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Abstract We study the properties of charmed pseudoscalar and vector mesons in

dense matter within a unitary meson-baryon coupled-channel model which incorporates

heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-

Tomozawa Lagrangian to SU(8) spin-flavor symmetry and implementing a suitable

flavor symmetry breaking. Several resonances with negative parity are generated dy-

namically by the s-wave interaction between pseudoscalar and vector meson multiplets

with 1/2+ and 3/2+ baryons. Those states are then compared to experimental data as

well as theoretical models. Next, Pauli-blocking effects and meson self-energies are in-

troduced in a self-consistent manner to obtain the open-charm meson spectral functions

in a dense nuclear environment. We finally discuss the formation of D-mesic nuclei.
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1 Introduction

The interest on the properties of open and hidden charmed mesons was triggered in

the context of relativistic nucleus-nucleus collisions in connection to the charmonium

suppression [1] as a probe for the formation of Quark-Gluon Plasma (QGP). The

primary theoretical effort is to understand the interaction between hadrons with the

charm degree of freedom. The nature of new charmed and strange hadron resonances

is an active topic of research, with recent data coming from CLEO, Belle, BaBar and

other experiments [2]. In the upcoming years, the experimental program of the future

FAIR facility at GSI [3] will move from the light quark sector to the heavy one and

will face new challenges where charm plays a dominant role.

Approaches based on coupled-channel dynamics have proven to be very successful

in describing the existing experimental data. In particular, unitarized coupled-channel

methods have been applied in the meson-baryon sector with charm content [4,5,6,7,

8,9], partially motivated by the parallelism between the Λ(1405) and the Λc(2595).

Other existing coupled-channel approaches are based on the Jülich meson-exchange

model [10,11] or on the hidden gauge formalism [12].

However, these models are not fully consistent with heavy-quark spin symmetry

(HQSS) [13,14,15], which is a proper QCD symmetry that appears when the quark

masses, such as the charm mass, become larger than the typical confinement scale. Aim-

ing at incorporating HQSS, an SU(8) spin-flavor symmetric model has been recently

developed [16,17], similarly to the SU(6) approach in the light sector of Refs. [18,19].

The model can generate dynamically resonances with negative parity in all the isospin,

spin, strange and charm sectors that one can form from an s-wave interaction between

pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons [20].

In this work we will focus on the modifications of the dynamically-generated states

in the nuclear medium and on the properties of open-charm mesons in dense nuclear

matter. We will study the open-charm meson spectral functions in this nuclear en-

vironment within a self-consistent approach in coupled channels, and discuss their

implications on the formation of D-mesic nuclei.

2 SU(8) Weinberg-Tomozawa interaction with heavy-quark spin symmetry

In QCD all types of spin interactions vanish for infinitely massive quarks: the dynamics

is unchanged under arbitrary transformations in the spin of the heavy quark. This is the

prediction of HQSS. Thus, HQSS connects vector and pseudoscalar mesons containing

charmed quarks. Chiral symmetry fixes the lowest order interaction between Goldstone

bosons and other hadrons in a model independent way; this is the Weinberg-Tomozawa

(WT) interaction. Then, it is very appealing to have a predictive model for four fla-

vors including all basic hadrons (pseudoscalar and vector mesons, and 1/2+ and 3/2+

baryons) which reduces to the WT interaction in the sector where Goldstone bosons

are involved and which incorporates HQSS in the sector where charm quarks partic-

ipate. Indeed, this is a model assumption which is justified in view of the reasonable

semiqualitative outcome of the SU(6) extension in the three-flavor sector [21] and on



3

a formal plausibleness on how the SU(4) WT interaction in the charmed pseudoscalar

meson-baryon sector comes out in the vector-meson exchange picture.

