: We con-
sider the function (@) as known, where ¢(8) is the
functional relation between ¢ und 8 defining a closed
curve aev . The conjugate of (6) with respect to 8
is &(8). We form the variable ¢, =8+ €(8) and also
the function ¢[8{¢,)]. The conjugate of ¥[8(p,)] with
respect to ¢ is €*:(g) which expressed as a function of
# is €(0). We form the variable ¢,=0+¢(8) and the
function ¥[8{¢,)]. The conjugate of ¥[8(e:)] 18 e*(e2),
which as a function of 8 is &(8), etc. The graphieal
criterion for convergence 1s, of course, reached when
the function §{8(e,)] is no longer altered by the
process. The following figures illustrate the method
and exhibit vividly the rapidity of convergence. The
numerical calculations of the various conjugates are
obtained from formula I of the appendix.

In Figure 6, the () curve represents a circle re-
ferred to an origin which biseets a radius (obtained
from un extremely thick Joukowsky airfoil) (see p. 200)
and has numerical values approximately five times
greater than occur for common airfoils. The ¥(p)
curve is known independently and is represented by
the dashed curve. The process of going from ¢(8) to
Y(p) assuming ¢¥(p) as unknown is as follows: The
function ¢ (@), the conjugate function of ¥ (8), is found.
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The quantity ¢ is then plotted against the new variable
w1 =0+%(0) (i. e., each point of ¢(8) is displaced hori-
zontally a distance &) and yields the curve ¥{8(e,)].
(Likewise, &(0) is plotted against ¢, yielding e (¢).)

is drawn at P’.
The quantity ¢ is now plotted against the new variable
e2=6+%(8) (i. e., each point of ¥(8) is displaced hori-
zontally a distance &) giving the function ¢[d(e,)].

This process ylelds the function &/8).

b

T

-

(€8]

g g
|

g
Pl P |

‘ ! I

[

=
v
Argument (8, ¢., ¢., ¢ in radions)

2.0 25 3.0 35 4.0 45 50 &m

FIaUkE 6.—The process of obtaining successive conjugates

The function e*;(¢;) is now determined as the conjugate i This curve is shown with small cireles and coincides
function of ¢[8(¢)]. This function expressed as a | with ¥(¢). Further application of the process can
function of §1is e*:fp, (0)] =& (8). Ttis plotted as follows: vield no change in this curve. It may be remarked

.0

T I | T I
{a) LA L €8 e €(9) A =
A AT s SR
i l: v H \) {:’ \ . {, *
‘ \ h J / X ; , 3
o + | |
D ’ D / » \ ' 4
- o | ,"/ | 1IN ,'/ ) ‘\ N(- L NN ’/
PR AN N \\\_4:/
- 20—~ 1 [ S U S P

ll / ¥
J NN S y/ ‘ AN I N
\Y S | ‘ A \Y
L
~ 3In an
e
FIGURE 7.—Process applied to transforming a square into a circle

At a point P of ¢*, (¢,) and Q of ¢, (1) corresponding to
a definite value of ¢, one finds the value of ¢ which
corresponds to ¢, by a horizontal line through @ meet-
ing &(6) in Q’; for this value of 9, the quantity e at P

here that for nearly all airfoils used in practice one
step in the process is sufficient for very accurate results.

As another example we shall show how a square
(origin at center) is transformed into a circle by the
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method. In Figure 7 the ¢(8) curve is shown, and in
Figure 8 it is reproduced for one octant.! The value
is ¢(@) =log sec 8. The function ¥[f(¢)] is shown
dashed; the function ¢[8(¢.)] is shown with small
crosses; and ¢[6(e;)] is shown with small circles. The
solution ¥(¢) is represented by the curve with small
triangles and is obtained independently by the known
transformation (reference 3, p. 375) which transforms

the external region of a square into the external region

of the unit circle, as follows:

w(z) fwfi :3[1 + JG)]

where I’(;) denotes a power series. Comparing this

with equation (10), we find that ¢ () except for the
constant y, is given as the real part of Iogl:l +I’<}2)]

evaluated for z=e', and that e(e) is given as the
negative of the imaginary part. It may be observed
in Figure 8 that the function §[{6(¢:)] very mnearly

x = ¢19(¢2/
.30 = ¥/6rp, )]
_ ,A Yip) ]
o5t b —
20— L o sl
¥ ]
15

AO0r— '
/

4 I
.05 S —
A A
ﬂ/‘ : "
o / .2 .3 4 .5 & 7 x.8
Argument (8,p,,9,,9,.9 i radians) ' 4

¥1auRrE 8.— Process applied to transforining a square into a circle

equals ¥(p). The functions e(¢) and E(B) are shown in

Figure 7 (a); we may note that at o= Z’ ‘which corre-

sponds to a corner of the square, a—~1 or also,
de
de

= w,

11 Because ol the symmetry inveolved only the interval 0 to ; neerd be used, The

integral in the appendix can be treated as

2x o
= 7 oL,

o)== 3

*
3
Or Ylpilcot 2p—¢’) —cot 2 e t¢’)]de

'!'v.)

It may be remarked that the rapidity of convergence
is influenced by certain factors. It is noticeably af-
fected by the initial choice of &(8). The choice
&(0) == 0 implies that 6 and ¢ are considered to be very
nearly equal, 1. e., that ae¥"* represents a nearly cir-
cular curve. The initial transformation given by
equation (5) and the choice of axes and origin were
adapted for the purpose of obtaining a nearly circular

P=ae’”
Q=aer”

(b)

FiuURE 9.—Transkation by the distance OM

curve for airfoil shapes.© If we should be concerned
with other classes of contours, more appropriate
initial transformations can be developed. TIf, how-
ever, for a curve ae**¥ the quantity e=¢—6 has large
values, either because of a poor initial transformation
or because of an unfavorable choice of origin, it may
occur that the choice €(8) =0 will yield a function

e (¢,) for which :”}% may exceed unity at some points,
thus violating condition (22’). Such slopes can be
replaced by slopes less than unity, the resulting func-
tion chosen as &(8) and the process continued as
before.”? Indeed, the closer the choice of the function
&%(0) is to the final solution €(8), the more rapid is the
convergence. The case of the square illustrates that
even the relatively poor choice &(6) =0 does not appre-
ciably defer the convergence.

The translation 2z, —=z+e¢.—Let us divert our
attention momentarily to another transformation
which will prove useful. We recall that the initial
transformation (eq. (5)) applied to an airfoil in the ¢
plane gives a curve B in the 2’ plane shown schemati-
cally in Figure 9(a). Equation (10) transforms this
curve into a circle C about the origin 0 as center and
yields in fact small values of the quantity ¢ —8. We
are, however, in a position to introduce a convenient
transformation, namely, to translate the circle € into
a most favorable position with respect to the curve B
(or vice versa). These qualitative remarks admit of a
mathematical formulation. Tt is clear that if the
curve B itself happens to be a circle ¥ the vector by
which the circle € should be translated is exactly the
distance bctween centers. It is readily shown that

11 The first step in the process is now to define po=0+e(8) and form the function
V[#(ee)]. The conjugate function of ¢{8(eo)] is e*s{¢we) Which expressed as a fuaction
of 8 is €,(f), ete.

1* See p. 200,
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then equation (10) should contain no constant term.
We have

czcn
z % (10)
2 =ze
a, lre\ Ca
=z(1+—+;, )+ .. (1+7+ e )X
z 21\z z
(1+“+— )pw
=2(1+12+1:§+ R ) (10a)
where
ki=c
2
kz:('2+g‘
cfl
k3 C3 60t ili‘

1t is thus apparent that if equation (10) contains no
first harmonic term, i. e., if

Rﬂw
e=A,+iB/= . S yerdep=0,
0

the transformation is obtained in the so-called normal
form

st by (23)
21 <1

This translation can be effected either by substituting
a new variable z, =z +¢,, or a new variable 2, =2z"—¢,.

JO—1
.05}
€ 0
~05 rl
- 10
-/5
20 F
A5t
§.10
.05
o
.05
§ 0 ,
-05 :
75 pt {9
10 S5 gl N B
¥.05

o 5

memfmen

.

x 35 40 45 50 55 ’Zrn

4

.0 15 20 25
]
FiGURE 10.—The ‘21‘0} and ¢18)) curves (for Clark Y airfoil)

This latter substitution will be more convenient at
this time. Writing

2 =aent oo =qert® and 2/ =ae¥ Y

we have
aeW1t Bl = go¥ it goytis

The variables ¢, and 8,, can be expressed in terms of |

¥, 6, v, and 8. TIn Figure 9(b), P is a point on the B

1 These cunstants can be obtaived in a recorsion form.  See footnote 16,
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curve, 1. e., OFP =ae¥, PQ represents the translation
vector ¢ =-aet? (Q is ae¥t® and angle PPOQ is
denoted by u. Then by the law of cosines

e =gt 4 e*r — 2eve7 cos (6—6) (a)
and by the law of sines

_evsin (6—4)

sin u P

e ~¥ sin (§—6)
1—e¥¥ cos () (b)
In Figure 10 are shown the ¢(8) and &(8) curves for the
Clark Y airfoil (shown in fig. 4) and the ¢,(6,) and
& (6;) curves which result when the origin is moved
from 0 to M. It may be noted that &(8,) is indeed
considerably smaller than €(#). It is obtained from

or f,=8+pu=8+tan™!

2

gy =L i
(t(’ 6) = o {l,’q(‘p) cot, 5 d‘p
and the constant ¥, is given ¥ by
1 2
%:ﬂ{ %(w)dso
The combined transformations.—It will be useful to
combine the various transformations into one. We

obtain from equations (5) and (10) an expression as
follows:

@x
. z . C .
{ =2a cosh loga+ ) ;3 (24)
’ 1

or we can also obtain a power series development in z

G+ (25)

=k + atha_y

{"'014-:+%'+

where 1*

The constants k£, may be obtained in a convenient
recursion form as
ki=c¢
2ky= ke~ 2¢,
kg = kyey + 2kico + 3y
kg = ke, 4 2ka0y + 3k ey

The constants /&, have the same form as k, but with
each ¢; replaced by —¢; (and ho=1). It will be re-

15 The constant s is invariant to change of origin. (See p. 200 ) It should be
remarked that the translation by the vector ¢ is only a matler of convenience and
is especially usefil for very irregular shapes.  For a study of the properties of airfoil
shapes we shall usioaly the orizinal e(¢) curve,  (Fiz, 10(a}

¥ By equations (i and (10r we have

it
1%

N B _— 1. B '
The constant kn is this the coeflicient of P in the expansion of ¢ and the constant

@ .
_xin
N 1. N 12"
ha the coetficient of 5 in the expansion of e For the recursion form for ka

see Smithsonian Matiematical Formula and Tables of Elliptic Funetions, p. 120.
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called that the values of ¢, are given by the coefficients
of the Fourier expansion of y(¢) as

27
}»(éj“z ! S Ylp)emedy where B =ae¥
T

and

Y(e)de

oY

1
Vo gn

The first few terms of equation (25) are then as
follows:
2 513

s+ 2 Fa? et e, 6 —aadd
CZ—+,,3,,,,2,L§_—‘_4_ .

