
ar
X

iv
:0

80
7.

29
73

v1
  [

he
p-

ph
] 

 1
8 

Ju
l 2

00
8

Towards an understanding of heavy baryon spectroscopy

A. Valcarce,1 H. Garcilazo,2 and J. Vijande3

1Departamento de F́ısica Fundamental,

Universidad de Salamanca, E-37008 Salamanca, Spain
2Escuela Superior de F́ısica y Matemáticas,
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Abstract
The recent observation at CDF and D0 of Σb, Σ∗

b and Ξb baryons opens the door to the advent

of new states in the bottom baryon sector. The states measured provide sufficient constraints to

fix the parameters of phenomenological models. One may therefore consistently predict the full

bottom baryon spectra. For this purpose we have solved exactly the three-quark problem by means

of the Faddeev method in momentum space. We consider our guidance may help experimental-

ists in the search for new bottom baryons and their findings will help in constraining further the

phenomenological models. We identify particular states whose masses may allow to discriminate

between the dynamics for the light-quark pairs predicted by different phenomenological models.

Within the same framework we also present results for charmed, doubly charmed, and doubly bot-

tom baryons. Our results provide a restricted possible assignment of quantum numbers to recently

reported charmed baryon states. Some of them are perfectly described by D−wave excitations

with JP = 5/2+, as the Λc(2880), Ξc(3055), and Ξc(3123).

PACS numbers: 12.39.Jh, 12.39.Pn, 14.20.-c
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I. INTRODUCTION

The last year has witnessed an amazing experimental progress in the identification of new
bottom baryon states. Last June CDF [1] reported the first observation of the Σ±

b , uub and
ddb states with JP = 1/2+, and Σ⋆±

b , uub and ddb states with JP = 3/2+. The observed
values were

M(Σ−

b ) = 5815.2 ± 1.0(stat) ± 1.7(syst) MeV/c2 ,
M(Σ+

b ) = 5807.8+2.0
−2.2(stat) ± 1.7(syst) MeV/c2 ; (1)

and

M(Σ⋆−
b ) = 5836.4+2.0

−1.8(stat) +1.8
−1.7(syst) MeV/c2 ,

M(Σ⋆+
b ) = 5829.0+1.6

−1.8(stat) +1.7
−1.8(syst) MeV/c2 . (2)

During June and July CDF [2] and D0 [3] reported the observation of the baryon Ξ−

b , dsb
state with JP = 1/2+,

M(Ξ−

b ) = 5792.9 ± 2.5(stat) ± 1.7(syst) MeV/c2 (CDF) ,
M(Ξ−

b ) = 5774 ± 11(stat) ± 15(syst) MeV/c2 (D0) . (3)

The number of known bottom baryons increased from one to four over a few months, deter-
mining for the first time the hyperfine splitting in the bottom sector.

Heavy hadrons containing a single heavy quark are particularly interesting. The light
degrees of freedom (quarks and gluons) circle around the nearly static heavy quark. Such
a system behaves as the QCD analogue of the familiar hydrogen bounded by the electro-
magnetic interaction. When the heavy quark mass mQ → ∞, the angular momentum of
the light degrees of freedom is a good quantum number. Thus, heavy quark baryons belong
to either SU(3) antisymmetric 3̄F or symmetric 6F representations. The spin of the light
diquark is 0 for 3̄F, while it is 1 for 6F. Thus, the spin of the ground state baryons is
1/2 for 3̄F, representing the Λb and Ξb baryons, while it can be both 1/2 or 3/2 for 6F,
allocating Σb, Σ∗

b , Ξ′

b, Ξ∗

b , Ωb and Ω∗

b , where the star indicates spin 3/2 states. Therefore
heavy hadrons form doublets. For example, Σb and Σ∗

b will be degenerate in the heavy quark
limit. Their mass splitting is caused by the chromomagnetic interaction at the order 1/mQ.
These effects can be, for example, taken into account systematically in the framework of
heavy quark effective field theory (HQET). The mass difference between states belonging to
the 3̄F and 6F representations do also contain the dynamics of the light diquark subsystem,
hard to accommodate in any heavy quark mass expansion. Therefore, exact solutions of the
three-body problem for heavy hadrons are theoretically desirable because they will serve
to test the reliability of approximate techniques, that would only be exact in the infinite
heavy-quark mass limit, as could be heavy quark mass expansions, variational calculations,
or quark-diquark approximations.