The model obeys SU(8) spin-flavor symmetry and also HQSS in the sectors where

the number of c- and c̄- quarks are conserved separately. This is a model extension of

the WT SU(3) chiral Lagrangian [20]. Schematically,

LSU(8)
WT =

1

f2
[[M† ⊗M ]63a

⊗ [B† ⊗B]63]1, (1)

which represents the interaction between baryons (in the 120 irrep of SU(8)) and mesons

(in the 63) through t-channel exchange in the 63. In the s-channel, the meson-baryon

space reduces into four SU(8) irreps, from which two multiplets 120 and 168 are the

most attractive. As a consequence, dynamically-generated baryon resonances are most

likely to occur in those sectors, and therefore we will concentrate on states which belong

to these two representations.

The SU(8)-extended WT meson-baryon interaction is given by

Vij(s) = Dij
2
√
s−Mi −Mj

4 fifj

√

Ei +Mi

2Mi

√

Ej +Mj

2Mj
. (2)

Here, i (j) are the outgoing (incoming) meson-baryon channels. The quantities Mi, Ei

and fi stand for the baryon mass and energy, in the center of mass frame, and the meson

decay constant in the i channel, respectively. Dij are the matrix elements coming from

the SU(8) group structure of the coupling for the various charm, strange, isospin and

spin (CSIJ) sectors, which display exact SU(8) invariance. However, this symmetry

is severely broken in nature, so we implement a symmetry-breaking mechanism. The

symmetry breaking pattern follows the chain SU(8) ⊃ SU(6) ⊃ SU(3) ⊃ SU(2), where

the last group refers to isospin. The symmetry breaking is introduced by means of a

deformation of the mass and decay constant parameters. This allows us to assign well-

defined SU(8), SU(6) and SU(3) labels to the resonances and to find HQSS invariant

states.

We solve the on-shell Bethe-Salpeter equation in coupled channels so as to calculate

the scattering amplitudes, Tij , by using the interaction matrix V as kernel:

T (s) =
1

1− V (s)G(s)
V (s). (3)

G(s) is a diagonal matrix containing the meson-baryon propagator for each channel.

D, T , V , and G are matrices in coupled-channel space. The loop function G(s) is

logarithmically ultraviolet divergent and it is regularized by the means of a subtraction

point prescription [22].

The poles of the scattering amplitudes are the dynamically-generated baryon res-

onances. Close to the pole, the T -matrix behaves as

Tij(s) ≈
gigj√

s−√
sR

, (4)

with the mass (mR) and the width (ΓR) given by
√
sR = mR − iΓR/2, while gi is the

coupling to a given meson-baryon channel.
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3 Charmed and strange dynamically-generated baryon states

Dynamically generated states in different charm and strange sectors are predicted

within our model [16,17,20]. Some of them can be identified with known states from

the PDG [23]. This identification is made by comparing the PDG data on these states

with the mass, width and, most important, the coupling to the meson-baryon channels

of our dynamically-generated poles. Next we will concentrate on the C = 1, S = 0

sector since the states generated in this sector are the most relevant ones for the latter

analysis of open-charm mesons in dense nuclear matter.

We reproduce the three lowest-lying states of Ref. [16] in the Λc sector, which come

from the most attractive SU(8) representations. However, those states have slightly dif-

ferent masses due to the different subtraction point, and the use of slightly different Ds

and D∗
s meson decay constants. The experimental Λc(2595) resonance can be identified

with the pole that we obtain around 2618.8MeV, as similarly done in Ref. [16]. The

width in our case is, however, bigger because we have not changed the subtraction

point to fit its position as done in Ref. [16]. Nonetheless, the dominant three-body

decay channel Λcππ [23] is not included in our calculation. A second broad Λc reso-

nance at 2617 MeV is, moreover, observed with a large coupling to the open channel

Σcπ, very close to Λc(2595). This is the same two-pole pattern found in the charmless

I = 0, S = −1 sector for the Λ(1405)[24]. A third spin-1/2 Λc resonance is seen around

2828 MeV and cannot be assigned to any experimentally known resonance. With regard

to spin-3/2 resonances, we find one located at (2666.6−i26.7 MeV). As seen in Ref. [16],

this resonance is assigned to the experimental Λc(2625). The t-channel vector-exchange

model of Ref. [7] also observed a similar resonance at 2660MeV. The novelty of our

calculations with respect to that one is that we obtain a non-negligible contribution

from the vector meson-baryon channels to the generation of this resonance.

