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1. Introduction

The search for a general nuclear energy density functional (EDF) is currently attracting

intense efforts [1, 2, 3, 4, 5, 6]. In this paper we focus on the method initiated in [7],

where the nuclear EDF was expanded in higher-order derivatives of densities up to the

next-to-next-to-next-to-leading order (N3LO). Those results were completed in [8] by

deriving the expression of the effective pseudopotential in relative momenta up to the

same order. In that language, the standard Skyrme pseudopotential corresponds to the

N1LO, plus density dependent terms. In principle, the introduction of higher orders

could improve the description of nuclear properties once the related parameters are

fixed. At present the only application of the N3LO has been presented in [9], within the

context of the density matrix expansion (DME). The parameters obtained in this way

can be considered as a starting point for a complete minimization procedure [2, 10].

In a recent work [11], we have given the explicit form in Cartesian basis of the

N2LO effective pseudopotential compatible with all required symmetries, and especially

with gauge invariance. We have also suggested that numerical values of the Landau

parameters could be used to put explicit constraints on the values of the coupling

constants. The main objective of the present paper is to explore the possibility of

using Landau parameters to determine the pseudopotential parameters. As we shall

show, although the solution is not unique it is possible to reasonably fix their values,

which could provide an alternative starting point to the DME one.

The plan of the paper is as follows. In Section 2 we extend the results of [11] by

presenting the N3LO pseudopotential in Cartesian basis. In Section 3 we relate the

N3LO pseudopotential parameters to the Landau parameters, and discuss problems and

cures when fixing the former from the latter. In Section 4 we determine two N3LO

pseudopotentials from the Landau parameters calculated from two effective finite-range

two-body interactions. The conclusions of the present study are formulated in Section

5. Some interesting formulae are given in an Appendix.

2. The Skyrme pseudopotential up to N3LO

The mathematical construction of a pseudopotential is equivalent to the construction

of scalars with relative momenta and Pauli matrices as basic ingredients. The general

expression up to N3LO can be written as:

V̂Sk = V̂
(0)
Sk + V̂

(2)
Sk + V̂

(4)
Sk + V̂

(6)
Sk . (1)

The zeroth- plus second- order represents the Skyrme pseudopotential involving the

parameters t0, x0, t1, x1, t2, x2 as well as the tensor ones te, to:

V̂
(0)
Sk = t0(1 + x0Pσ) , (2)

V̂
(2)
Sk =

1

2
t1(1 + x1Pσ)(k

2 + k′2) + t2(1 + x2Pσ)(k · k′) +
1

2
teTe(k

′,k) +
1

2
toTo(k

′,k) , (3)

with the usual definitions k = (
−→∇1 −

−→∇2)/2i and k′ = −(←−∇1 −
←−∇2)/2i. The above

Skyrme parameters are related to the N1LO coupling constants EDF as described in [8].



Fitting N3LO pseudopotentials through central plus tensor Landau parameters 3

The operators Te and To, respectively even and odd under parity transformation, are

defined as:

Te(k
′,k) = 3(~σ1 · k′)(~σ2 · k′) + 3(~σ1 · k)(~σ2 · k)− (k′2 + k2)(~σ1 · ~σ2), (4)

To(k
′,k) = 3(~σ1 · k′)(~σ2 · k) + 3(~σ1 · k)(~σ2 · k′)− 2(k′ · k)(~σ1 · ~σ2). (5)

In these expressions, as in the coming analogous ones, a δ(r1 − r2) function is to be

understood, but has been omitted for the sake of clarity.