Heavy baryons, charmed and/or bottom, have been the matter of study during the last
two decades [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. After the discovery
of the first charmed baryons, several theoretical works [4, 5, 6] based on potential models
developed for the light baryon or meson spectra started analyzing properties of the observed
and expected states. Later on, Capstick and Isgur [7] studied heavy baryon systems in
a relativized quark potential model applying a variational approach to obtain the mass
eigenvalues and bound state wave functions by using a harmonic oscillator basis. Roncaglia
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et al. [8] predicted the masses of baryons containing one or two heavy quarks using the
Feynman-Hellmann theorem and semiempirical mass formulas. Silvestre-Brac [9] studied
ground state charmed and bottom baryons using Faddeev equations in configuration space.
Excited states were studied by diagonalization in a harmonic oscillator basis up to eight
quanta. Jenkins [10] studied heavy baryon masses in a combined expansion in 1/mQ, 1/Nc,
and SU(3) flavor symmetry breaking. Bowler et al. [11] made an exploratory study using
lattice techniques to predict charmed and bottom baryons. Mathur et al. [12] gave a more
precise prediction of the masses of charmed and bottom baryons from quenched lattice QCD.
Ebert et al. [13] calculated the masses of ground state heavy baryons with the relativistic
quark-diquark approximation. QCD sum rule has been also applied to study heavy baryon
masses [14, 15]. Stimulated by the recent experimental progress, there have been several
theoretical papers on the masses of Σb, Σ∗

b and Ξb or the full bottom baryon spectra using
a perturbative treatment of the hyperfine interaction in the quark model [16], heavy quark
effective field theory [17], a variational calculation in a harmonic oscillator expansion [18],
and a relativistic quark-diquark approximation [19].

While the mass of heavy baryons is measured as part of the discovery process, no spin
or parity quantum numbers of a given state have been measured experimentally, but they
are assigned based on quark model expectations. Such properties can only be extracted
by studying angular distributions of the particle decays, that are available only for the
lightest and most abundant species. For excited heavy baryons the data set are typically one
order of magnitude smaller than for heavy mesons and therefore the knowledge of radially
and orbitally excited states is very much limited. Unlike the heavy mesons there are no
resonant production mechanisms and thus heavy baryons can only be obtained by continuum
production, where cross sections are small. As a consequence the B factories have been
the main source of these baryons. Therefore, a powerful guideline for assigning quantum
numbers to new states or to indicate new states to look for is required by experiment. We
do understand ground state heavy quark baryons, both in the quark model and in the lattice
QCD. The main issue is therefore to determine quantum numbers of excited states. Here, a
coherent theoretical and experimental effort is required.

Apart from CDF and D0 data, putting into operation the Large Hadron Collider (LHC)
will provide us with data on masses of excited bottom baryons. Therefore the calculation
of the mass spectra of excited heavy baryons turns out to be a really actual problem. Here
we consider the exact calculation of ground states, spin, radial and orbital excitations of
bottom baryons in a model constrained to reproduce the new recent experimental data.
These new experimental data give rise to a spin splitting of the order of 25 MeV, much
smaller that previous experimental expectations, of the order of 50 MeV [11, 20]. Using the
same phenomenological model we also calculate the charmed baryon spectra showing the
nice agreement of our predictions with recently measured states, what will allow to assign
their spin and parity quantum numbers. We will finally consistently present our predictions
for doubly bottom and charmed baryons.