For C = 1, S = 0, I = 1, J = 1/2 (Σc sector), three Σc resonances are obtained

with masses 2571.5, 2622.7 and 2643.4 MeV and widths 0.8, 188.0 and 87.0 MeV,

respectively. Those states nicely agree with the three lowest lying resonances found in

Ref. [16] and are pure predictions of our model. Ref. [9] predicts the existence of two

resonances in this sector. However, only one of them can be identified to one of ours but

with a strong vector meson-baryon component. Moreover, we predict two spin-3/2 Σc

resonances. The first one, a bound state at 2568.4 MeV, is thought to be the charmed

counterpart of the Σ(1670). The second state at 2692.9− i33.5 MeV has not a direct

experimental comparison.

4 Open-charm mesons in nuclear matter

We start this section by first analyzing the behavior of the dynamically-generated

states within the C = 1 and S = 0 sector in dense nuclear matter. Then, we study the

properties of open charm (D and D∗) mesons in a dense nuclear environment related

to the modification of dynamically-generated Λc and Σc states in this environment.

The self-energy and, hence, spectral function for D and D∗ mesons are obtained

self-consistently in a simultaneous manner, as it follows from HQSS by taking, as bare

interaction, the SU(8)-extended WT interaction described in Sec. 2. We incorporate

Pauli blocking effects and open charm meson self-energies in the intermediate propa-

gators [25] for the in-medium solution.
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Fig. 1 Left: The D and D
∗ spectral functions in dense nuclear matter at q = 0 MeV/c. Right:

The D and D̄ optical potential at q = 0 MeV/c for different densities

The D and D∗ self-energies are obtained by summing the transition amplitude for

the different isospins over the Fermi sea of nucleons, n(p):

ΠD(q0,q) =

∫

d3p

(2π)3
n(p) [TDN

(I=0,J=1/2) + 3TDN
(I=1,J=1/2) ] ,

ΠD∗(q0,q ) =

∫

d3p

(2π)3
n(p )

[

1

3
T
(I=0,J=1/2)
D∗N + T

(I=1,J=1/2)
D∗N +

2

3
T
(I=0,J=3/2)
D∗N + 2T

(I=1,J=3/2)
D∗N

]

, (5)

where the T -matrices are evaluated at s = P 2
0 − P2, being P0 = q0 + EN (p) and

P = q + p are the total energy and momentum of the meson-nucleon pair in the

nuclear matter rest frame, and (q0,q ) and (EN ,p ) stand for the energy and momentum

of the meson and nucleon, respectively, in this frame. The self-energy is determined

self-consistently since it is obtained from the in-medium amplitude which contains the

meson-baryon loop function, and this quantity itself is a function of the self-energy.

Then, the meson spectral functions for D and D∗ mesons read

SD(D∗)(q0,q) = − 1

π

ImΠD(D∗)(q0,q)

| q20 − q 2 −m2
D(D∗)

−ΠD(D∗)(q0,q) |2
. (6)

The D and D∗ spectral functions are displayed on the l.h.s. of Fig. 1. Those spectral

functions show a rich spectrum of resonance-hole states. On one hand, the D meson

quasiparticle peak mixes strongly with Σc(2823)N
−1 and Σc(2868)N

−1 states. On the

other hand, the Λc(2595)N
−1 is clearly visible in the low-energy tail. With regard to

the D∗ meson, the D∗ spectral function incorporates the J = 3/2 resonances, and the

quasiparticle peak fully mixes with the Σc(2902)N
−1 and Λc(2941)N

−1 states. For

both mesons, the YcN
−1 modes tend to smear out and the spectral functions broaden

with increasing phase space, as seen before in the SU(4) model [8]. Note, however,

that not all the states described in Sec. 3 are seen in the D and D∗ spectral functions.

