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Abstract

The rigorous quantum mechanical definition of a resonance requires determining the pole position in the second
Riemann sheet of the analytically continued partial wave scattering amplitude in the complex Mandelstam s variable
plane. For meson resonances we investigate the alternative Breit-Wigner (BW) definition within the large NC ex-
pansion. By assuming that the pole position is O(N0

C) and exploiting unitarity, we show that the BW determination
of the resonance mass differs from the pole position by O(N−2

C ) terms, which can be extracted from ππ scattering
data. For the case of the f0(600) pole, the BW scalar mass is predicted to occur at ∼ 700 MeV while the true value
is located at ∼ 800 MeV.
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Meson resonances are key building blocks in intermediate energy hadronic physics (for a review see e.g.
Ref. [1] and references therein). Most often they contribute as virtual intermediate states to physical pro-
cesses. This poses the question on the suitable interpolating field since, when the resonance goes off-shell,
a definition of the background becomes necessary and its non-elementary nature becomes evident (see
e.g. [2,3]). The large NC expansion of QCD [4,5] provides a handle on this problem since meson resonances
with a qq̄ component, dominant or sub-dominant for NC = 3, become stable particles; their mass becomes
a fixed number mR ∼ N0

C and their width is suppressed as ΓR ∼ 1/NC for a sufficient large number of
colors. This justifies the usage of a tree level Lagrangian in terms of canonically quantized fields (see e.g. [6]
and references therein); resonance widths appear naturally as decay rates of the classical stable particles or
equivalently as a quantum self-energy correction to the resonance propagator. Depending on the numerical
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value of the mass, being above or below threshold, physical resonances turn into Feschbach resonances or
bound states respectively (see e.g. [7]).

In general [4,5] one expects a series expansion of the complex pole position sR = m2
R − i ΓRmR, of the

S−matrix in the Second Riemann Sheet (SRS),

sR = s
(0)
R + λs

(1)
R + λ2s

(2)
R + . . . (1)

where λ = 3/NC . The purpose of this note is to show that using the standard and well-known Breit-Wigner
(BW) definition with a similar expansion

sBW = s
(0)
BW + λs

(1)
BW + λ2s

(2)
BW + . . . (2)

one has that

sBW − Re(sR) = O(N−2
C ) , (3)

anticipating an improved convergence and also suggesting a model independent way of assessing the accuracy
of the large NC expansion.

Large NC scaling away from the physical NC = 3 value, but relatively close to it, has been applied to
chiral unitarized ππ amplitudes in Refs. [8,9] as a method to learn on the nature of meson resonances and
on the induced NC dependence of the corresponding pole masses and widths. We have recently shown [10]
that in some cases, as for instance that of the f0(600) resonance, there is a lack of predictive power on
the true NC behaviour of the pole in the NC → ∞ limit, which could only be fixed by fine-tuning the
parameters to unrealistically precise values. Two loop unitarized calculations are, in addition, beset by large
uncertainties [11]. Though meaningful consequences can be drawn by studying the behaviour of the resonance
in the vicinity of NC = 3, we do not share the view [12] that one can reliably follow the NC trajectory far
from the real world (NC = 3), extrapolating from calculations which are phenomenologically successful
at NC = 3, mainly because large uncertainties are built in. In addition to spurious 1/NC corrections, the
amplitude may not contain all possible leading NC terms which are relevant at the resonance energies when
NC grows. We believe instead that more robust results might be achieved by examining observables which
are parametrically suppressed by 1/N2

C , rather than just by 1/NC corrections, but keeping always NC = 3.
This is in fact the way how the large NC expansion has traditionally proven to be most powerful [13,14].

Let us consider for definiteness elastic ππ scattering in a given isospin–angular momentum sector denoted
as (T, J), and let us also neglect coupled channel effects. The S−matrix is defined as

STJ(s) = e2iδTJ (s) = 1 − 2i ρ(s)tTJ(s) , s ≥ 4m2 (4)

with s the total ππ center of mass energy, δTJ (s) the phase shift, tTJ(s) the scattering amplitude, m the
pion mass and

ρ(s) =
1

16π

√

1 − 4m2

s
, s ≥ 4m2 (5)

the phase space in our particular normalization. For simplicity we will drop the partial wave channel (T, J)
indices in what follows. Using Eq. (4) we deduce

tan
[

δ(s) − π

2

]

=
Re t−1(s)

ρ(s)
, s ≥ 4m2 . (6)

Let us write the large NC expansion of the partial wave amplitude

t(s) = λt1(s) + λ2t2(s) + λ3t3(s) + . . . (7)

where the tn(s) are taken as NC independent. From two-particle unitarity, which we write in the inverse
amplitude form as
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t(s)−1 = Re t(s)−1 + i ρ(s) , (8)

we get the constraints

Im t1(s) = 0 , (9)