The fourth order pseudopotential was deduced in [11], and written by keeping a

close analogy with the second order structure:

V̂
(4)
Sk =

1

4
t
(4)
1 (1 + x

(4)
1 Pσ)

[

(k2 + k′2)2 + 4(k′ · k)2
]

+ t
(4)
2 (1 + x

(4)
2 Pσ)(k

′ · k)(k2 + k′2)

+ t(4)e

[

(k2 + k′2)Te(k
′,k) + 2(k′ · k)To(k

′,k)
]

+ t(4)o

[

(k2 + k′2)To(k
′,k) + 2(k′ · k)Te(k

′,k)
]

, (6)

The relations between the parameters and the N2LO coupling constants of [8] are given

in [11]. We correct here a misprint in [11] regarding the parameter t
(4)
o , whose right

expression is t
(4)
o = −C33

11,22

12
√
7
. We also correct the expression of the term proportional to

t
(4)
o which is now symmetric with respect to the term proportional to t

(4)
e .

We have extended these results to the next order. Starting from the general N3LO

pseudopotential derived in [8] we have obtained its explicit form in the more familiar

Cartesian basis, constraining it to be gauge invariant. Although this symmetry is not

explicitly required from basic principles, there is some current discussion about the

necessity of imposing it in general, since it has been shown [12] that gauge invariance

is equivalent to continuity equation for local potentials. The continuity equation is of

particular interest in view of using such a pseudopotential for calculations of the time

evolution of a quantal system. For this reason, and from the fact that a local potential

is automatically gauge invariant [13, 14], we only consider pseudopotentials which are

gauge invariant at all orders. Following the method explained in [11], we have worked

out the 6th order, which we write as:

V̂
(6)
Sk =

t
(6)
1

2
(1 + x

(6)
1 Pσ)(k

2 + k′2)
[

(k2 + k′2)2 + 12(k′ · k)2
]

+ t
(6)
2 (1 + x

(6)
2 Pσ)(k

′ · k)
[

3(k2 + k′2)2 + 4(k′ · k)2
]

+ t(6)e

[(

1

4
(k2 + k′2)2 + (k′ · k)2

)

Te(k
′,k) + (k2 + k′2)(k′ · k)To(k

′,k)

]

+ t(6)o

[(

1

4
(k2 + k′2)2 + (k′ · k)2

)

To(k
′,k) + (k2 + k′2)(k′ · k)Te(k

′,k)

]

. (7)

In the same way as we did for the 4th order, the definition of 6th order parameters

has been chosen such that their contributions to the equation of state and Landau

parameters maintain a close analogy with those of 2nd order, as shown below. This is
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the first noticeable result of this paper. The relations of these 6th order parameters to

the N3LO coupling constants of [8] are the following:

1

2
t
(6)
1 =

√
3C42

22,00 + C42
22,20

72
√
5

,
1

2
t
(6)
1 x

(6)
1 = −

C42
22,20

36
√
5
,

t
(6)
2 =

3C33
33,00 +

√
3C33

33,20

12
√
7

, t
(6)
2 x

(6)
2 = −

C33
33,20

6

√

3

7
,

t(6)e = −
C44

22,22

18
, t(6)o = −

C53
11,22

18

√

3

7
.

As discussed in [11], the spin-orbit contribution appears only at the N1LO level.

We have not written it in (3) because it does not contribute to the Landau parameters.

Notice that no density dependent terms appear in this procedure, as they are originated

from three-, four- ... body interactions [15]. In practice they are added by hand as

phenomenological terms, being in general the same as the standard Skyrme interaction

[16, 17].

3. N3LO parameters and Landau parameters

In the Landau-Migdal approximation it is assumed that the low-energy excitations of

the system are described by putting the interacting particles and holes on the Fermi

surface, so that the only variable that remains is the relative angle θ between the initial

and final momenta. The p-h interaction is thus a contact interaction, which is expanded

in Legendre polynomials with argument cos θ = (k̂1 · k̂2). It includes spin and isospin

degrees of freedom, and the general form for symmetric nuclear matter (SNM) adopted

here reads:

Vph =
∑

ℓ

{

fℓ + f ′
ℓ (τ 1 · τ 2) + [gℓ + g′ℓ (τ 1 · τ 2)] (σ1 · σ2)

+ [hℓ + h′
ℓ (τ 1 · τ 2)]

k2
12

k2
F

S12

}

Pℓ(k̂1 · k̂2) , (8)

where fℓ, f
′
ℓ, . . . are the Landau parameters, k12 = k1 − k2, and S12 = 3(k̂12 · σ1)(k̂12 ·

