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AbstractWe present results of a lattice computation of the matrix elements of the vectorand axial-vector currents which are relevant for the semi-leptonic decays D ! K andD ! K�. The computations are performed in the quenched approximation to latticeQCD on a 243�48 lattice at � = 6:2, using an O(a)-improved fermionic action. In thelimit of zero lepton masses the semi-leptonic decays D ! K and D ! K� are describedby four form factors: f+K ; V;A1 and A2, which are functions of q2, where q� is the four-momentum transferred in the process. Our results for these form factors at q2 = 0 are:f+K(0) = 0:67 +7�8 , V (0) = 1:01 +30�13 , A1(0) = 0:70 + 7�10 , A2(0) = 0:66 +10�15 , whichare consistent with the most recent experimental world average values. We have alsodetermined the q2 dependence of the form factors, which we �nd to be reasonably welldescribed by a simple pole-dominance model. Results for other form factors, includingthose relevant to the decays D ! � and D ! � , are also given.
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1 IntroductionSemi-leptonic decays of the heavy-light mesons have attracted considerable interest, as theyplay a crucial role in the determination of the elements of the Cabibbo-Kobayashi-Maskawa(CKM) mixing matrix and in the understanding of weak decays. In recent years, a machineryhas been developed for calculating weak matrix elements from lattice simulations (for reviewlectures presented at recent lattice conferences see refs. [1]{[6]). D decays provide a good testof the method, since the relevant CKM matrix elements (Vcs and Vcd) are well constrainedin the Standard Model. In addition comparisons between D and B decays reveal the size ofnon-leading terms in the Heavy Quark E�ective Theory (HQET).The study of the decays D ! Kl+�l and D! �K�l+�l (and similarly D ! �l+�l, D! �l+�l)is particularly simple. They proceed via the spectator process in which a charm quark decaysinto a light quark (s or d) by emitting a W -boson, which materializes into a lepton pair(l+; �l), as shown in Figure 1. With only a single hadron in the �nal state, there are nointerfering diagrams or �nal-state interactions to take into account, unlike the situation innon-leptonic decays.
'
&

$
%

������HHHHHH����* HHHHY
�s ssW+ �ll+
u

c s
Figure 1: Feynman diagram relevant in semi-leptonic D! K;K� decays.The non-perturbative strong interaction e�ects are contained in the matrix elements hK�jJ�jDiand hKjJ�jDi, where J� = �s�(1�5)c is the relevant quark weak current3. In this paper wepresent the results of a lattice calculation of these matrix elements using the improved quarkaction proposed by Sheikholeslami and Wohlert [7]. We determine the dependence of theform factors on the momentum transfer (q), and study the phenomenological implications of3This discussion applies equally well to the D ! �; � cases by modifying the appropriate avour quantumnumbers. 1



our results. Previous lattice studies of these decays, obtained using the Wilson quark actioncan be found in refs. [8]{[15], and using the Sheikholeslami-Wohlert action in ref. [16].The plan of this paper is the following. In section 2 we review the experimental situation andgive the general formulae necessary for the calculation of the D ! Kl+�l and D ! �K�l+�ldecay rates. In section 3 we describe the details of our simulation, and the methods used todetermine the matrix elements (and hence the form factors) from the correlation functionscomputed on the lattice. The results, as is always the case in lattice simulations, are obtainedfor unphysically large values of the masses of the u and d quarks and have to be extrapolatedto the chiral limit. Details of this extrapolation are presented in section 4, and in section 5we discuss the relation between the lattice vector and axial currents used in this study, andthe corresponding continuum currents. In section 6 we present a compendium of all ourresults. Finally, in section 7, we study the implications of our results, comparing them withthe experimental measurements from refs. [17]{[27], summarised in [28]{[29], and with othertheoretical predictions [8]{[16] and [30]{[37].2 PhenomenologyUsing Lorentz, parity and time-reversal invariance, the matrix elements for the decaysD! K and D! K� , can be parametrized (in Minkowski space) in terms of invariantform factors as follows [9, 11, 12, 30] :hKj(V � A)�jDi =  pD + pK � qm2D �m2Kq2 !� f+(q2) + q�m2D �m2Kq2 f 0(q2) (1)hK�r j(V � A)�jDi = ���r T�� (2)T�� = 2V (q2)mD +mK� ����pDp�K� � i(mD +mK�)A1(q2)g��+ i A2(q2)mD +mK� (pD + pK�)�q� � iA(q2)q2 2mK�q�(pD + pK�)� (3)where q� = (pD � pK(K�))� is the four-momentum transfer, ���r is the polarization vector ofthe K� and f+;0; V; A and A1;2 are dimensionless form factors. A can be written asA(q2) = A0(q2)� A3(q2) (4)A3(q2) = mD +mK�2mK� A1(q2)� mD �mK�2mK� A2(q2) (5)with A0(0) = A3(0) and f+(0) = f 0(0). In the limit of zero lepton masses, the termsproportional to f 0 in eq. (1) and to A in eq. (3) do not contribute to the total amplitudeand hence to the decay rates. 2



The physical meaning of the di�erent form factors is clear in the helicity basis, in which eachof the form factors corresponds to a transition amplitude with de�nite spin-parity quantumnumbers in the frame of the center of mass of the lepton pair. Pole dominance models [30]then suggest the following behaviour with q2:V (q2) = V (0)1� q2=m21� ; A0(q2) = A0(0)1� q2=m20� ;Ai(q2) = Ai(0)1� q2=m21+ ; i = 1; 2; 3 (6)f+(q2) = f+(0)1� q2=m21� ; f 0(q2) = f 0(0)1� q2=m20+ (7)where mJP denotes the mass of the �sc meson with spin J and parity P . This simple picturecertainly has limitations. The pole-dominated form factor would vary very rapidly withq2 near the end point. Another limitation is that for f 0; A1; A2 and A3, the 0+ and 1+resonances are, in most cases, not known or only poorly established. On the lattice we can,in principle, determine form factors as functions of q2. Therefore, assumptions such as poledominance are not needed. Indeed, an important motivation for lattice computations is theopportunity to test such assumptions from �rst principles.The total decay rates are given by:�(D! Kl+�l) = G2F jVcsj2192�3m3D Z (mD�mK)20 dq2 [�(q2)] 32 � jf+K(q2)j2 (8)�(D ! �K�l+�l) = G2F jVcsj2192�3m3D Z (mD�mK� )20 dq2 q2[�(q2)] 12 �� �jH+(q2)j2 + jH�(q2)j2 + jH0(q2)j2� (9)where �(q2) = (m2D + m2K;K� � q2)2 � 4m2Dm2K;K�. H0 comes from the contribution of thelongitudinally polarized K� and is given by [34]H0(q2) = �12mK�pq2n(m2D �m2K� � q2)(mD +mK�)A1(q2)� 4m2Dj~pK�j2mD +mK�A2(q2)o (10)where ~pK� is the momentum of the K� in the D-meson rest frame. H� correspond to thecontribution of the transverse polarizations of the vector meson and are given by [34]H�(q2) = �n(mD +mK�)A1(q2)� 2mDj~pK�j(mD +mK�)V (q2)o (11)We now briey summarise the experimental results for semi-leptonic decays of D-mesons,basing our discussion on the review articles [28]{[29]. The largest and best measured semi-leptonic decay is D ! Kl�l. There have been several experiments ([17]{[21]) which have3