(:a+cl+ N (25’)

<

By writing z, =
normal form

z+¢;, equation (25) is cast into the

;:zl+f‘+;”§+ C
1 <1
The constants b, may be evaluated directly in terms
of a, or may be obtained merelv by replacing ¢(¢) by
¥ (@) in the foregoing values for a,.
The series given by equations (25) and (26) may be
inverted and z or z; developed as a power series In ¢.
Then

0, Gyt+ac; @l 2a,0 4 a3+ alt

z(f)=¢—¢c1— .~ g .2
Z)={—¢a I e & (27)
and
b by by by
2(0)=¢ ¢ & (28)

The various transformations have been performed
for the purpose of transforming the flow pattern of a

Fioure 11.- Streanilines about circle with zero circulation (shuwn by the full
lines) Q=—1"sinh u sin ¢=constant

circle into the flow pattern of an airfoill.  We are thus

led immediately to the well-known problem of deter-

mining the most general type of irrotational flow

around a circle satisfying certain specified boundary

conditions.

The flow about a circle.—The boundary conditions
to be satisfied are: The circle must be a streamline of
flow and, at infinity, the velocity must have a given
magnitude and direction. Let us choose the £ axis as
corresponding to the direction of the velocity at

(26)

infinity. Then the problem stated is equivalent to
that of an infinite circular cylinder moving parallel to
the £ axis with velocity Vin a fluid at rest at infinity.
The general complex flow potential ' for a circle of
radius R, and veiocity at infinity V" parallel to the x
axis is "
w(z) = — V<z+5;—)—;—fr log & (29)

where T is a real constant parameter, known as the

B : . r
FIGURE 12.—Streamlines about circle for V=0 Q= —,—,}p=conslant

circulation. It is defined as drds along any closed

curve inclosing the ecylinder, », being the velocity
along the tangent at each point.

Writing z= Re"' and w= P +i0Q, equation (29) be-
comes

. ir .
w=—V cosh(u-+ig) = 5_(u+ip) (29")
or P:—Vcoshycosw%—%r‘p
Q- —Vsinh usin ¢~y u
For the velocity components, we have
dw . S R? i
“d‘g—u w= ‘(1—? _Z-Z (30)

In Figures 11 and 12 are shown the streamlines for
the cases I'=0, and V' =0, respectively. The cylinder
experiences no resultant force in these cases since all
streamlines are svminetrical with respect to it.

The stagnation points, that is, points for which «

and v are both zero, are obtained as the roots of 3—15=0.

This equation has two roots.
T

o 4z V
and we may distinguish different types of flow accord-
ing as the discriminant 167°R?V2—T? is positive, zero,
or negative. We recall here that a conformal trans-
formation w=f(z) ceases to be conformal at points

dw
where 1z

]

vanishes, and at a stagnation point the flow

divides and the streamline possesses a singularity.

17 Reference 4, . 58 or reference 5, p. 118, The log termm must be added because
the region outside the infinite ¢ylinder (the point at infinity excluded) is doubly
connected and therefore we must include the possibility of cyclic motion.
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The different types of flow that result according
as the parameter F2;16W2R2V2 are represented in

Figure 13. In the first case (fig. 13 (a)), which will not
interest us later, the stagnation point occurs as a
double point in the fluid on the x axis, and all fluid
within this streamline circulates in closed orbits around
the circle, while the rest of the fluid passes downstream.
In the second case (fig. 13 (b)), the stagnation points
are together at S on the circle Re'® and in the third
case (fig. 13 (¢)) they are symmetrically located on the
circle. We have noted then that as I' increases from
0 to 47vRV the stagnation points move downward on

the circle Re'® from the ¢
axis toward the 7 axis.
Upon further increase in
I' they leave the circle and
are located on the y axisin
the fluid.

Conversely, it is clear
that the position of the
stagnation points can de-
termine the circulation T.
This fact will be shown to
be significant for wing-
section theory. At pres-
ent, we note that when
both I"and V>0 a marked
dissymmetry exists in the
streamlines with respect to
the circle. They are sym-
metrical about the » axis
but are not symmetrical
about the £ axis. Since
they are closer together on
the upper side of the circle
than on the lower side, a

FIGURE 13.—Streamlines about cirele
{trom Lagally—Handbuch der Physik

Bd. VII] Q =Vsinh g sin 'p—é;,@con-

stant (a) T2 3> 16x2R2 11 (b) [1=16x2R1V2
(¢) T1< 16x2R1172

resultant force exists per-
pendicular to the motion.

We shall now combine
the transformation (27)

and the flow formula for
the circle equation (29) and obtain the general complex
flow potential giving the 2-dimensional irrotational flow
about an airfoil shape, and indeed, about any closed
curve for which the Riemann theorem applies.

The flow around the airfoil—In Figure 14 are
given, in a convenient way, the different complex
planes and transformations used thus far. The com-
plex flow potential in the z plane for a circle of radius
R origin at the center has been given as

w(e)=— V(z + 1;) —Zi)_rlog 2 29)

T

where V, the velocity at infinity, is in the direction of
the negative ¢ axis. Let us introduce a parameter to
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permit of a change in the direction of flow at infinity
by the angle a which will be designated angle of attack
and defined by the direction of flow at infinity with
respect to a fixed axis on the body, in this case the
axis ¢=0. This flow is obtained simply by writing
ze'a for z in equation (29) and represents a rotation of

y § Plore

Equations(P5}and(?7)

Equotionsi6)and(28)

M
I o e . S
o .
<, .
Q.. e
\ AL
C/’
"
S
Ox/,‘.
-~
2

FIGURE 14.—The collected transformations

the entire flow field about the circle by angle a. We
have P )
= w B ) T
w(z) V(ze + ¢ ) Qﬂ_logz (31)
gﬂ=u—iv
dz
R? 38
- Ve‘“(l ~Tet) -5 32)

Since a conformal transformation maps streamlines

and potential lines into streamlines and potential lines,
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we may obtain the complex flow potentials in the
various planes by substitutions. For the flow about
the cirele in the z; plane, z is replaced by z,—¢

wiz)=-V [(q—c,)e +~ f):l

2,—2ia
dw -Ve”"[l % :I ir
dz, —

(" *l‘l) 2w(z1—e)
For the flow about the B curve in the 2z’ plane, z is
replaced by z(2') (the inverse of eq. (10a)) and for the
flow about the airfoil in the ¢ plane z is replaced by
z(¢) from equation (27)

lOg(‘l —¢) (31)

32')

W)= —-Viz(t)els+ %j)e fa] —% log z(f) (33)
dw_r Rze—“a ir ()
ds [ vee(1-TioF) “aEoldo ©Y

The flow fields at infinity for all these transformations
have been made to coincide in magnitude and direction.

At this point attention is directed to two important
facts. First, in the previous analysis the original
closed curve may differ from an airfoil shape. The
formulas, when convergent, are applicable to any
closed curve satisfying the general requirements of
the Riemann theorem. However, the peculiar ease of
numerical evaluations for streamline shapes is note-
worthy and significant. The second important fact is
that the parameter I' which as yet is completely unde-
termined is readily determined for airfoils and to a
discussion of this statement the next section is devoted.
It will be seen that airfoils may be regarded as fixing
their own circulation.

Kutta-Joukowsky method for fixing the circula-
tion.—All contours used in practice as airfoil profiles
possess the common property of terminating in either
a cusp or sharp corner at the trailing edge (a point of
two tangents). Upon transforming the circle into an

airfoil by ¢=f(z), we shall find that‘g—;' is infinite at

the trailing edge if the tail is perfectly sharp (or very
large if the tail is almost sharp). This implies that

the numerical value of the xel()('lty‘d—’idg_ —[v| is

infinite {or extremely large) provided the factorlaz—

is not zero at the tail. There is but one value of the
circulation that avoids infinite velocities or gradients
of pressure at the tail and this fact gives a practical
basis for fixing the circulation.

The concept of the ideal fluid in irrotational poten-
tial low implies no dissipation of energy, however large
the velocity at any point. The circulation being a
measure of the energy in a fluid is unaltered and inde
pendent of time. In particular, if the circulation is
zero to begin with, it can never be different from zero.

However, since all real fluids have viscosity, a better
physical concept of the ideal fluid is to endow the
fluid with infinitestmal viscosity so that there is then
no dissipation of energy for finite velocities and pres-
sure gradients, but for infinite velocities, energy losses
would result. Moreover, by Bernoulli’s principle the
pressure would become infinitely negative, whereas a
real fluid can not sustain absolute negative pressures
and the assumption of incompressibility becomes in-
valid long before this condition is reached. It should
then be postulated that nowhere in the ideal fluid from
the physical conecept should the velocity become

infinite. It is clear that the factor (;—Tf’ must then be
o

zero at the trailing edge in order to avoid infinite
velocities, It is then precisely the sharpness of the
trailing edge which furnishes us the following basis for
fixing the circulation.

It will be recalled that the equation g—— 0 deter-

mines two stagnation points symmetrically located on
the cirele, the position of which varies with the value
of the circulation and conversely the position of a
stagnation point determines the circulation. In this
paper the z axis of the airfoil has been chosen so that
the negative end (#=r) passes through the trailing
edge. From the calculation of e=¢—0 (by eq. (13))
the value of ¢ corresponding to any value of 6 is deter-
mined as ¢=0+¢, in particular at 8=, p =7+ 8, where
B is the value of € at the tail and for a given airfoil is a
geometric constant (although numerically it varies
with the choice of axes). This angle 8 is of consid-
erable significance and for good reasons is called the
angle of zero lift. The substance of the foregoing
discussion indicates that the point z=Re!"*? = — Re*#
is a stagnation point on the circle. Then for this value
of z, we have by equation (32)

dw_ o 1-Retey i
dz —Ve ( z* 2rz =0
or = —2xRVie'=th (1 — g 2ilath)
Hatp) . p—ilatp)
=41rRV(§——%——>

=4xRV sin (a+ B) (35)

This value of the circulation is then sufficient to
make the trailing edge a stagnation point for any value
of «. The airfoil may be considered to equip itself
with that amount of circulation which enables the
fluid to flow past the airfoil with a minimum energy
loss, just as electricity flowing in a flat plate will dis-
tribute itself so that the heat loss is a minimum. The
final justification for the Kutta assumption is not only
its plausibility, but also the comparatively good agree-
ment with experimental results. Figure 15 (b) shows
the streamlines around an airfoil for a flow satisfying
the Kutta condition, and Figures 15 (a) and 15 (¢) illus-
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trate cases for which the circulation is respectively too ‘
small and too large, the stagnation point being then on |
the upper and lower surfaces, re-
spectively. For these latter cases,
the complete flow is determinable
only if, together with the angle of
attack, the circulation or a stag- |
nation point is specified.