σ2) − (σ1 · σ2) is the usual tensor operator. Excitations are characterized by the spin

and isospin quantum numbers (S, I). In the case of pure neutron matter (PNM) the

p-h interaction only depends on the spin quantum number. Eq. (8) is then modified by

dropping the coefficients f ′
ℓ, g

′
ℓ, h

′
ℓ and using the notation f

(n)
ℓ , g

(n)
ℓ , h

(n)
ℓ for the remaining

ones. In the following, we shall use a single symbol (α) to indicate the relevant spin-

isospin quantum numbers. With this notation, the Landau parameters fℓ, f
′
ℓ, gℓ, g

′
ℓ will

be written as f
(α)
ℓ , with (α) = (0, 0), (0, 1), (1, 0), (1, 1), respectively.

Our objective is to write the pseudo-potential parameters as linear combinations of

Landau parameters. Let us consider separately central and tensor parameters.
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3.1. Central parameters

Up to N3LO, the central Landau parameters can be written as:

f
(α)
0 = 1

4
L0[f

(α)] + 1
8
k2
FL2[f

(α)] + 1
6
k4
FL4[f

(α)] + k6
FL6[f

(α)]

f
(α)
1 = −1

8
k2
FL2[f

(α)]− 1
4
k4
FL4[f

(α)]− 9
5
k6
FL6[f

(α)]

f
(α)
2 = 1

12
k4
FL4[f

(α)] + k6
FL6[f

(α)]

f
(α)
3 = −1

5
k6
FL6[f

(α)]



















(9)

where the Ln terms are combinations of the pseudopotential parameters. One has to

keep in mind that no density-dependent terms are considered for the moment. The

explicit combinations are:

L0[f ] = 3t0
L0[g] = −t0(1− 2x0)

L0[f
′] = −t0(1 + 2x0)

L0[g
′] = −t0



















(10)

and for n ≥ 2:

Ln[f ] = 3t
(n)
1 + (5 + 4x

(n)
2 )t

(n)
2

Ln[g] = −(1− 2x
(n)
1 )t

(n)
1 + (1 + 2x

(n)
2 )t

(n)
2

Ln[f
′] = −(1 + 2x

(n)
1 )t

(n)
1 + (1 + 2x

(n)
2 )t

(n)
2

Ln[g
′] = −t(n)1 + t

(n)
2



















(11)

From equations (9) one can first write Ln as combinations of Landau parameters.

Then, including the result in the systems (10) and (11), one gets the pseudopotential

parameters in terms of those combinations. The system (11) has a unique solution,

and the Skyrme parameters for n ≥ 2 can be written as a linear combination of the

symmetric nuclear matter Landau parameters with ℓ ≥ 1 as :

−8
5
k6
F t

(6)
1 = f3 − g3 − f ′

3 − 3g′3 ,

−4
5
k6
F t

(6)
1 x

(6)
1 = g3 − f ′

3 ,

−8
5
k6
F t

(6)
2 = f3 − g3 − f ′

3 + 5g′3 ,

−4
5
k6
F t

(6)
2 x

(6)
2 = g3 + f ′

3 − 2g′3 ,

2

3
k4
F t

(4)
1 = f2 − g2 − f ′

2 − 3g′2 + 5 (f3 − g3 − f ′
3 − 3g′3) ,

1

3
k4
F t

(4)
1 x

(4)
1 = g2 − f ′

2 + 5 (g3 − f ′
3) ,

2

3
k4
F t

(4)
2 = f2 − g2 − f ′

2 + 5g′2 + 5 (f3 − g3 − f ′
3 + 5g′3) ,

1

3
k4
F t

(4)
2 x

(4)
2 = g2 + f ′

2 − 2g′2 + 5 (g3 + f ′
3 − 2g′3) ,
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−k2
F t1 = f1 − g1 − f ′