measured the branching ratios B(D0 ! K�l+�l) and B(D+ ! �K0l+�l). From these exper-iments and the total D0 and D+ lifetimes, one can calculate the D0 and D+ semi-leptonicdecay rates, which should coincide by isospin symmetry. The world average value of thesemi-leptonic width quoted in [29] is �(D ! �Kl+�l) = (7:1 � 0:6) � 1010 s�1. However,by looking only at the D0 ! K�l+�l channel and assuming isospin symmetry, a di�erentaverage value, �(D! �Kl+�l) = (9:0� 0:5)� 1010 s�1, is given in [28]4.The shape of the form factor is a measure of the decreasing overlap of the D and K wavefunctions as EK increases. CLEO has measured this shape with the largest sample of D0 !K�l+�l decays. Due to the phase space, the di�erential decay rate peaks at low q2. Thefactor jf+K(q2)j2 increases with q2, changing by a factor of about 2 over the kinematicalrange of the decay. A good �t to the data is obtained using eq. (7) with a pole mass m1� =(2:00�0:12�0:18) GeV [17], which is in good agreement with the value of 2.1 GeV expectedfrom the closest resonance with the proper quantum numbers, theD�s . The measured value ofthe pole massm1� agrees with earlier experiments but with a smaller error. f+K(0) is obtainedfrom the total semi-leptonic width, integrated over q2, by assuming pole dominance. Theaverage value quoted in [29] is f+K(0) = 0:70� 0:03, whereas the average value quoted in [28]is f+K(0) = 0:77� 0:04.The Cabibbo-suppressed decay D! �l�l has also been observed. Since the ratio jVcd=Vcsj isknown, assuming unitarity of the CKM matrix, from the comparison of the decays D ! �l�land D ! Kl�l it is possible to determine the ratio f+� (0) =f+K(0) . This ratio is predictedtheoretically to lie in the broad range 0.7{1.4. Mark III [20] gives a result of f+� (0) =f+K(0) =1:0 +0.6�0.3� 0:1. In a recent analysis, CLEO gets a value f+� (0) =f+K(0) = 1:29� 0:21� 0:11,[27]. The errors in this ratio of form factors are still very large. In addition in [28], a valuefor the rate �(D ! �l+�l) of (1:2� 0:3)� 1010 s�1 is quoted.There have been a number of measurements of B(D ! K�l+�l), with both D0 and D+mesons ([17],[21]{[25]). The average value of the width from these measurements is �(D !K�l+�l) = (5:1� 0:5)� 1010 s�1 [28]. A slightly di�erent average value, �(D ! K�l+�l) =(4:5 � 0:5) � 1010 s�1, is given in ref. [29]. The experimental results for the form factorsV;A1 and A2 are summarised in Table 1 and the results for the ratio of the decay rates ofthe longitudinal (H0 contribution in eq. (9)) and transverse (H� contributions in eq. (9))K� are presented in Table 2. The total rate is dominated by the A1 form factor and theratios of form factors are determined by �tting the angular distributions.For the (Cabibbo-suppressed) decay D ! �l�l there only exists an upper limit for thebranching fraction at 90 % con�dence level B(D! �l�l) < 0:37 [20].4In [28] the most recent measurement of the CLEO collaboration ([17]) is included, whereas it is omittedin ref. [29]. 4



Exp. E-687 [22] E-653 [26] E-691 [23] World Ave. [28]V=A1 1:74� 0:27� 0:28 2:00� 0:33� 0:16 2:0� 0:6� 0:3 1:90� 0:25A2=A1 0:78� 0:18� 0:10 0:82� 0:22� 0:11 0:0� 0:5� 0:2 0:74� 0:15Exp. A1 A2 VWorld Ave. [28] 0:61� 0:05 0:45� 0:09 1:16� 0:16Table 1: Form Factors at q2 = 0 for the D ! K�l+�l decay.Exp. E-687 [22] E-653 [26] E-691 [23] World Ave. [29]�L=�T 1:20� 0:13� 0:13 1:18� 0:18� 0:08 1:8 +0.6�0.4� 0:3 1:2� 0:1Table 2: Ratio of the longitudinal and transverse partial widths for the D! K�l+�l decay.3 Details of the SimulationWe work in the quenched approximation on a 243� 48 lattice at � = 6:2, which correspondsto an inverse lattice spacing a�1 = 2:73 � 0:05 GeV, as determined from the string ten-sion [38]. Other physical quantities lead to slightly di�erent values for the lattice spacing(a�1 = 2:7 � 3:0 GeV) [39]. This uncertainty in the determination of the scale should bereected in our results for dimensionful quantities. Our calculation is performed on sixtySU(3) gauge �eld con�gurations [38]. The gauge con�gurations and quark propagators wereproduced on the 64-node i860 Meiko Computing Surface at the University of Edinburgh.The SU(3) gauge �elds were generated using the Hybrid Over-Relaxed algorithm, de�nedin reference [38]. The gauge con�gurations are separated by 2400 sweeps, beginning at con-�guration 16800. The quark propagators were calculated using an O(a)-improved actionproposed by Sheikholeslami and Wohlert, which we refer to as the SW -action [7],SSWF = SWF � i�2 Xx;�;� �q(x)F��(x)���q(x); (12)where SWF is the standard Wilson lattice action,SWF =Xx (�q(x)q(x)� �X� h�q(x)(1� �)U�(x)q(x+ �̂) + �q(x+ �̂)(1 + �)U y�(x)q(x)i): (13)F�� is a lattice de�nition of the �eld strength tensor and � is the hopping parameter. Periodicboundary conditions were employed in the spatial direction and anti-periodic in the temporaldirection. The \improvement" is particularly important here since we are studying thepropagation of quarks whose bare masses are around one third of the inverse lattice spacing.5



The interpolating operators and currents which we use in this study are of the form:�q1(x)�1 + ra2 �  D���1� ra2 � !D� q2(x) (14)where � is one of the 16 Dirac matrices. The matrix elements of these operators computedusing the SW -action have no discretisation errors of O(a); the leading discretisation errorsare of O(�sa) [40].Our statistical errors are calculated according to the bootstrap procedure described inref. [38], for which the quoted errors on all quantities correspond to 68% con�dence lim-its of the distribution obtained from 1000 bootstrap samples.We have computed light quark propagators at three values of the quark mass corresponding to� = 0.14144, 0.14226 and 0.14262, using an over-relaxed minimal residual algorithm with red-black preconditioning and point sources and sinks. The masses of the light pseudoscalar andvector mesons which are needed for this study were obtained in ref. [39] and are summarisedin Table 3. Results extrapolated to the chiral limit (found to correspond to a hoppingparameter �crit = 0:14315 +2�2 ) and to the mass of the strange quark (�s = 0:1419 +1�1 ) arealso tabulated. OurD-mesons consist of a heavy quark (with �c = 0:129, where the subscriptc stands for \charm") and one of the light antiquarks. The heavy quark with � = 0:129 hasa mass approximately equal to that of the charm quark [41]. We use spatially-extendedinterpolating operators for the D-mesons (we use gauge-invariant Jacobi smearing on theheavy-quark �eld, described in detail in ref. [41]), but local operators of the form in eq. (14)for the light mesons.Further details on the lattice calibration, �tting procedures, mass spectrum and extraction ofmatrix elements of local operators between the vacuum and meson states, e.g. hMPSj �Q5qj0ican be found in references [39] and [42]. In Tables 3 and 4 we show a summary of the massspectrum found which we will use below. In the following we only present those details ofthe calculation which are speci�c to semi-leptonic decays and cannot be found in the abovereferences.In order to determine the matrix elements in eqs. (1) and (2) we compute the three-pointcorrelation functions:C�(~pD; ~q; tD; tJ) = X~x;~y ei~pD�~xei~q�~yhJD(tD; ~x)J�W (tJ ; ~y)JyK(0;~0)i (15)C��(~pD; ~q; tD; tJ) = X~x;~y ei~pD�~xei~q�~yhJD(tD; ~x)J�W (tJ ; ~y)J�yK�(0;~0)i (16)where JD is a spatially-extended interpolating �eld for the D meson [41] and J�W is anO(a)-improved lattice operator corresponding to the continuum weak currents �s�(1� 5)cor �q�(1 � 5)c (q = u or d). JK and J�K� are local interpolating operators which can6



�l1 �l2 0� meson 1� meson0.14144 0.14144 0.298 +2�2 0.395 +7�60.14144 0.14226 0.259 +2�2 0.370 +6�50.14144 0.14262 0.241 +2�3 0.360 +8�60.14226 0.14226 0.214 +2�3 0.343 +9�70.14226 0.14262 0.192 +3�3 0.331 +11�100.14262 0.14262 0.167 +3�4 0.319 +14�13�s=0.1419 �crit=0.14315 0.181 +9�8 0.326 +13�12�crit=0.14315 �crit=0.14315 0 0.290 +10�10Table 3: Light-light meson masses in lattice units. For the pseudoscalar channel we �t overthe time range t = 14� 22. For the vector channel we �t over the time range t = 13� 23.

�l 0� meson 1� meson0.14144 0.716 +2�2�s= 0.1419 0.701 +4�4 0.732 +4�40.14226 0.692 +3�20.14262 0.683 +4�3�crit=0.14315 0.665 +3�3 0.697 +5�4Table 4: Heavy-light meson masses, �c = 0:129, in lattice units. We �t over the time ranget = 11� 22.
7