Im t2(s) = −ρ(s) t21(s) , (10)

Im t3(s) = −2ρ(s)t1(s)Ret2(s) , (11)

and so on. Note that the leading NC amplitude is real in the elastic scattering region, as expected from a
tree level ππ amplitude [4,5]. Of course, this does not preclude the appearance of the left cut discontinuity
which occurs due to particle exchange in the t and u channels. Clearly any pole, s0, occurring for the leading
NC and real amplitude will be either real or occurs in complex conjugated pairs. The latter is excluded
as this would violate causality. If s0 < 4m2 it corresponds to a bound state while for s0 > 4m2 it can be
associated to a Feschbach resonance.

To analytically continue the scattering amplitude to the complex Mandelstam s−plane, we remind that
above threshold, elastic unitarity fixes the imaginary part of the inverse of the t−matrix, which is then
determined as the boundary value in the upper lip of the unitarity cut,

t−1(s + i ǫ) = Re t−1(s) + i R(s + i ǫ),

R(s + i ǫ)≡ ρ(s) ≥ 0, s ≥ 4m2 . (12)

Resonances manifest as poles in the fourth quadrant of the SRS of the t−matrix. The t−matrix in the First
Riemann Sheet (FRS), tI, is defined in the complex plane by means of an analytical continuation of its
boundary value in Eq. (12) at the upper lip of the unitarity cut. The t−matrix in the SRS (tII) is related to
tI, thanks to R(s + i ǫ) = −R(s − i ǫ), by [15]

t−1
II (z) = t−1

I (z) − 2i R(z), z ∈ C , (13)

which implements continuity through the unitarity right cut, and the requirement that there are only two
Riemann sheets associated to this cut,

t−1
II (s ∓ i ǫ) = t−1

I (s ± i ǫ), s ≥ 4m2 . (14)

Let sR = m2
R − i mRΓR, the position of the pole associated to the resonance R. By definition sR, it is

solution of the equation t−1
II (sR) = 0, which can be expressed as

Re t−1
I (sR) = −i R(s∗R) , (15)

where we have used that R(sR) = −R(s∗R) 1 .
In the large NC limit, Re t−1

I and R scale as O(NC) and O(N0
C), respectively, and thus one easily finds

that mR and ΓR do scale as O(N0
C) and O(N−1

C ), respectively as we now show. Indeed, the resonance pole
position, sR, satisfies Eq. (15), and propose NC expansions of the type (for simplicity, we will drop out the
sub-index I, associated to the FRS)

sR = xR +
yR

NC

+ O(N−2
C ) , (16)

Re t−1 =
(
Re t−1

)

(1)
+

(
Re t−1

)

(0)
+ O(N−1

C ) , (17)

where we have used that any pole generated by the re-summation of diagrams must necessarily scale as
O(N0

C) for a sufficiently large number of colors and that Re t−1 scales as O(NC) (we use an obvious

notation in the NC expansion of Re t−1, where
(
Re t−1

)

(j)
scales as O(N j

C)). The large NC expansion of

Eq. (15) reads

1 We are being abusive regarding notation. Here Re t−1
I

(z) is an analytical function which has not right cut and it does
correspond to the real part of a function only when z = s + i ǫ.
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(
Re t−1

)

(1)
(xR)

︸ ︷︷ ︸

O(NC)

+
yR

NC

[(
Re t−1

)

(1)

]′

(xR) +
(
Re t−1

)

(0)
(xR)

︸ ︷︷ ︸

O(N0

C
)

+O(N−1
C ) = −i ρ(xR)

︸ ︷︷ ︸

O(N0

C
)

+O(N−1
C ) , (18)

At Leading Order (LO), we find

(
Re t−1

)

(1)
(xR) = 0 . (19)

This forces xR to be real and guaranties that mR scales as O(N0
C) in the NC ≫ 3 limit. At Next-to-Leading-

Order (NLO), we have

− Im yR

NC

= ρ(xR)
1

d
ds

(Re t−1)(1) (s)

∣
∣
∣
∣
∣
s=xR

(20)

Re yR

NC

[(
Re t−1

)

(1)

]′

(xR) = −
(
Re t−1

)

(0)
(xR) . (21)

Unitarity fixes the sign the of the imaginary part, showing that for large, but finite NC , the real pole comes
from the 4th quadrant. The first of the above equations ensures that the resonance width, ΓR, scales as
O(N−1

C ), for very large values of NC .
Now, we could rewrite Eq. (15), with accuracy O(N−2

C ), as

Re t−1(sR) = Re t−1(m2
R) − i mRΓR

[
Re t−1

]′
(m2

R) − m2
RΓ2

R

2

[
Re t−1

]′′
(m2

R) + O(N−2
C )

= −i ρ(m2
R) + mRΓRρ ′(m2

R) + O(N−2
C ) .