1 − 3g′1 + 3 (f2 − g2 − f ′
2 − 3g′2) + 6 (f3 − g3 − f ′

3 − 3g′3) ,

−1
2
k2
F t1x1 = g1 − f ′

1 + 3 (g2 − f ′
2) + 6 (g3 − f ′

3) ,

−k2
F t2 = f1 − g1 − f ′

1 + 5g′1 + 3 (f2 − g2 − f ′
2 + 5g′2) + 6 (f3 − g3 − f ′

3 + 5g′3) ,

−1
2
k2
F t2x2 = g1 + f ′

1 − 2g′1 + 3 (g2 + f ′
2 − 2g′2) + 6 (g3 + f ′

3 − 2g′3) .

Things are more complicated for n = 0, because the four equations (10) are not

linearly independent. It has no solution unless some relation between Landau parameters

are fulfilled. For instance, from the last three equations of system (10) one finds

L0[g] + L0[f
′] = 2L0[g

′], which in turn implies:

δ3 =
3

∑

ℓ=0

(gℓ + f ′
ℓ − 2g′ℓ) = 0 . (12)

One would be surprised that this relation holds in general. Indeed, in Appendix A we

show that in the case of a finite-range two-body central interaction, the quantity δℓmax

vanishes if ℓmax →∞. Therefore, the assumption δ3 = 0 implies some approximation.

Another obvious relation comes from the observation that the sum of the four

equations (10) is equal to zero. This in turn implies
∑3

0(fℓ + gℓ + f ′
ℓ + g′ℓ) = 0. In

Appendix A we also show that this relation is valid only in the case of an infinite

number of terms. However, this new relation is not relevant for our analysis because it

involves the Landau parameter f0. One should remind that no density-dependent terms

have been included up to now, which affects in particular f0 through the rearrangement

contribution. In principle, applying the method of [7, 8, 11] to three-, four-, ... body

interactions, a density-dependent pseudopotential would be obtained, which implies a

density dependence of all Landau parameters, i.e. all channels (α) and all multipoles

ℓ. We shall follow however a simpler route and include the standard Skyrme effective

density-dependent term 1
6
t3(1 + x3Pσ)ρ

γ. It seems reasonable to fix beforehand the

value of γ, as it is usual in the fitting procedures, so that two more unknowns, t3 and

x3, are introduced. This density-dependent term only affects the monopolar Landau

parameters, to which we must add the contributions:

f0(t3) =
1
16
(γ + 1)(γ + 2)t3ρ

γ ,

g0(t3) = − 1
24
(1− 2x3)t3ρ

γ ,

f ′
0(t3) = − 1

24
(1 + 2x3)t3ρ

γ ,

g′0(t3) = − 1
24
t3ρ

γ .

One can see that g0(t3) + f ′
0(t3) = 2g′0(t3), so it does not modify the condition (12). We

are thus left with the system:

3t0 +
1
4
(γ + 1)(γ + 2)t3ρ

γ = 4
∑3

0 fℓ ,

−(1− 2x0)t0 − 1
6
(1− 2x3)t3ρ

γ = 4
∑3

0 gℓ ,

−(1 + 2x0)t0 − 1
6
(1 + 2x3)t3ρ

γ = 4
∑3

0 f
′
ℓ ,

−t0 − 1
6
t3ρ

γ = 4
∑3

0 g
′
ℓ ,



















(13)

for four unknowns, but it actually reduces to three linearly independent equations due

to (12).
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Up to now we have been considering only symmetric nuclear matter. Including

pure neutron matter in our analysis provides a priori two new relations for the

pseudopotential parameters. However, the one involving the spin g
(n)
ℓ parameters is

in fact the sum of those involving gℓ and g′ℓ in (13). Only the relation involving f
(n)
ℓ

matters, because of the rearrangement contributions. It reads:

(1− x0)t0 +
1

12
(γ + 1)(γ + 2)(1− x3)t3ρ

γ = 2

3
∑

0

f
(n)
ℓ . (14)

