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Abstract

The anti-D meson self-energy is evaluated self-consistently, using unitarized coupled-
channel theory, by computing the in-medium meson-baryon T -matrix in the C = −1, S = 0
sector. The heavy pseudo-scalar and heavy vector mesons, D̄ and D̄∗, are treated on equal
footing as required by heavy quark spin symmetry. Results for energy levels and widths of
D− mesic atoms in 12C, 40Ca, 118Sn and 208Pb are presented. The spectrum contains states
of atomic and of nuclear types for all nuclei. D̄0-nucleus bound states are also obtained. We
find that, after electromagnetic and nuclear cascade, these systems end up with the D̄ bound
in the nucleus, either as a meson or as part of a exotic D̄N (pentaquark) loosely bound state.

1 Introduction

Hadronic atoms provide valuable information about in-medium modification of hadron properties,
on hadron-nucleon interaction, and also on properties of nuclei not easily accessible by other
probes, as the distribution density of neutrons. This field has been the subject of thorough study,
both theoretical and experimental, since long time ago for pions and anti-kaons [1, 2, 3, 4, 5, 6], and
more recently for anti-protons [7, 8, 9]. However, for anti-charmed atoms not much theoretical
work exists in the literature. To our knowledge, only Ref. [10] studies D− atoms. There, the
1s, 2s and 1p states (neglecting widths) of D− in 208Pb were evaluated using the quark-meson
coupling model of Ref. [11]. D̄NN bound states (rather than atoms) were predicted in [12]. On

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/71032198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1111.6535v1


the experimental side, the study of anti-D mesic atoms poses a serious challenge. The study of
open charm systems seems timely in view of the forthcoming experiments by the PANDA [13, 14]
and CBM [15, 16] Collaborations at the future FAIR facility at Darmstadt [17].

As compared to other mesic atoms, D− atoms have a number of specific features that make
them worth studying. First, the D̄ meson is so heavy that the atomic meson wave function has
a sizable overlap with the nucleus, specially for the low lying levels and for heavy nuclei. Hence
the strong interaction effects are expected to be larger than for other mesic atoms, even if the
optical potentials themselves are of comparable strength. Second, D̄N has no lower hadronic
channels for strong interaction decay. This is unlike other hadron-nucleus bound systems. For
instance, in pionic atoms the channel πNN → NN is available, in K− atoms K̄N → πΛ and πΣ,
in D0-nucleus DN → πΛc and πΣc, in p̄ atoms p̄N →pions, or in η-nucleus, ηN → πN . So, if
bound, the D̄ remains in the nucleus until its weak decay is produced. Third, heavy quark spin
symmetry (HQSS), a well established approximate QCD symmetry [18, 19], is expected to play
an important role in D− atoms. One of the consequences of HQSS is that the D̄∗ vector meson
degrees of freedom should have some (important) influence on these systems. Hence, such degrees
of freedom should be incorporated by means of any realistic treatment. This is automatically
achieved in the SU(8) extended Weinberg-Tomozawa model followed in this work [20, 21]. Fourth,
all t-channel vector meson exchange models without incorporating HQSS, that is, not including
vector mesons in the coupled-channel space, produce a featureless real repulsive potential below
threshold [22, 23, 24]. This scenario is expected to change when HQSS is enforced. Indeed, the
calculation of [12] identifies an I = 0, J = 1/2− D̄N bound state with 1.4MeV of binding energy.
The same state is also found in the SU(8) model of Ref. [21]. This exotic baryonic state plays an
important role in the D− atom dynamics. Due to the existence of this exotic state, the D̄ optical
potential turns out to be attractive, dissipative and strongly energy dependent. In addition, due
to the energy dependence, not so relevant in other mesic atoms, a proper implementation of the
electromagnetic interaction, through minimal coupling, needs to be considered.

The paper is organized as follows. In Sect. 2 we describe the calculation of the D̄ self-energy in
nuclear matter and present our results for the D̄ optical potential. We carry out a self-consistent
calculation in symmetric nuclear matter at zero temperature for energies around the D̄ mass. In
Sect. 3 we present our results for the energies and widths of the D− mesic atom levels in 12C,
40Ca, 118Sn and 208Pb. For this purpose, we solve the Schrödinger equation with a finite nuclei
D̄ optical potential obtained from that derived for nuclear matter, in the previous section, and
making use of the local density approximation. In this section, we also extend our study to the
case of D̄0 bound states. Finally in Sect. 4, we discuss possible decay mechanisms of the bound
states, while in Sect. 5 we summarize the main conclusions of the present work.

2 The D̄ self-energy and optical potential

The self-energy in symmetric nuclear matter for the D̄ meson is obtained following a self-consistent
procedure in coupled channels, as similarly done for the D meson [25]. The s-wave transition
potential of the Bethe-Salpeter equation is derived from an effective Lagrangian that implements
HQSS. This is an approximate QCD symmetry that treats on equal footing heavy pseudo-scalar
and vector mesons [18, 19]. Therefore, we calculate simultaneously the self-energy of the D̄∗, the
HQSS partner of the D̄.
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As shown in [26, 27], the Weinberg-Tomozawa (WT) meson-baryon Lagrangian admits a unique
and natural extension with spin-flavor symmetry for any number of flavors. In addition to 0+

mesons and 1/2+ baryons, this requires the inclusion of 1− mesons and 3/2+ baryons. For four
flavors this interaction has SU(8) symmetry and automatically enjoys HQSS in the C = −1 sector.
Schematically [20, 21],

LSU(8)
WT =

1

f 2

(

(M † ⊗M)63a
⊗ (B† ⊗ B)63

)

1
. (1)

The tree level amplitudes for different isospin (I), total angular momentum (J), charm (C)
and strangeness (S) take the form

V IJSC
ab (

√
s) = DIJSC

ab

2
√
s−Ma −Mb

4 fafb

√

Ea +Ma

2Ma

√

Eb +Mb

2Mb

, (2)

where Ma (Mb) and Ea (Eb) are, respectively, the mass and the center of mass energy of the baryon
in the a (b) channel. The matrix elements DIJSC

ab of the SU(8) WT interaction can be obtained from
Wick contractions using the hadronic wave functions [20] or by means of the SU(8)⊃SU(4)⊗SU(2)
Clebsch-Gordan coefficients [28]. The spin-flavor SU(8) symmetry is strongly broken in nature and
this is incorporated by adopting the physical hadron masses and different weak decay constants,
fa, for non-charmed and charmed, pseudo-scalar and vector mesons [20, 21].