annihilate the light-light pseudoscalar and vector mesons respectively. The lattice vectorand axial currents (eq. (14) with � = � or �5) are related to the continuum ones byrenormalisation constants ZV and ZA; we will discuss the determination of these constantsin section 5. To evaluate these correlators, we use the standard source method [43]. Wechoose tD = 24 (in lattice units) and symmetrize the correlators about that point usingEuclidean time reversal [44]. The position of the light meson source is �xed at the originand we have varied the time position of the current in the interval tJ = 7� 16. In Euclideanspace, provided the three points in the correlators of eqs. (15) and (16) are su�cientlyseparated in time (tJ ; tD � tJ � 1), the ground state contribution dominates and one �ndsfor tJ < tD :C�(~pD; ~q; tD = 24; tJ) ! ZD(j~pDj)2ED(~pD)ZK(j~pD + ~q j)2EK(~pD + ~q )e�ED(~pD)tDe[ED(~pD)�EK(~pD+~q )]tJ ��(�)hK; ~pD + ~q jV �jD; ~pDi� (17)C�;�(~pD; ~q; tD = 24; tJ) ! ZD(j~pDj)2ED(~pD)ZK�(j~pD + ~q j)2EK�(~pD + ~q )e�ED(~pD)tDe[ED(~pD)�EK� (~pD+~q )]tJ ��(�)�(�)Xr �� �r (~pD + ~q )hK�r ; ~pD + ~q j[V � A]�jD; ~pDi� (18)�(� = 0) = �1 ; �(� = 1; 2; 3) = 1 (19)ED is the energy of the D-meson and its wave-function factor, ZD(j~pDj) � h0jJD(0)jD; ~pDi,is a function of the meson momentum because we use spatially-extended interpolating oper-ators. EK(EK�) is the energy of the light pseudoscalar (vector) meson and the wave-functionfactors ZK(j~p j) � h0jJK(0)jK; ~p i and ZK�(j~p j) (h0jJ�K�(0)jK�r ; ~p i � ��r (~p )ZK�(j~p j)) do notdepend on the momentum of the meson (~p ) because we have used local densities. Thefactors �(�) in eq. (17) and �(�)�(�) in eq. (18) come from relating D-meson matrix ele-ments, which we obtain directly from the three-point correlation functions de�ned in eqs. (15)and (16), to those of the D-meson which we are interested in.The matrix elements have been computed for two values of the momentum of the D-meson((12a=�)~pD = (0; 0; 0), (1; 0; 0)); and all values of the momentum transfer ~q for which(12a=�)j~q j < 2. In order to limit the systematic errors (and also statistical ones), we willonly present results for matrix elements for which both the initial- and �nal-state mesonshave three-momenta less than or equal to �=12a. To improve statistics, we average over allequivalent momenta and the di�erent correlators, C�;� or C�, which lead to the same matrixelement.The wavefunction factors and energies are obtained from �ts to two-point correlation func-8



�l Z2D(~p = (0; 0; 0)) Z2D(~p = �12a(1; 0; 0))0.14144 14.5 + 5� 4 10.6 + 4� 30.14226 12.6 + 5� 4 9.0 + 3� 30.14262 12.0 + 6� 5 8.4 + 4� 3Table 5: Pseudoscalar heavy-light meson wavefunctions (in lattice units), �c = 0:129. Fittingranges are the same as those in Table 4.tions. At large times, t, the Euclidean correlators G5 and Gij behave as follows:G5(t; ~p ) = X~x ei~p~xhP5(~x; t)P y5 (~0; 0)i! Z25(j~p j)e�E5(~p )T2E5(~p ) cosh�E5(~p )[t� T2 ]� (20)Gij(t; ~p ) = X~x ei~p~xhVi(~x; t)V yj (~0; 0)i!  �gij + pipjm2V !Z2V (j~p j)e�EV (~p )T2EV (~p ) cosh�EV (~p )[t� T2 ]� (21)where T is the length of the lattice in the time direction, P5 and Vi are the pseudoscalardensity and vector current with the appropriate avour quantum numbers, and E5 andEV the energies of the mesons. For light mesons we use continuum dispersion relations,i.e., E5;V (~p ) = qm25;V + ~p 2 and impose Z5(j~p j) = Z5(j~0 j) [45]. These relations are wellsatis�ed for momentum �=12a which is the highest one we have considered. For the Dmeson, as mentioned above, the wave-function factors ZD(~p ) depend on the momentum andit is necessary to �t the corresponding two-point correlators to the asymptotic expressionsof eq. (20) not only for ~p = (0; 0; 0), but also for ~p = �=12a(1; 0; 0). We have constrainedthe energy to be ED(~p ) = qm2D + ~p 2 and therefore have performed only a one parameter�t in order to �nd ZD(j~p j). The masses we have used in our study of semi-leptonic decaysof D-mesons appear in Tables 3 and 4, whereas the wave-function factors appear in Tables 5and 6.Having determined the Z's and energies, all the factors multiplying the required matrixelements on the right hand sides of eqs. (17) and (18) are known, allowing us to determinethe di�erent form factors which appear in the matrix elements. The results presented insection 6 were obtained by �tting the di�erent (�; �) correlators, for each combination ofquark masses and each momentum channel, to their respective asymptotic forms (eqs. (17)and (18)) in the time interval tJ = 11� 13. We have performed correlated �ts, but we onlyallow for correlations between di�erent timeslices (tJ = 11; 12; 13) of a given (�; �) correlator9



�l1 �l2 Z25(~p = (0; 0; 0)) Z2V (~p = (0; 0; 0))0.14144 0.14144 0.0081 +3�3 0.0025 +2�10.14144 0.14226 0.0067 +4�3 0.0021 +2�20.14144 0.14262 0.0062 +4�4 0.0019 +2�20.14226 0.14226 0.0056 +4�3 0.0017 +2�20.14226 0.14262 0.0052 +4�4 0.0015 +2�2Table 6: Light-light meson wave-functions (in lattice units). Fitting ranges are the same asthose in Table 3.at the same quark mass and momentum.4 Chiral ExtrapolationWe are interested in deriving the form factors for physical values of the charm, strange andlight quark masses, for a range of values of the momentum transfer q. We obtain theseby extrapolation from the three-point correlation functions of eqs. (15) and (16) computedwith a �xed charm quark mass (corresponding to �c = 0:129) and for three values of thelight quark mass (corresponding to �l = 0:14144; 0:14226 and 0.14262) and two values ofthe strange quark mass (corresponding to �ls = 0:14144 and 0.14226). The extrapolation tothe physical values of the light and strange quark masses proceeds as follows:i) For each set of three-momenta of the initial and �nal state mesons, we determine eachform factor for the six combinations of light and strange quark masses. The massesare extrapolated to their physical values using:mD(�c; �l) = �aPS + �bPS2 � 1�l � 1�crit� (22)mV (�1; �2) = aV + bV � 12�1 + 12�2 � 1�crit� (23)m2PS(�1; �2) = bPS � 12�1 + 12�2 � 1�crit� : (24)This extrapolation, together with the continuum dispersion relations, also determinesthe value of q2 corresponding to each set of three-momenta for physical quark masses(see Tables 3 and 4).ii) For each momentum channel we extrapolate the form factors to the physical limit, usingthe full covariance matrix, assuming the following dependence on the quark masses:10



F (�ls ; �l) = a+ b �mD(�c; �l)mD(�c; �crit) + c �mlight(�l; �ls)mlight(�crit; �s) + d  �mlight(�l; �ls)mlight(�crit; �s)!2 (25)where �mD(�c; �l) and �mlight(�l; �ls) (light stands for light pseudoscalar and lightvector mesons) are de�ned by5�mD(�c; �l) = mD(�c; �l)�mD(�c; �crit) (26)�mPS(�l; �ls) = mPS(�l; �ls)�mPS(�crit; �s) (27)�mV (�l; �ls) = mV (�l; �ls)�mV (�crit; �s) (28)In the decay into vector mesons, we have not kept the quadratic term (�mlight(�l;�ls)mlight(�crit;�s))2(from Table 3 it can be seen that, unlike in the case of the light pseudoscalar meson,this term is always smaller than 5% and has a negligible e�ect on the extrapolation ofthe form factors to the physical limit) and we end up with only three free parameters(a; b; c). Thus, in the 0� ! 0� case, we �t the form factors to the following dependenceon the quark masses:F (�ls; �l) = � + � � 1�l � 1�crit� +  1�ls + 1�l � 2�crit! 12 + �  1�ls + 1�l � 2�crit! (29)and in the 0� ! 1� case we have assumed the following dependence:F (�ls; �l) = �0 + � 0 � 1�l � 1�crit�+ 0  1�ls + 1�l � 2�crit! (30)where F represents a generic form factor. Note that, in contrast to some analyses (e.g.[13, 16]), we do not assume avour symmetry between the active and spectator lightquarks. Thus for example, the form factors extrapolated to the strange and criticalquark masses, FK and F �, are:FK = � + � 1�s � 1�crit� 12 + � � 1�s � 1�crit� (31)F � = �0 (32)5The dependence assumed in eq. (25) is motivated by the results of a Taylor expansion of q2(�l; �ls)around q2(�crit; �s).
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5 Renormalisation Constants ZV and ZAIn this section we discuss the di�culties in determining the form factors of semi-leptonicD ! K;K� decays, due to the presence of discretisation errors. Of course these errorsare substantially reduced by the use of the improved action ([7], [40]), nevertheless even inthis case we believe that, for currently accessible values of the lattice spacing, they lead touncertainties of the order of 10% in the form factors. We will now attempt to justify thisstatement.The lattice currents V L� and AL� used in this study are related to the physical ones (V� andA�) by renormalisation constants ZV and ZA:ZV V L� = V� ; ZAAL� = A� (33)When both quarks are light, at � = 6:2, ZV and ZA are known to be about 0.83 and 1.05respectively [46]. For light quark masses the discretisation errors are very small, but for thecharmed quark at � = 6:2 this is no longer the case. In previous simulations, using Wilsonfermions, these e�ects were modelled by using an e�ective (mass{dependent) value of ZV andZA, or by assuming that the \conserved" vector current, i.e. the lattice current which wouldbe conserved if the quarks were degenerate, is free of discretisation errors, [45]. However wewish to stress that the discretisation errors of O(�sma) and O(m2a2) are in general di�erentfor matrix elements of currents with di�erent Lorentz indices and between di�erent states.Thus they cannot be absorbed into an e�ective ZV or ZA for all cases. To see this, notethat there are discretisation errors due to the mixing of the currents with higher dimensionaloperators, e.g. the vector current can mix with a�q1D�q2 or a2�q1�D�D�q2. The behaviour ofmatrix elements of these operators with the external states is in general di�erent from thatof the currents. We have carried out an extensive study of these e�ects for the heavy-heavyvector current �Q�Q6.De�ning ZeffV by ZeffV � C2(tx; ~p )C�3 (ty; tx; ~p ) p�E (34)where C2(tx; ~p ) = X~x ei~p�~xhJP (x)JyP (0)i (35)C�3 (ty; tx; ~p ) = X~x;~y ei~p�~xhJP (x)V �(y)JyP (0)i (36)and JyP and JP are the interpolating operators which can create or annihilate the heavy-lightpseudoscalar meson P. For degenerate quarks with � = 0:129, and using correlation functions6Full details of this study can be found in [47]. 12