In principle Eqs. (13) and (14) allow us to determine t0, t3, x0 and x3 from the

Landau parameters, after eliminating one of the three last equations of the set (13). As

far as equality (12) is satisfied the solution is unique, no matter which one of them is

eliminated. For instance, dropping the equation involving the parameters g′ℓ one gets

the solutions:

t0 =
2

3γ(γ + 3)

3
∑

0

{−4fℓ − 3(γ + 1)(γ + 2)(f ′
ℓ + gℓ)} , (15)

t0x0 =
2

3γ(γ + 3)

3
∑

0

{

−4fℓ −
3

2
(γ + 1)(γ + 2) (f ′

ℓ − gℓ) + 6f
(n)
ℓ

}

, (16)

1

6
t3ρ

γ =
2

3γ(γ + 3)

3
∑

0

{4fℓ + 6(f ′
ℓ + gℓ)} , (17)

1

6
t3x3ρ

γ =
2

3γ(γ + 3)

3
∑

0

{

4fℓ + 3 (f ′
ℓ − gℓ)− 6f

(n)
ℓ

}

. (18)

The actual value of δ3 gives an estimate of the accuracy of the parameters so calculated.

3.2. Tensor parameters

Proceeding along the same lines as in the previous subsection, the tensor Landau

parameters can be written as:

h
(α)
0 = 1

8
k2
FL2[h

(α)] + 1
2
k4
FL4[h

(α)] + 1
3
k6
FL6[h

(α)] ,

h
(α)
1 = −1

2
k4
FL4[h

(α)]− 1
2
k6
FL6[h

(α)] ,

h
(α)
2 = 1

6
k6
FL6[h

(α)] ,











(19)

where the combinations of pseudopotential parameters are:

Ln[h] = t
(n)
e + 3t

(n)
o ,

Ln[h
′] = −t(n)e + t

(n)
o .

}

(20)

Analogously to the central parameters for n ≥ 2 the systems are invertible and we get :

2

3
k6
F t

(6)
e = h2 − 3h′

2 , (21)

2

3
k6
F t

(6)
o = h2 + h′

2 , (22)
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− 2k4
F t

(4)
e = h1 + 3h2 − 3h′

1 − 9h′
2 , (23)

−2k4
F t

(4)
o = h1 + 3h2 + h′

1 + 3h′
2 , (24)

k2
F te = 2

2
∑

ℓ=0

(hℓ − 3h′
ℓ), (25)

k2
F to = 2

2
∑

ℓ=0

(hℓ + h′
ℓ) . (26)

This completes the determination of the tensor parameters. The use of PNM equations

does not provide any new relation.

4. Two sets of N3LO parameters

To illustrate our exploratory analysis, we have calculated the Landau parameters using

the phenomenological finite-range interactions D1MT [18, 19] and M3Y-P2 [20]. The

first one belongs to the Gogny family, supplemented with a tensor term related to the

Argonne AV8’ interaction, with a regularization term whose parameters have been fitted

to some selected nuclear excited levels [19]. The second interaction is a superposition

of Yukawa radial functions with different ranges, and includes tensor terms. All the

parameters of this interaction have been obtained from a complete fitting procedure.

Both interactions include a standard Skyrme density-dependent term.

0 0.1 0.2 0.3

ρ [fm
-3

]

-300

-250

-200

-150

-100

-50

0

50

Σ l(g
l+
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2g

l’)
 (

M
eV

 f
m

3 ]

l
max

=0
l
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=1
l
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=2
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=3
l
max

=4
l
max

=5

D1MT

0 0.1 0.2 0.3

ρ [fm
-3

]

-300
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-100

-50

0

50

Σ l(g
l+

f l’-
2g
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 [
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 f
m

3 ]

l
max

=0
l
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=1
l
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=2
l
max

=3
l
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=4
l
max

=5

M3Y-P2

Figure 1. (Color online). The quantity δℓmax
as given by Eq. (12) is plotted as a

function of the density for increasing values of ℓmax and for interactions D1MT [18, 19]

and M3Y-P2 [20].