In what follows, we focus in the non-strange (S = 0) and singly anti-charmed (C = −1) sector,
where the D̄N and D̄∗N states are embedded. The channels involved in the coupled-channel
calculation are: D̄N and D̄∗N for I = 0, J = 1/2; D̄∗N for I = 0, J = 3/2; D̄N , D̄∗N and D̄∗∆
for I = 1, J = 1/2; and D̄∆, D̄∗N and D̄∗∆ for I = 1, J = 3/2.

The amplitudes in nuclear matter [T ρ,IJ(P0,P )] are obtained by solving the on-shell Bethe-
Salpeter equation with the tree level amplitude V IJ(

√
s):

T ρ,IJ(P ) =
1

1− V IJ(
√
s)Gρ,IJ(P )

V IJ(
√
s), (3)

where the diagonal Gρ,IJ(P ) matrix accounts for the meson-baryon loop in nuclear matter. The
logarithmic divergence in the vacuum part of the loop function, G0(

√
s), is removed by subtraction.

Following [20, 21], we set G0,IJ(
√
s = µIJ) = 0 with

(

µIJ
)2

= α
(

m2
th +M2

th

)

. (4)

Here mth and Mth are, respectively, the meson and baryon masses of the hadronic channel with
lowest mass threshold for the given I, J . The value of the parameter α is set to one [29]. However,
in the following, we will also vary α to have an estimate of the sensitivity of our results against
changes in the regularization scale.

Nuclear matter effects enter in the meson-baryon loop function Gρ,IJ(P ). One of the sources
of density dependence comes from Pauli blocking. Another source is related to the change of the
properties of mesons and baryons in the intermediate states due to the interaction with nucleons
of the Fermi sea. We proceed as in Ref. [25], where the most important changes in matter came
from the Pauli blocking of nucleons and from the self-consistent treatment of the open charm
self-energies.
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Thus, for the D̄N and D̄∗N channels, the meson-baryon loop function in matter is given by
[25]:

Gρ
D̄(D̄∗)N (P ) = G0

D̄(D̄∗)N (
√
s) +

∫

d3q

(2π)3
MN

EN (p)

[ −n(p)

(P 0 −EN (p))2 − ω(q)2 + iε
(5)

+(1− n(p))

( −1/(2ω(q))

P 0 − EN (p)− ω(q) + iε
+

∫ ∞

0

dω
SD̄(D̄∗)(ω, q)

P 0 − EN(p)− ω + iε

)]
∣

∣

∣

∣

p=P−q

,

where EN (p) =
√

p2 +M2
N is the nucleon energy and ω(q) =

√

q2 +m2
D̄(D̄∗)

is the D̄(D̄∗) energy.

The free loop function G0(
√
s) is corrected in matter by terms proportional to the nucleon Fermi

distribution n(p) = Θ(|p|−pF ) that takes into account Pauli blocking effects. The quantities p and
pF are the momentum of the nucleon and the Fermi momentum at nuclear density ρ, respectively.
The implementation of the D̄ and D̄∗ properties in matter comes through the meson spectral
functions, SD̄(D̄∗)(ω, q), which are defined from the in-medium D̄ and D̄∗ meson propagators:

Dρ
D̄(D̄∗)

(q) =
(

(q0)2 − ω(q)2 −ΠD̄(D̄∗)(q)
)−1

,

SD̄(D̄∗)(q) = −1

π
ImDρ

D̄(D̄∗)
(q) (for q0 > 0). (6)

The self-energies, ΠD̄(D̄∗)(q
0, q; ρ), are obtained self-consistently from the in-medium D̄N and D̄∗N

effective interactions as we will show in the following. As for D̄∆ and D̄∗∆ channels, we include
the self-energy of the D̄ and D̄∗ mesons. Then, the equivalent of Eq. (5) for those channels reads
[25]

Gρ
D̄(D̄∗)∆(P ) = G0

D̄(D̄∗)∆(
√
s) +

∫

d3q

(2π)3
M∆

E∆(p)

( −1/(2ω(q))

P 0 − E∆(p)− ω(q) + iε
(7)

+

∫ ∞

0

dω
SD̄(D̄∗)(ω, q)

P 0 − E∆(p)− ω + iε

)
∣

∣

∣

∣

p=P−q

,

with E∆(p) =
√

p2 +M2
∆. The effect of the vacuum width of the ∆ has not been included. The

strong width of the D̄∗ is very small, as a consequence of HQSS.
The D̄ self-energy in symmetric nuclear matter is obtained by summing the different isospin

transition amplitudes for D̄N over the nucleon Fermi distribution as

ΠD̄(q
0, q; ρ) =

∫

p≤pF

d3p

(2π)3

[

T
ρ,0,1/2

D̄N
(P 0,P ) + 3 T

ρ,1,1/2

D̄N
(P 0,P )

]

. (8)

Simultaneously, the D̄∗ meson self-energy is derived from the sum over the D̄∗N amplitudes as1

ΠD̄∗(q0, q; ρ ) =

∫

p≤pF

d3p

(2π)3

[

1

3
T

ρ,0,1/2

D̄∗N
(P 0,P ) + T

ρ,1,1/2

D̄∗N
(P 0,P )

+
2

3
T

ρ,0,3/2

D̄∗N
(P 0,P ) + 2 T

ρ,1,3/2

D̄∗N
(P 0,P )

]

. (9)

1We neglect the enhancement in the D̄∗ width due to coupling to D̄π (and their medium corrections). The
analogous mechanism for K̄∗ → K̄π was considered in [30].
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Figure 1: Real and imaginary parts of the D̄ self-energy over 2mD̄, at q = 0, as functions of the meson
energy q0 for different densities and two subtraction points with α = 1 (left panels) and α = 1.2 (right
panels). The oblique line is the function ((q0)2 − m2

D̄
)/(2mD̄). The SU(4) D̄ self-energy obtained in

Ref. [23] for normal nuclear matter density is also displayed.