This is due to the fact that some of those states do not strongly couple to DN and/or
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0- nucleus bound states for different angular momentum L.

D∗N states. Moreover, as we have just seen, resonances with higher masses than those

described in Sec. 3 are also present in the spectral functions. Those resonant states

were seen in the wider energy range explored in Ref. [16].

5 Charmed mesons in nuclei

D and D̄-meson bound states in 208Pb were predicted in Ref. [26] relying upon an

attractive D and D̄ -meson potential in the nuclear medium. This potential was ob-

tained within a quark-meson coupling (QMC) model [27]. The experimental observa-

tion of those bound states, though, might be problematic since, even if there are bound

states, their widths could be very large compared to the separation of the levels. This is

indeed the case for the potential derived from a SU(4) t-vector meson exchange model

for D-mesons [28].

We solve the Schrödinger equation in the local density approximation so as to

analyze the formation of bound states with charmed mesons in nucleus. We use the

energy dependent optical potential

V (r,E) =
Π(q0 = m+ E,q = 0, ρ(r))

2m
, (7)

where E = q0 − m is the D or D̄ energy excluding its mass, and Π the meson self-

energy. The optical potential for different densities is displayed on the r.h.s of Fig. 1.
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For D mesons we observe a strong energy dependence of the potential close to the D

meson mass due to the mixing of the quasiparticle peak with the Σc(2823)N
−1 and

Σc(2868)N
−1 states. As for the D̄ meson, the presence of a bound state at 2805 MeV

[17], almost at D̄N threshold, makes the potential also strongly energy dependent. This

is in sharp contrast to the SU(4) model (see analysis in Ref. [29]).

Then, the question is whether D and/or D̄ will be bound in nuclei. We start

by discussing D mesons in nuclei. We observe that the D0-nucleus states are weakly

bound (see Fig. 2), in contrast to previous results using the QMC model. Moreover,

those states have significant widths [29], in particular, for 208Pb [26]. Only D0-nucleus

bound states are possible since the Coulomb interaction prevents the formation of

observable bound states for D+ mesons.

Apropos of D̄-mesic nuclei, not only D− but also D̄0 bind in nuclei as seen in

Fig. 3. The spectrum contains states of atomic and of nuclear types for all nuclei for

D− while, as expected, only nuclear states are present for D̄0 in nuclei. Compared to

the pure Coulomb levels, the atomic states are less bound. The nuclear ones are more

bound and may present a sizable width [30]. Moreover, nuclear states only exist for

low angular momenta.

The information on bound states is very valuable to gain some knowledge on the

charmed meson-nucleus interaction, which is of interest for PANDA at FAIR. The

experimental detection of D and D̄-meson bound states is, though, a difficult task. For

example, reactions with antiprotons on nuclei for obtaining D0-nucleus states might

have a very low production rate (see Ref. [29] for details). Reactions but with proton

beams, although difficult, seem more likely to trap a D0 in nuclei [29].

6 Conclusions and Future

The properties of charmed mesons in infinite dense matter and nuclei have been studied

within a unitary meson-baryon coupled-channel model which incorporates heavy-quark

spin symmetry. Several resonances in the C = 1 and S = 0 sector have been analyzed

and compared with experimental data from several facilities as well as with other

theoretical models. The in-medium modifications on those baryonic resonances and

on charmed mesons have been obtained. The in-medium solution accounts for Pauli

blocking effects and meson self-energies. We have analyzed the evolution with density

of the open-charm meson spectral functions and finally studied the possible formation

of D-mesic nuclei. On one hand, only weakly bound D0-nucleus states seem to be

feasible. On the other hand, D− and D̄0- nuclear bound states are possible, the latter

ones with a stronger binding than for D0 and with also a sizable width. The challenge

is, though, the experimental detection.
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