II. FORMALISM AND RESULTS

Nowadays, we have to our disposal realistic quark models accounting for most part of the
one- and two-body low-energy hadron phenomenology. The ambitious project of a simulta-
neous description of the baryon-baryon interaction and the baryon (and meson) spectra has
been undertaken by the constituent quark model of Ref. [21]. The success in describing the
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properties of the strange and non-strange one and two-hadron systems encouraged its use as
a guideline in order to assign parity and spin quantum numbers to already determined heavy
baryon states as well as to predict still non-observed resonances [22]. The constituent quark
model used considers perturbative (one-gluon exchange) and nonperturbative (confinement
and chiral symmetry breaking) aspects of QCD, ending up with a quark-quark interaction
of the form

Vqiqj
=

{

qiqj = nn/sn ⇒ VCON + VOGE + Vχ

qiqj = cn/cs/bn/bs/cc/bb ⇒ VCON + VOGE
, (4)

where VCON stands for a confining interaction, VOGE for a one-gluon exchange potential, and
Vχ for scalar and pseudoscalar boson exchanges. For heavy quarks (c or b) chiral symmetry
is explicitly broken and boson exchanges do not contribute. For the explicit expressions of
the interacting potential and a more detailed discussion of the model we refer the reader
to Refs. [23, 24]. For the sake of completeness we resume the parameters of the model in
Table I. The results have been obtained by solving exactly the Schrödinger equation by the
Faddeev method in momentum space [21].

The recent observation of ground state Σb and Σ∗

b baryons provides with all necessary
ingredients to fix the model parameters and therefore make univocal predictions for all
remaining bottom baryon states: spin, radial and orbital excitations. Once the model is
fixed we can also derive the spectra for doubly charmed and doubly bottom baryons. Besides
we can revisit the charmed baryon sector, centering our attention in some states recently
reported in an attempt to help in the assignment of spin and parity quantum numbers.
Finally, our results will allow us to check equal spacing rules derived from heavy quark
symmetry and chiral symmetry.

Our results for bottom baryons are shown in Table II compared to experiment and other
theoretical approaches. We present our predictions for spin, radial and orbital excitations.
All known experimental data are nicely described. Such a remarkable agreement and the
exact method used to solve the three-body problem make our predictions highly valuable
as a guideline to experimentalists. They should also serve to guide theoretical calculations
using approximate methods.

As compared to other results in the literature we see an overall agreement for the low-
lying states both with the quark-diquark approximation of Ref. [19] and the variational
calculation in a harmonic oscillator basis of Ref. [18]. Some differences appear for the excited
states that we will analyze in the following and that could be either due to the interacting
potential or to the method used to solve the three-body problem. The relativistic quark-
diquark approximation of Ref. [19] predicts a larger radial excitation for negative parity
states (except for the Ξb baryon) as compared to any other result in the literature. We do
not see any explanation for this result. The relativistic quark-diquark approximation and the
harmonic oscillator variational method predict a lower 3/2+ excited state for the Λb baryon.
Such result can be easily understood by looking at Table III, where it is made manifest the
influence of the pseudoscalar interaction between the light quarks on the Λb(1/2+) ground
state, diminishing its mass by 200 MeV. If this attraction would not be present for the
Λb(1/2+), the Λb(3/2+) would be lower in mass as reported in Refs. [18, 19] (a similar effect
will be observed in the charmed baryon spectra). Thus, the measurement and identification
of the Λb(3/2+) is a relevant feature that will help to clarify the nature of the interaction
between the light quarks in heavy baryon spectroscopy, determining the need of pseudoscalar
forces consequence of the spontaneous chiral symmetry breaking in the light flavor sector.

Let us revise our results in connection with the interacting potential used. The first
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ingredient of any quark potential model is confinement. Confinement is supposed to be
flavor independent and therefore it should be fixed in one flavor sector once for all. As
mentioned above, knowledge of orbital and radial excited states is very much limited for
heavy baryons. Thus, guidance for the confinement strength should be taken from the light
baryon sector. The non-strange baryon sector is the best known one from the spectroscopic
point of view. However it is delicate to fix the confinement strength due to the particular
nature of the radial excitation, the Roper resonance. In Refs. [25] it has been shown the
sensitivity of the Roper resonance to relativistic kinematics, justifying the use of negative
parity states to fix the confinement strength when working in a non-relativistic framework.
The strength of confinement quoted in Table I gives a good overall agreement with the N
and ∆ spectra.