In the above equations, P 0 = q0+EN(p) and P = q+p are the total energy and momentum of the
meson-nucleon pair in the nuclear matter rest frame, and (q0, q) and (EN ,p) stand for the energy
and momentum of the meson and nucleon, respectively, in that frame. As mentioned previously,
those self-energies are determined self-consistently since they are obtained from the in-medium
amplitudes which contain the meson-baryon loop functions, and those quantities themselves are
functions of the self-energies.

We are interested in studying possible D̄ bound states in nuclei. Therefore, we concentrate on
the self-energy for q0 around the D̄ mass. In Fig. 1 we show the D̄ self-energy over 2mD̄, as a
function of the D̄ energy, for various nuclear densities ρ, and with the D̄ meson momentum q = 0.
We display results for two values for the subtraction point (see Eq. (4)): α = 1 (left panels) and
α = 1.2 (right panels). For comparison, we also show results for the SU(4) WT model of Ref. [23]
at normal nuclear density, ρ0 = 0.17 fm−3.

It is worth noticing a resonant structure (more pronounced for the preferred value α = 1) close
to the D̄N threshold, which will be of up-most importance for the study of D̄ bound states. This

5



structure results from a pole in the free space amplitude of the sector I = 0, J = 1/2 at 2805MeV
(a weakly bound pentaquark state) that strongly couples to D̄N and D̄∗N states [21] (also found
in [12]). For reference we will call this state X(2805)2. The situation has some similarities with
the K̄N interaction, which is governed by the Λ(1405) resonance. The Λ(1405) dominates the
behavior of the K̄N interaction close to threshold similarly to the pole in 2805MeV for the D̄N
amplitude. However, the Λ(1405) can decay into πΣ, whereas the X(2805) is below all thresholds
for strong interaction decay. The exotic X(2805) has a HQSS partner with I = 0, J = 3/2, a D̄∗N
bound state with mass 2922MeV, as seen in Ref. [21].

In contrast to the SU(8) scheme and as mentioned above, a resonant structure is not observed
in the SU(4) WT model of Ref. [23]. The SU(4) amplitude is repulsive and shows a smooth
behavior as a function of the energy. A similar repulsive effect was observed in the t-channel
vector meson exchange models of Refs. [22, 24].

Due to the strong energy dependence of the in-medium effective interaction in the SU(8) WT
scheme close to threshold, any slight change in the parameters of the model as well as in the self-
consistent procedure may have strong consequences on the formation of D̄-nucleus bound states.
In order to mimic those changes, we have slightly varied the subtraction point, namely, to α = 1.2.
In this way we study two very distinct situations for the formation of bound states and set our
theoretical uncertainties.

The D̄ self-energy is evaluated in infinite nuclear matter. In finite nuclei we use the local
density approximation (LDA), substituting ρ by ρ(r), which is the local density at each point in
the nucleus. For the s-wave, as it is the case here, it was shown in Ref. [3] that the LDA gave the
same results as a direct finite nucleus calculation. The LDA D̄ self-energy allows to define a local
optical potential. In mesic atoms this optical potential is often taken to be energy independent
and fixed to its value at threshold (q0 = mD̄, q = 0). However, both the real and the imaginary
parts of the D̄ self-energy, around the D̄-meson mass, show a pronounced energy dependence, as
can be appreciated in Fig. 1. Hence, a realistic determination of the D̄ bound states should take
this energy dependence into account, as done previously for η- and D0-nucleus systems [31, 32].
Thus, we use an energy dependent optical potential defined as:

Vopt(r, q
0) =

1

2q0
ΠD̄(q

0, q = 0, ρ(r)). (10)

Most of the imaginary part for q0 < mD̄ displayed in Fig. 1 comes from particle-hole production
and this is allowed due to the attractive potential felt by the D̄ in the medium. The quantity
((q0)2 − m2

D̄
)/(2mD̄) is displayed in Fig. 1 by a dashed-dotted-dotted solid line. The leftmost

crossing point of this line with the real part of the self-energy (divided by 2mD̄) signals the opening
of the D̄-particle-hole threshold. For the energies displayed, ((q0)2 − m2

D̄
)/(2mD̄) is essentially

q0 −mD̄ = E, the non relativistic energy of the D̄ (and so almost a straight line). Therefore, the
difference E − ReVopt(E) corresponds to the kinetic energy of the non-relativistic problem. The
two lines E and ReVopt(E) cross at the classical turning point. Roughly speaking, there should
not be imaginary part in the classically forbidden region E < ReVopt(E), as there is no available

2This state is bound by only about 1 MeV in the free space, and it is one of the most interesting predictions of
Ref. [21]. Moreover, it appears as a consequence of considering heavy vector meson degrees of freedom, as required
by HQSS. Indeed, the diagonal D̄N WT interaction is zero in this sector and thus, the X(2805) is generated thanks
to the coupled channel dynamics between the D̄N and D̄∗N pairs. Thus, this bound state is absent in the free
space SU(4) WT model of Ref. [29] in which is based the nuclear medium approach of Ref. [23].
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phase space for decay (i.e., no kinetic energy to expend). Also, the bound states should appear
predominantly for energies fulfilling the condition E > ReVopt(E), since the expectation value of
the kinetic energy in the bound state cannot be negative. Of course, these arguments are only
qualitative because the optical potential is complex and strongly energy dependent. This allows
for the D̄ in the medium to have some non intuitive behavior. For instance, a D̄ with energy E
can eject a particle-hole going to a lower energy E ′, and yet end up with more kinetic energy to
expend, provided E − E ′ < ReVopt(E)− ReVopt(E

′).
Due to the D̄N bound state close to threshold, X(2805), the low density approximation Tρ

breaks down very early. For a given value of the energy the density dependence of the optical
potential is far from linear. For subsequent use, we have computed the optical potential for several
densities (those in Fig. 1) and a fine lattice of energies, and have used an interpolation procedure
for other values of density and energy. The presence of the bound state/resonance prevented the
self-consistent procedure to be continued for densities below 0.1 ρ0.