with ~p = ~0 and � = 4, we �nd ZeffV = 0:9177 +3�2. We note that this value di�ers by about10% from that for ZV determined using light quarks and is a measure of the residual size ofthe discretisation errors using the improved action. Another important question is whetherthe e�ects are multiplicative. To study this we have computed ZeffV for j~pij = j~pf j = �12a , andusing the current V 4 in the correlation function C3 we �nd ZeffV = 0:925(1) whereas usingthe current V 1 we �nd ZeffV = 0:99(6). Unfortunately the latter error is too large for us tobe able to determine whether the discretisation errors are the same in matrix elements7 ofV 4 and V 1. In any case, because of hypercubic group invariance, there are no discretisationerrors of order O(a) which a�ect spatial components of the currents in a di�erent way totemporal components at each value of q2; the leading discretisation errors for which thishappens are of order O(a2) for the SW action (arising e.g. from matrix elements of theoperator a2�q1�D�D�q2).For simulations using the Wilson fermion action, the discretisation errors are much larger.Kronfeld and Mackenzie ([49]) have argued that much of this uncertainty can be absorbedinto a multiplicative m-dependent correction factor to the heavy quark propagator. Considerthe continuum free propagator at zero three-momentum:Z d3xS(x; 0) = 1 + 02 e�mt (37)Using Wilson fermions the analogous expression isZ d3xSW (x; 0) = 1 + 02 (1 +m0a)� t+aa (38)= 1 + 02 e�mte�ma (39)where m = log(1 +m0a)=a and m0 is the bare mass. An important correction proposed byKronfeld and Mackenzie is the e�ma factor in eq. (39). With the SW action, even at the treelevel, there can be no O(ma) term in the correction factor and we �ndZ d3xSSW (x; 0) = 1 + 02 �1 + 14(1 +m0a� 11 +m0a)�2 (1 +m0a)� t+aa (40)Numerically we estimate that this correction factor di�ers from 1 by only about 1.5%, for ourcharmed quark (� = 0:129), whereas we have seen that ZeffV in heavy-to-heavy transitionsis about 10% larger than ZV . This suggests that this correction factor accounts for onlya modest part of the discretisation errors. This conclusion is supported by the behaviourof ZeffV with mass, for which we �nd that the quadratic term (i.e. the O(m2a2) term) isrelatively small [47].Our conclusions from the above observations are as follows:7There is some mild evidence [47] that ZeffV may grow faster with mass for � = 1 than for � = 4 inheavy-to-heavy transitions. 13



i) The use of the free quark propagator is not a useful guide to the discretisation errorswhen using the SW action. For the Wilson action it is possible that the correspondingfactor e�ma accounts for part of the errors. However, the remaining uncertainties arenot understood, and are in any case formally at least as large as for the SW-action (i.e.there are O(�sma) terms, and there is even no proof that there are no O(ma) termsabove tree level8).ii) Formally there is no reason to believe that the discretisation errors can be absorbedinto universal e�ective renormalisation constants ZeffV and ZeffA . Even if O(m2a2) cor-rections are neglected, in which case the discretisation errors are independent of theLorentz index of the current, these discretisation errors could be di�erent for di�er-ent form factors and they could have a di�erent q2 dependence than the form factorsthemselves. However, if for a given form factor, both the form factor itself and thediscretisation errors have the same q2 dependence, e.g. if the pole dominance formulais a good approximation to both, then the corresponding e�ective renormalisation con-stant, ZeffV or ZeffA , is independent of q2 (up to corrections of O(m2a2)). Thereforeif O(m2a2) corrections are neglected and assuming that the meson pole dominancemodel describes well the q2 dependence of the di�erent form factors and their discreti-sation errors, only the fact that discretisation errors could, in general, be di�erent fordi�erent form factors, prevents the absorption of all of them into universal e�ectiverenormalisation constants. The situation is not improved by the use of \conserved"currents on the lattice. Here the situation is more di�cult than in the evaluation ofthe Isgur-Wise function, where one only needs to evaluate a single form factor and thisfactorization is still possible.Given this discussion what can be done?In this study we recognise that discretisation errors are of O(10%), and in spite of thediscussion above, we assume that they can be modelled by ZeffV and ZeffA (at least part ofthe errors can be so absorbed). Speci�cally for the vector current we takeZeffV = 0:88 +4�5 (41)which represents an approximate average of ZV = 0:83 (obtained with light quarks) andZeffV = 0:92 for the heavy-heavy current with the mass of the heavy quark corresponding to� = 0:129. For the axial current, a non-perturbative determination of ZA (when both quarksare light9 ) using a method based on Ward Identities [48], gives a value of ZA = 1:05(1), [46].A one-loop calculation in perturbation theory for the SW action ([50]) when the \boosted"8Note that in nth order perturbation theory, in general, terms appear which behave as �nma logn(a) � ma[40].9In this case we do not have a non perturbative determination of ZeffA for the heavy-heavy current.14



coupling suggested in [51] is used, gives ZA = 0:97. Unlike the case of the vector current,perturbative and non-perturbative determinations of ZA do not agree for the light-lightcurrent, thus for the axial current we have decided to takeZeffA = 1:05 +1�8 (42)which corresponds to the non-perturbative determination of [46], but with an increased lowererror in order to account for the perturbative value mentioned above.Below we will discuss briey the dependence of the results on the values in eqs. (41) and (42).Over the next few years, as high statistics simulations are performed at di�erent values of�, it will become possible to study the discretisation errors in detail.6 ResultsIn this section we present our results for the form factors obtained at six combinations ofmomenta of the initial and �nal state mesons, which are (in units of �=12a, and using thenotation ~pD ! ~pK;K�): a) (0; 0; 0) ! (0; 0; 0), b) (0; 0; 0) ! (1; 0; 0), c) (1; 0; 0) ! (1; 0; 0),d) (1; 0; 0) ! (0; 0; 0), e) (1; 0; 0) ! (�1; 0; 0), and f) (1; 0; 0) ! (0; 1; 0). The momenta ofthe initial stateD-meson are �xed to be (0; 0; 0) or (1; 0; 0), but we average over all equivalentmomenta of the light meson, so that, for example, case f) is really the average of the fourterms in which the �nal state meson has momentum �=12a in the positive or negative y orz directions.The results for the form factors, together with the corresponding values of q2, are presentedin Tables 7, 8 and 9. In these tables we also present the form factors extrapolated to physicalquark masses for the decays D ! K;K�, following the procedure described in section 4.From the results of Tables 7, 8 and 9, one can in principle check the pole dominance relationsgiven in eqs. (6) and (7). This is true in practice for some of the form factors. However,we have a very poor determination of both, the scalar (0+) and axial-vector (1+) mesonmasses. Thus, we have decided to extract both the pole masses (mJP ) and the form factorsat q2 = 0, by �tting the chirally{extrapolated data to the pole dominance model. In thecase of f+; V and A0 we will compare the masses of the 0� and 1� mesons obtained fromthe pole dominance �t with the lattice results obtained in our simulation (Table 4).6.1 The exclusive 0�! 0� case:With the method described in the former sections we have found for the D! K decay,15



