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Abstract
We report a theoretical study of the axial Nucleon to Delta(1232) (N — A) transition form
factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism
in which the A couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical
spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino

bubble chamber data and in quark models.
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I. INTRODUCTION

The axial N — A(1232) transition form factors play an important role in neutrino induced
pion production on the nucleon, in particular at low energies [1, 12, 3,4, 5]. These form factors
have been parametrized phenomenologically to fit the ANL |6, 7] and BNL [&, 9] bubble-
chamber data. In the past, the theoretical descriptions have been done using different
approaches, for a review, see Ref. [10]. In recent years, there has been an increasing interest
on these form factors. They have been calculated, for instance, using the chiral constituent
quark model [11] and light cone QCD sum rules [12]. State of the art calculations within
lattice QCD [13, 14] have also become available. The possibility to extract the axial N — A
transition form factors using parity-violating electron scattering at Jefferson Lab |15] has
been studied extensively [16,[17]. Present and future neutrino experiments could also provide
further information on these form factors [18, [19, 20, 21, 22, [23].

Chiral perturbation theory, based on a simultaneous expansion of QCD Green functions
in powers of the external momenta and of the quark masses, has achieved remarkable success
in describing the dynamics of the light pseudoscalar mesons at low energies [24, 25, 26, [27)].
The sector with one baryon is more problematic because, as was shown in Ref. [28], the
systematic power counting is lost since the nucleon mass is not zero in the chiral limit.
These problems were first handled in heavy baryon chiral perturbation theory (HByPT),
where nucleons are treated semi-relativistically [29, 30]. However, in certain cases, this
approximation leads to convergence problems because the Green functions do not satisfy
the analytical properties of the fully relativistic theory [31]. Recently, the systematic power
counting has also been restored in the relativistic formulation through either the infrared [31]
or the extended on-mass-shell regularization schemes [32, 33].

The explicit inclusion of the A in chiral perturbation theory requires a power counting
that properly incorporates the A-N mass difference, A = M — My, which is small com-
pared to the chiral symmetry breaking scale. Two expansion schemes have been proposed.
One is the small scale expansion [34] which considers A to be of the same order as the
other small scales in the theory, i.e., m; ~ p ~ A. The other is the § expansion scheme,
which counts A differently depending on the energy domain [35]. Originally, the small scale
expansion was used in HByPT, while recently it has also been implemented in relativistic

chiral perturbation theory [36, 137].



The vector N — A transition form factors, important to understand eN (yN) reactions
and the structure of the nucleon, have been calculated up to next-to-leading order in both
the small scale expansion HBXPT [38,139] and the § expansion relativistic baryon yPT [40,
41]. While axial form factors have been addressed in HBYPT [42], no calculation has been
performed up to now within the relativistic framework. With lattice QCD results becoming
available [13], it is timely to study the axial transition form factors within relativistic chiral
perturbation theory.

In this paper, we use the relativistic baryon chiral perturbation theory, including explicitly
the A resonance, to calculate the axial N — A transition form factors up to order 3 in the §
expansion. Insect. II, we briefly explain the power counting, the difference between the small
scale expansion scheme and the ¢ expansion scheme, write down the relevant Lagrangians
up to next-to-next-to-leading order and the appropriate form of the A propagator. Loop
calculations are performed in sect. III. In sect. IV, we discuss our results in terms of
the low energy constants and loop functions. In sect. V we compare the results with
both phenomenological parameterizations and other theoretical calculations. Summary and

conclusions are given in sect. VI.

II. POWER COUNTING, EFFECTIVE LAGRANGIANS, AND THE A PROPA-
GATOR

A. Power counting

A fundamental concept of YPT (as Effective Field Theory) is the power counting [24].
It provides a systematic organization of the effective Lagrangians and the corresponding
loop-diagrams within a perturbative expansion in powers of (p/A,sg)™*7, where p is a
small momentum or scale and A,gp, the chiral symmetry breaking scale. In xPT with pions
and nucleons alone the chiral order of a diagram with L loops, N,(Ny) pion (nucleon)

propagators, and Vj, vertices from kth-order Lagrangians is
nypr = AL — 2N, — Ny + > kV;. (1)
k

However, in the covariant theory this rule is violated in loops by lower-order analytical

pieces [28]. This power counting can be recovered by adopting non-trivial renormalization



schemes, where the lower-order power-counting breaking pieces of the loop results are sys-
tematically absorbed into the available counter-terms [31,133]. A detailed discussion of the
renormalization scheme adopted in the present work will be presented together with our
main results in section IV.