3 Results

We look first for D−-nucleus bound states by solving the Schrödinger equation:
[

− ∇
2

2mred
+ Vcoul(r) + Vopt(r)

]

Ψ = (−B − iΓ/2)Ψ. (11)

In this equation, B is the binding energy (B > 0), Γ the width of the bound state and
mred is the D̄-nucleus reduced mass. Vcoul(r) is the Coulomb potential of the D− including the
nucleus finite size and the Uehling vacuum polarization. Vopt(r) is the energy dependent optical
potential. Because the electromagnetic interaction is introduced by means of the minimal coupling
prescription (to be consistent with gauge invariance and electric charge conservation), Vcoul(r)
must be introduced wherever the energy is present. So the energy dependent optical potential of
Eq. (10) is applied with argument q0 = mD̄ − B − Vcoul(r).

The non relativistic approximation is used since the D̄-meson optical potential is much smaller
than its mass, and we expect the relativistic corrections to be tiny and certainly smaller than the
theoretical uncertainties of the interaction. In the same approximation the denominator 2q0 in
Eq. (10) can also be set to 2mD̄.

We solve the Schrödinger equation in coordinate space by using a numerical algorithm [33, 34],
which has been extensively tested in similar problems of pionic [3, 4] and anti-kaonic [35, 36]
atomic states, in the search of possible anti-kaon [35], η [31], φ [37], and D0 [32] nuclear bound
states. Charge densities are taken from Refs. [38, 39]. For each nucleus, we take the neutron
matter density approximately equal to the charge one, though we consider small changes, inspired
by Hartree-Fock calculations with the density-matrix expansion [40] and corroborated by pionic
atom analysis [4]. All the densities used throughout this work can be found in Table 1 of Ref. [35].
The correction in the nuclear density to remove the finite size of the nucleon is introduced following
the scheme of Refs. [41]3 and [4]. We have also considered that in nuclei it is necessary a finite
energy, of the order of few MeV’s, to extract a nucleon. However, in nuclear matter this is not
the case and particle-hole excitations can be produced at zero energy transfer. To improve on this
deficiency, we have included in our calculation an average energy-gap in the nucleon spectrum. It

3πR2 in Eq. (6.13) of [41] should be corrected to π2R.
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Figure 2: D− atom levels for different nuclei and angular momenta. “⊙” points stand for pure Coulomb
potential binding energies (Table 1), while “×” symbols stand for the binding energies and widths of
atomic levels predicted by the SU(8) model derived in this work (see Fig. 1), with α = 1 and gap 8MeV
(Table 2). The results are scaled down by a factor Z5/4.

is used to shift the imaginary part of the optical potential, thereby reducing the available phase
space for extracting a nucleon from the Fermi sea.

In Tables 1–5, we present results for 12C, 40Ca, 118Sn and 208Pb and for several interactions.
We have considered:

i) only Coulomb interaction, neglecting totally the nuclear optical potential (Table 1).

ii) Coulomb interaction plus the SU(8) optical potential of Fig. 1, with α = 1 (α is defined in
Eq. (4)) and a gap in the nucleon spectrum of 8MeV (Table 2).

iii) only the SU(8) optical potential with α = 1 and a gap of 8 MeV, thus neglecting in this case
the Coulomb interaction (Table 3). This applies to D̄0-nucleus states.

iv) Coulomb interaction plus the SU(8) optical potential, but with α = 1.2 or without a nucleon
gap (Table 4 with results only for 12C).
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Figure 3: Same as in Fig. 2, but including states of nuclear type (pentagons) as well. In this case no
scale factor has been applied.

v) Coulomb interaction plus the SU(4) optical potential of Ref. [23], where the D̄∗N coupled-
channel effects are ignored (Table 5).

The calculation that we deem more realistic for D− states is that obtained by using the SU(8)
model with α = 1 and with a nucleon extraction energy (gap) of 8MeV. The predicted spectrum
of low-lying states is given in Table 2 and displayed in Figs. 2 and 3. In these figures, the pure
Coulomb levels are also shown for comparison. A salient feature of the spectrum is the presence
of two types of states: atomic and nuclear ones.

The states of atomic type follow from distortion of the pure Coulombian levels, they have
moderate widths and they exist for all angular momenta. For these states, the nuclear interaction is
a perturbation and their wave functions have support mainly outside of the nucleus. As compared
to the Coulombian levels, the states of atomic type are shifted upwards, i.e., they are less bound.
So effectively, they feel a repulsive interaction. The atomic states are only sensible to the region of
small densities and small energies, and in this region the potential can be repulsive. (To interpret
correctly the optical potential profile in Fig. 1, it should be taken into account that, by minimal
coupling, the energy argument of optical potential is not q0 but q0 increased by the local Coulomb
potential.) Part of the repulsion comes also from the imaginary part of the optical potential,
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a well known effect in exotic atoms [42]. In addition, the existence of states of nuclear type
should tend to push upwards the atomic states. Yet, for heavier nuclei, some spurious repulsion
could be introduced by our simplifying approximation of using symmetric nuclear matter in the
calculation of the optical potential4. As expected, strong interaction shifts and widths become
much larger for low angular momenta and heavier nuclei. Roughly, the nuclear interaction turns
out to be significant for L ≤ 1, 2, 5, and 6 for 12C, 40Ca, 112Sn and 208Pb, respectively. Likewise,
the (strong) widths and shifts are larger for states with lower quantum numbers due to a greater
overlap of the wave function with the nucleus. (Of course, the electromagnetic width, not included,
increases with the quantum number instead.)

On the other hand, the spectrum of the states of nuclear type lies below, and well separated
from, that of the atomic states and also from the Coulombian levels. The gap between nuclear
and atomic states ranges for 15 to 20MeV for all nuclei, whereas the gap with the Coulomb states
decreases with the nuclear size. The nuclear states have widths ranging from few keV to several
MeV and have considerable binding energies of tenths of MeV, pointing out to a sizable overlap of
their wave function with the nucleus. The states of nuclear type exist only for the lower angular
momenta and there is only a finite number of them that increases with the nuclear mass. We
should note that, being the optical potential complex and energy dependent, the usual theorems
of classification of states by nodes do not apply, and so it is much harder to guarantee that all
levels in a given region of the complex energy plane have been found.5 An interesting feature of the
nuclear states is that their widths decrease as the binding energies increase. (This is opposite to
what happens to atomic states regarding their strong width.) The profile of widths as a function
of the energy of the states just mimics the profile of the imaginary part of the optical potential
(see Fig. 1). The lowest states have small widths as they fall in the tail of the imaginary part of
the optical potential. The low lying states are already inside the nucleus, so the overlap does not
increase by lowering the energy, and instead they have less phase-space available for decay. This
also explains why the widths of the nuclear states decrease with the size of the nucleus: for larger
nuclei the ground state tends to be closer to the bottom of the potential, and hence the available
kinetic energy to knockout nucleons decreases.