~pD ~pK �l �ls q2a2 f+(q2)=ZeffV f 0(q2)=ZeffV(0,0,0) (0,0,0) 0.14144 0.14144 0.175 +2�2 1.03 +4�40.14226 0.209 +2�2 0.99 +5�50.14226 0.14144 0.188 +2�2 1.04 +5�50.14226 0.229 +3�3 1.00 +6�60.14262 0.14144 0.195 +3�3 1.05 +6�60.14226 0.241 +4�3 1.03 +8�7�crit �s 0.235 +8�9 1.01 +8�7(0,0,0) (1,0,0) 0.14144 0.14144 0.033 +1�1 0.91 +3�3 0.87 +3�30.14226 0.052 +1�1 0.88 +4�3 0.81 +3�30.14226 0.14144 0.037 +2�2 0.90 +4�4 0.85 +3�30.14226 0.057 +2�2 0.86 +5�4 0.78 +4�30.14262 0.14144 0.039 +2�2 0.89 +4�4 0.83 +4�40.14226 0.060 +3�2 0.84 +6�5 0.75 +5�4�crit �s 0.052 +4�4 0.88 +5�5 0.80 +4�4(1,0,0) (1,0,0) 0.14144 0.14144 0.134 +1�1 1.13 +7�7 0.91 +6�70.14226 0.155 +2�1 1.12 +8�8 0.82 +7�70.14226 0.14144 0.138 +2�2 1.09 +11�11 0.77 +10�110.14226 0.162 +2�2 1.07 +13�14 0.64 +11�110.14262 0.14144 0.141 +2�2 1.00 +14�15 0.58 +14�150.14226 0.165 +3�2 0.94 +19�21 0.40 +16�17�crit �s 0.157 +4�4 1.16 +20�19 0.73 +15�15Table 7: Form factors for 0� ! 0� decay with momenta in units of �12a and �c = 0:129. Forf 0(q2), the channel (1; 0; 0) ! (1; 0; 0) has not been considered in the pole dominance �t,because we feel we do not control its chiral extrapolation.
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~pD ~pK �l �ls q2a2 f+(q2)=ZeffV f 0(q2)=ZeffV(1,0,0) (0,0,0) 0.14144 0.14144 0.147 +2�2 1.25 +5�5 0.98 +4�40.14226 0.185 +2�2 1.33 +7�7 0.96 +4�40.14226 0.14144 0.163 +3�2 1.27 +7�7 0.99 +5�40.14226 0.208 +3�3 1.40 +10�10 1.00 +6�50.14262 0.14144 0.172 +3�3 1.26 + 9�10 1.00 +5�50.14226 0.223 +4�3 1.43 +14�15 1.01 +6�7�crit �s 0.217 + 9� 9 1.48 +16�17 1.06 +7�8(1,0,0) (-1,0,0) 0.14144 0.14144 � 0.140 +1�1 0.60 +3�3 0.71 +4�30.14226 � 0.119 +2�1 0.58 +3�3 0.69 +4�40.14226 0.14144 � 0.136 +2�2 0.59 +5�5 0.71 +6�50.14226 � 0.113 +2�2 0.58 +6�5 0.69 +7�60.14262 0.14144 � 0.133 +2�2 0.58 +7�7 0.69 +9�80.14226 � 0.109 +3�2 0.57 +10� 8 0.67 +11�10�crit �s � 0.117 +4�4 0.63 +8�8 0.73 +9�9(1,0,0) (0,1,0) 0.14144 0.14144 � 0.003 +1�1 0.78 +3�3 0.79 +3�30.14226 0.018 +2�1 0.75 +4�4 0.73 +4�40.14226 0.14144 0.001 +2�2 0.76 +4�4 0.76 +4�40.14226 0.025 +2�2 0.73 +5�5 0.70 +5�50.14262 0.14144 0.004 +2�2 0.74 +6�6 0.74 +5�50.14226 0.028 +3�2 0.71 +7�7 0.67 +7�7�crit �s 0.020 +4�4 0.75 +5�6 0.72 +5�5Table 7: (cont.)
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~pD ~pK� �l �ls q2a2 V (q2)=ZeffV(0,0,0) (0,0,0) 0.14144 0.14144 0.103 +2�20.14226 0.119 +3�30.14226 0.14144 0.103 +3�30.14226 0.121 +5�50.14262 0.14144 0.104 +4�40.14226 0.124 +7�6�crit �s 0.112 +5�5(0,0,0) (1,0,0) 0.14144 0.14144 � 0.010 +2�1 1.50 + 5� 50.14226 0.000 +2�2 1.47 + 7� 70.14226 0.14144 � 0.012 +2�2 1.45 + 8� 90.14226 � 0.001 +3�3 1.41 +10�110.14262 0.14144 � 0.012 +3�2 1.43 +12�120.14226 � 0.001 +4�4 1.36 +16�15�crit �s � 0.009 +3�3 1.40 +13�12(1,0,0) (1,0,0) 0.14144 0.14144 0.083 +2�2 2.7 + 4� 40.14226 0.095 +3�2 2.9 + 5� 60.14226 0.14144 0.082 +3�2 3.4 + 7� 70.14226 0.095 +4�3 4.1 + 9� 90.14262 0.14144 0.082 +3�3 3.7 +10�100.14226 0.096 +5�5 5.2 +13�13�crit �s 0.086 +3�4 3.7 + 8� 7Table 8: Vector form factor (V (q2)) for 0� ! 1� decay with momenta in units of �12a and�c = 0:129. The channel (1; 0; 0)! (1; 0; 0) has not been considered in the pole dominance�t, because we feel we do not control its chiral extrapolation.
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~pD ~pK� �l �ls q2a2 V (q2)=ZeffV(1,0,0) (0,0,0) 0.14144 0.14144 0.066 +3�3 1.46 +10�100.14226 0.085 +4�4 1.39 +14�140.14226 0.14144 0.068 +4�3 1.36 +16�180.14226 0.088 +6�5 1.30 +25�260.14262 0.14144 0.069 +5�4 1.42 +28�310.14226 0.092 +8�7 1.42 +38�42�crit �s 0.079 +5�6 1.09 +16�16(1,0,0) (-1,0,0) 0.14144 0.14144 � 0.191 +2�2 0.90 +6�70.14226 � 0.179 +3�2 0.90 + 9� 90.14226 0.14144 � 0.192 +3�2 0.85 +11�120.14226 � 0.179 +4�3 0.87 +15�150.14262 0.14144 � 0.192 +3�3 0.81 +18�180.14226 � 0.179 +5�5 0.81 +24�25�crit �s � 0.188 +3�4 0.80 +12�13(1,0,0) (0,1,0) 0.14144 0.14144 � 0.054 +2�2 1.22 +6�60.14226 � 0.042 +3�2 1.18 +7�80.14226 0.14144 � 0.055 +3�2 1.11 + 9�110.14226 � 0.042 +4�3 1.06 +11�140.14262 0.14144 � 0.055 +3�3 1.00 +16�200.14226 � 0.042 +5�5 0.90 +20�24�crit �s � 0.051 +3�4 1.02 +12�14Table 8: (cont.)
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~pD ~pK �l �ls A1(q2)=ZeffA A2(q2)=ZeffA A0(q2)=ZeffA(0,0,0) (0,0,0) 0.14144 0.14144 0.74 +2�20.14226 0.70 +3�20.14226 0.14144 0.76 + 3� 30.14226 0.72 +4�40.14262 0.14144 0.78 +5�50.14226 0.73 +6�6�crit �s 0.76 +4�4(0,0,0) (1,0,0) 0.14144 0.14144 0.70 +2�2 0.59 + 6� 7 0.73 +2�20.14226 0.65 +2�2 0.51 + 7� 7 0.72 +3�30.14226 0.14144 0.71 +3�4 0.63 + 9� 9 0.73 +3�30.14226 0.66 +4�4 0.53 +11�12 0.72 +4�40.14262 0.14144 0.71 +5�5 0.61 +13�14 0.74 +5�50.14226 0.64 +6�6 0.49 +17�18 0.72 +6�5�crit �s 0.72 +4�4 0.69 +10�10 0.72 +4�4(1,0,0) (1,0,0) 0.14144 0.14144 0.76 + 7� 7 1.4 +11�11 0.92 +11�110.14226 0.71 +9�9 1.5 +12�12 0.96 +15�150.14226 0.14144 0.66 +11�12 0.7 +17�17 0.74 +18�190.14226 0.60 +15�16 0.7 +20�20 0.78 +25�250.14262 0.14144 0.49 +19�21 � 0.7 +26�26 0.53 +27�300.14226 0.41 +26�27 � 0.9 +30�30 0.57 +36�38�crit �s 0.68 +14�15 1.4 +23�23 0.78 +23�24Table 9: Axial form factors for 0� ! 1� decay with momenta in units of �12a and �c = 0:129.For A2, the channel (1; 0; 0) ! (1; 0; 0) has not been considered in the pole dominance �t,because we feel we do not control its chiral extrapolation.
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~pD ~pK �l �ls A1(q2)=ZeffA A2(q2)=ZeffA A0(q2)=ZeffA(1,0,0) (0,0,0) 0.14144 0.14144 0.69 +3�3 0.67 +39�38 0.88 + 6� 70.14226 0.66 +3�3 0.93 +50�46 0.88 + 9� 90.14226 0.14144 0.69 +4�4 0.57 +55�52 0.92 + 9�100.14226 0.66 +5�4 0.92 +78�71 0.91 +13�140.14262 0.14144 0.69 +6�6 0.37 +75�71 0.99 +12�140.14226 0.65 +7�6 0.76 +100�100 0.99 +18�21�crit �s 0.66 +5�5 0.51 +75�66 0.90 +12�14(1,0,0) (-1,0,0) 0.14144 0.14144 0.57 +4�4 0.36 + 8� 7 0.44 +3�30.14226 0.53 +5�5 0.30 + 9� 8 0.44 +3�40.14226 0.14144 0.59 +7�8 0.37 +12�12 0.45 +4�50.14226 0.56 +9�9 0.31 +15�15 0.47 +5�60.14262 0.14144 0.58 +12�12 0.34 +19�19 0.46 +7�80.14226 0.58 +13�15 0.30 +23�23 0.50 +8�9�crit �s 0.58 +8�9 0.36 +15�15 0.45 +5�6(1,0,0) (0,1,0) 0.14144 0.14144 0.61 +2�2 0.40 + 6� 6 0.63 +3�30.14226 0.55 +3�3 0.34 + 8� 7 0.61 +3�30.14226 0.14144 0.59 +4�4 0.34 + 9�10 0.63 +4�40.14226 0.53 +5�5 0.28 +12�12 0.61 +5�60.14262 0.14144 0.54 +6�7 0.23 +15�17 0.64 +7�60.14226 0.49 +8�8 0.20 +20�20 0.61 +8�8�crit �s 0.60 +5�5 0.36 +12�12 0.59 +6�6Table 9: (cont.)
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f+K(0)ZeffV = 0:76 +5�5 ; mc�s1� = 0:67 +5�3 [a�1]f 0K(0)ZeffV = 0:74 +5�4 ; mc�s0+ = 0:91 +9�7 [a�1] (43)The pole mass mc�s1� , agrees reasonably well with the value 0:732 +4�4 [a�1] quoted in Table 4and the experimental value (2:00 � 0:12 � 0:18) GeV [17] quoted in section 2. The resultfound for mc�s0+ is also consistent with the value of 2:3 � 0:2 GeV obtained10 in the latticesimulation of ref. [13]. We also see f+K(0) is equal to f 0K(0) within the errors. These valuesagree with, and update the preliminary results presented in [52]. In Figs. 2 and 3 we showthe form factors f+ and f 0 as a function of q2 for two combinations of the light quark masses:�l = �ls = 0:14144 and �l = �crit, �ls = �s. In all cases the solid line corresponds to thecomparison of the pairs (q2,f+;0K (q2)) with the q2-dependence of the form factors determinedfrom a two-parameter pole dominance �t to our data (giving the parameters in eq. (43),for the case �l = �crit, �ls = �s). Crosses correspond to the form factors at q2 = 0 (up toa factor ZeffV ) determined in this way. In the case of f+, we also compare (dashed lines)the q2-dependence of our data with that determined from a one-parameter pole dominance�t, �xing the pole masses to the corresponding values of the vector-meson masses, m1�,quoted in Table 4. Diamonds correspond to the form factors at q2 = 0 (up to a factor ZeffV )determined by using this second method. The �ts using the constrained pole masses, alsolead to acceptable �2=dof . As can be seen from these �gures, both methods of extractingf+(0)=ZeffV agree remarkably well, which gives us con�dence in our procedure11. It can bealso seen from these �gures, that the q2 dependence of both form factors f+K(q2) and f 0K(q2)is well described by the pole dominance model.For the D! � decay12 we obtain, following the same steps as in the D! K case:f+� (0)ZeffV = 0:69 +10� 9 ; mc �d1� = 0:74 +6�3 [a�1]10This value was obtained from the analysis of scalar-scalar two-point functions, not from the study of theq2-dependence of f0K(q2).11Because of our poor determination of the scalar 0+ meson mass we can not do a similar comparison forf0(0). However, the value quoted in eq. (43) for mc�s0+ agrees well with the value of 2:3� 0:2 GeV mentionedabove ( [13]) and we expect a similar situation for f0 as that obtained for f+.12In order to compute q2 and the form factors in the chiral limit we take m� = 0:05a�1 instead of 0, whichcorresponds to a hopping parameter of 0:14310(2) determined from eq. (24). The use of massive instead ofmassless u and d quarks, which is important for the study of the q2 dependence of the D ! � decay, hasno practical consequences in the determination of the strange quark mass or in the determination of the �meson mass (which has been used in �xing the lattice spacing).22