If the A resonance is explicitly considered, things become more complicated because its
excitation energy, A = Ma — My ~ 0.3GeV, is small compared to the chiral symmetry
breaking scale Aygg = 47 fr ~ 1GeV. Therefore, there are two small parameters in the
theory, i.e.,

e=mg/Nsp and §=A/Agp. (2)

Over the past few years, two different expansion schemes have been proposed, the small
scale expansion and the ¢ expansion. In the small scale expansion [34], one has m, ~
A~ p~ O(e). In the d-expansion [35], to maintain the scale hierarchy m, < A < A,gp,
mx/Aysp is counted as 62. In this scheme, the power counting depends on the energy domain
under study: p ~ m, or p ~ A.

For the study of N — A axial transition form factors in the energy region p ~ A, the
order of a graph with L loops, V}, vertices of dimension k, N, pion propagators, Ny nucleon

propagators, Na Delta propagators, the power-counting index n is given by:
n:nxpT—NA. (3)

For a more general discussion, see Ref. [43].
In the present work, we adopt the § expansion scheme. As can be seen in the following sec-
tions, the differences between these two schemes in our case come from vertices proportional

to m2, which count as % in the § expansion and, therefore, have been neglected.

B. Chiral Lagrangians

In this section, we write down the relevant NN, NA, and AA Lagrangians and pay
special attention to the A couplings and the spin-3/2 gauge symmetry.



1. Pion-nucleon and pion-pion Lagrangians

The lowest order pion-nucleon Lagrangian has the following form:
L8 = N(iy" Dy = My = 9"y w,)N, (4)

where My and g4 are the nucleon mass and the axial-vector coupling at the chiral limit, D,
is the covariant derivative

D,N =0,N +[I',, N, (5)
D= ¢ {00 — iru+ u(@, — i)t} (6)

and u, the axial current defined as
uy, =i {ul(9, —ir,)u —u(8, —il,)u'}. (7)

In the above definitions, 7, = v, + a,, |, = v, — a, with v, = 7707 /2 and a, = 77a]/2
the external vector and axial currents, where 77 are the Pauli matrices. The matrix u

incorporates the pion fields

u? =U = exp [z}g} ) (8)

0 2t
¢ =r71,17 = 9)
\/§7T_ —70
with f, being the pion decay constant in the chiral limit.
The leading order pion-pion Lagrangian has the following form:

2 2

L2 = T (V. U(V*O)T] + T [xUT+UX'], (10)
where

v,U=90,U —1r,U+1Ul, (11)

with x = diag(m2, m2).

2. Nucleon-Delta and Delta-Delta Lagrangians

The A(1232) is a spin-3/2 resonance and, therefore, its spin content can be described

in terms of the Rarita-Schwinger (RS) field A,, where p is the Lorentz index.! This field,

o

1 We follow Ref. [43] and write the Lagrangians for the spin-3/2 isospin-3/2 A isobar in terms of the

Rarita-Schwinger (vector-spinor) isoquartet field A, = (AT+ AT A% A~)! which is connected to the

>



however, contains unphysical spin-1/2 components. They are allowed for the description of
off-shell Delta’s, but the physical results should not depend on them. In order to tackle
this problem, we follow Refs. |43, 45] and adopt the consistent couplings, which are gauge-

invariant under the transformation
Ay(x) = Au(z) + 0ue(z). (12)

A remarkable consequence of the use of the spin-3/2 gauge symmetric couplings is that it
leads to a natural decoupling of the propagation of the spin-1/2 fields.
In the following we give the NA and AA Lagrangians relevant to this work. The lowest

order Lagrangians in the resonance region are?

L) = — A R 9,4, )wg + Hee. (13)
2Ma
ﬁ(l) Ha a A Lom STa a o Ac 4
AA T oas2 b 7 8 Wy Veen (1 )
2M3
where w§ = $Tr (79u,) = 8,\7T +a%+---, T" and T“ are the isospin 1/2 to 3/2 and 3/2

to 3/2 transition matrices, and yHA is the totally antisymmetric gamma matrix product as

given in Appendix A. At second order, there are four terms, i.e.,

d _
Lia = —q7 NTUO L) 2" —idy NT* 210, — ids NT w0,
A
_ e Ne(9,A, )0 + Hee., (15)
Ma

isospurion representation of Ref. [34] through
Af = -T"A,

where T are the isospin 1/2 to 3/2 matrices satisfying T*T*" = §*® — 1/37%7%, as given in Appendix A.
With this rule, the on-shell equivalent form of our consistent couplings can be easily identified with those

of Refs. [34, 44].
2 If one A is put on-shell, the A-A Lagrangian is equivalent to that of Pascalutsa et al. [43]:

L = QIE‘AEW"A T9,A,)we + Hee..