In Table 2 we also quote results from Ref. [10] obtained in 208Pb within a quark-meson coupling
model [11]. Widths were disregarded in [10]. The numbers quoted for their model Ṽ q

ω turn out to
be not very different from ours for atomic states. Besides, one would be tempted to say that the
1s, 2s and 1p levels of the model V q

ω of Ref. [10] match our 3s, 4s, and 3p levels of nuclear type.
In Table 3 and Fig. 4 we show the spectrum of D̄0-nucleus bound states. This spectrum

approximately matches that of the D−-states of the nuclear type. The 1p levels of the two heavier
nuclei are missing in the D̄0 spectrum. The most likely scenario is that those states exist but
we have been unable to pin them down due to numerical instabilities. The D̄0 and D− binding
energies show a systematic difference, which can be traced back to the missing Coulomb attraction
in the D̄0 case. The widths are also comparable but systematically larger in the charged case.
This can be easily understood since in presence of the Coulomb attraction, the binding energies
are larger, which forces the D−-states to explore/be sensitive to higher nuclear densities. In the

4 Attending to the in vacuum D̄N T -matrix, since (T (I=1,J=1/2) − T (I=0,J=1/2))(ρn − ρp) is negative near
threshold, the asymmetry effect is expected to be attractive for heavier nuclei richer in neutrons than in protons.

5We do not include some very wide states that overlap with the continuum. The fact that these states are very
rare makes more appropriate our approximation of using only the real part of the energy as argument of the D̄
optical potential in the Schrödinger equation.
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Figure 4: D̄0 nuclear levels, for different nuclei and angular momenta predicted by the SU(8) model
derived in this work (see Fig. 1), with α = 1 and gap 8MeV (Table 3).

same table we also compare with the V q
ω model predictions of Ref. [10] for lead. (The model Ṽ q

ω

does not produce bound states.) We find an excellent agreement with these results for the 1s and
2s levels.

Next, we try to better understand some systematic effects that affect to our predictions. First,
we have considered the dependence of our results on the choice of the subtraction point used to
renormalize the ultraviolet divergent loop functions. Thus, we have re-calculated binding energies
and widths, of both atomic and nuclear levels, with α = 1.2. These new results are collected in
Table 4 for carbon and can be compared with those of Table 2 obtained with α = 1.0. From the
behaviour exhibited in Fig. 1, one might expect moderate changes, that would lead, in general, to
smaller widths and binding energies when α is set to 1.2. However, the computed α = 1.2 levels
(see Table 4) do not always follow this pattern. The observed deviations are probably induced by
the strong energy dependence of the optical potential. Though changes are very small for atomic
states with L > 0, they become much larger for the L = 0 levels and also for the spectrum of
nuclear states. A similar calculation for heavier nuclei shows that the effect is smaller, but the
number of nuclear states changes occasionally. This might be a true qualitative change in the
spectrum induced by the differences in the potentials. However, it could be just due to the fact
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that some nuclear states have been missed in the difficult search throughout the complex plane.
For the D̄0 levels, the effect of changing α from 1 to 1.2 is completely similar to that already
noted for the states of nuclear type in the charged case, that is, less binding and smaller widths,
and occasionally, a change in the number of levels. In the case of the (C = +1, S = 0) sector,
the subtraction point α could be fixed in the free space by tuning the pole position of the three
star Λc(2595) and Λc(2625) resonances (see for instance [20]). Thus in contrast with the situation
here, our previous study [32] on the possible existence of D0-nuclear bound states was free, to a
large extent, of this source of theoretical uncertainties. The lack of experimental information on
the C = −1 sector, however, prevents us to fix more precisely the subtraction point used in the
renormalization scheme proposed in [29] and employed in the free space calculation of Ref. [21], in
which the results of this work are based6. Thus, we should take the differences between the results
displayed in Tables 2 and 4 as a hint on the nature of the theoretical uncertainties that affect to
our results. Other sources of uncertainties will be discussed below, but among all of them, those
related to the choice of the subtraction point are certainly the largest ones.

For instance, in the calculation we have also included in an approximated way the effect of
the existence of a non-zero gap in the nucleon spectrum, separating nucleons in the Fermi sea
from the free ones. In Table 4 we show the results without gap for 12C. The gap reduces the
width of the states of nuclear type, but however their binding energies are not much affected. On
the other hand, the changes in atomic states are also small. With regard to the SU(4) model,
which ignores D̄∗N coupled channel effects, we observe a repulsive interaction for the D̄ in nuclear
matter. As a consequence the corresponding optical potential is repulsive and purely real in the
region of interest. This model predicts D− atoms stable under strong interactions with levels of
atomic type uniformly moved upwards in energy as compared to the pure Coulombian prediction
(see Table 5). The repulsion is smaller than for SU(8), presumably due to the lack of imaginary
part. However, we believe the results of Table 2 are more realistic than any of those commented
above, because neither neglecting the finite nucleon extraction energy, nor ignoring the HQSS
constraints/requirements are approximations physically acceptable.

4 D− atom decay modes

As noted in the Introduction, D− atoms7 stand out among other exotic atoms. This is also
true regarding their decay modes. Two mechanisms are available for decay, namely, particle-hole
production, D̄ → D̄NN−1, and pentaquark production, D̄ → X(2805)N−1.

Let us disregard pentaquark production momentarily. A particle-hole production mechanism
is of course present in other exotic atoms. However, in other atoms this is not the dominant
decay: In pionic atoms the non electromagnetic width comes from absorption of the pion by two
or more nucleons. In η-nucleus systems the η carries no charge and it can be easily absorbed
into particle-hole excitations or else, it can be traded by the much lighter pion. In K̄-atoms the
K− carries strangeness and so it cannot just be absorbed into particle-hole excitations, but the

6For instance, note that for α = 1, there exists a prominent delta-like structure in the in-medium amplitudes,
at very low densities, due to the X(2805) exotic bound state. However, it is clearly smeared out when α is set to
1.2, since the X(2805) baryon pentaquark is not longer bound for this value of α, and it becomes then a more or
less narrow resonance.