The should first check the validity of Eq. (12), since δ3 provides a hint about the

unicity of the solutions and a rough error bar estimate of them as well. In Figure 1

the quantity δℓmax
is plotted as a function of the density for values of ℓmax from 0 to

5. As ℓmax increases, this quantity goes to zero for any value of the density. However

a large density dependence is apparent for small values of ℓmax. For instance, taking
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as a reference the density value 0.16 fm−3 the quantity δ1 amounts to be about -420

and -190 MeV fm3, respectively for D1M and M3Y-P2. The corresponding values for

δ3 are -12 and -60 MeV fm3. It is thus hopeless to fit the N1LO parameters, but

there are comfortably narrow bounds to start with the determination of the N3LO ones.

With this proviso in mind, we have determined up to the N3LO parameters from these

interactions at saturation density. Their values are given in Tables 1 and 2, respectively

for the central and tensor parameters. Obviously, since the aim is to obtain only an

estimation, all the numerical values have been rounded off.

D1MT M3Y-P2

N1LO N2LO N3LO N1LO N2LO N3LO

t0 [MeV fm3] -283.5 -1411 -1670 -1352 -1640 -1748

x0 3.73 0.59 0.45 0.512 0.413 0.387

t3 [MeV fm3+3γ ] 56 7406 9115 6441 7520 7827

x3 147.8 1.74 0.49 0.839 0.667 0.635

t1 [MeV fm5] 305 537 617 336 716 1011

x1 0.558 0.504 0.490 0.282 0.223 0.186

t2 [MeV fm5] -282 608 1031 124 378 689

x2 -1.04 -1.29 -1.26 -1.07 -1.03 -0.974

t
(4)
1 [MeV fm7] - -64.0 -119 - -107 -314

x
(4)
1 - 0.43 0.42 - 0.172 0.121

t
(4)
2 [MeV fm7] - -245 -537 - -71.3 -290

x
(4)
2 - -1.22 -1.21 - -1.03 -0.929

t
(6)
1 [MeV fm9] - - 2.52 - - 9.75

x
(6)
1 - - 0.39 - - 0.0948

t
(6)
2 [MeV fm9] - - 13.4 - - 10.3

x
(6)
2 - - -1.21 - - -0.901

Table 1. Central N3LO parameters derived from Eqs. (18), at density ρ = 0.16fm−3

and using the value γ = 1/3, for interactions D1MT and M3Y-P2.

From Table 1 one can see that all the standard Skyrme parameters are significantly

modified when going from N1LO to N3LO: the contribution of 4th- and 6th-order

modifies them in a non negligible way, particularly in the D1MT case. It is interesting to

compare the coefficients t
(n)
1,2 in the N3LO column. Rigorously, one should multiply t

(4)
i

(t
(6)
i ) by k2

F (k4
F ) to have the same units as t1,2. Keeping in mind that these values have

been obtained for kF ≃ 1.3 fm−1 one can observe that 4th (6th) order parameters are

one order of magnitude smaller than 2th- (4th-) order parameters, so that this expansion

converges rapidly [9].

The tensor parameters have been estimated from Eqs. (22-26). The results are

presented in Table 2. The same type of conclusions as for the central parameters can

be drawn for the tensor ones. One should keep in mind that, contrarily to M3T-P2,
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the D1MT tensor terms have been fixed to some levels and afterward added to the

previously fitted central ones. In this sense, the numbers are probably less reliable for

D1MT than for M3Y-P2.

D1MT M3Y-P2

Skyrme N2LO N3LO Skyrme N2LO N3LO

te [MeV fm5] 140 412 670 23 54 76

to [MeV fm5] 47 137 223 7 19 27

t
(4)
e [MeV fm7] - -38 -145 - -4 -14

t
(4)
o [MeV fm7] - -13 -48 - -2 -5

t
(6)
e [MeV fm9] - - 60 - - 5

t
(6)
o [MeV fm9] - - 20 - - 2

Table 2. Tensor N3LO parameters derived from interactions D1MT and M3Y-P2.