Figure 2: Results for the form factor f+K(q2) as a function of the dimensionless quantityq2a2. Left: �l = �ls = 0:14144. Right: �l = �crit ; �ls = �s. Solid lines represent thepole dominance behaviour determined from a two-parameter �t to the data (parametersof eq. (43), for the case �l = �crit, �ls = �s). Dashed lines represent the pole dominancebehaviour determined from a one-parameter �t to the data (�xing the pole masses to thecorresponding values of the vector-meson masses, m1� , quoted in Table 4). Crosses anddiamonds correspond to the values of the form factor at q2 = 0 (up to a factor ZeffV )determined from two-parameter and one-parameter �ts to the data, respectively.
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Figure 3: Results for the form factor f 0K(q2) as a function of the dimensionless quantityq2a2. Left: �l = �ls = 0:14144. Right: �l = �crit ; �ls = �s. The curves represent thepole dominance behaviour determined from a two-parameter �t to the data (parameters ofeq. (43), for the case �l = �crit, �ls = �s). Crosses correspond to the values of the formfactor at q2 = 0 (up to a factor ZeffV ) determined from a two-parameter �t to the data.
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f 0�(0)ZeffV = 0:60 +10� 9 ; mc �d0+ = 0:91 +13� 8 [a�1] (44)f+� (0)f+K(0) = 0:92� 0:08 (45)where we can see that the value we have obtained for the ratio of form factors f+� (0) =f+K(0)is consistent with the experimental numbers quoted in section 2. Note that with the presenterrors, neither the theoretical nor the experimental result for this ratio gives clear evidencefor SU(3)-avour violations (deviations from unity). Note also that f+� (0) agrees withinerrors with f 0�(0) . In Figure 4 we compare the chirally extrapolated pairs (q2,f+� (q2)) withthe pole dominance behaviour determined by the parameters of eq. (44) (solid line) andwith the results from a one-parameter pole dominance �t, �xing the pole mass to that ofthe vector-meson mass mc �d1� , quoted in Table 4 (dashed line). Both procedures of extractingf+� (0) =ZeffV lead again to values for f+� (0) in an excellent agreement (cross and diamond inFigure 4).

Figure 4: Results for the form factor f+� (q2) as a function of the dimensionless quantityq2a2. The solid line represents the pole dominance behaviour determined by the parametersof eq. (44). The dashed line corresponds to a one-parameter �t to the data (�xing the polemass to that of the vector-meson mc �d1� , quoted in Table 4). The cross and the diamondcorrespond to the values of the form factor at q2 = 0 (up to a factor ZeffV ) determined fromtwo-parameter and one-parameter �ts to the data, respectively.25



6.2 The 0� ! 1� case:For the D! K� decay we obtain:A1(0)ZeffA = 0:67 + 4� 4 ; mc�s1+ = 1:1 +3� 2 [a�1] (46)A2(0)ZeffA = 0:62 + 9�10 ; mc�s1+ = 0:46 +16� 7 [a�1] (47)A0(0)ZeffA = 0:71 +5�5 ; mc�s0� = 0:59 +6�5 [a�1] (48)V (0)ZeffV = 1:15 +7�8 ; mc�s1� = 0:85 +24�15 [a�1] (49)The results obtained for mc�s1� and mc�s0� from the form factors V and A0 are consistent within1 or 1.5 standard deviations with the values quoted in Table 4. In the A1 case, the pole massis compatible with the value of 2:5 GeV, corresponding to the Ds1 resonance13, which wasused in the extraction of the form factors in refs. [22]{[23].In Figures 5{8 we show the form factors A1,A2,A0 and V as functions of q2 for two com-binations of the light quark masses: �l = �ls = 0:14144 and �l = �crit, �ls = �s. In allcases the solid line corresponds to the comparison of the pairs (q2, form factor) with theq2-dependence of the form factors determined from a two-parameter pole dominance �t toour data (parameters of eqs. (46){(49), for the case �l = �crit, �ls = �s). Crosses correspondto the form factors at q2 = 0 (up to a factor ZeffV or ZeffA ) determined in this way. Inthe cases of V and A0, we also compare (dashed lines) the q2-dependence of our data withthat determined from a one-parameter pole dominance �t, �xing the pole masses to thecorresponding values of the vector and pseudoscalar-meson masses, m1� and m0� , quotedin Table 4. For the axial form factors A1 and A2, we only make such a comparison for thephysical situation �l = �crit, �ls = �s where we �x the pole mass to the value used in [22]{[23](2.5 GeV � 0:9[a�1]). Diamonds correspond to the form factors at q2 = 0 (up to a factorZeffV or ZeffA ) determined by using this second method. As can be seen from these �gures,both methods of extracting the form factors a q2 = 0 agree well, serving as further check ofconsistency.The q2 dependence of A0 and A1 is reasonably well described by the pole dominance model,in contrast with sum-rules calculations which predict for A1 a much weaker q2 dependencethan would be given by dominance of the lowest expected c�s state in the JP = 1+ channel[37]. However, after our discussion in section 5 of the possible dependence on q2 of the13Note however, that the spin-parity quantum numbers of this resonance have not been con�rmed yet.26