Velocity at the surface.—The
flow formulas for the entire field
are now uniquely determined by
substituting the value of I'in equa-
tions (33) and (34). We are, how-
ever, in a position to obtain much
simpler and more convenient re-
lations for the boundary curves
themselves. Indeed, we are chiefly
interested in the velocity at the
surface of the airfoil, which velocity is tangential to
the surface, since the airfoil contour is a streamline of

FIGURE 15.—(a) Flow with
circulation smaller than for
Kutta condition; (b} flow
salisfying Kutta condition;
(c) flow with circulation
greater than for Kutta
condjtion

flow. The numerical value of the velocity at the
surface of the airfoil is
— dw dw| [dz | [dz’
R R L il P =&z a2 |
We shall evaluate each of these factors in turn. From
equations (32 and (35)
Eiﬁ) ot 1_ il —m) Mv_g.l_n_("+ B)
( 27z
At the boundary surface z= Re'¢, and
(dez — Vele(1 — e ?itatey —2{Ve ' sin(a+ 8)
z
or
:}—Qf* = Veriv[(¢iteme) — ¢ Hatw)) + 27 sin(a + B)]
= —2{Ve [sin(a+ ¢) +sin(a+ )]
and
duw —9 g
a4 Visin(a+ ¢) = sin(a+ 8)] (36)
In general, for arbitrary I' we find that
A% o1 din (at o)+ 367)
L IR R = (867)

idz . .
To evaluate E((i—g; we start with relation (10)
¥ i

At the boundary surface

2/ =ze¥"¥omie where e = p— 0 and z==qe¥otty

dz" _2'¢ “fw;ff_))
dz 2(1 " de
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| pressions for them have already been given.

FOR AERONATUTICS

d{y—1e) .
(1+—77d¢ ) (37"
de de id\_b . dy
Zede de “deN_zy  'de
-y
de de
BVFNAC
1 1+
Then dz =€¢-¢n\/ (dﬁi)# (37)
dz, ].J_.dj

By equation (5)
(12

’
¢-2"+ , and at the boundary 2’ =we?*%, or

= 2a cosh(y +18)

(¢+ 18)

a1 =2q¢ sinh(y +18)

-2 sinh(y +18)e~ ¥ 1),

i 2
Then J»d{— =4e¢"% (sinh?y cos® + cosh*y sin‘g)

dz",
=4e7?* (sinh®y + sin®)

dg |
dz'|
Then finally
_du| _idw] | dz| 1dz
de| dz| |d2’) | df
Visi . . Cde
s‘m(a-i—gp)-f-sln(a-i-ﬁ)](l"rTe)e““

and ~¥./sinh?y + sin’) (38)

(39)
/(slnh?\l/—\‘ sm28)<1+ d‘p )

. In this formula the circulation is given by equation
. (35).
- equation (36')), the equation retains its form and is
i given by

In general, for an arbitrary value of I' (sce

vV [an(a+§0 4 R‘jk C 0

(40)
\/(smh W+ smzﬂ)(l + ) )
For the special case I'=0, we get
1 sm(a+<,,)< 10)6’%
r- = - 41)
d\b
i)

Equation (40) 1s a general result giving the velocity
at any point of the surface of an arbitrary airfoil sec-
tion, with arbitrary circulation for any angle of attack
a. Equation (39) represents the important special

| case in which the circulation is specified by the Kutta

condition. The various symbols are functions only of
the coordinates (r, ) of the airfoil boundary and ex-
In Tables
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I and IT are given numerical results for different air-
foils, and explanation is there made of the methods of
caleulation and use of the formulas developed.

We have immediately by cquation (3) the value of
the pressure p at any point of the surface in terms of
the pressure at infinity as

G

Some theoretical pressure distribution curves are given
at the end of this report and comparison is there made
with experimental results.  These comparisons, it will
be seen, within a large range of angles of attack, are
strikingly good.'*

GENERAL WING-SECTION CHARACTERISTICS

The remainder of this report will be devoted to a
discussion of the parameters of the airfoil shape affect-
ing aerodynamic properties with a view to determining
airfoil shapes satis{ying preassigned properties. This
discussion will not only furnish an illuminating sequel

FioUne 16,

to the foregoing analysis leading to a number of new
results, but will also unify much of the existing theory
of the airfoil. In the next section we shall obtain
some expressions for the integrated characteristics of
the airfoil. We start with the expressions for total
lift and total moment, first developed by Blasius.

Blasius’ formulas.—Let € in Figure 16 represent a
closed streamline contour in an irrotational fluid field.
Blasius’ formulas give expressions for the total force
and moment experienced by C in terms of the complex
velocity potential. They may be obtained in the fol-
lowing simple manner. We have for the total forces
in the z and y directions

Ye= = Spds=— [pdy
(& c

P,= fpds= fpdx
(&4 [
Y fp(dy +1idx)

" A paper devoted to more extensive applications to present-day airfoils is in
DPINRIESs.

The pressure at any point is

Then,

P,—ir,=t JSvH(dy+idr)
2%
2p dwdw —

‘/‘dg dz dz
where the bar denotes conjugate complex quantities.
Since € is a streamline, v,dy —2,dz=0. Adding the
quantity

T.Pf(i'y + ”"z) (Uzdy - 1"1/(11) =
c

to the last equation, we get. *®

P,—iP,= 3;’{ (0,— 12,)*(dr +idy)

dw) 4z

1z (42)

The differential of the moment of the resultant

! force about the origin is,

dAMy=p(x dz+y dy)
=R. P.of pla de+y dy +i(ydxr — 2dy))
=R. P.of pzdz
where “R. P. of” denotes the real part of the complex

quantity. We have from the previous results
. — tpfdw
d(P,—iP) = —ip &= 2(§0) a2
Then  dM,=~R. P. of 2(4%)z dz
p dw
and My,=—R. P. of 5 ‘[(d_.z) zdz (43)

Let us now for completeness apply these formulas to
the airfoil A in the ¢ plane (fig. 14) to derive the Kutta-
Joukowsky classical formula for the lift force. By
equation (32) we have

dw_ o . R*Ve~ta
o= - ven g L
and by equation (25)
d¢ a, a,
d: 177
Then
dw_dw dz
dr dz d¢

= Vela 7F 1+(RZV “ta—q, Ve la);1,2+ L.

58 K. 93 and Bd. 59 8. 43, 1410,

1 Cf. Blasius, H: Zs. f. Math. u. I’hys\
Similarly,

Bd.

’Hl’
f az
a less convenient relation to use than (42).
Note that when the region about C is regular the value of the integral (42) remains
unchanged by integrating about any other curve enclosing C.

Poip,—— oz,
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and
gy
¢
where
Ay = Vietia
f—iVell
T
Ay= = 2RV 2 VRl l—
47
Then
P.—if ,) 'Pf(dw> {g.
__’[p dw d§’ .
T2 ‘[ g, d
=) @mid)
= —qefplT
Therefore
P.=pVTIsin a
P,=pV1 cos @

and are the components of a force pVT which is per-

pendicular to the direction of the stream at infinity.

Thus the resultant lift force experienced by the airfoil is
L=pVT (44)
and writing for the circulation I' the value given by

equation (35)
L=4xRpV* 45)

The moment of the resultant lift force about the
origin =0 is obtained as

M,=R. P. of——"f(d—?’)z~ d¢
e

sin {a+ 8)

_ b
~R.P.of f((k

—R. P. of~§{<A(, LA

+A‘+

)

(cl+z+%'+g§+ .)(1—;;+ . .>dz
=R. P. Of—g?nri (coefficient of z71)

—R. P. olem (A, + Ayey)

or, M, is the imaginary part of =p(A.+ A,c,). After
putting ¥ ¢, = me® and q, == b*e** we get

My=27pV??sin 2(a+v) +pVI mcos (a+38) (46)

The results given by equations (44) and (46) have

physical significance and are invariant to a transforma-

w
% [t may be recalled that c;-Ef'&(wr‘vd\o and a,=ai+%'+c, (See ey, (27).)
x
Q
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! tion of origin as may be readily verified by employing
equations (26) and (32’) and integrating around the

circle in the z plane. It is indeed a remarkable fact
that the total integrated characteristics, lift and loca-
tion of lift, of the airfoil depend on so few parameters
of the transformation as to be alinost independent of
the shape of the contour. The parameters R, 8, ay,
and ¢; involved in these relations will be discussed in a
later paragraph.

We shall obtain an interesting result ¥ by taking

*moments about the point {=¢, instead of the origin.

(Min fig. 17.} By equation (25) we have,
a;

{—r1=z+g!+ RS SRR

and by equation (43)

My =R, P.of - "f[d —c):l“ eody

A, 1

(1——1+

~R.P. of—a/'( A+
(2 + B h

=R P.of —irpA,
or

My = 27b*p V2 sin 2(a+ )

Fiuvne

17.—Moment arm from M onto the lift vector

This result could have been obtained directly from
equation (46) by noticing that VT in the second term
is the resultant lift force L and that Lm cos (a+9)
represents a moment which vanishes at A for all values
of a. (In fig. 17 the complex coordinate of M is
¢—=me®, the arm Off 15 m cos (a+6).) The perpendie-
ular ke from M onto the resultant lift vector is simply
obtained from M, = Lhy,

s
b¥sin 2(a+ )

hae = 2R sin (a+ B)

(48)
The intersection of the resultant lift vector with the
chord or axis of the airfoil locates a point which may
be considered the center of pressure. The amount of
travel of the center of pressure with change in angle
of attack is an important characteristic of airfoils,
especially for considerations of stability, and will be
discussed in a ]ater paragraph.