Once the confinement strength has been fixed in the light flavor sector, we note that the
radial excitation of 1/2+ bottom baryons is predicted around 450 MeV above the ground
state. The only exception is the Ξb(1/2+) with an excitation energy, 1/2+ − 1/2′+, around
140 MeV. This resonance is not indeed a radial excitation. The ground state corresponds to
a us pair in a dominant singlet spin state while the excited state corresponds to the same
pair in a dominant triplet spin state. These two levels are often denoted in the literature
as Ξb(1/2+) and Ξ′

b(1/2+), the same notation we will use in this work. As can be seen
in Table II their radial excitations also appear 450 MeV above the corresponding ground
state. At difference of other calculations in the literature where the Ξb and Ξ′

b baryons are
pure scalar or vector light diquark states [18, 19] (mixed is some cases perturbatively), our
calculation includes all possible channels contributing to each state. The similar results
obtained indicate a small admixture of scalar and vector diquarks in nature. We consider
very important that the analysis of the different flavor sectors is done in terms of the same
flavor-independent forces to obtain conclusions about the rest of the dynamical model. This
is not often mentioned in the literature.

Our screened confining potential would give rise at short range to a linear potential with
a strength of about 600 MeV fm−1. This value is very close to the string tension obtained in
Ref. [26] from the bottomonium spectrum,

√
κ = 440−480 MeV, that would translate into a

linear confinement strength of the same order, around 500−600 MeV fm−1. In contrast, for
example, Ref. [18] uses a smaller confining strength of the order of 400 MeV fm−1. Maybe
this is one of the reasons why they use a negligible coulomb strength.

Being the confinement strength determined in the light baryon sector, heavy baryons are
ideal systems to study the flavor dependence of the spin splitting, mass difference between
Σb(3/2+) ≡ Σ∗

b and Σb(1/2+) ≡ Σb. Such systems present, on one hand, the dynamics
of the two-light quarks involving potentials coming from the chiral part of the interaction
and, on the other hand, the dynamics of heavy-light subsystems. The dynamics of the light
diquark subsystem is fully determined in studying the light-baryon spectra, and therefore
its contribution to the spin splitting. Thus, the remaining spin splitting must be due to the
interaction between the heavy and the light quarks. The recent measurement of Σb and Σ∗

b

states determines in a unique way the color-magnetic interaction between the light and the
b quark, allowing a parameter free prediction of all other states of the bottom spectra. A
relevant conclusion of the study of the spin splitting for bottom baryons is that while for
similar mass quark pairs one can use for the regularization parameter of the color-magnetic
one-gluon exchange interaction, r0, a formula depending on the reduced mass of the system
(this has been proved in the past [9, 24]), however, when the masses of the interacting quarks
are quite different (the case of heavy baryons), a reduced mass based formula is not adequate.
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Such a formula will give the same result, for example, for a light-charm than for a light-
bottom pair. As the color-magnetic term of the one-gluon exchange interaction depends on
the inverse of the product of the masses of the interacting quarks, such a potential will be
strongly reduced for the heavier pair producing a too small spin-splitting.

We are thus led to the interplay between the pseudoscalar and the one-gluon exchange
interactions, a key problem for both the baryon spectra and the two-nucleon system [27].
This can be illustrated noting that while the Σi(3/2+) − Λi(1/2+) mass difference varies
slowly from the strange to the bottom sector, the Σi(3/2+) − Σi(1/2+) mass difference
varies very fast (see Table IV). As discussed in the introduction, the former is a mass
difference between members of the 3̄F and 6F SU(3) representations and therefore it presents
contributions from the pseudoscalar and one-gluon exchange forces (see columns V1 and V3

of Table III in Ref. [24]). However, the latter is a mass difference between members of
the same representation, 6F, and it is therefore uniquely due to the one-gluon exchange
interaction between the light diquark and the heavy quark. This can be easily understood
by explicit construction of the spin-flavor wave-function. In the case of Λ baryons the two
light quarks are in a flavor antisymmetric spin 0 state, the pseudoscalar and the one-gluon
exchange forces being both attractive. For Σ baryons they are in a flavor symmetric spin 1
state. The pseudoscalar force, being still attractive, is suppressed by one order of magnitude

due to the expectation value of the (~σi ·~σj)(~λi ·~λj) operator [24] and the one-gluon exchange
between the two light quarks becomes repulsive. Therefore, the attraction is provided by
the interaction between the light diquark and the heavy quark, which for heavy quarks c or
b is given only by the one-gluon exchange potential.