7Throughout this discussion, “D− atoms” refer to all D̄-nucleus bound states, whether they are of atomic or of
nuclear type.
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s quark can be passed to a baryon. There is energy available for processes with mesons in the
final state, K̄ → πΛN−1 and πΣN−1, or without them, K̄ → NΛN−1N−1 and NΣN−1N−1 [43].
Likewise, in D0-nucleus systems mesonic mechanisms, D0 → πΛcN

−1 and D0 → πΣcN
−1, and

non mesonic ones, D0 → NΛcN
−1N−1 and D0 → NΣcN

−1N−1, are energetically allowed. In
those decay modes, the c quark is transferred to a baryon.

In this regard, the situation of the D− atoms is qualitatively different from all the previous
ones. Of course, the D− cannot just be absorbed into particle-hole excitations, as was the case of
pion or η. Also, it cannot combine with a nucleon to decay to a lighter meson-baryon channel, as
happens for K− or D0, because baryons cannot carry the negative charm of the D̄ and there are
no lighter charmed mesons. Put in another way, clusters like D̄N or D̄NN are stable under strong
decay as there are no lighter hadronic states with same charm and baryonic quantum numbers.
(Recall that the possibility of pentaquark formation is not being considered yet.)

These remarks would also apply to an hypothetic K-nucleus bound state. However such system
does not exist since the KN interaction is repulsive, as it is Coulomb for the K+. On the contrary
the D− will form of necessity a bound state with the nucleus, if by no other mechanism, through
Coulomb interaction. (Even if the strong interaction were repulsive it would vanish outside the
nucleus and the atom would be formed anyway.) SoD− atoms are truly special: other exotic atoms
decay through hadronic mechanisms (to lighter hadronic states) while D− atoms can only decay
through many-body mechanisms, e.g., D̄N → D̄N , where the D̄ falls to a lower level transferring
energy to the nucleus.

The fact that particle-hole production is the dominant mechanism for decay has important
consequences for D− atoms, both phenomenological and theoretical. Consider for instance the
ground state of a K− atom. Although it is the lowest atomic state, nothing prevents it from
decaying to lighter hadronic states (transferring the s quark to a baryon as discussed above). On
the other hand, for the ground state of a D− atom no such lighter hadronic state exists, so one
should expect no width in this case. Put in another way, the D̄ cannot go to a lower atomic state
to be able to eject a nucleon. To be precise, for the final state we should actually consider, not
the spectrum of the original atom but that of the daughter nucleus (with one less nucleon). The
difference between the two spectra is not expected to be large, at least for not very small nuclei, and
moreover, we expect the ground state of the daughter-nucleus atom to be less bound, reinforcing
the argument. In this view, the fate of the D− atom would be to form a stable D̄-nucleus bound
state, which would eventually decay through weak interaction.

From the theoretical side, the ground state argument just presented shows that the widths,
as predicted by a naive application of the D̄ optical potential, tend to be overestimated for low
lying states. The LDA replaces the true discrete spectrum of the D̄ (in the daughter nucleus)
by a continuum of states starting from the bottom of the optical potential upwards. As the
energy of the ground state will be above that bottom, the LDA incorrectly assigns available phase
space for particle-hole decay. Of course, the same mechanism of spectral blocking is present in the
application of the LDA to the study of other exotic atoms but this is not so crucial there because
the decay is dominated by other mechanisms which give sizable width even to the ground state.

Another effect has to be considered as well, namely, the existence of a gap in the spectrum of
nucleons, separating nucleons in the Fermi sea from the free ones (or from excited states, beyond
the LDA). The gap blocking tends to quench the widths from particle-hole production, as the
nucleons need a minimum energy to escape the nucleus, and so it helps to reduce or even remove
the width of low lying D− atom states. We have included such an effect in an approximated way,
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just by reducing the energy argument in the imaginary part of the optical potential by a constant
amount of 8MeV.8

Up to now we have disregarded the pentaquark production mechanism. The X(2805) in the
vacuum scheme of Ref. [21] is a bound state of N and D̄. The binding energy is quite small,
about 1.4MeV, so this pole is very close to the D̄N threshold. A key issue is whether this state
remains bound or moves to a resonance at finite nuclear density. When Pauli blocking is enforced,
the threshold moves upwards, favoring the bound state over the resonance. The situation changes
completely when the D̄ optical potential is also taken into account by means of the self-consistent
procedure. In the region of interest, the effect of the D̄ optical potential turns out to be attractive.
This brings the threshold downwards. In addition, the pole in medium moves to higher energies.
The net result is that, even for a density as small as 0.1 ρ0 (the lowest density accessible by our
calculation), the pole lies above the threshold and turns into a resonance. For this density and
higher, the pentaquark would decay into N and D̄, and this brings us back to the particle-hole
decay mechanism. Nevertheless, note that, by continuity, there should be a critical density below
which the pole is below threshold, and so allowing the pentaquark production mechanism. Thus
this mechanism always has some contribution, however small, to the width (even for the ground
state). The situation may also change due to gap blocking and spectral blocking, which tend to
push the threshold upwards, thereby favoring the pentaquark production mechanism.

The presence of a pole in the T -matrix in the region of interest makes the technical problem
rather difficult. This has forced us to extrapolate the optical potential from ρ = 0.1 ρ0 to lower
densities when needed, without spectral blocking and with approximate gap blocking. This results
in treating the pole always as a resonance in our calculation. So, even for the ground state, our
calculation nominally attributes all widths to particle-hole production. A more detailed treatment
would provide pentaquark production as well, below a certain critical density. In fact, for the
ground state this would be the only decay mode. Although nominally the widths we find come
from particle-hole, for low lying states there should be a genuine contribution coming from the
pole albeit distorted by the coupling to particle-hole. This suggests that the width computed for
the ground state is a rough estimate of the true width from pentaquark production to be obtained
in a more complete treatment without spurious particle-hole decay in the ground state.