31 Kirst obtained by R. von Mises. (Reference 6.) The work of vou Mises forms

an elegant geometrical study of the airfoil.
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The lift force has been found to be proportional to
sin (a+ B) or writing e+ f=a

L=4rpRV?sin o, (49)

where &, may be termed the absolute angle of attack.
Similarly wnting a+v=a

My =27b%V? sin 20, (50)

With von Mises (reference 6, I’t. 11) we shall denote
the axes determined by passing lines through A at
angles 8 and v to the x axis as the first and second axes
of the airfoil, respectively. (Fig. 18.) The directions
of these axes alone are important and these are fixed
with respect to a given airfoil. Then the lift L is
proportional to the sine of the angle of attacl with
respect to the first axis and the moment about Af to

If this moment is to be independent of a, the coeffi-
cients of sin 2« and cos 2« must vanish.

Then
b* cos 2 =Rrcos (8+a)
and
b2 sin 2y = Rr sin(B + o)
Hence,

B2
r—Rand c=2v—f

Then if we move the reference point of the moment to
2
a point F whose radius vector from M is %e‘““f“”, the

moment existing at F is for all angles of attack con-
stant, and given by

Me=2npb*V? sin 2(v— B) (51)

the sine of twice the angle of attack with respect to
the second axis.

From equation (47) we note that the moment at any
point @ whose radius vector from M is re', is given by

My=2mpb*V?2sin 2(a+v) — Lr cos (at+9)

Let us determine whether there exist particular
values of 7 and ¢ for which Afg is independent of the
angle of attack «. Writing for L its value given by
equation (45),

Mo=2mrpb?V?sin 2(a +v) —4mpRrV? sin (a + §) cos (a+ o)
And separating this trigonometrically
My=27pV?[(}* cos 2v— Br cos (+¢)) sin 2«
+ (b? sin 24 —Rr sin (8+¢)) cos 2a
~Rrsin (B—a)}

'\
\

F16URE 18.—~Illustrating the geometrical properties of an airfoil (axes and lift parabola of the R. A. F. 19 airfoil)

1t has thus been shown that with every airfoil pro-
file there is associated a point ¥ for which the moment
is independent of the angle of attack. A change in
lift force resulting from a change in angle of attack
distributes itself so that its moment about F'is zero.

From equation (47) it may be noted that at zero fift
(. e., a= — 8) the airfoil is subject to a moment couple
which is, in fact, equal to My. This moment is often
termed “diving moment”’ or ‘‘moment for zero lift.”
If My is zero, the resultant lift force must pass through
F for all angles of attack and we thus have the state-
ment that the airfoil has a constant center of pressure,
if and only if, the moment for zero lift is zero.

The point F, denoted by von Mises as the focus of
the airfoil, will be seen to have other interesting prop-
erties. We note here that its construction is very
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simple. Tt lies at a distance %, from 3 on a line making

angle 2y — g with respect to the v axis.  From Figure
18 we see that the angle between this line and the first
axis is bisected by the second axis.

The arm hy from F onto the resultant lift vector I
(hris designated F7 in Figure 18; note also that F 7',
being perpendicular to L, must be parallel to the diree-
tion of flow; the line 7'V is drawn parallel to the first
axis and therefore angle VTF - a-- B) is obtained as

b ’\[,. :*b sin ’(B 'y)
T OR sinfa { B)

or setting """)}:f sin 2(B8—~ 1
h |

-t 59

he sin{at B) (52)

But g is parallel to the direction of a, and the relation

h= —hp sin (a+ B) states then that the projection of

ke onto the line through F perpendicular to the first
axis is equal to the constant & (% is designated V" in
the figure) for all angles of attack. In other words,
the pedal points T determined by the intersection of
he and L for all positions of the lift veetor L lie on a
straight line.  (The line is determined by 7 and V in
fig. 18.) The parabola is the only curve having the
property that pedal points of the perpendiculars
dropped from its focus onto any tangent lie on a
straight line, that line being the tangent at the vertex.
This may be shown analytically by noting that the
equation of L for a coordinate system having £ as
origin and F1” as negative r axis is

z8in a+ycos ay=hp — -

By differentiating with respect to a,~a + 8 and elim- |
inating &, we get the equation of the curve which the
lines L envelop as y*=4h(z + k). From triangle FV'S
in Figure 18, it may that the distance

be seen

b, . . . )
AMF=? is bisected at & by the line 7'V for, since
FV=h= ;R sin 2(y — 8) and angle FSV =2(8--+), then
L b
SE=or
vectors envelop, in general, a parabola whose focus is
at F and whose direetrix is the first axis. The second

axis and its perpendicular at 3, it may be noted, are !
also tangents to the parabola being, by definition, the

It has thus been shown that the resultant lift

resultant lift vectors for « =~ —~ and a;ﬂ:

v, Tespec-
tively.

If the constant A reduces to zero, the lift vectors
reduce to a pencil of lines through F.  Thus a constant
center of pressure is given by A=0 or sin 2(8— y)=10
which is equivalent to stating that the first and second

axes coincide. The lift parabola opens dnmmard
when the first axis is above the second axis B>y i
reduces to a pencil of lines when the two axes are ‘
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coincident (8=1v) and opens upward when the second
axis 1s nbove the first (8<y).

W. Miller # introduced a third axis which has some
interesting properties. Defining the complex coordi-
nate { as the centroid of the circulation by

I'éy= f{( dw’ )d(

and using equations (25) and (32) one obtains

$o— €1 =Ty 1Yo

where
., b [Rsin atly sin (o 2y)]
T0= 4 in far (3)[ sin o R sin (o~ 2v)
B2 (53)
Yo = 9 \llli(aifiﬁ“) [R cos a r cos (a+ 27)]"

The equation of the lift vector lines referred to the
origin at 1f and » axis drawn through A is

. b? + i .

—¥ysin a= 711[! (giz (H4)

2R sin (a+ 8)

I 08 o

and it may be seen that the point (s, y,) satisfies this
equation. The centroid of the circulation then lies on
the lift vectors. By elimination of « from equation
(53) one finds as the locus of (xy, y)
. b*
2r{R cos B--Rdcos (B—2%)]+2y[R sin 8
(5h)
b , b
"I?"m (B— -‘Y)] =R - 23]

which is the equation of a line, the third axis, and
proves to be a tangent to the lift parasbola. Geomet-
rieally, it is the perpendicular bisector of the line FF’
joining the focus to the point of intersection of the
first axis with the cirele.  (Fig. 18.)

The conformal centroid of the contour.—It has
already been seen that the point A has special inter-
esting properties.  The transformation from the air-
foil to the cirele having AT as center was expressed in
the normal form and permitted of a very small e(e)
curve. (See p. 188.) It was also shown that the
moment with respect to Af Is simply proportional to
the sine of twice the angle of attack with respect to
the second axis.  We may note, too, that in the pres-
entation of this report the coordinate of M, ¢=¢,

2
Rf ye'*de, is a funection only of the first harmonie
0
of the ¢{¢) curve.

We shall now obtain a significant property of A
invariant with respect to the transformation from air-
foil to circle. We start with the evaluation of the
integral

'dz

f ¢ ds
: 'd('x
22 R(f(remer poI6le Also Zs. fir Ang. Math. u. Me(h BA3S 117, 1928,
Airfoils having the same first, second, and third aves are alike theoretic ally in
total 1ift properties and also in travel of the center of pressure, i. e, they have the
same lift parabola.



GENERAL POTENTIAL THEORY

where A is the airfoil contour, ds the differential of

arc along A, and , as will be recalled, is the magni-

dz
dg
fication factor of the transformation {:=f(z) mapping
airfoil into circle; i. e., each element ds of A when

magnified by ‘g;% gives dS the differential of arc in the

plane of the circle, 1. e., [dz]. Then we have,

(lz;dq )

f(’il([ _/"I(z) ldz| and by equation (25),

f(c,+z+zl+z;’+ . .>|dz|

l_,v+

f cﬁ Ret tpe

—2i
20 ¢+

.)Rdw

R

=27 R ¢
dz
:cl{dS:c,{Id—Ad‘s

Then
(12;

4 blag| %
IPSCES
dg
The point M of the airfoil 1s thus the conformal cen-
troid obtained by giving each element of the contour
a weight equal to the magnification of that element,
which results when the airfoil is transformed into a
circle, the region at infinity being unaltered. It lies
within any convex region enclosing the airfoil contour.®

S
A
S

A

€= (56)

ds

ARBITRARY AIRFOILS AND THEIR RELATION TO
SPECIAL TYPES

The total lift and moment experienced by the air-
foil have been seen to depend on but a few parameters
of the airfoil shape. The resultant lift foree is com-
pletely determined for a particular angle of attack by
only the radius R and the angle of zero lift 8. The
moment about the origin depends, in addition, on the
complex constants ¢; and @, or, what is the sgme, on
the position of the conformal centroid Af and the focus
F. The constants ¢; and a, were also shown (see foot-
note 20) to depend only on the first and second har-
monics of the e(¢) curve. Before studying these
parameters for the ease of the arbitrary airfoil, it will
be Instructive to begin with special airfoils and treat
these from the point of view of the “conformal angular
distortion "’ [e(¢)] curve.

Flow about the straight line or flat plate.—As a
first approximation to the theory of actual airfoils,
there is the one which considers the airfoil section to
be a straight line. Tt has been seen that the line of
length 4a is obtained by transforming a circle of radius

.. a? .
a, center at the origin, by §:2+E- The region ex-

B CfP. Frank and K. Lowner, Math

p. 146,

L Zs  BdAU3, 8078, 19190 Also reference 5,

OF ARBITRARY WING SECTIONS

ternal to the line 4a in the ¢ plane maps uniquely into
the region external to the circle |z]=a. A point @ of
the line corresponding to a point P at ae' is obtained
by simply adding the vectors a{e”?+ e %) or completing
the parallelogram OPQP’.

For ¢ =0, we have from equation (6)
r=2a cosh ¢ cos #=2a cos @
¥ =2a sinh ¢ sin =0
Then the parameters for this case are R=a, 8=0,
a—=a® (i. e, b=a, vy=0), and M is at the origin O.
Taking the Kutta assumption for determining the
circulation we have,

the circulation, I'=4ral” sin «

the lift, L=4rapV?sin a

moment about M, My =27a% 1 ? sin 2« (57)
.. .. b .

position of Fis at zp =¢ +R ei®r A =q

Since 8=1, we know that the travel of the center of
. pressure vanishes and that the center of pressure is at

o F,

F1oURE 19,

F or at one-fourth the length of the line from the lead-
ing edge. The complex flow potential for this case is

S
el log 26) (58)

S e
where z(¢)= ),\/(§

,—
‘)) —a®1s the inverse of equation
(5).