The above discussion is explicitly illustrated in Table III, where we have calculated the
mass of Σi and Λi (i = s or b) baryons with and without the pseudoscalar exchange con-
tribution. As can be seen the effect of the pseudoscalar interaction between the two-light
quarks is approximately the same independently of the third quark. As the mass difference
between the Σi(3/2+) and Σi(1/2+) states decreases when increasing the mass of the baryon,
being almost constant the effect of the one pion-exchange, the remaining mass difference has
to be accounted for by the one-gluon exchange (mass difference between states belonging to
the 6F representation). This rules out any ad hoc recipe for the relative strength of both
potentials, what would be in any manner consistent with experiment, and it also reinforces
the importance of constraining models for the baryon spectra in the widest possible set of
experimental data. Thus, Table III shows how for heavy quark baryons the dynamics of any
two-particle subsystem is not affected by the nature of the third particle. As a consequence,
the regularization parameter of the one-gluon exchange potential should depend on the in-
teracting pair, independently of the baryon the pair belongs to. The values of r0 reproducing
the experimental data are quoted in Table V. They obey a formula depending on the product

of the masses of the interacting quarks that can be represented by r
qiqj

0 = Aµ
(

mqi
mqj

)−3/2

,

where A is a constant and µ the reduced mass of the interacting quarks. While working
with almost equal or not much different masses this law can be easily replaced by a formula
depending on some inverse power of the mass (or reduced mass) of the pair as obtained
in Ref. [23], but this is not any more the case for quarks with very different masses, like
those present in heavy baryons. This is one of the reasons why these systems constitute an
excellent laboratory for testing low-energy QCD realizations.

Based on our exact method for the solution of the three-body problem, let us analyze
the predictions derived from heavy-quark symmetry (HQS) and chiral symmetry combined
together in order to describe the soft hadronic interactions of hadrons containing a heavy
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quark [28]. In the limit of the heavy quark mass mQ → ∞, HQS predicts that all states in
the 6F SU(3) representation (those where the light degrees of freedom are in a spin 1 state)
would be degenerate. If one considers HQS and lowest order SU(3) breaking [29] the masses
of heavy baryons obey an equal spacing rule, similar to the one that arises in the decuplet
of light JP = 3/2+ baryons, it reads

J = 1/2 : MΣb
+ MΩb

= 2 MΞ′

b

J = 3/2 : MΣ∗

b
+ MΩ∗

b
= 2 MΞ∗

b
. (5)

This equal spacing rule also holds for the hyperfine splittings

δΣb
+ δΩb

= 2 δΞb
, (6)

where δΣb
= MΣ∗

b
− MΣb

, δΞb
= MΞ∗

b
− MΞ′

b
, and δΩb

= MΩ∗

b
− MΩb

. The latter relation is
expected to be more accurate than Eq. (5) [10] and it is exactly fulfilled by our results as it
is shown in Table VI. Combining Eqs. (5) and (6), one arrives to the approximate relations,

Ξ′

b(1/2+) − Σb(1/2+) = Ωb(1/2+) − Ξ′

b(1/2+) =

= Ξb(3/2+) − Σb(3/2+) = Ωb(3/2+) − Ξb(3/2+) . (7)

These relations are satisfied by experimental data in the case of charmed baryons with
differences of the order of 10 MeV, what gives an idea of the breaking of the SU(3) flavor
symmetry. These predictions are clearly sustained by our model to the same precision as
can be checked in Table VII. Therefore our dynamical model incorporates the features of
broken SU(3) flavor symmetry and heavy-quark expansion of QCD in a reasonable way. Let
us note that one-gluon exchange based models do almost satisfy exactly Eq. (7) (results
of Refs. [9] and [18] in Table VII) probably due to the absence of SU(3) flavor symmetry
breaking interactions. It is also interesting to note that lattice calculations based on HQS
fulfill exactly Eq. (7) for charmed baryons [11] while the disagreement is very large for
bottom baryons (results of Ref. [11] in Table VII).