(22)

Thus, we find that

Re t−1(m2
R) = mRΓR

{

ρ ′ +
mRΓR

2

[
Re t−1

]′′
}∣

∣
∣
∣
s=m2

R
︸ ︷︷ ︸

O(N−1

C
)

+O(N−3
C ) (23)

mRΓR =
ρ

[Re t−1]
′

∣
∣
∣
∣
s=m2

R
︸ ︷︷ ︸

O(N−1

C
)

+O(N−3
C ) . (24)

Thus, at the resonance pole mass Re t−1 scales as O(N−1
C ) instead of O(NC). The reason is that the pole is

moving, as we will show below, at speed 1/N2
C towards the real axis. This is the first theorem of this work.

In principle, the derivatives of Re t−1 at s = m2
R do still grow linearly with NC . On the other hand, since

tan x = x + O(x3), we also find

δ(m2
R) =

π

2
+ δ′(m2

R)

[

ρ2
[
Re t−1

]′
]′

2
(
[Re t−1]

′
)3

∣
∣
∣
∣
∣
∣
∣
s=m2

R
︸ ︷︷ ︸

O(N−1

C
)

+O(N−3
C ) (25)

where we have used that

δ′(m2
R) =

[
Re t−1

ρ

]′
1

1 +
(

Re t−1

ρ

)2

∣
∣
∣
∣
∣
∣
∣
s=m2

R

=

[
Re t−1

]′

ρ

∣
∣
∣
∣
∣
s=m2

R
︸ ︷︷ ︸

O(NC)

+O(N−1
C ) . (26)
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¿From the above equations we see that δ′(m2
R) grows linearly with NC , while δ(m2

R) reaches the value π/2,
up to corrections of the order O(N−1

C ). This latter result constitutes our second theorem. More importantly,
from Eq. (25) it is trivial to find a value of s for which the phase shift differs of π/2 in terms suppressed by
three powers of the number of colors. This is to say

δ(sBW) =
π

2
+ O(N−3

C ) , (27)

where

sBW = m2
R − δ(m2

R) − π/2

δ′(m2
R)

︸ ︷︷ ︸

O(N−2

C
)

, (28)

= m2
R −

[

ρ2
[
Re t−1

]′
]′

2
(
[Re t−1]′

)3

∣
∣
∣
∣
∣
∣
∣
s=m2

R
︸ ︷︷ ︸

O(N−2

C
)

+O(N−4
C ) . (29)

Thus, we see that the existence of a pole in the SRS guaranties that there exists a value of sBW, which
can naturally be identified with the BW position, where the phase shift is π/2, up to O(N−3

C ) corrections.
The BW mass,

√
sBW, differs from the pole mass, mR, in O(N−2

C ) terms, which can be computed thanks to
Eq. (28). Note that the above relation has been deduced under the assumption of a finite large NC limit of
the resonance pole position. Our Eq. (28) is nothing but the first iteration in Newton’s method for solving
the BW condition, δ(s) = π/2, starting from the resonance mass as the initial guess. The meaning is just
that large NC implies that a straight line extrapolation of the phase shift from the resonance should give a
good estimate for the BW mass.

Ideally one would like to test Eq. (28) directly from data, but the existing uncertainties in the resonance
pole mR, as well as in the derivatives of the amplitude forced us to use instead a suitable parameteriza-
tion [16,17]. The fact that the corrections are largely suppressed at large NC provides some confidence on the
accuracy of the result. Using the conformal mapping parameterizations of Ref. [16] for the isoscalar–scalar
ππ phase shift 2

ρ(s) cot δ00(s) =
m2

s − m2/2

[
m√
s

+ B0 + B1w + B2w
2

]

,

(30)

where the conformal mapping is

w(s) =

√
s −

√

4m2
K − s

√
s +

√

4m2
K − s

. (31)

We take three representative sets discussed in Ref. [16] and compiled for completeness in Table 1. We
confirm that the resulting complex pole position slightly overshoots the Roy equation value

√
sσ = 441+16

−8 −
i 272+9

−12MeV [18]. Quoted errors in both the true BW position δ00(m
2
σ, BW) = π/2 and the large-NC predicted