Since ¥(¢) =e(p) =0 for this case, equation (39)
giving the velocity at the surface reduces to

-
sin (— + a)
p=v| N2/

sin

B0 = = V[z(p)e'“+

for I'=4xaV sin «,

3

F4

and by equation (41) =V (%mquf a>> for I'=0.
Flow about the elliptic cylinder.—If cquation (5)

is applied to a circle with center at the origin and
radius ae¥, the ellipse (fig. 19)

R A

(20 coshy)? " (2a sinhy)?
is ohtained in the ¢ plane and the region external to
this ellipse is mapped uniquely into the region external
to the circle. The same transformation also trans-
forms this external region into the region internal to
i the inverse circle, radius ae ¥, We note that a point
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@ of the ellipse corresponding to P at ae¥t? is
obtained by simply completing the parallelogram
OPQP’ (fig. 19) where P’ now terminates on the circle
ae”¥. The parameters are obtained as R=ae¥, §=0,
a=day, M is at the origin O. Then, assuming the rear
stagnation point at the end of the major axis,

P'=4rae*V sin a
L=4npae*V?sin «
My =2na*pV?sin 2a

Since 8=+, the point F is the center of pressure for all
angles of attack and is located at zr=ae~¥ from O or a
distance ae¥ from the leading edge. The quantity

EF ae¥ _cosh ¢+ sinh y_1

EE " 2ale?+e %) 4dcoshy j (17 tanhy)

represents the ratio of the distance of F from the
leading edge to the major diameter of the ellipse.

The complex flow potential is identical with that
given by equation (58) for the flat plate, except that
the quantity a® in the numerator of the second term is
replaced by the constant a’?¥. Since ¢(¢) =constant,
e(¢) =0 and equation (39) giving the velocity at each
point of the surface for a stagnation point at end of
major axis becomes

[sin (¢+ a) +sin ofe?

= "9'
v= VT einh Y Tenty (59)

and for zero circulation by equation (41) -

_v sin{p+ a)e?
vsinh 2y +sin%p

(591

Circular arc sections.—It has been shown that
2
the transformation ¢ =2+% applied to a circle with

center at z=0 and radius ¢ gives a straight linc in the
¢ plane, and when applied to a circle with center z=0
and radius different from a gives an ellipse in the ¢
plane. We now show that if it is used to transform a
circle with center at z=4s (s being a real number) and
radius ya?+s?% a circular arc results. The coordinates
of the transform of the circle C'in the { plane are given
by equation (6) as

x=2a cosh ¥ cos @
¥=2a sinh ¢ sin 8

A relation between ¥ and 6 can be readily obtained.
In right triangle OMD (fig. 20), OM =35, angle OMD =04,
and recalling that the product of segments of any
chord through O is equal to «*, OD =% (0P~ OP,)=

VeV
a(e—,)e~) =asinh . Then ssin §=aqa sinh ¢, and from
the equation for y, y = 2s sin®.
¥ in equation (6) we get

a?—s\\?  /a?+ s2\?
24 fayf Z° _ ={ -
(- (7)) (%

Eliminating both 6 and

(60)

the equation of a circle; but since y can have only
positive values, we are limited to a circular arc. In
fact, as the point P in Figure 20 moves from A’ to A
on the circle, the point @ traverses the arc 4, 4, and
as P completes the circuit AA’ the arc is traversed in
the opposite direction. As in the previous cases, we
note that the point @ corresponding to either P or to
the inverse and reflected point P’ is obtained by com-
pleting the parallelogram OPQP’. We may also note

y. R Curve ap¥+i®

A

F16URE 20.—The circular arc airfoil

that had the arc A;4," been preassigned with the
requirement of transforming it into the circle, the most
convenient choice of origin of coordinates would be
the midpoint of the line, length 4a, joining the end
points. The curve B then resulting from using trans-
formation (5) would be a circle in the 2’ plane, center
at 2’ =15, and the theory developed in the report could
be directly applied to this continuous closed B curve.

FiGCRE 21.—Discontinuous B curve

Had another axis and origin been chosen, e. g., as in
Figure 21, the B curve resulting would have finite
discontinuities' at A and .4, although the arc A, 4, is
still obtained by completing the parallelogram OPQP’.

The parameters of the arc 4,A4,” of chord length 4a,

and maximum height 2s are then, R=+d?+s,
6=tan“g- The focus F may be constructed by

erecting a perpendicular to the chord at A’ of length s
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and projecting its extremity on MA’. The center M’
of the arc also lies on this line.

The infinite sheet having the circular arc as cross
section contains as a special case the flat plate, and
thus permits of a better approximation to the mean

camber line of actual airfoils. The complex flow poten-

tial and the formulas for the velocity at the surface !

for the circular arc are of the same form as those
given in the next section for the Joukowsky airfoil,
where also a simple geometric interpretation of the
parameters e and ¢ are given.

Joukowsky airfoils.—If equation (5) is applied to
a circle with center at z=s, s being a real number, and
with radius R=a+s, a symmetrical Joukowsky air-
foil (or strut form) is obtained. The general Joukow-
sky airfoil is obtained when the transformation

)
g‘zz—i—aé is applied to a circle € passing through the

point z= —a and containing z=a (near the circum-
ference usually), and whose center M is not limited to
either the z or y axes, but may be on a line OAf inclined
to the axes. (Fig. 22.) The parametric equations of
the shape are as before

z=2a cosh ¢ cos @ 6

y¥=2a sinh ¢ sin @ ©)
Geometrically a point @ of the airfoil is obtained by
adding the vectors ae¥** and ae ¥~* or by completing
the parallelogram OPQP’ as before, but now P’ lies on
another circle B’ defined as z=ae ¥~ %, the inverse
and reflected circle of B with respect to the circle of
radius a at the origin (obtained by the transformation
of reciprocal radii and subsequent reflection in the z
axis). Thus OP-OP’=a? for all positions of P, and
OP’ is readily constructed. The center M, of the
circle B’ may be located on the line AM by drawing
OM, symmetrically to OM with respect to the y axis.
Let the coordinate of M be z=1is+de*, where 4, s,
and 8 are real quantities. The circle of radius a, with
center M, at z=1s, is transformed into a circular arc
through 4,4, which may be considered the mean
camber line of the airfoil. At the tail the Joukowsky
airfoil has a cusp and the upper and lower surfaces
include a zero angle. The lift parameters are

R=d+ s +d, B=tan“§y a,=a*=b%"r or b=q and

¥=0. Since y=0, the second axis has the direction of
the x axis. The focus F is determined by laying off
3

the segment ZMF=% on the line MA’.
it may be noted, is obtained easily by the following
construction. In triangle MDC’, MD=R, M(C’ and
MC are made equal to g, then CF drawn parallel to

2
D(’ determines MF=%- The lift parabola may be

This quantity,

now determined uniquely since its directrix AM and
focus F are known.

It may be observed that if it is desired to transform
a preassigned Joukowsky profile into a circle, there
exists a choice of axis and origin for the airfoil such
that the inverse of transformation (5) will map the
airfoil directly into a circle. This axis is very approx-
imately given by designating the tail as (—2a, 0) and
the point midway between the leading edge and the
center of curvature of the leading edge as (+2qa, 0) the
origin then bisecting the line joining these points.

F1oURE 22.—The Joukowsky airfuil

The complex potential flow function for the Jou-
kowsky airfoil is
R?e—ia

w(f)=— Vl:g(g')e‘“-*' -.—q(f_)_

s =Gy J(§) e -m

By equation (39) we have for the velocity at the
surface

+.1)—Flog gD (61)
T

where

Visin(a-+ ¢) - sin(a -+ ,3)1(1 +fT§)ev'o

N 7(sinh ’¢+5i“20)<1 +<g_?5r)—

This formula was obtained by transforming the flow
around Cinto that around B and then into that around
A. Since we know that B is itself a circle for this
case, we can simply use the latter two transformations
alone.

We get

o Visin (a+ ¢) +sin (a+ B)]e¥

— = 62
y/sinh %y +sin?g (62)

That these formulas are equivalent is immediately
evident since the quantity

dgy?
\/1+ ds

is unity being the ratio of the magnification of each
arc element of C to that of B. (See eq. (37).)
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A very simple geonetrienl picture of the parsneters |

¢ and ¢, exists for the cases discussed.  In Figure
23 the value of € or ¢—8 at the point £ is simply

Fu;onre 23

Geomeltrical representation of ¢ and ¢

for Joukowsky airfoils

angle OP3!, 1. e, the angle subtended at P by the
origin () and the center M. The angle of zero lift is
the value of e for 8=7; 1 ¢, epau=0F=07TV. In
particular, we may note that ¢ -0 at .S and &, which
are on the straight line 01/, Consider the triangle

OMP, where OP=uqe*, MP - R =ae¥, !‘)}ll{=p, angle
OPM=¢; also, MOX=5 MOP -6—5, OMP=r--

(¢—6). Then by the law of cosines, we have
el =] - 2p cosly ~8) +p?
or
1 ) s e
Yv—,=: log (1425 cos(e—38) -+ p) 63)
2
2 _,cos nile—38)
LS vos nle—d)
, ( . p
and by the law of sines
L p sIn{e 5) o
Se= L 2pcosie  8) - ph)'t
or
- . p sin(e -8) )
el tan 14 p cosig ~4)
i sin n(g -3)
S eesinnle 0y, R
. { ) M p (64)

We sce that, as required, the expressions for the “radial
distortion”” ¢(¢) and the “angular distortion” e(y)
are conjugate Fourler series and may be expressed as
a single complex quantity
Se—1) !

(=) =2t

7,—in{p—35)
3 4
Ié P

=log {1+ pe~itv=®]

It is evident also that the coefficient for 2 =1 or the
‘““first harmonic term’™ is simply pe®® and a translation
by this quantity brings the circle € into coincidence
with B as was pointed out on page 187,

COMMITTEE FOR AERONAUTICS

27
The constant 1//,,:91-_/‘!#(1‘(: is readily shown to be
=T “

mvariant to the choice of origin 0, as long as 0 is
within 5. We have

1 2 1 ‘.Z1r1
oo Jde= S S log (1+2p cos (p—8) + ety
=70 =T =
] 27 b cos nle—38)
=5 SNt ST e Y =y,
11r” 1 n

FistUnt 24, --Fhe Joukowsky airfoil p =ih10, §=45"

Figure 24 shows the Joukowsky airfoil defined by
p0.10 and & 45°, and Figure 25 shows the ¢(9),
Yle), €08, and e(p) curves for this airfoil.

2

i
i
|

en

-05 ' IR ' o

[ i ! ! !