To have the widest set of predictions within the same model we have calculated the
charmed baryon spectra. The results are shown in Table VIII. In this case the masses
of several ground and excited states are known. They fit nicely within our results based
on the quantum numbers assigned by the PDG using quark model arguments. There are
some excited charmed baryons that it is not even known if they are excitations of the Λc or
Σc. The first one is a resonance at 2765 MeV reported by CLEO in Ref. [30], that could be
either a Λc or a Σc baryon. The original reference suggested the possibility of a Σc state with
JP = 1/2−. For this state our calculation shows a perfect agreement with the suggested
nature and quantum numbers, although one could not discard this state being the first
radial excitation 2S of the Λc with JP = 1/2+, as has been suggested in Refs. [13, 18]. The
Λc(2880) is perfectly described by the two possibilities suggested by experiment: either an
orbital excitation 2P of the Λc with JP = 1/2−, as conjectured by CLEO in Ref. [30] due to
the observation of decay via Σcπ but not via Σ∗

cπ, or an orbital excitation 1D of the Λc with
JP = 5/2+, in agreement with the recent spin assignment by Belle based on the analysis
of angular distributions in the decays Λc(2880)+ → Σc(2455)0,++π+,− [31]. Our model also
predicts the resonance at 2940 MeV recently reported by BaBar in Ref. [32] being the first
radial excitation 2S of the Σc with JP = 3/2+. Finally, the Σc(2800) may correspond to the
second state of the lowest P wave multiplet with JP = 3/2−, very close to its 1/2− partner
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at 2765 MeV. A number of new Ξc and Ξ′

c states have been also discovered recently. Two
resonances at 3055 and 3123 MeV have been reported by BaBar in Ref. [33]. They fit into
the doublet of orbital excited states 2D with JP = 5/2+, the first one with the light diquark
in a spin 0 state, Ξc, and the second in a spin 1 state, Ξ′

c. For the second resonance one
cannot discard the first radial excitation 2S of the Ξc (light diquark in a spin 0 state) with
JP = 1/2+ as suggested in Ref. [18]. Belle, in Ref. [34], has reported two resonances at 2980
and 3076, while the first one may correspond to the first radial excitation 2P of the Ξc with
JP = 1/2−, the second clearly corresponds to the first radial excitation 2S of the Ξc with
JP = 3/2+. As can be seen all known experimental states fit nicely into the description of
our model not leaving too many possibilities open for the assigned quantum numbers as we
have resumed in Table IX.

Finally, we can easily extend our predictions to doubly bottom and charmed baryons.
A few years ago the SELEX Collaboration [35] reported the discovery of a baryon with a
mass of 3519 GeV that they concluded could be a doubly charmed Ξcc state. The attempts
to confirm such discovery by BaBar [36], Belle [37], and FOCUS [38] Collaborations have
failed. Potential models based on chromomagnetic interactions predict for this state larger
masses [18]. In our case we can make parameter free predictions for ground states as well
as for spin, orbital and radial excitations. The ground state is found to be at 3579 MeV, far
below the result of Ref. [18] and in perfect agreement with lattice nonrelativistic QCD [12],
but still a little bit higher than the non-confirmed SELEX result. It is therefore a challenge
for experimentalists to confirm or to find the ground state of doubly charmed and bottom
baryons.