3 In our study of the axial form factors up to one-loop order the §(2) and 6 Lagrangians only concern
on-shell A’s. Therefore, they are the same in the consistent coupling scheme of Pascalutsa et al. as those

conventional Lagrangians in Refs. [34, 44].



while at third order, there are seven terms*

La = —hNT D0, f*" — LNT A9, + iz Js NTO" 2,0, 0

f4 a QL £a,av f5 aqp, a,vo
MNTaf VO Ao MANTaw YO Do
Af;ﬁz NT0 f°0,0, A0 + ]\J;g NT*9w"8,0,A, + He., (16)

where w?, = $Tr(7*[D,,,w,]), f2* = 0"a™ — 8”a". As we will see later, the 6@ and 6
low-energy constants (LEC) contribute to the form factors only in particular combinations;
therefore, the number of independent parameters is smaller than the one appearing in the

above Lagrangians.

C. Spin-3/2 propagator

The most general spin-3/2 free field propagator in D dimensions has the following

form |36, 146]:

s BEMA [ AT (1= QG+ M) .
ST S L R AN e (s TA A
(D —2)(1 = ¢*)pp”

(D = 1)(¢%p* — MR)

where ( is the spin-3/2 gauge-fixing parameter. In the case of ( = 0, the above propagator

| an

corresponds to the usual Rarita-Schwinger propagator

P+ Ma 8 7076 1 3 8 (D - 2)papﬁ
& = « _ _ (6% _ (0% I S . 18
w22 |0 T (D—1)MA(”’ 7’p%) D )iZ | (18)

5% (p) =

while in the case of ( = oo, it becomes

o + Ma
5% (p) = j‘; P (19)
with the covariant spin-3/2 projection operator defined by
a0 (e} 5
67 « fy 7 1 fo (o] ( )
Pya(p) = g% — - 5 (17°9° + p°p) — (20)

(D-1) (D-1)p (D —1)p?

4 In the small scale expansion scheme, there are two more terms at this order proportional to m2, i.e.,
—fsNT Wl Tr[x4]A” — foiNT* [D,, x*] AY,

where x4 and y_ are external scalar and pseudoscalar sources.
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FIG. 1: Feynman diagrams contributing to the axial N — A transition form factors up to 6.
The double, solid, and dashed lines correspond to the Delta, nucleon, and pion, while the wiggly

line denotes the external axial source.

It should be stressed that due to the spin-3/2 gauge symmetric nature of the consistent

couplings, our results do not depend on the particular value of the gauge-fixing parameter

.

III. THE N — A AXTIAL TRANSITION FORM FACTORS

The N — A axial transition form factors can be parameterized in terms of the usually

called Adler form factors [1, 47]:

, _ CA 2 CA 2 ' w o
(A )| = A3 P(p))y = A ()] G (o _ gory o G (g oy
My M2,
CA 2
+C (g g™ + 734(3 )q“q”}N, (21)
N

where A“3 is the third isospin component of the axial current.
All the diagrams contributing to the N — A axial transition form factors up to 6®® are
displayed in Fig. [l° Two Kroll-Ruderman like diagrams are not shown since the one with

an internal nucleon and a Amr NN vertex is zero and the other one with an internal A and a

® We do not have the diagrams (c), (d), (e), and (f) of Fig. 1 of Ref. [42], that correspond to tadpole
diagrams where a pion loop couples to either the ANA (mNA, Ar) vertices, or the pion fields, because
the contribution of those diagrams are of higher-order in the § expansion scheme.



AmAA vertex contributes as a real constant, which is irrelevant to the present study due to
the adopted renormalization scheme. The calculation of the tree-level diagrams [Fig. 1(a)]

is straightforward:

o 2 hA a d « o fe « (67
ARS® = §[_7 u_M—lA(P“qg“—qp’“)—d2(v~qg“—q7“)—d37'q9“

——p g™ + fi(P9™ = ") + faP g™ + =0 (v - a9 — ¢*)
Ma Ma
LY v-q(® -q9™ —q¢"p") + s v-qp g™ + I p-a(p - qg™ — q°p")
Ma Ma M2
f7 / / m
STy qp - qg® 22
gy e (22)

where p/, p, and ¢ are the momenta of the A, the nucleon, and the external source. We
assume that both the external nucleon and A are on-shell, which yields p’ - ¢/Ma = (M3Z —
M% + ¢*)/(2Ma) ~ A and v - g = Ma — My = A, where we have neglected the ¢ and A?
terms which, strictly speaking, are of higher order than the chiral order of the corresponding
Lagrangian.

In the following we explicitly show how to calculate the loop diagrams:

Diagram Fig. 1(c) reads

21 hagd 1
ap3 . [= AGA .~
Aw” = \[3 {(87? )2 MA] i (23)
with
. dPk Py ke [ — ¥+ My 95 [p — ¥+ Mu] ks
) PRAE b c 24
it = (2mn) / i T2 —m2 +idl(p— K = ME e[ =k — M3+ 2V

where p, the renormalization scale, is set to be M.