'/“‘0 s 7 3 2n
2 )

FIGURE 25 —The ¢(8) and Ei&) curves for the airfoil in Figure 24

Arbitrary sections.—In order to obtain the [t
parameters of an arbitrary airfoil, a convenient choice
of coordinate ..es is first made as indicated for the
Jonkowsky airfoil and as stated previously. (Page 181.)
The curve resulting from the use of transformation (3)
will wield an arbitrary curve aet™% which will, in
general, differ very little from a circle. The inverse
and reflected curve ae=¥= will also be almost circular.
The transition from the curve ae**? to a circle is
reached by obtaining the solution e(y) of equation
(13). The method of obtaining this solution as
already given converges with extreine rapidity for
nearly circular curves,
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The geometrical picture is analogous to that given
= bl o

for the special cases.  In Figure 26 it may be seen that
a point ¢ on the airfoil (N. A C. .\ -M4) corre-

.

.
)
vl

~

I8¢/
o]

Fint ik 20 The N, AL C. A, — G airfoil
sponding to > on the /3 curve (or £ on the B curve)
is obtained by constructing parallelogram QPQP.
The ¢(8) and €(0) curves are shown in Figure 27 for
this airfoil.  The complex velocity potential and the
expression for veloeity at the surface are given respec-

The method used for arbitrary airfoils is readily
applied to arbitrary thin ares or to broken lines such
as the sections of tail surfaces form approximately.  In
Figure 26 the part of the airfoil boundary above the &
axis transforms by equation (3) into the two discon-
tinuous ares shown by full lines, while the lower
boundary transforms into the arcs shown by dashed
lines.  If the upper boundary surface is alone given
(thin airfoil) we may obtain a closed curve ae** only
by joining the end points by a chord of length 4a and
choosing the origin at its midpoint.®  The resulting
curve has two double points for which the first deriva-
tive is not uniquely defined and, in general, it may be
scen that infinite veloeities correspond to such points.

At n point of the ¢{8) curve corresponding to a
mathematically sharp corner, there exist two tangents,

that is, the slope ‘»wl;o_) is finitely discontinuous. The
«

B

R

L

o

[ j ‘ i ‘ -
0 5 / 1.5 2 25 3 3.5 4 4.5 E) 55 & I
Nose Tad Lower sur foce Mose

Upper surface
24

Frourk 25.—The &8y anid ¢8) curves for the N. AL O A — M6 airfoil

tively by equations (33) and (3C). The lft param-
eters are

™
R=ae%,B=¢ranatf—=a), Misatz -¢,-- ']:‘/‘llz(‘p)("‘dgc
()

. a L . . o
and Fisatz e+ R where a is given 1n equation {25).

The first and second axes for the N. A, €. A, -N6
airfoil are found to coinecide and this airfoil has then a
constant center of pressure at F.  Figures 28 (a) to
28 (1) give the pressure distribution (along the » axis)
for a scries of angles of attack as caleulated by this
theory and as obtalned by experiment.®
contains the essential numerical data for this airfoil.

2¢ The experimental resulls are tuken froni test No. 323 of the N. A, . .\, variable-
dengity wind tunnel.  The angle of attack = substituted in equation (34) has been
modified arbitrarily to take acconnt of the etfects of finite span, tunnel-wall inter-
ference, and viscosity, by choosing it so that the theoretical 1ift is about 18 per cent
tmore than the corresponding evperimental value, The aetual values of the lift
coeflicients are given in the figures.

40768 4— 14

Table 1 |

t

curve & must have an infinite slope at such a point
for according to a theorem in the theory of Fourier
series, at a point of discontinuity of a F. 8., the con-
jugate F. 8. is properly divergent. This manifests
itsell in the velocity-formuls equation (39) in the fac-

o de . e
tor (1-+ ;13) which is infinite at these sharp corners.
For practical purposes, however, a rounding of the
sharp edge, however small, considerably alters the slope
de(8)
de

at this point.

Ideal angle of attack.—A thin airfoil, represented

"by a line arc, has both a sharp leading edge and a

sharp trailing edge. The Kutta assumption for fixing
the circulation places a stagnation point at the tail for
all angles of attack. At the leading edge, however,

L Note that $(84x) = —F(8) for this case.

281



282

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Theorefical

(&)
100
Percent chord
4
a =-/°5"
@ & =-0072
_/.2.-
-8
[ {b)
_._4 -
2 I — . /0
g ¢ 50
Per cent chord
4
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| G =0
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i fc)
p 0_ T /00
q 50
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4
ar a =0 /5’
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i d)
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K.
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p 00
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14
.8 a =1/°35
. =0264

Experimental
o Upper surface x Lower surfoce
(Average RN =3 x 109

—— e N

po=— I R

v

A

| ar=1°
L =016

3 ar=2"°
B C, =024

FIGURES 28 a to e.—Theorelical and experimental pressure distrilution for the M6 airfoil at varlous angles of attack
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Theoreticol Experimental
o UYoper surface x Lower surface
-2 _ (Averoge R.N.= 3 x /0%
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FIGURES 28 { to j.—Theoretical and experimental pressure distribution for the M§ airfoil at various angles of attack
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the velocity is infinite at all angles of attack except
one, namely, that angle for which the other stagnation
point is at the leading edge. It 1s natural to expect
that for this angle of attack in actual cases the frie-
tional losses are at or near a niinimum and thus arises
the concept of “ideal” angle of attack introduced by
Theodorsen (reference 8) und which has also been
designated ““angle of best <treamlining.”  The defini-
tion for the ideal angle may be extended to thick
airfoils, as that angle for which a stagnation point
oceurs directly at the foremost point of the mean
camber line.

The lift at the leading edge vanishes and the change
from veleeity to pressure along the airfoil surface is

COMMITTEE FOR AERONAUTICS

of this function, one can determine airfoil shapes of
definite preperties.  The e(p) function, which we have
designated conformal angular distortion function, will
be seen to determine not only the shape but also to
give easily all the theoretical aerodynamic charactee-
isties of the airfoll,

An arbitrary ely) curve is chosen, single valued, of
period 2w, of zero area, and such that — = £ t:i =1.

- . de
These limitine values of Qg e far beyond wvalues
I

yielding airfoil shapes®  The ¢(¢) function, except for
the constant ¢, s @iven by the conjugate of the
Fourier expunsion of e(g) or, what is the same, by

usually more gradual than at any other angle of attack. | evaluating equation (14) a5 a delinite integral. The
Theorehca! Experimental Thenrofog) Expermental
0 Uoper surfoce o Upper surface
x Lower surface x Lower surface
N - (dverage RN =3 x/06) ~ _ fAverage RN =3 x10%
-401 — -80 [
=35 78 —
-30 -60 -
25 = -50
-20 - -20 L
=15 u 30 -
-0 3 -20 -
e
=5 - -1.0 =
Per-cent chord
2y 57 o . P, o[ T Ty
q P q /./,/,/
" L
5 SR 1.0 z
o =3° e ar-=15° ! ar=21°
10 C=7./6 X C =705 S0k L
FIGURES 258 Kk to I -Theoretical and experimental pressure disteiingtion for the M airfoil at varions angles of attuck
The minimum profile drag of airfoils actually oceurs | constant ¢, is an important arbitrary ® parameter

very close to this angle. At the ideal angle, which we
denote by o, the factor [sin (! @)+ sin (et B)]in

equation (39) is zero not only for 8 == ore - ey~ 3 but
also for 8=-0 or e en. We get
arbey = - {ay v ep) O
{ex i €p) s
a= =, (65)

CREATION OF FAMILIES OF WING SECTIONS

The process of transforming a cirele into an airfoil is
inherently less difficult than the inverse process of
transforming an airfoil into a cirele. By a direct appli-
cation of previous results we can derive a powerful and
flexible method for the creation of general families of
airfoils.  Instead of assuming that the ¢(8) curve is
preassigned (that is, instead of a given airfoil), we
assume an arbitrary ¢(¢) or e(¢) curve ® as given.
This is equivalent to assuming as known a boundary-
value function along a cirele and, by the proper choice

% Anhject to some general restrictions civen i the next parasraph
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which permits of changes in the shape and for a certain
range of values may determine the sharpness of the
trailing edge.

We first obtain the variable 8 us 8 (¢} - ¢ —€ (@), 80
that the quantity ¢ considered as a function of 8 is

1 Y (@) -y e (M) The coordinates of the airfoil surface

are then
£ 2 cosh ¢ cos 8§
(6
y ~2a sinh ¢ sin 6.

. de P
T For comno airfotls, with g proper choiee of origing ne << 030

= For common airfails g is usually between 0073 and 015 The constant yo is
not, however, caiapletely arbitrary,  We have ssen that the conndition given by
erjuation (220 0 suflivient to vield a contotr free from double points i the 22 plane.
We thay alsn stute the criterion that the inverse of equation (3 apolied to this
contour shall yield a contour in the ¢ plane free from double poluts. Consider the
function ¢(0) for @ varying from 0 (o = o1ly.  The neeative of eact value of ¢(8) ia
this ranpe ix considere! associsted with —8. i, e, # SUS2r. Desizrate the fanction
thus formed from 8:-0 to 2x by ¢(81°. Then §(#3* represeiiis o line are in the
plane, i. e, the upper surfure ol 4 coitour,  [See footnote 27.]  Then for the entire
contonr to be free front donble points it is necessary that the lower surfare shouhi not
cross the upper, Ued s, the ariginal ¢ carve for 8 varving from r to Yo must a0t

cross bebow &40
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“he veloeity at the surface is
v 1 [sin {a+ @) +sin (a+ B)] e¥o
de dy

\}mw[i—’: W'((!y)]

and is obtained by using equation (377) instead of (37)
in deriving (39).  The angle of zero lift g is given by
c(0)0-eid)for-mi e, elry=r: 8.

The following figures and examples will make the
process clear.  We may first note that the most natural
method of specifying the e (¢) function is by a Fourier
series expansion. In this sense then the elementary
types of €(¢) functions are the individual terms of
this expansion.