The density value ρ = 0.16 fm−3 has been fixed to determine the parameters. To

guess whether they give reasonable physical results or not, we have computed the energy

per particle for symmetric nuclear matter (SNM) and pure neutron matter (PNM) as a

function of density:

E/A
∣

∣

∣

SNM
=

3

5

~
2

2m
k2
F +

3

8
t0ρ+

1

16
t3ρ

1+γ +
3

80
{3t1 + (5 + 4x2)t2} ρk2

F

+
9

280

{

3t
(4)
1 + (5 + 4x

(4)
2 )t

(4)
2

}

ρk4
F +

2

15

{

3t
(6)
1 + (5 + 4x

(6)
2 )t

(6)
2

}

ρk6
F (27)

E/N
∣

∣

∣

PNM
=

3

5

~
2

2m
k2
F +

1

4
t0(1− x0)ρ+

1

24
t3(1− x3)ρ

1+γ

+
3

40
{t1(1− x1) + 3t2(1 + x2)t2} ρk2

F

+
9

140

{

t
(4)
1 (1− x

(4)
1 ) + 3t

(4)
2 (1 + x

(4)
2 )

}

ρk4
F

+
1

15

{

3t
(6)
1 (1− x

(6)
1 ) + 3t

(6)
2 (1 + x

(6)
2 )

}

ρk6
F (28)

These quantities are plotted in Figure 2 for the three successive approaches NℓLO,

ℓ = 1, 2, 3.

There are significant differences between the results obtained from the two employed

interactions. Concerning SNM (left panels), the N1LO parameters derived from D1MT

do not bind SNM, and the two next orders slowly converge to a reasonable equation

of state. In contrast, M3Y-P2 results provide a nice convergence. Looking now PNM

(right panels) one can see that M3Y-P2 tends to a collapse as density is increased, but

D1MT gives a seemingly reasonable equation of state. Obviously these results show how

the parameters are relied to the interaction used as an input. It should be noticed that

the original interaction M3Y-P2 does not collapse : this is due of course to the fact we

truncate at 3rd order. This indicates the delicate balance for parameters and pointed

out that a real fitting procedure has to be done beyond our starting point.
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Figure 2. (Color online) Energies per particle in symmetric nuclear matter (left

panels) and pure neutron matter (right panels) as obtained in NℓLO for interactions

D1MT (upper panels) and M3Y-P2 (lower panels).

To be more quantitative, in Table 3 we present the energy per particle E0 and the

incompressibility K0, calculated at the saturation density ρ0 in SNM. We observe that

the complete set of interaction parameters obtained from M3Y-P2 Landau parameters

give results that are pretty close to the original one. This is in contrast with the results

obtained with the partial set (when one truncates at N1LO or N2LO).

D1MT M3Y-P2

N1LO N2LO N3LO N1LO N2LO N3LO

ρ0 [fm−3] - 0.145 0.163 0.161 0.1659 0.162

E0 [MeV] unbound -10.1 -15.2 -12.1 -15.3 -16.0

K0 [MeV] - 154 216 213 207 217

Table 3. Numerical results for saturation properties in infinite nuclear matter obtained

with the two sets of N3LO parameters determined from D1MT and M3Y-P2.

5. Summary and conclusions

We have shown a possible way to estimate the N3LO pseudopotentials by using Landau

parameters derived from finite-range interactions. The method permits to fix the

central t
(n)
1 , x

(n)
1 , t

(n)
2 , x

(n)
2 and tensor t

(n)
e , t

(n)
o parameters at all orders of approximation.
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However, the determination of the zeroth-order parameters t0, x0 is not unique, because

it requires the Landau parameters to fulfill some relations which depend on the

considered order. We have identified the origin of the problem to be the absence of

density dependent terms in the pseudopotential. In general, it would include three-

, fourth-, . . . body terms, which will generate a density dependence. We have partly

remedy to this problem in a simple way, by including a standard Skyrme density-

dependent term. This introduces two new parameters, t3, x3, assuming a fixed value

for the power γ of the density. The system of equations to get the four zeroth-order

parameters is still overdetermined, as far as the sum δ3 is different from zero. The

quantity δ3 (see Eq. 12) involves Landau spin, isospin and spin-isospin parameters,

and its departure from zero provides thus a rough estimate of the uncertainties in the

zeroth-order parameters.