BW position using Eq. (28) just reflect uncertainties in the input parameters B0, B1 and B2 as well as the
induced complex pole. Actually, for Sets A and C we find a 100 MeV wide stability plateau of the predicted
value from Eq. (28) around the pole mass. The discrepancy is compatible with the expected 1/N4

C correction
of the BW value, given the fact that Γσ is large. While a serious attempt to evaluate this correction would
require a much more reliable parameterization and better data (higher order derivatives of the phase shift
enter) it is surprising that despite its large width, our Eq. (28) may accommodate the large shift from the

2 We use here the ghost-full version and the Adler zero located at the lowest order ChPT sA = m2/2 [16]. Our results show
little dependence on this choice.
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Set A Set B Set C

B0 3.57(17) 7.63(23) 4.3(3)

B1 −24.3(5) −23.2(6) −26.7(6)

B2 −6.3(1.3) −23.0(1.4) −14.1(1.4)
√

sσ [MeV] 466(4)−i 232 (3) 477(7)−i 322(6) 476(6) −i 255(4)

mσ, R [MeV] 404(5) 350(10) 401(8)

mσ, BW [MeV] 803 (4) 865 (4) 807 (5)

mσ |BW,NC≫3 [MeV] 657 (4) 726 (5) 678 (6)

Table 1
Large NC Predicted Breit-Wigner Resonances for the isoscalar-scalar channel (T, J) = (0, 0) in ππ scattering using the large

NC formula m2
σ |BW,largeNC

= m2
σ,R

− (δ00(m2
σ,R

) − π/2)/δ′00(m2
σ,R

) compared to the true BW result, δ00(m2
σ, BW

) = π/2

where sσ = m2
σ,R

− imσ,RΓσ,R represents the pole of the S−matrix in the SRS, 1/SII(sσ) = 0. We use the parameterization

for the δ00(s) phase shift of Ref. [16] (see Eq. (30) in the main text).

pole to the BW mass by appealing large NC arguments which tacitly assume the expansion of Eq. (1) and
thus a small width approximation. Of course, the final answer regarding how the scalar meson mass scales
with NC can only be given by performing dynamical lattice QCD calculations with variable NC (see e.g.
Ref. [19] for a review).

Determining sR from sBW or viceversa are in principle equivalent procedures, but low energy based
approximations such as unitarized ChPT [20,21] are expected to work better when predicting sBW from
sR since

√

|sR| ∼ 0.5 GeV and
√

sBW ∼ 0.8 GeV. Actually, if we take the analytical one loop partial
wave amplitudes given in Ref. [22], unitarize with the IAM method [23,24,25,26] and use l̄1 = −0.4(6),
l̄2 = 4.3(1), l̄3 = 2.9(2.4), l̄4 = 4.4(2), from the analysis of Roy equations within ChPT [27] 3 , we find a
reasonable good description of the phase shift at low energy that leads to a rather good value of

√
sσ =

410(10)− i 270(10) MeV. However, discrepancies with data become important as the energy increases. and
the phase shift never takes the value δ00(s) = π/2. Despite these deficiencies, the large NC formula, Eq. (28),
provides still a reasonable value for the Breit-Wigner mass mσ|BW,NC≫3 = 600(10) MeV. The difference of
this value to the estimate of Table 1 is consistent with the corresponding values of the phase shifts since at√

s = 500 MeV one has δ00 = 45.7(6)o, 39.1(6)0 and 43.4(9)o for Sets A,B and C respectively whereas one
finds a significant smaller value δ00 = 34.7(5)o for the chiral IAM unitarized case with l̄1,2,3,4 from Ref. [27].
We stress that the phase shift in the chiral unitary representation itself never passes through 900. This result
reinforces the advocated picture; while in terms of the chiral representation the pole and the BW masses
are far apart, within the large NC framework they are connected, as they approach to each other at speed
O(1/N2

C). Note, however, that in practice we never depart from the physical NC = 3 value.
We summarize our results. We have analyzed the connection between the pole mass and the Breit-Wigner

mass of the ππ scattering amplitude within the large NC expansion. We have shown that assuming that
both masses are O(N0

C) the difference is O(N−2
C ) parametrically suppressed and computable numerically

from the data. This allows to predict the BW mass from the pole mass successfully even in the hostile case of
the rather wide f0(600) resonance. Thus, while the pole and Breit-Wigner masses are far apart numerically
they turn out to be connected within the large NC approximation. That would indicate the presence of a
qq̄ component in the σ−wave function. Such component, likely sub-dominant in the real world NC = 3 [9],
would ensure for a sufficiently large number of colours, the NC−behaviour (mσ ∼ N0

C and Γσ ∼ 1/NC) of
the σ pole parameters that has allowed us to relate pole and BW masses.
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