(39)

(¢70<wp

29(h) to 29(t). In particular, the second harmonic
term may vield S shapes, and by a proper combina-
tion of first and second harmonic terms, 1. e., by a
proper choice of the constants .1, 13, 8, and 8, in the
relation

elg) =A; sin (¢--6) + Ay sin (20 —86)

it is possible to fix the focus F of the lift parabola as
the center of pressure for all angles of attack.®® The
equation
e(p) =0.1 sin (¢—60°) -+0.05 cos 2¢
represents such an airfoil and is shown in Figure 29(u).
The general process will yield infinite varieties of
contours by superposition of sine functions; in fact, if

e/p/ -0/ s 3p
Yo =0./

€lp)=01 sin(p-453
o =01
T

€/p)=07 sinfp-607

e/p/=0075 sinfdp-45%
Yo =0075

Vo 0 g
G T4 <
e———— e T

!wﬂ—C/ sinfEp-45°

=01

€/p) "0/ sinfp-757
=0/
: i :

€lp/=Ci sinfp- 907} 0/ sinf2p-807

UL

[30%
Yo

B

{n o

{m) Q

£¢} 00755 -850

F16URE 20.—Alrfoils created by varying e(y)

Consider first the effect of the first harmonic term
e (o) =2 sin (g —8)), Yo=¢

In Figures 29(a) to 29{g) may be scen the shapes
r(w.ulting by displacing & successively by intervals of
15° and keeping the constants »4,=0.10 and ¢, 0.10.
The first harmonic term is of chief influence in deter-
mining the airfoil shape. The case e(¢)=0.1 sin
(¢ --453°) is given detailed in Table II. (This airfoil
is remarkably similar to the commonly used Clark Y
airfoil.)  The entire caleulations are characterized by
their simplicity and, as may be noted, are completely
free from the necessity of any graphical evaluations or
constructions.

The effect of the second and higher harmonics as
well as the constant ¢, may be observed in Figures

the process is thought of as a boundary-value problem
of the circle, it is seen that it is sufficiently general to
yield every closed curve for which Riemann's theorem
applies.

Laxcrey MesmoriaL AreroNautical. Laporatory,
Nationar Apvisory COMMITTEE FOR AERONAUTICS,
LancLey Fiewp, Va., November 4, 193“’

% Thi - isaccomplished as follows: Weseek to determine the constants .1y, ‘q 5.,nnd

81 80 that 8=v, where y is abtained from equation {2./) a8 a.=b‘e7-‘v=a‘1 :; g and
cL

o !
aeve Aretand — uleNo
tal; however, with but a few practice trials, solutions ¢an he obtained at will.  Addi-
tion of higher harmonics will yield further shapes having the same center of pressure
propertics if 8 is kept unchanged.

we may note that Ageddz. These relations are transcenden-
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APPENDIX

1. EVALUATION OF THE INTEGRAL.

21!' ’
1 —
«(¢) =~ g, S ¥e) cot 5% de (13)
2
_1Tdve) e ,
== _6' de log | sin 5 de (13")

The function ¥ (¢) is of period 2r and is considered
known. (Note that the variables ¢ and ¢’ are re-
placed by ¢ and ¢, ¢, and ¢, ¢ and ¢/, etc., In
equation (21) and that the following formula is
applicable for all these cases.)

A 20-point method for evaluating equation (13) as
a definite integral gives

5(¢l)'—l—'_71r aoi‘é‘fpf‘) Fa(di— o) ey — o)

T+ e e -+ (lg(%——‘[/_g)]‘,:w )
where
¥r=value of () at p=¢"+ 1’:)
¥ = value of ¥(¢) at o= ‘p’+%
(n=1,-1,2,-2,....9, —9).
and the constants a, arc as follows: a0=1%=0.3142;

a,=1.091; a:=0.494; a;=0.313; a,=0.217; a;=-0.158;

as=0.115; a; = 0.0884; a5 =0.0511; and a,=0.0251.
This formula may be derived directly from the

definition of the definite integral. The 20 intervals!

3

chosen are ¢ —% to ga'i"%’ ¢+;;7(r—) to ¢+'.;6Ll ete.

It is only necessary to note that by expanding ¢ () in

a Taylor series around ¢ = ¢’ we get

7
] +8 o
F S ) cor £ dem e [ 410
o' —s P do=¢
where the interval ¢’ —s to ¢’ +s is small. And, in

general,

P2 —_ !
3 S ¥(e) cot % do
€1 =
is very nearly
sin (’a:w
—ya log -
sin £-¥

2

1 Reference 2, p. 11, gives a 10-point method result.
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where the range ¢; — ¢ is small and ¢, is the average

value of ¥(¢) in this range. The constants a, for the

20 divisions chosen above are actually

. 2n+1
sinr—

an=log |5 )
ismvr 30

n=-9,... +9)

As an example of the calculation of &(6) we may refer
to Table I and Figures 26 and 27 for the N. A. C. A.
— M6 airfoil. From the ¢(8) curve {fiz. 27) we obtain

the 20 values of ¢ and % for 20 equal intervals of 6.

For the airfoil (fig. 26) we get the following values:

{Upper dg {Lower i
8 surface) ¢ de 8 surface) ¥ de

0 (nose) 0.192  0.000 11’—0” 0.049 —0.002
1—"(—) . 185 . 027 %’ . 057 . 050
f—(’)’ 192 . 000 %" . 071 . 030
5% J180 —. 030 lﬁ,” 077 . oll
%’ T4 064 % . 079 . 000
%’ C146 —. 095 %’ . 082 . 016
%’; L1100 —. 114 11&5 . 090 . 039
I(’]’ L077 —. 086 ‘-1@0’5 111 . 091
%’ L052  —. 066 11(:)’—’ . 150 . 154
?—(’]’ . 041 . 025 27 (nosel . 102 . 000
x (tail) . 055 . 000

The value of ¢ at the tail (i. e., the angle of zero lift)
is, for example, using formula I

I =,
"}[ﬂ)"o

+1.091(.049 — .041)
+.494(.057 —.052)
+.313(.071 —.077)
+.217(.077—.110)
+.1568(.079 — .146)
+.115(.082—.174)
+.0884(.090 — .189)
+.0511(.111—.192)
+.0251(.150—.185)] = .0105
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The value of € for 0=%

a cyclic rearrangement.

e=—%_|:{(f)(—.03o)

» for example, is obtained by
Thus,

+1.091(.174—.192)
+.494(.146 — .185)
+.313(.110—.192)
+.217(.077 — .150)
+.158(.052—.111)
+.115(.041 — .090)
+.0884(.055—.082)
+.0511(.049—.079)

0251(.057 —.077)] = .0347

The 20 values obtained in this way form the ()
curve, which for all practical purposes for the airfoil
considered, is actually identical with the final ()
curve.

.+_

II. NOTES ON THE TRANSFORMATION.

§f_f(2)=c.+z+%l+a5§+ o ")

There exist a number of theorems giving general
limiting values for the coeflicients of the transforma-
tion equation (4), which are interesting and to some
extent useful. If ¢=f(z) transforms the external
region of the circle € of radius R in the z plane, into
the external region of a contour A in the ¢ plane in a
one-to-one conformal manner and the origin =0 lics
within the contour A (and f’(e)=1) then the area S
inclosed by .4 is given by the Faber-Bieberbach
theorem as ?

nla,*
1 2y

(s8]

S=Rr— 3

n =

Since all members of the above series term are positive,

it is observed that the area of C is greater than that

inclosed by any contour A in the ¢ plane (or, at most,
equal to the area inclosed by A if A is a circle).

This theorem leads to the following results

) < R? (2)
el < 2R (b)

Let us designate the circle of radius R about the
conformal centroid M as center as ) (i. e., the center
is at ¢ =¢;; this circle has been called the “Grund-

kreis” or ‘“basic’ circle by von Mises). Then since
|
%‘represents the distance of the focus F from M, the

relation (a) states that the focus is always within C,.
In fact, a further extension shows that if r; is the radius
of the largest circle that can be inclosed within A, then

2
F is removed from C; by at least;—s-

? For details of this and following statements see reference 5, p. 100 and p. 147, and
also reference 6, Part II,

From relation (b) may be derived the statement that
if any circle within A is concentrically doubled in radius
it is contained entirely within a circle about M as
center of radius 2R. Also, if we designate by ¢ the
largest diameter of A (this is usually the “chord” of
the airfoil) then the following limits can be derived:

R;%c
1

R; §C
These inequalities lead to interesting limits for the
lift coefficient. Writing the lift coefficient as
- L
T %oV
where by equation (45) the lift force is given by
L=4xRpV?sin (a+ B)

(4

we have
orsin (ot B s c,,:s’cr—Rsin (a+B)<4rsin (a+8) (II)

The flat plate is the only case where the lower
limit is reached, while the upper limit is attained for
the cifcular cylinder only. We may observe that a
curved thin plate has a lift coefficient which exceeds
2r sin (a+8) by a very small amount. In general, the
thickness has a much greater effect on the value of
the lift coefficient than the camber. For common
airfoils the lift coeflicient is but slightly greater than
the lower limit and is approximately 1.1X2r sin
(a+t8).

Another theorem, similar to the Faber-Bieberbach
area theorem, states that if the equation {=£(z) trans-
forms the internal region of a circle in the z plane into
the internal region of a contour B in the ¢ plane in a
one-to-one conformal manner and f/(0) = 1 (the origins
are within the contours) then the area of the circle is
less than that contained by any contour B. This
theorem, extended by Bieberbach, has been used in an
attempt to solve the arbitrary airfoil® The process
used is one in which the area theorem is a criterion as
to the direction in which the convergence proceeds.
Although theoretically sound, the process is, when
applied, extremely laborious and very slowly con-
vergent. It can not be said to have yielded as yet
really satisfactory results.

II. LOCATION OF THE CENTER OF PRESSURE FOR AN
ARBITRARY AIRFOIL

It is of some interest to know the exact location of
the center of pressure on the x axis as a function of the
angle of attack. In Figure 30, O is the origin, M the
conformal centroid, L the line of action of the lift
force for angle of attack «. Let us designate the

3 Maller, W, Zs. I. angew. Math. u. Mech. Bd. 5 8. 397, 1925.
Héhndorf, F., 2s. {. angew. Math. u. Mech. Bd. 6 8. 265, 1926.
Also reference 5, p. 185,
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intersection of L with the r axis of the airfoil as the
center of pressure P.

In the right AONJM we have,
OM=c¢,=me®=A,+1iB,
ON=m cos 6= A,
MN=msiné=5B,

and in right AJKM, K= _ ke
sin a  sin «
‘ e
Then KN= i B,
and NP=KN tan a=hy sec a— B, tan «

By equation (48)

hM:Jé.&!

b* sin 2 (a+ )
2R sin (a+B)

Then the distance from the origin to the center of
pressure P is

OP=0ON+NP=A,-B, tan

b? Si,n,,) (a+7)
2R cos « sin (a+ B, (I11)
Liff vector
x Axis

%

F1GURE 30.—Center of pressure location on the z axis
EXPLANATION OF THE TABLES

Table I gives the essential data for the transforma-
tion of the N. A. C. A. -M6 airfoil (shown in fig. 26)
into a circle, and yields readily the complete theoretical
aerodynamical characteristics. Columns (1) and (2)
define the airfoil surface in per cent chord; (3) and (4)
are the coordinates after choosing a convenient origin
(p. 181); (5) and (6) are obtained from equations (7)
and (8) of the report; (9) is the evaluation of equation
(13) (see Appendix); (10) and (11) are the slopes, ob-
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~and the pressure is given by equation (3).