discretisation errors, we must be cautious in our a�rmations about the q2 dependence of theform factors and we can not draw any de�nitive conclusion, without a better understandingof the size and the q2 dependence of the lattice artifacts present in our simulation. In thecases of A2 and V , our errors are too large to determine, in a precise way, its q2 dependence.As mentioned above, the values of the form factors at q2 = 0 have been extracted by �ttingthe chirally-extrapolated data to the pole dominance model. However, in our study we havesome momentum channels with values of q2 close to q2 = 0. Another way of obtaining theform factors at q2 = 0 is to take the momentum channel which provides (in the chiral limit)the value of q2 nearest to zero, and by means of the pole dominance model (with a �xed polemass) extrapolate the form factor to q2 = 0. This method for extracting the form factorsat q2 = 0 has the advantage that it only requires a small extrapolation in q2, but on thenegative side it only uses a single lattice point. Except in the cases of V (q2) and A1(q2), theresults obtained in such a way would agree within errors with those quoted in eqs. (43), (44)and (46{49). For A1 and particularly for V , the point nearest to q2 = 0 appears to be highcompared to the neighbouring points, giving a higher value of the form factors at q2 = 0if only this point is used. In the D-decay into vector mesons, the momentum channel withthe value of q2 nearest to zero corresponds to the transition ~pD = (0; 0; 0)! j~pK� ja = �=12and is averaged over the six equivalent momenta of the light meson. For V (q2), the otherthree channels plotted in Fig. 8, all correspond to transitions in which ~pDa = (1; 0; 0)�=12.The di�erence between these two-sets of points (~pD = ~0 and ~pDa = (1; 0; 0)�=12) is partlystatistical but it may also be partly due to systematic errors a�ecting the two data setsdi�erently. We have decided to be cautious, and to include this di�erence in the errors inour �nal results for A1(0)=ZeffA and V (0)=ZeffV . Thus, our �nal values for these two formfactors are: A1(0)ZeffA = 0:67 +6�4 (50)V (0)ZeffV = 1:15 +28� 8 (51)For the D! � decay we �nd:A�1(0)ZeffA = 0:60 + 5� 4 ; mc �d1+ = 1:1 +3�2 [a�1] (52)A�2(0)ZeffA = 0:48 +10�11 ; mc �d1+ = 0:44 +9�5 [a�1] (53)A�0(0)ZeffA = 0:66 +5�5 ; mc �d0� = 0:60 +7�5 [a�1] (54)27



Figure 5: Results for the form factor A1(q2) as a function of the dimensionless quantityq2a2. Left: �l = �ls = 0:14144. Right: �l = �crit ; �ls = �s. Solid lines represent thepole dominance behaviour determined from a two-parameter �t to the data (parameters ofeq. (46), for the case �l = �crit, �ls = �s). The dashed line, on the right, represents the poledominance behaviour determined from a one-parameter �t to the data (�xing the pole massto 0:9[a�1] � 2:5 GeV ). Crosses and diamond correspond to the values of the form factor atq2 = 0 (up to a factor ZeffA ) determined from two-parameter and one-parameter �ts to thedata, respectively.
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Figure 6: Results for the form factor A2(q2) as a function of the dimensionless quantityq2a2. Left: �l = �ls = 0:14144. Right: �l = �crit ; �ls = �s. Solid lines represent thepole dominance behaviour determined from a two-parameter �t to the data (parameters ofeq. (47), for the case �l = �crit, �ls = �s). The dashed line, on the right, represents the poledominance behaviour determined from a one-parameter �t to the data (�xing the pole massto 0:9[a�1] � 2:5 GeV ). Crosses and diamond correspond to the values of the form factor atq2 = 0 (up to a factor ZeffA ) determined from two-parameter and one-parameter �ts to thedata, respectively.
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Figure 7: Results for the form factor A0(q2) as a function of the dimensionless quantityq2a2. Left: �l = �ls = 0:14144. Right: �l = �crit ; �ls = �s. Solid lines represent thepole dominance behaviour determined from a two-parameter �t to the data (parametersof eq. (48), for the case �l = �crit, �ls = �s). Dashed lines represent the pole dominancebehaviour determined from a one-parameter �t to the data (�xing the pole masses to thecorresponding values of the pseudoscalar-meson masses, m0� , quoted in Table 4). Crossesand diamonds correspond to the values of the form factor at q2 = 0 (up to a factor ZeffA )determined from two-parameter and one-parameter �ts to the data, respectively.
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Figure 8: Results for the form factor V (q2) as a function of the dimensionless quantityq2a2. Left: �l = �ls = 0:14144. Right: �l = �crit ; �ls = �s. Solid lines represent thepole dominance behaviour determined from a two-parameter �t to the data (parametersof eq. (49), for the case �l = �crit, �ls = �s). Dashed lines represent the pole dominancebehaviour determined from a one-parameter �t to the data (�xing the pole masses to thecorresponding values of the vector-meson masses, m1� , quoted in Table 4). Crosses anddiamonds correspond to the values of the form factor at q2 = 0 (up to a factor ZeffV )determined from two-parameter and one-parameter �ts to the data, respectively.
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V �(0)ZeffV = 1:08 +27�10 ; mc �d1� = 0:91 +36�18 [a�1] (55)As in the case of the D! K� decay, we have a good determination of the A1 (which domi-nates the decay rate) and A0 form factors and a poorer determination of V and A2. We haveincreased the upper errors of the form factors V and A1 by 0:18 and 0:01 respectively, in orderto make our quoted values for the form factors at q2 = 0 compatible with the determinationof these two form factors, from the momentum channel ~pD = (0; 0; 0)! j~pK� j = �=12[a�1].In Figure 9 we compare the chirally extrapolated pairs (q2; A�1(q2)) with the pole dominancebehaviour determined by the parameters of eq. (52).

Figure 9: Results for the form factor (q2; A�1(q2)) as a function of the dimensionless quantityq2a2. The curve represents the pole dominance behaviour determined by the parametersof eq. (52). The cross corresponds to the value of the form factor at q2 = 0 (up to a factorZeffA ) determined from a two-parameter pole dominance �t to the data.
7 Conclusions and comparison with experimental dataand other calculationsIn this section we compare our results with the experimental measurements and other the-oretical calculations. In order to do this, we have to specify the values of the e�ective32



renormalisation constants ZeffA and ZeffV ; we have taken ZeffA = 1:05 +1�8 (eq. (42)) andZeffV = 0:88 +4�5 (eq. (41)), as discussed in section 5. In Table 10 we show our results for thethe semi-leptonic decays D! K and D ! K� . We have included the above uncertaintyin the renormalisation constants in our �nal results for the form factors in order to accountfor some of the residual discretisation errors. In our quoted errors for the ratio A2=A1 wehave taken into account the fact that the discretisation errors could be di�erent for di�erentform factors and therefore in general, the e�ective renormalisation constant ZeffA could bedi�erent for A2 than for A1 giving an additional ambiguity of around 10% for this ratio (seeeq. (42)).In Table 10, we also compare our predictions with the most recent experimental world averageand with previous lattice, quark-model and sum-rule results. Our results are in reasonableagreement with the experimental data and the most recent lattice simulations using anO(a)-improved SW ([16]) and Wilson ([14]-[15]) actions. Values reported in refs. [11, 12]and [8, 9, 10, 13] (all of them obtained using Wilson-fermions) are also in a good agreementwith ours, but the former are in general higher, whereas the latter are smaller, than ourpredictions. Discretisation errors are, in principle, larger for Wilson than for improvedactions, and part of the discrepancies between di�erent lattice results in Table 10, are dueto di�erent values used in the literature for the e�ective renormalisation constants ZeffV andZeffA .Looking now at our result for f+� (0) =f+K(0) in eq. (45) there is no clear evidence of SU(3)avour symmetry breaking and it is consistent with the experimental results. Furthermore,our prediction f+� (0) = 0:61 +12�11 (56)compares well with lattice calculations obtained with Wilson fermions (0:58 � 0:09 [10],0:84� 0:12� 0:35 [11] and 0:64� 0:09 [15]) and other theoretical calculations (0.69 [30, 33],0.51 [32, 34] and 0.6{0.75 [35, 36]). The situation is similar for f 0�(0) .For the decay D! � , we �ndV �(0) = 0:95 +29�14 ; A�1(0) = 0:63 +6�9 (57)A�2(0) = 0:51 +10�15 ; A�0(0) = 0:70 + 5�12 (58)Our results are in good agreement with the most recent lattice simulation ([15]) and with theprevious lattice calculations of refs. [10] and [12] (the results quoted in [10] are however, ingeneral smaller than our predictions) and slightly smaller than the quark model predictionof ref. [30].In the present study we have found not only the values of the form factors at q2 = 0 for33