Diagram Fig. 1(e) reads

5 2 gAhAHA 1 .
Aoeu,?) — _\/j ap 2
© ~6V3 { (87 fx)? Mi] ey )
with
dPk i€ pikeSaa(p) — k)Y ¥ (p = k)e(p — F + My)¥
Vel 9 4—D pvePad e N 75. 2
G = o' [ R G .
Diagram Fig. 1(g) reads
1 /2 h? 1
a3 A c YOUYL
A" = 6\/; l(87r Fr)? Mg} ) (&1)
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with

dPk ply Pk (f — ¥ — My )y (p — k)eSpy(p — K)YD(p — k) ake

-Gau — (2 4—D/ . (28

iGg = (@mn) im? (k2 —m2 +ie][(pf — k)2 — M% + i€ (28)
Diagram Fig. 1(i) reads

5 |2 hyHY 1 7.
Aaﬂf’:_\ﬁ Paza | ges 2
® ~9V3 [(87rf7r)2 A | “Ca (29)
with

- _ dPk

Gy = (2mp)*P 7 (30)

o (D = F) ok San(p — KA Y P e (0 — k) (p — k)" S (p — k) ygag(p — k)RS
(K2 —m2 + €] ‘

In the above equations, S*(p) is the spin-3/2 propagator defined in Eq. (IT). Since the
couplings we used are spin-3/2 gauge symmetric, our results do not depend on the specific
value of the gauge fixing parameter.

These loop functions are quite complicated, particularly the ones including A internal
lines. In practice, we adopt the conventional Feynman parametrization method (see Ap-
pendix B) and calculate these loop functions numerically. The manipulation of the Dirac
algebra has been performed independently with FORM [48] and FeynCalc [49]. The resulting
Feynman parameter integrals are listed in Appendix C. Whenever possible, the numerical
results have been checked using the FF library [50] through the LoopTools interface |51].

The one-loop results contain only four different Lorentz structures (due to the constraints
Ay = 0 and Ap'® = 0), ie., vq%, ¢“p'™, g**, and ¢*¢". In accordance with the Adler

formulation of Eq. (ZII), we can identify the corresponding Lorentz structures and group the

results as
« « o Q, 2 (6% (0% Q, (6%
AR+ AP+ A+ AT =4[5 [gs(qz) (9% - a—q*v") + 9a(®) (¢ - Vg™ — ¢°p™)

+95(¢2) g™ + 96(¢*) ¢ ¢"|.  (31)

It is interesting to note that these loop results depend only on known masses and
couplings: m,, My, Ma, fr, ga, ha, and H,. Here, we adopt the following values:
m, = 0.139GeV, My = 0.939GeV, Man = 1.232GeV, f, = 0.0924GeV, g4 = 1.267,
ha =2.85 and Ha = (9/5)ga. The value of Hy4 is obtained from large N, relations and its

uncertainty is discussed below. In other words, the ¢* dependence of the loop functions are

10



genuine predictions of the present work, in contrast with the 5 and §® tree level diagrams,
which contain basically unknown low energy constants: dy, do, ds, dg, f1, fo, f3, fa, f5, fé,
and f;. Some of these LEC, (ds, d4, f5, f7), also appear in pion-nucleon scattering and
could, in principle, be extracted from there [44].

Apart from diagrams (a), (c), (e), (g), and (i), the external axial source can also couple
to a pion and interact through it with the system. These are the so-called pion pole terms
(diagrams (b), (d), (f), (h), and (j)) and are calculated below.

The Lagrangian responsible for the coupling of the external axial source with the pion at
second order is

L% = —f.0,m %" (32)
With this and the low-energy counter terms given above, we can easily write down the
pion-pole contributions:

2 q°¢" |ha dy s
ACE,LL,3 = \/ji —_— d . _ / . p— 2 _ / . .
pion—pole 3 q2 — m72T 9 +dzy-q+ MAp q f2q MAp qy - q

——=(" - 9)* = (95 + 96¢°) (33)

with g5 and gg the loop functions calculated above.

IV. RESULTS AND DISCUSSIONS

In this section, we present our results for the form factors in terms of the LEC and
the loop functions g3, g1, g5, and gg (Table ). Tt should be mentioned that the Partially
Conserved Vector Current (PCAC) relation

A
Cs' + E—%QQ\W%O =0 (34)
holds up to every order in our yPT study, which can be easily checked from Table [Il

As mentioned above, the one-loop results are free of unknown couplings, but the LEC
are basically not known. Since these LEC always appear in particular combinations, we can
introduce d, = d; — (f1+ f6)A4, dy = dy — f3A, and dy = ds + dy — (fs + f7)A and treat
them as free parameters. Therefore, effectively, we have five unknown constants: dy, ds, ds,

f1, and f5.