]

.~ 6. von

i chosen for this case.

tained graphically, of the ¢ against 6, and e against
¢ curves, respectively; (12) is given by

B

\/ (blnh 2¢ + sm%’?)( 1 +(

e"O

where ;= f ¥ (¢) de¢ and may be obtained graphi-

The
for any angle of attack, is by equation (39)
v = Vk [sin (a+¢) +sin (a+ 8)]

cally or numer 1(‘&11)‘; column (13) gives ¢ =6+e.
velocity o,

The angle
of zero lift 8is the value of e at the tail; 1. e., the value
of e for 6=

Table II gives numerical data for the inverse process
to that given in Table I; viz, the transformation of a
circle into an airfoil. (See fig. 29.) The function
e(p)=0.1 sin (¢—45°) and constant ¥,=0.10 are
Then ¢(¢)=0.1 cos (¢—45°)
+0.10. It may be observed that columns (11) and
(12) giving the coordinates of the airfoill surface are
obtained from equations (6) of the report. Column
(13) is given by

- gve
£ V (smh 2y +sin%f) [(1— — +(3 ):I

and the velocity at the surface is by equation (39")

v=Vk [sin (a+¢)+sin (a+ 8)]
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TABLE 1
N. A. C. A—M6
UPPER SURFACE

Per cent | y in per . ] - dé de
¢ cent ¢ £ v sin®® | sinh % | gians v N . ae de k e=0te
o
0 0 2. 037 0. 000 0. 000 0.0373 0. 000 0.192 —0.0457 0. 000 0.085 6. 280 -2 37
1.25 197 1. 486 0796 . 0465 . 0341 .217 . 184 —. 0276 —. 010 080 4,249 10 52
2.50 2.81 1.936 115 0941 . 0342 L312 . 184 —. 0205 . 009 .080 3.368 16 41
5.0 4.03 1.835 163 187 . 0354 . 447 L187 —. 0098 L 022 . 080 2.557 25 4
7.5 4,94 1.734 275 . 0363 . 551 L 184 —. 0015 022 . 080 2. 163 3l 3t
10 5.71 1.633 231 357 . 0373 . f40 192 0063 020 L 085 1.829 37 3
15 6. 82 1.431 76 507 . 0375 L7092 . 193 0188 —. 009 . 085 1. 660 46 27
20 7.55 1. 229 305 636 . 0366 .923 190 0310 —. 031 L1080 1.498 54 38
30 8.22 825 332 835 . 0330 1.153 . 181 0549 —.0h8 L1107 1.324 69 11
40 8.05 421 325 .957 . 0276 1.381 L1685 0717 —. 085 088 1.220 82 T
50 7.26 017 293 1,000 06215 1.571 . 146 0856 —. 100 . 060 1.166 94 55
60 6.03 —. 387 244 . 963 0154 1. 764 124 0932 .025 1.152 106 25
70 4. 58 —. 791 185 . 845 0103 1.975 .100 0820 —. 029 1. 167 118 28
B0 3.06 —1.195 L124 645 0059 2,209 077 0828 —. 056 1.302 131 19
90 1. 55 —1. 509 63 . 363 0027 2. 495 L0562 0617 —. 085 1. 687 146 30
95 L8R —1.801 036 L1491 . 0016 2. 690 . 040 0410 —. (%0 2. 340 156 28
100 .26 —2.003 . 000 . 000 . 0030 3.142 L0565 0105 -.027 \19. 83 180 36
LOWER SURFACFE
|
0 0 0. 000 0. 000 0.0373 6. 283 0.192 —0. 0457 0. 000 6. 280 —2 37
1.25 1.76 —. 071 L (425 . 297 6.0758 L1592 —. 0781 L1393 4,615 ~16 21
2. 50 2.20 —. 084 . 0844 . 0234 5. 9K9 . 162 —. 0850 . 160 3.525 -21 43
5.0 2.7 —. 110 173 . 0176 5. 855 .132 —. 0882 133 2,510 —~29 35
7.5 3.08 - 122 . 259 L0144 5. 749 120 —. 0850 109 2. 025 —35 28
10 3.24 —. 131 . 342 L0125 5. 659 L1312 —. 0811 080 1.764 —40 24
15 3.47 —~. 140 L 494 . 0099 5. 505 . 099 —. 8723 069 1. 466 —48 44
20 3. 62 —. 148 . 626 . D085 5.371 092 —. 0637 057 1.307 —55 54
30 3.79 —. 153 . 831 . 007 5.136 . 084 ~—. 0516 025 1. 156 —68 39
40 3.90 —. 158 958 0065 4,924 . 081 —. 0421 1,008 —80 17 ¢
50 3.94 -, 159 1.000 0063 4.712 N Y —. 0350 000 1.081 —91 59 |
60 3.82 —. 154 963 . 0062 4. 518 L0785 —. 0310 010 1,120 —102 53
70 3.48 —. 141 . 845 . 0058 4.307 . 076 —. 0300 019 1.211 —114 55
80 2.83 —. 114 845 0050 4.074 .071 —. 0295 [155) 1.370 —128 14
90 1.77 -. 072 363 0035 3.788 . 059 ~. 0235 044 1.768 —144 16
95 1.08 —. 044 1491 L0025 3. 594 . 050 —. 0140 .020 2. 368 —15¢ 50
100 .2 . 000 . 000 . 0030 3.142 .05 . 0105 . 000 19.83 —179 24
TABLE 11
e(pd=0.18in (p=—45°) Yo=010 B=e(x)=0.0857=3"47"
UPPER SURFACE
v 2 \ ! | | l
€ '3 de v cosh ¢ sink ¢ ‘ cos 8 sin @ z v k
Degrees| Radians Radians | Degrees de de¢ | 2 { 2
I
0 0. 0707 1. 0146 Q. 1715 0.0703 1. 0121 6. 3941
5 L1518 1. 0156 L1775 . 1510 1.0039 5.1215
10 L2319 1. 0166 L1826 . 2208 . 9885 4. 0860
15 . 3118 1. 0175 L1877 . 3068 . 9685 3.3602
20 L3914 1. 0182 . 1918 . 3816 L9411 2. 8421
25 . 4705 1. 0189 . 1952 . 4532 . P082 2.47
30 . 5485 1. 0194 . 1979 . 5223 . 8693 2, 1842
35 7 L6253 1.0198 L1998 . BNT8 . 8250 1. 9746
45 . 0000 . 7854 1.0201 L2013 L7071 L7213 1. 6684
55 L0174 . 9425 1.0188 . 1998 ! . BOYO . 5094 1.4708
70 L (423 11794 —. 0423 1. 0182 . 1918 L9244 . 3882 1. 2859
80 L0574 1. 3389 ~. 0574 1. 0166 . 1828 L9733 . 2336 1. 2133
90 L0707 1. 5001 -, 0707 1. 0146 L1715 L9975 L0716 11717
100 L0819 1, 634 —. 0819 1.0124 . 1581 . 9957 —. 0935 1. 1586
110 L0908 1. 8293 —. 0906 1.0101 . 1428 i . 9568 —. 2583 1. 1756
125 . 0985 2. 0832 —. 0085 1. 0069 L1177 i . 8715 —. 4938 1.2727
135 . 1000 2. 2562 - '1(1)0 1. 0050 . 1002 H LTT42 —. 6361 1. 4088
150 L o6 2.5214 —. 0966 1.0028 . 0742 . 5812 —. 8161 1. 8306
160 L0906 2.7019 —. (906 1.0017 L0577 . 4258 —. 9063 2. 4584
170 . 0819 2, HBH2 -. 0819 1. 0009 . 0426 i 2538 —. 9682 4. 0498
180 . 0707 3.0704 ‘ —. 0707 1. 0004 . 0293 ; 0706 —. 9979 0021 13. 4411
I
LOWER SURFACE
i 7
0 —0.0707 0. 1707 0.0707 . 0707 1.0146 0. 1715 0. 9975 t 0. 0706 1. 0121 0.0121 6. 3041
-5 —. 0766 . 1643 . 0643 0765 1. 0135 . 1650 . 9989 i —. 0103 1.0134 —. 0018 7.1238
—10 —. 0814 L1574 L0819 1. 0124 . 1581 L BO57 ¢ —. 0924 1. 0030 —. 0146 6. 3827
—15 —. 0856 L1500 . 0866 1.0113 . 1506 . 9847 ! - . 5.0333
—20 —. 0006 . 1423 . 0905 1.0101 1428 . 9368 -. 3.9225
—25 —. 00 L1342 . 0940 1. 0080 . 1346 9420 -. 3. 1489
—-30 —. 0968 L1259 . 0886 1. 0079 . 1262 9102 —. 2.6077
—35 —. 0485 L1174 L0985 1. 0069 L1177 8716 —. 2.2203
—45 —. 1000 . 1000 . 1000 1. 0050 . 1002 7742 - 1.7161
—55 —. 0985 . 0826 - . 0985 1. 0034 . 0827 | 6514 - 1. 4183
—70 —. 0806 L0877 - . 0906 1.0017 L0577 4258 - 1. 1650
—80 —. (819 L0426 - . 0819 1. 0009 . 0426 2535 - 1. 0763
—9% —.0707 . 0293 - . 0707 1 . 0293 0706 — 1.0322
—100 —. 057 L0181 —-. L0574 1. 0002 L0181 —. 1170 —. 1. 0270
~110 —. 0423 . 0094 —. (906 . 0423 1 . 0094 —. 3021 —. 1.0616
—125 —. 0174 . 0015 —. 0985 L0174 1. 0000 . 0015 —. 5504 - ‘ 1. 2130
—135 L0000 | —. 1000 . 0000 1. 0000 . 0000 —. 7071 - i 1. 4209
—150 0259 . 0034 —. 0966 —. 0259 1. 0000 . 0034 —. 8787 - 2.1106
—160 423 . 0094 —. 0906 —. 0423 1. 0000 . 0094 —. 9533 - 3.3501
—170 L0574 . 0181 —. 0819 —. 0574 1. 0002 L0181 —. 9032 —. B. 6641
—180 . 0707 . 0203 —. 0707 —. 0707 1. 0004 \ L0293 1 —. Y975 +. . 13. 4411
i
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