Phenomenologically, it is important to note that the in-medium X(2805) state is produced by a
bound N and a bound D̄. Because the pentaquark formation energy is so small, the kinetic energy
released is also small and the pentaquark remains bound in the nucleus after formation. This
suggests that after the electromagnetic cascade in the atomic levels and the subsequent particle-
hole emission cascade in the nuclear levels, the fate of the D− atom could be a pentaquark-nucleus
bound state. This would be stable until weak decay of the D̄ meson. Of course this is a fascinating
possibility both theoretically and experimentally.

The approximate implementation of the gap blocking and the lack of spectral blocking suggest
that the actual widths will be somewhat smaller that those obtained here. A side effect of a
smaller imaginary part would be an effective increase in the binding of the states.

8A more correct procedure would be to shift only the energy of the hole line in Eqs. (8) and (9), i.e., EN (p) →
EN (p) − Egap, but this turns out to be technically involved due to the presence of the X(2805) state. This is a
pole in the T -matrix which turns from a bound state to a resonance as the nuclear density increases.
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5 Summary and conclusions

A self-consistent calculation of the D̄ self-energy has been carried out in symmetric nuclear matter
using unitarized coupled-channel theory. The model is based on SU(8) spin-flavor symmetry and
enjoys heavy quark spin symmetry. Two renormalization prescriptions have been used in order to
estimate the systematic error involved. We find that the presence of a bound state near the D̄N
threshold makes the optical potential to be strongly energy and density dependent. In contrast
with SU(4) based models, the optical potential is mostly attractive (except for a repulsive region
for low densities near threshold, relevant for levels of atomic type) and develops an imaginary part
to particle-hole production and possibly to pentaquark production inside the nucleus. Unlike other
hadronic atoms, no other relevant decay mechanisms exist for the D̄ in nuclear matter around
threshold.

Using the local density approximation, we have computed the levels and widths for low lying
states of several nuclei, light and heavy. The results are summarized in Figs. 2 and 3 for D−-atoms
and in Fig. 4 for D̄0-nucleus bound states. The spectrum presents two types of states, atomic
and nuclear, for all studied nuclei9. The nuclear states exists for lower angular momenta only. As
compared to the pure Coulomb levels, the atomic states are less bound and the nuclear ones are
more bound and may present a sizable width.

A number of approximations have been necessary in an already highly sophisticated calculation
to render it feasible. Nevertheless, this is the first systematic study of D− atoms that accounts
properly for HQSS and for the many-body mechanisms responsible for the widths of the states.
We can draw two general conclusions from the present work. First, that in the study of nuclear
systems involving charm, it is important to use a model fulfilling the QCD requirement of heavy
quark spin symmetry. The vector-meson partner of the D̄, the D̄∗, has a similar mass and hence
its inclusion substantially modifies the D̄N dynamics producing a non trivial structure in its
T -matrix near threshold. And second, the anti-quark c in the D̄ cannot be transferred to the
baryons, and in particular, a D̄N pair has no open channels to decay. For this reason it has been
often assumed that the D̄ would not interact much with the nucleus and could be treated as an
spectator. We find that this is not the case, and in fact a rich spectrum is obtained with sizable
shifts and widths in the states.

The observation of the states predicted here might be feasible in the PANDA and CBM ex-
periments at the future FAIR facility at Darmstadt, and it would certainly shed light to unravel
the fascinating D̄N dynamics, both in the free space and when the pair is embedded in a dense
nuclear medium.
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Table 1: D−-atom binding energies B [keV], calculated using only the Coulomb potential for
several nuclei and orbital angular momenta (L). The Coulomb degeneracy is corrected by nuclear
finite size and vacuum polarization effects.

L 12C

0 1158 333 155 89 58
1 384 171 96 61
2 171 96 62
3 96 62
4 62

L 40Ca

0 6073 2626 1412 875 594 429 324 254 204
1 3664 1768 1038 682 482 359 277 220
2 2052 1156 742 517 381 292 231
3 1190 760 528 388 297 234
4 762 529 388 297 235
5 529 388 297 235

L 118Sn

0 14536 9260 5919 4038 2912 2194 1710 1369 1121
1 11665 7230 4766 3349 2475 1901 1505 1220
2 8996 5611 3821 2764 2091 1637 1315
3 6650 4321 3051 2272 1758 1401
4 4760 3290 2429 1855 1469
5 3404 2494 1907 1506
6 2509 1920 1516
7 1920 1517

L 208Pb

0 21485 16006 11454 8371 6317 4915 3923 3200 2658
1 18680 13502 9682 7180 5503 4341 3506 2888
2 15929 11256 8167 6151 4787 3825 3124 2599
3 13276 9310 6863 5258 4154 3362 2777
4 10787 7654 5749 4482 3595 2948
5 8550 6249 4801 3813 3104 2578
6 6662 5063 3991 3232 2672
7 5190 4089 3306 2729
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Table 2: Complex D−-atom energies (B,Γ/2) for several nuclei. The calculation includes Coulomb
potential plus the SU(8) energy dependent optical potential with α = 1 and a nucleon gap of 8MeV
(see Fig. 1). To preserve the structure of the atomic states, the states of nuclear type (when there
exist) are displayed in the first line that corresponds to each of the angular momentum entries.
The second line in the entry contains the energies of the atomic states. Results of Ref. [10] for
the binding energies in 208Pb are also shown for model Ṽ q

ω between square brackets and for model
V q
ω without brackets.

12C, α = 1.0, gap = 8MeV

L (B,Γ/2) [keV]

0 (22800, 199)
(585, 51) (222, 12) (116, 5) (71, 2)

1 (16000, 1100)
(353, 9) (160, 3) (91, 1) (59, 1)

2 (171, 0.1) (96, 0.1) (62, 0.0)
3 (96, 0) (62, 0)
4 (62, 0)

40Ca, α = 1.0, gap = 8MeV

L (B,Γ/2) [keV]

0 (32177, 48) (22764, 978)
(2556, 184) (1305, 85) (806, 45) (550, 27) (400, 17) (304, 12) (239, 8) (193, 6)

1 (29486, 306) (17022, 2956)
(2244, 138) (1187, 66) (748, 36) (517, 22) (379, 14) (291, 10) (230, 7) (186, 5)

2 (25282, 892)
(1716, 67) (981, 36) (643, 21) (456, 13) (341, 9) (264, 6) (211, 5) (172, 3)

3 (18596, 1952)
(1160, 13) (738, 10) (512, 7) (377, 5) (289, 3) (229, 2) (185, 2)