From Table [ we can conclude that

11



TABLE I. The axial transition form factors in relativistic baryon chiral perturbation theory; di,
do, d3, dy are order 2 LEC (in units of GeV~!) while f1, fo, f3, f14, f5, f6, fr are order 3 LEC
(in units of GeV~2); g3(q?), 94(¢?), g5(¢*), and gg(g?) are the one-loop contributions as defined by

Eq. (31).

FF 5 5 5@
_ %%}‘f) 0 —ds f3A+ g3(¢?)
gcﬂ? 0 —dy /Ma (fa+ fo) A/Ma + ga(q°)
—\/3C®) | B —(ds+dy)A (fs + A%+ (f1 + f2)* + 95(¢%)
%%1%2) % % 1+ gs(®) + —(f5+f7)A2—fzgz_—ﬂ(bgrs(f)#rge(q%q%

(a) At order 60, C4' =0, Cft = 0, and C£ = /224 ~ 1.16 with hy = 2.85 from Ref. [46],
which is determined from the A-resonance width, T = 0.115 GeV. Furthermore, Cg!
is related to C2 through the pion-pole mechanism, i.e.,
My

A _ A
T

(35)
(b) At order 6@ C4', C{, and C2 receive a finite constant contribution. The above

relation, Eq. [35), between C2 and C& still holds.

(c) At order 6®¥, the LEC give constant contributions to all form factors, and ¢* dependent

contributions to C2' and C4'. The one-loop diagrams start at this order.

Before presenting the loop results we specify our regularization procedure due to the
complications with the power counting mentioned in Section II.A. The loops are regularized
in the M S scheme, subtracting in addition the real part of the contribution to the form
factors at ¢>=0. Since there is no counter terms linear in ¢2 at (2, this procedure guarantees
to recover the power counting in all form factors.

We show in Fig. B the one-loop contributions to the form factors C3', Cf', CZ', and
C4' (except the pion-pole diagrams which only contribute to Cg'). One can see that only

diagrams ¢, d (N-N) and g, h (A-N) from Fig. 1 contribute to the imaginary part of the form

12
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FIG. 2: (Color online) One-loop contributions to the form factors Cf, Cf, Cg‘, and Cé“. The pion-
pole diagrams, which only contribute to Cé“, have not been included. The N-N, N-A, A-N, A-A
labels denote the contributions of diagrams with nucleon-nucleon, nucleon-Delta, Delta-nucleon,

Delta-Delta internal lines.

factors, with N-N being dominant. One also finds that C;' and C4' receive relatively small
corrections from the one-loop calculation, whereas C3' gets a relatively large one coming from
the A-A diagrams (diagrams 4, j). This seemingly large ¢* dependence, however, suffers
from the uncertainty related to the TAA coupling H, because the A-A loop contribution
is proportional to H?.

In Fig. 3 the loop contributions from all diagrams to each form factor are added. Clearly,
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FIG. 3: (Color online) One-loop contributions to the form factors C§4, C’f, C’g‘, and C’g‘. The

pion-pole diagrams, which only contribute to C’?, have not been included

one can see that C2' has the largest imaginary part; C'j' the second; next is the C3', and Cg'
receives the smallest contribution.
Without the one-loop contributions, C%' can be easily separated into a non-pole part and

a pion-pole part, i.e.,

2 1 1
A ~ 2 2
Cs = —GanaMy 3 {M + ETA] (36)
with
_ h ~
GrNA = 7A +d3A — f2m72m (37)
= =2 (fy 4+ fo) ~ 6 Log(C) (38)
A gaNA ! aa dg? Bs Jlar=o

This is equivalent to the HBXPT result of Ref. [42]

a6 1
AT A%gWNA

2 MN Cof

with the correspondence g.ya = g=na and (f1 + fo) = A% [@ﬁ—; + 02].

V. COMPARISON WITH OTHER APPROACHES
A. Phenomenological fits

Bubble chamber neutrino data have been used to extract information about the axial
N — A form factors [4, 19,152, 53]. However, there are some important limitations. First, the

cross section is basically dominated by the CZ' form factor and shows very little sensitivity to
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Cg‘,‘476. Second, the statistics is quite low and, furthermore, the two available data sets from
BNL [9] and ANL [7] are clearly different. Finally, it is difficult to disentangle the A from
other background pion production processes [3, [4]. Therefore, all these works make some
additional assumptions. A set of them often found in the literature® is: C3'=0, Cj' = —1C2,
and C4 is related to CZ' through Eq. (B5). In this way only CZ! is fitted to the experiment.
As an example, we can take Kitagaki et al. |[9] where it has the following functional form:

o) =) [1- 2 (1 q) (10)

Th-a g

with C21(0) = 1.2, a5 = —1.21, by = 2 GeV?, and M, is fitted to data yielding My =
1.28709% GeV. We will refer to this set of form factors as Kitagaki-Adler (KA) form factors.