This procedure requires the knowledge of Landau parameters calculated in a

consistent way, both for symmetric nuclear matter and pure neutron matter, in a wide

range of densities around the saturation density value of symmetric nuclear matter.

To the best of our knowledge, no calculations based on realistic interactions with all

these requirements exist in the literature. We have thus made estimates of the N3LO

pseudopotential parameters based on the phenomenological interactions D1MT and

M3Y-P2, from which we have calculated the required Landau parameters. We have

checked that the values of δ3 lead to reasonable errors. We have tested the obtained

central parameter sets, showing that they reasonably reproduce the equation of state of

symmetric nuclear matter. As should be expected, the results rely on the interaction

used as an input. The use of Landau parameters consistently derived from realistic

interactions would be of a great help to fix the starting point for obtaining the N3LO

pseudopotential. To this respect, we must stress that the present method is not a new

procedure to fit pseudopotential parameters. In fact, surface properties [22] are not

considered in this scheme. The interest of the method is that it can provide a good

starting point for the usual fitting procedure, which must include a fit to finite nuclei

properties. Work is in progress in that direction [23].
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Appendix A. Some relations between Landau parameters deduced from a

general central interaction

Consider a general two-body central interaction which we write as

V (r12) = W (r12) +B(r12)Pσ −H(r12)Pτ −M(r12)PσPτ , (A.1)

where Pσ, Pτ are the usual spin and isospin exchange operators. As it does not contains

any density-dependence, the associated antisymmetrized particle-hole (ph) interaction is
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obtained by multiplying (A.1) with 1−PxPσPτ , where Px is the space-exchange operator,

and calculating its matrix element between ph states. Due to momentum conservation,

there are at most three momenta, which we choose to the the initial (final) momentum

k1 (k2) of the holes and the momentum transfer q. As a result, in each spin-isospin

channel (α), the ph interaction can be written as :

V
(α)
ph (q,k1,k2) = D(α)(q)− E(α)(k1 − k2) .

Denoting a Fourier transform with a tilde, and omitting the arguments, the direct and

exchange terms are given by

D(0,0) = W̃ +
1

2
B̃ − 1

2
H̃ − 1

4
M̃ , E(0,0) =

1

4
W̃ +

1

2
B̃ − 1

2
H̃ − M̃

D(1,0) =
1

2
B̃ − 1

4
M̃ , E(1,0) =

1

4
W̃ − 1

2
H̃

D(0,1) = −1
2
H̃ − 1

4
M̃ , E(0,1) =

1

4
W̃ +

1

2
B̃

D(1,1) = −1
4
M̃ , E(1,1) =

1

4
W̃ .

In the Landau approximation particles and holes are assumed to be on the Fermi

surface, that is q = 0, k1,2 = kF , so that the interaction only depends on cos θ = (k̂1 · k̂2).
The argument of the direct term is thus zero, and that of the exchange term is
√

2k2
F (1− cos θ). The Landau parameters are the coefficients of an expansion of the

particle-hole interaction in Legendre polynomials For each (α) channel, the Landau

parameters are defined as

V
(α)
ph =

∑

ℓ

f
(α)
ℓ Pℓ(cos θ).

We are looking for sums of the type
∑

ℓ f
(α)
ℓ . Since Pℓ(1) = 1, such sums are obtained

taking the value cos θ = 1 in the ph interaction. We thus have :
∑

ℓ

f
(α)
ℓ = V

(α)
ph (cos θ = 1) = D(α)(0)−E(α)(0) .

One immediately checks that the equations
∑

ℓ

(gℓ + f ′
ℓ − 2g′ℓ) = 0 ,

∑

ℓ

(fℓ + gℓ + f ′
ℓ + g′ℓ) = 0 ,

are actually identities.
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