4 (761, 1) (528, 1) (388, 1) (297, 0) (234, 0) (190, 0)
5 (528, 0) (388, 0) (297, 0) (235, 0) (190, 0)

118Sn, α = 1.0, gap = 8MeV

L (B,Γ/2) [keV]

0 (40768, 25) (35777, 271) (28200, 1527)
(6102, 414) (3727, 286) (2619, 206) (2004, 134) (1576, 92) (1272, 67) (1048, 51) (878, 39)

1 (38227, 69) (32794, 651) (23353, 4033)
(5853, 389) (3612, 268) (2558, 192) (1960, 125) (1544, 87) (1248, 64) (1030, 48) (864, 37)

2 (28504, 1236)
(5378, 337) (3390, 234) (2439, 165) (1873, 109) (1481, 77) (1201, 57) (994, 43) (836, 33)

3 (4726, 260) (3081, 187) (2262, 129) (1747, 88) (1390, 63) (1134, 47) (943, 36) (796, 28)
4 (3968, 168) (2709, 130) (2033, 89) (1587, 63) (1275, 46) (1048, 35) (877, 27) (745, 21)
5 (3189, 80) (2308, 68) (1769, 50) (1403, 37) (1141, 28) (947, 22) (799, 17)
6 (2482, 20) (1889, 21) (1489, 18) (1205, 15) (995, 12) (836, 10)
7 (1919, 2) (1515, 2) (1226, 3) (1013, 2) (850, 2)

208Pb, α = 1.0, gap = 8MeV 208Pb, Ref. [10]

L (B, Γ/2) [keV] B [keV]

0 (47203, 21) (42781, 121) (37644, 636) (30343, 3755) 35.2× 103 30× 103

(9418, 606) (6375, 496) (4912, 334) (3892, 243) (3160, 184) (2618, 142) [10.6× 103] [7.7× 103]
1 (45065, 45) (40385, 265) (34634, 1370) 32.1× 103

(9206, 590) (6283, 474) (4841, 322) (3839, 235) (3120, 178) (2587, 138) [10.2× 103]
2 (37845, 545) (30879, 3098)

(8793, 557) (6096, 434) (4700, 299) (3734, 219) (3040, 167) (2526, 130)
3 (8204, 504) (5813, 379) (4491, 266) (3579, 197) (2924, 150) (2436, 117)
4 (7480, 434) (5437, 314) (4219, 225) (3379, 168) (2773, 129) (2319, 102)
5 (6676, 344) (4977, 242) (3891, 177) (3139, 135) (2592, 105) (2180, 94)
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Table 3: Binding energy and half-widths, (B,Γ/2), in keV, of D̄0-nucleus levels for 12C, 40Ca, 112Sn
and 208Pb and several angular momenta. The bound levels have been obtained with the SU(8)
energy dependent optical potential of Fig. 1 with α = 1 and a nucleon gap of 8MeV. Results of
Ref. [10] for 208Pb are also shown for the model V q

ω (the model Ṽ q
ω does not give rise to any bound

states).

12C, D̄0, α = 1.0, gap = 8MeV

L (B,Γ/2) [keV]

0 (18779, 176)
1 (12324, 918)

40Ca, D̄0, α = 1.0, gap = 8MeV

L (B,Γ/2) [keV]

0 (22549, 38) (14769, 874)
1 (20158, 241) (8971, 1957)
2 (16457, 679)
3 (10370, 1480)

118Sn, D̄0, α = 1.0, gap = 8MeV

L (B,Γ/2) [keV]

0 (23339, 17) (18590, 143) (12510, 907)
1 (15882, 355) (8939, 2004)
2 (19317, 106) (13009, 787)
3 (16941, 241) (9770, 1677)

208Pb, D̄0, α = 1.0, gap = 8MeV 208Pb, Ref. [10]

L (B,Γ/2) [keV] B [keV]

0 (23381, 13) (20085, 66) (15569, 358) (9951, 1633) 25.4× 103 19.7× 103

1 (18102, 146) (13086, 747) (5823, 3675) 23.1× 103

2 (20671, 50) (16002, 304) (10336, 1494)
3 (19006, 100) (13770, 608) (6682, 3208)
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Table 4: Same as in Table 2, but only for 12C and different combinations of α and the nucleon
gap.

12C, α = 1.2, gap = 8MeV

L (B,Γ/2) [keV]

0 (16300, 104) (1829, 949)
(373, 90) (167, 28) (94, 12) (61, 6)

1 (9300, 595)
(354, 11) (160, 4) (91, 2) (59, 1)

2 (171, 1) (96, 0.6) (62, 0.3)
3 (96, 0) (62, 0)
4 (62, 0)

12C, α = 1.0, gap = 0MeV

L (B,Γ/2) [keV]

0 (22700, 2100)
(555, 47) (215, 12) (113, 5) (70, 2)

1 (15700, 6900)
(348, 11) (158, 4) (91, 2) (59, 1)

2 (171, 0.2) (96, 0.1) (62, 0.1)
3 (96, 0) (62, 0)
4 (62, 0)
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Table 5: D−-atom binding energies B in keV, calculated using the SU(4) optical potential of
Ref. [23] together with the Coulomb interaction.

L 12C

0 666 241 123 75
1 364 164 93
2 171 96
3 96

L 40Ca

0 2946 1487 903 607 436
1 2505 1315 818 559 407
2 1816 1038 677 477
3 1173 748 519
4 762 528
5 529

L 118Sn

0 7024 4442 3106 2303 1778 1415 1153
1 6692 4255 2988 2224 1722 1374 1122
2 6068 3911 2775 2082 1623 1302 1069
3 5219 3453 2493 1895 1492 1207
4 4250 2929 2168 1677 1338
5 3295 2394 1828 1444
6 2498 1905 1502
7 1920 1516

L 208Pb

0 10787 7503 5662 4612 4060 3404 2826 2374 2021
1 10520 7318 5491 4305 3481 2881 2430 2080
2 10002 6980 5246 4113 3320 2740 2302
3 9261 6513 4922 3876 3140 2600 2190
4 8333 5943 4535 3598 2933 2440 2064
5 7272 5301 4101 3287 2701 2263
6 6146 4619 3640 2955 2453 2072
7 5051 3937 3170 2614 2196
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