As we have shown above, there are 5 independent parameters in the § expansion scheme
up to chiral order 3: cil, JQ, Jg, f1 and fy. We fix them in such a way that the real part of
our form factors reproduces many of the features of the KA ones. To obtain C3' = 0, we
set dy = 0; therefore its contribution comes only from loop calculations which are of chiral
order 3. Strictly speaking , Eq. (85) is not fulfilled at order §® but, if one neglects the
small loop contributions, it can be satisfied by taking f; = 0. Correspondingly, the relation
CiH(0) = —1C2(0) fixes dy; CA(0) = 1.2 fixes ds. The only LEC left, fo, is then fixed to

ocs
reproduce 73 at ¢ = 0.

The results obtained this way are shown in Fig. @, with the following parameter values
dy = —0.514 GeV™!, dy = 0, d3 = 0.153 GeV™!, f; = 0, and fo = —2.184 GeV~2. One
can clearly see that the calculated CZ' and Cf' are in good agreement with the KA form
factors. On the other hand, the ¢*> dependence of C;' is much weaker that the one assumed
in KA, Cf = _ch" and we cannot accommodate their results at order 5. For C4, the ¢?
dependence is also very weak (compared to CZ). In Fig. 4], the dark shadowed area indicates
a modification of M, within its uncertainties as given in Ref. [9]. As we mentioned above,
the C4' dependence on ¢? is rather sensitive to the coupling constant H,. This can be easily
seen from the light shadowed area in the upper-left panel of Fig. dl which covers the region
of ga < Hx < (9/5)ga. The form factors, Cis 4, on the other hand, are less sensitive to the

value of H 4.

6 This choice originates from the analysis of Refs. [1, 54] of Adler’s results obtained using dispersion

relations [55].
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FIG. 4: (Color online) Comparison with the Kitagaki-Adler form factors. The dark shadowed area
indicates the uncertainty of M4 = 1.28J_r8:(1)§ GeV as determined in Ref. [9]. The light shadowed
area indicates the sensitivity of the results to the 7TAA coupling Hy4, which covers Hq = (9/5)ga

to Hqa = ga.

A word of caution is in place about the comparison of C5' and C;f' with the KA form
factors. In yPT, the leading order counter terms linear in ¢ contributing to C3' and C3'
appear at chiral order 4. A fair comparison with the phenomenological fits (particularly
the ¢? dependence) should, in principle, be done at order 4. However, the §®) yPT results
might give us a clue on the magnitude of the ¢* dependence of C4' and C{*. Furthermore,
if we believe in the phenomenological assumption, or the results of other approaches, the
difference between the third order xPT results and the results of other approaches might
help us estimate the value of the corresponding fourth order LEC. Indeed, the upper panels
of Fig. @ indicate that small 6®* corrections h;q*> with natural values for the LEC h; can
reproduce the slope assumed for C4' and Cf* by the KA ansatz.

We also notice that a recent analysis [4] obtained a smaller value for C2(0) by including
non A contributions and fitting to the low invariant mass ANL data. In the present xPT

study, we do have the higher-order contributions, ds, which could alter C¢(0) within such
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a range; however, the same LEC appear in pion-nucleon scattering processes. A combined
analysis is mandatory to determine whether one can accommodate the small CZ(0) obtained

in, for instance, Ref. |4]. This is left for future studies.

B. Quark models

There have been many studies of the N — A axial transition form factors in various quark
models, both relativistic and non-relativistic. For a brief review of quark model studies, we
refer the readers to Refs. |10, [11]. Compared to dynamical model studies, a feature of most
quark model calculations is that the obtained form factors are real due to time-reversal
symmetry, while in dynamical models, like our xPT study, these form factors are in general
complex due to the opening of the pion-nucleon channel.

Quark model results are in fact quite scattered. Taking, for instance, the models discussed
in Ref. [11], we observed that the prediction of C2(0) runs from 0.81 to 1.53, C7*(0) runs
from —0.66 to 0.14 and C4'(0) runs from 0 to 0.05. These models also obtain the non-pole
part of Cg' whose value at ¢?> = 0 ranges from —0.72 to 1.13. We could use these results
to extract our constants although the large differences between them do not allow to reach
solid conclusions about their values. From CZ'(0) one gets Jg, and from its slope C2 /¢ at
¢* =0, (fi+ f»). This fixes the non-pole part of CZ'(0) (neglecting the one-loop corrections)

since
non—pole 2
G " (0) ~ \@M?V(fl + ). (41)

which is nothing but a direct consequence of PCAC. Using the quark model calculation
of Ref. [11] for CA we obtain Ci ") ~ —2. This value is almost a factor three
larger in magnitude than the one obtained directly from that model in spite of the fact that
it implements PCAC at the quark level by introducing one- and two-body axial exchange
currents.