Source f+K(0) f 0K(0) V (0) V=A1Exp. World Ave.[28] 0:77� 0:04 1:16� 0:16 1:90� 0:25World Ave.[29] 0:70� 0:03Lattice This work 0.67 +7�8 0:65� 0:07 1.01 +30�13 1.4 +5�2Gauge ELC [13] 0.60 +15�15 +7�7 0:86� 0:24 1:30� 0:2APE [16] 0:72� 0:09 1:0� 0:2 1:6� 0:3BKS [11]{ [12] 0:90 + 8� 8 +21�21 0:70 + 8� 8 +24�24 1:43 +45�45 +48�49 1:99 +22�22 +31�35BG [15] 0:73� 0:05 0:73� 0:04 1:24� 0:08 1:79� 0:09WU [14] 0:76� 0:15 0:75� 0:06 1:05� 0:33LMMS [8]{[10] 0:63� 0:08 0:86� 0:10 1:6� 0:2Quark ISGW [32] 0:76� 0:82 1:1 1:4� 0:4Models WSB [30] 0:76 1:27 1:4KS [33] 0:76 0:8 1.0GS [34] 0:69 1:5 2.0Sum Rules BBD [37] 0:60 +15�10 1:10� 0:25 2:2� 0:2AEK [35] 0:60� 0:15DP [36] 0:75� 0:05Source A1(0) A2(0) A2=A1 A0Exp. World Ave. [28] 0:61� 0:05 0:45� 0:09 0:74� 0:15Lattice This work 0.70 + 7�10 0.66 +10�15 0:9� 0:2 0.75 + 5�11Gauge ELC [13] 0:64� 0:16 0:40� 0:28� 0:04 0:6� 0:3APE [16] 0:64� 0:11 0:46� 0:34 0:7� 0:4BKS [12] 0:83 +14�14 +28�28 0:59 +14�14 +24�23 0:70 +16�16 +20�15 0:94 +9�9 +22�24BG [15] 0:66� 0:03 0:42� 0:17 0:71� 0:20WU [14] 0:59� 0:08 0:56� 0:40LMMS [8]{[10] 0:53� 0:03 0:19� 0:21 0:4� 0:4Quark ISGW [32] 0:8 0:8 1:0� 0:3Models WSB [30] 0:88 1:15 1:3KS [33] 0:82 0:8 1.0GS [34] 0:73 0:55 0.8Sum Rules BBD [37] 0:50� 0:15 0:60� 0:15 1:2� 0:2Table 10: Form factors at q2 = 0 for the semi-leptonic decays D ! K and D ! K� :comparison of our results with experimental data and with other theoretical calculations. Inobtaining our results we have used ZeffA = 1:05 +1�8 and ZeffV = 0:88 +4�5. All lattice gaugecalculations have been obtained using Wilson fermions except that of ref. [16] and the presentwork, where an O(a)-improved SW-action has been used.34



the di�erent decay processes, but also their q2 dependence in a wide region around q2 = 0.Thus we can estimate the integrals of eqs. (8{9) and obtain the total decay rates. Ourpredictions, together with the experimental measurements and other theoretical calculations,are presented in Table 11. As mentioned above, we have a poor determination of the q2dependence of the A2 and V form factors in the D decays into vector mesons. However,as can be seen in eq. (9), the contribution of these form factors to the decay rates is smalland only important in the proximity of q2 = 0, where their contributions are reasonably welldetermined. For example, pole masses, for the A2 form factor in the D ! K�; � decays, threetimes larger than those of eqs. (47,53) give total decay rates and ratios �L=�T which di�erfrom those quoted in Table 11 only at the level of (0.3-0.5) standard deviations. Therefore,we are con�dent that we can use the values of the form factors from our simulation forcalculating the total decay rates.In the 0� ! 0� case, (ZeffV )2 is an overall factor in the expression for the width and thuswe could quote our result for the decay rate in terms of (ZeffV )2=0:882. However, in thedecay into vector mesons, the form factors H� mix the contribution of both the vector andthe axial form factors and thus such a factorization cannot be made. Therefore in bothcases (decays into pseudoscalar and vector mesons) we have decided to include in the quotedstatistical errors of our results, the uncertainty due to ZeffV and ZeffA . We have estimatedthis uncertainty by computing the extreme values which would be obtained for the di�erentdecay rates if the errors of eqs. (41{42) were taken into account. On the other hand, theq2 dependence of the form factors is determined by the di�erent pole masses, quoted ineqs. (43{55), whose physical values depend on the precise value taken for the lattice spacing,a�1, and thus the results obtained for the decay rates will also depend on the scale a�1. Thesecond set of errors in our results of Table 11 is due to the uncertainty in the determinationof the lattice spacing; we have taken a�1 = 2:85 � 0:15 GeV. This ambiguity in the scalehas, in general, a small e�ect on the decay rates, and in some cases is negligible.As can be seen in Table 11, our results are in excellent agreement with the experimentaldata. This agreement, together with that already shown in Table 10, provides further con-�dence that lattice QCD is becoming a reliable quantitative tool for non-perturbative QCDphenomenology. Studies of charm physics on the larger lattices which will shortly becomeavailable, will provide a fruitful area of investigation, and will enable the control of the sys-tematic errors (except quenching) present in these calculations. This understanding of thediscretisation errors will make it possible to obtain accurate estimates of the the QCD-nonperturbative corrections to the B ! � and B ! � decays, from which we expect to extractthe Cabibbo-Kobayashi-Maskawa matrix element jVubj.We end this paper with a brief summary. The study presented in this paper is one of the �rstcalculations of the form factors of weak vector and axial currents relevant for semi-leptonic35



Source �(D! K) �(D! K�) �(D! ��) �(D! ��)Exp. World Ave.[28] 9:0� 0:5 5:1� 0:5 0:60� 0:15World Ave.[29] 7:1� 0:6 4:5� 0:5Lattice This work 7:0� 1:6� 0:4 6:0 +0.8�1.6 0:52� 0:18� 0:04 0:43� 0:11Gauge ELC [13] 5:4� 3:0� 1:4 6:4� 2:8 0:5� 0:3� 0:1 0:60� 0:3� 0:1APE [16] 7:8� 2:2 6:3� 1:7 0:7� 0:2 0:5� 0:2LMMS [10] 5:8� 1:5 5:0� 0:9 0:5� 0:2 0:40� 0:09Quark ISGW [32] 8:5 9:1� 0:25Models WSB [30] 8:26KS [33] 10:2(e)� 9:9(�)GS [34] 7:1Sum BBD [37] 6:4� 1:4 3:2� 1:3Rules AEK [35] 5:1� 1:7DP [36] 8:2� 1:1 0:76� 0:24Source �(D!K�)�(D!K) (�L�T )K� (�L�T )�Exp. World Ave.[29] 0:55� 0:07 1:2� 0:1Lattice This work 0:86� 0:28� 0:03 1:06� 0:16� 0:02 1:05 +0.29�0.20� 0:04Gauge ELC [13] 1:1� 0:6� 0:3 1:4� 0:3APE [16] 0:8� 0:3 1:3� 0:3LMMS [10] 0:86� 0:22 1:51� 0:27 1:86� 0:56Quark ISGW [32] 1:1 1:1� 0:2Models WSB [30] 1:15 0:9KS [33] 0:95 1:1GS [34] 1:4 1:2Sum Rules BBD [37] 0:5� 0:15 0:86� 0:06Table 11: Semi-leptonic partial widths for D ! K;K�; � and �, using jVcsj = 0:975 andjVcdj = 0:222. We also report the ratio of the longitudinal to transverse polarisation partialwidths for D ! K� and D! �. Units in 1010s�1. Ref. [28] gives �(D! �) = 1:2� 0:3. Wehave assumed isospin symmetry and we have taken a value for the decay rate, with chargedpions in the �nal state, of �(D! ��) = 0:60� 0:15.
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decays of D-mesons, performed using the improved quark action proposed by Sheikholeslamiand Wohlert [7]. Our results for the form factors (Table 10) and decay rates (Table 11) havereasonably small errors and are in good agreement with experimental measurements. Theresults at non-zero momentum transfer are, in general, in agreement with the pole dominancemodel.We have tried to minimize systematics by working with an improved action to reduce dis-cretization errors, and on fairly large volume in the hope that �nite-size e�ects would besmall. Nevertheless, it is important that our simulation be repeated on lattices of di�erentsizes and spacings in order to quantify more precisely the systematic e�ects, which couldmodify the results presented in this work, in particular the q2-dependence found for thedi�erent form factors.
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