Analogously, we can use quark model results for C' and C{* at ¢> = 0 to obtain d, and
dy. The smallness of C44(0) predicted by all calculations points towards a dy close to Zero,
in agreement with the phenomenological assumption. The situation is much more uncertain
with d;, both in sign and magnitude. In Fig. [, the ¢* dependence of the real parts of C4!
and C{ in our calculation, which at order §® is dictated by the loops, is compared to several

quark models. As in the case of the KA form factors discussed above, we can expect from
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FIG. 5: (Color online) Comparison with the non relativistic Isgur-Karl and D-mixing quark model

results of Ref. [10], and those of the chiral quark models of Refs. [11] and [56].

this comparison that next order terms linear in ¢* with small (natural) values of the LEC
are sufficient to eliminate the discrepancies in the low ¢ behavior with any of these quark

models.

C. Lattice QCD results

Recently, the N — A axial transition form factors have been studied in lattice QCD [13,
14]. Some major conclusions are (i) Ci' and C3' are suppressed compared to CZ and C{',
and (ii) C& can be described by a dipole ansatz C2(0)/(1 + Q%/M?%)? but with a smaller
C24(0) and a larger M4 (> 1.5 GeV), compared to the Kitagaki-Adler form factors. These
results should be taken with caution because of the still relatively large pion mass (> 350
MeV) used in the study.

In principle, xPT is the perfect tool to extrapolate the lattice QCD results to the physical
region. Meanwhile, one can also fix the unknown couplings to the lattice QCD results. Due
to the regularization method we used and the fact that the lattice data points are still scarce,

we will leave this subject to the future.

VI. SUMMARY AND CONCLUSIONS

We have studied the axial N — A transition form factors up to one-loop order in relativis-

tic baryon chiral perturbation theory with the § expansion scheme. The adopted Lagrangians
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including the A(1232) are consistent, i.e., spin-3/2 gauge symmetric, which automatically
decouples unphysical spin-1/2 fields. Consequently, our results do not depend on the specific
value of the gauge-fixing parameter that is present in the most general spin-3/2 propagator,
and avoid various problems related to inconsistent couplings.

The form factor C2' exhibits the richest structure in our study. It receives contributions
starting at chiral order 1, at which we find that C2(0) = /224 ~ 1.16 for hy = 2.85. At
higher orders, this value is modified by low energy constants that are unknown but which

also appear in pion-nucleon scattering. At chiral order 3, this form factor gets ¢? dependent

contributions, some of them complex. Actually, we find that CZ' has the largest imaginary

A_ME
5 frng\_—q2 *

part among the four form factors. We also obtain that, up to chiral order 2, C& =
At order 3, C¢' has a non-pole contribution whose value at ¢*> = 0 is related to the slope of
C# at ¢ = 0. Assuming natural values for the LEC, this non-pole part is small compared
to the dominant pion-pole mechanism.

Both C4' and C§! start at chiral order 2 and get their ¢*> dependence at order 3 from the
loops. For C4!, we find a small ¢> dependence, which is quite sensitive to the TAA coupling
constant, H4. On the other hand, its imaginary part, coming mainly from the N-/NV internal
diagram, is finite (~ 0.03 at ¢> = 0) and has a mild ¢ dependence. This suggests that C3' is
small (compared to Cy; ¢) but not necessarily zero. The Cj' dependence on ¢ is also found
to be rather mild at order 6.

We have compared our results with a phenomenological set of form factors used in the
analysis of neutrino-induced pion production data and also with different quark model cal-
culations. They could be used to extract the low energy constants but the scarcity of data
and the large differences between quark model results make it difficult to come to solid con-
clusions. In the case of C3' and specially C§!, the comparison should, in principle, be done
at order 4 where corresponding leading order counter terms linear in ¢ appear. Neverthe-
less we can say that reasonable agreement with all these approaches can be obtained with
natural values of the LEC.

Future experiments with electron and neutrino beams, combined with the analysis of
pion-nucleon scattering data, can shed more light on these form factors. The extrapolation

of lattice QCD results to the physical region should also be pursued.
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Note added in proof: After submitting this paper, a new preprint [57] appeared that
studies the N — A axial form factors up to one-loop order in HBChPT using the small scale
expansion scheme. Within this framework, there is no ¢> dependence coming from the loop-
functions. This supports the smooth ¢? dependences found in the present work. Namely,
the ¢? dependence of the loops in our relativistic framework is counted as of higher-order in

HBChPT.
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VIII. APPENDIX
A. Isospin transition matrices and antisymmetric Gamma matrix products

The isospin 1/2 to 3/2 and 3/2 to 3/2 transition matrices 7" and 7* appearing in the
NA and AA Lagrangians are given by:

. 1 [ =3 0 1 0
T = — , (42)
Vel 0o -1 0 V3
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Tl — , (45)

20| V3/2 0 ~1 0

T3 = (47)

o O =
—_
~
w
(@)
o

0 —1/3 0
0 0 0 —1
The totally antisymmetric Gamma matrix products appearing in the consistent NA and

AA Lagrangians are defined as:

P = St ) (49)

Y = %W‘”, V= =g s, (49)

S O (50

with the following conventions: ¢" = diag(1,—1,—1,—1), gg123 = —e®23 = 1, v =

1Y0Y1Y273-

B. Loop functions

In the calculation of the loop diagrams, we have used the following d-dimensional integrals

in Minkowski space:

a1 Q2n, _ _ _ n  o1...02n
/ddkk kT =t e—2) (<1)"gS 651

(M2 —k2)» 2nT(N)  (M2)rnte?

with gt = g9z | g*n-192n + g combination symmetrical with respect to the per-

mutation of any pair of indices (with (2n — 1)!! terms in the sum) [58].
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The M? that appear in the calculation of the N-N, N-A, A-N, and A-A internal dia-

grams are, respectively,
My =am; —a(l -z —y) M3+ (1 -2 —ay) My —y(l -z —y)q® —ie,  (52)

Mia=azmi+(1—2)1—z—y)MR +y(l—a)M} —y(l —z—y)g* — ic, (53)
Miy=ami+ (@ +oy—z+y)Mi+ (1—2—y—ay) My —y(l—z—y)g* —ie, (54)
Mia =ami + (1 =2z +2* + xy) ME — ayMy —y(1 — z — y)q* — ie, (55)

where x and y are Feynman parameters.

C. Feynman parameterization integrals

We present below the loop integrals, diagrams (c), (e), (g) and (i) of Fig. 1, cast in the
Feynman parameterization. We use the following notation: 51-(XY) is the M S-regularized
contribution of the loop to C/* with X and Y being the baryons in the internal line (in
this order), M%y=M%y /M3, r = Mx/Mn, jix = m;/Ma, and Q** = Q?"/M3" (with
Q* = —¢*).

The couplings are contained in the constants Cxy:

NV AV 182 N T 3V 3 T 102202

c :l\ﬁ h3 M3 o :Q\ﬁhAHgMg
AV T3V 192202 0 AT 9 V3 sT6 20
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Then, the expressions of the loop functions are:

3

5£NN) o

5

G?ENA) -

GNN)

GNN)

GNN)

Cnw
_ﬂr(lélr—i-?) +rcNN/ d:c/ dy (“3y+z(y’+2y—1)+1)°

+ ((y—l)x2+(y y—l)x—3y+2)r —x(y+3)(x+y—1r+x( 2 — 2uyx
1

+ a4y +Qaty -1 ((y- D+ +r (P +2y—1))]

My
2y(2y — 1) + w4y — 1) + 7 (45 + 5y — 1) | log (M) |

,,,.2CNN 1 1—x
—2r2CNN/ dx/ dyy{[(—3y+x(y2+y—2)+2)7‘2—2x(x
0 0

_ 1 _
v =1 —yle+y =1 ((1-9)Q +2) | 5 2029~ Dlog (Miy) |
NN
I — 2— 72~
1T7°03NN> 1-r-¢ gercgNN—zrcNN/da;/ (1 =r)y+r+a)x
log (MNN)v
TchN

1 11—z
6 —27“2CNN/ dx/ dyy{[y((:c(y—1)—2y+1)r2+2(:c+y—1)r
0 0

2@ty —1)+Qy — (@ +y—1)

1 ~2
g 2(2y — 1) log (M) } .

C B 1 11—z
N (=392 + 15512 4 27Q% + 967 — 69) — 7 Cya / dzx / dy x
0 0

288
{y [:B(x(y —1) =2y +1yr*+y (—2x2 —3yx +x + 1) 3+ ((1 —2y)x® + (3 — 2y)ya?

+ (y2—1)x+y)r2+z(2x2+5ya¢+3y2—y—2)r+z(x+1) (z2+(2y—1)x

+ =Dy +Q (- Dy (@ + 2y — D+ (y— Dy) + Q° ((1 — 2y)2” + (2(y — 1)r*

27’—4y—|—3)ya¢2—|—(2(r2—1)y3+(—57’2—5r+1)y2+(27’2—|—7’+2)y—1)x

v (v =207+ (=37 + 2y + 1) 7 = (y = 1)) Mg ~ (4= 33y)a® + (33 (7
B B NA
Q*—1)y* — (217 +32r +21Q° = 5) y + 4) x + y (13 — 32y)r* + (8 — 48y)r — 16y
log (M?VA) M?VA log (M?VA) }
4 4 ’

Q? (33y% — 38y + 13) + 8) ] +13(4y — 1)
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