The combined study of Qqq and QQq systems, where Q stands for a heavy c or b quark
and q for a light u, d, or s quark, will also provide some hints to learn about the basic
dynamics governing the interaction between light quarks. The interaction between pairs
of quarks containing a heavy quark Q is driven by the perturbative one-gluon exchange.
This has been demonstrated by quenched and unquenched lattice QCD calculations [26].
The important issue of the simultaneous study of these two types of heavy baryons, is the
presence in one of them of a pair of light quarks. As explained above, for the Qqq system
the mass difference between members of the 6F SU(3) representation comes determined
only by the perturbative one-gluon exchange, whether between members of the 6F and
3̄F representations it presents contributions from the one-gluon exchange and also possible
pseudoscalar exchanges. If the latter mass difference would be attributed only to the one-
gluon exchange (this would be the case of models based only on the perturbative one-gluon
exchange), it will be strengthened as compared to models considering pseudoscalar potentials
at the level of quarks, where a weaker one-gluon exchange will play the role. When moving to
the QQq systems only one-gluon exchange interactions between the quarks will survive, with
the strength determined in the Qqq sector, where we have experimental data. This will give
rise to larger masses for the ground states, due to the more attractive one-gluon exchange
potential in the Qqq sector, what requires larger constituent quark masses to reproduce the
experimental data. This could be the reason for the larger masses of ground state doubly
heavy baryons obtained with gluon-based interacting potentials [7, 18].

Therefore, among the baryons with two heavy quarks the first question to be settled is
where do exactly these states lie. In case such low masses as those reported by SELEX were
confirmed theorists will have a challenge to accommodate this state into the nice description
of charmed and bottom baryons. Their exact mass may help in discriminating between the
dynamics of the light degrees of freedom of the different models. In any case, the excited
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spectra of doubly charmed and bottom baryons do not depend much on the mass of the
heavy quarks, and therefore the predicted excited spectra should serve as a guideline for
potential future experiments looking for such states. Our results for the ground and excited
spectra are resumed in Tables X and XI compared to those of Refs. [8, 9, 12, 18]. As can
be seen the radial excitations of Ref. [18] are lower than in our model, due to the small
confining strength used. We also note some unexpected results in Ref. [18] as the reverse of
the hierarchy in the spin splitting between Ξbb and Ωbb compared to Ξcc and Ωcc, what could
be a misprint in this reference.

III. SUMMARY

We have used a constituent quark model incorporating the basic properties of QCD to
study the bottom baryon spectra. Consistency with the light baryon spectra and the new
experimental data reported by CDF allow to fix all model parameters. The model takes into
account the most important QCD nonperturbative effects: chiral symmetry breaking and
confinement as dictated by unquenched lattice QCD. It also considers QCD perturbative
effects trough a flavor dependent one-gluon exchange potential. We make a parameter free
prediction of the spin, orbital and radial excitations. We have predicted the spectra of
doubly bottom and charmed baryons. We have also revisited the charmed baryon spectra
finding a nice agreement with the recently reported data what allowed to make a restricted
assignment of their spin and parity quantum numbers.

Our results have been obtained by solving exactly the three-body problem by means
of the Faddeev method in momentum space. In spite of the huge computer time needed
to obtain the set of results presented in this work, such effort should be highly valuable
both from the theoretical and experimental points of view. Theoretically, it should be a
powerful tool for testing different approximate methods to solve the three-body problem
in the large mass limit for one or two of the components. Experimentally, the remarkable
agreement with known experimental data make our predictions highly valuable as a guideline
to experimentalists.

The flavor independence of the confining potential has been used to describe all flavor
sectors. We have identified particular states of single heavy baryons whose masses will be
clearly different depending on the particular dynamics governing the interaction between the
two light quarks. The measurement and identification of the Λi(3/2+) (i = c or b) will provide
enough information to distinguish between the two alternatives for the light quark dynamics:
only gluon exchanges or gluon supplemented by pseudoscalar forces. In our description we
notice a key interplay between pseudoscalar and one-gluon exchange forces, already observed
for the light baryons, that may constitute a basic ingredient for the description of heavy
baryons. The final spectra results from a subtle but physically meaningful balance between
different spin-dependent forces. The baryon spectra make manifest the presence of two
different sources of spin-dependent forces that can be very well mimic by the operatorial
dependence generated by the pseudoscalar and one-gluon exchange potentials.

Heavy baryons constitute an extremely interesting problem joining the dynamics of light-
light and heavy-light subsystems in an amazing manner. While the mass difference between
members of the same SU(3) configuration, either 3̄F or 6F, is determined by the perturba-
tive one-gluon exchange, the mass difference between members of different representations
comes mainly determined by the dynamics of the light diquark, and should therefore be
determined in consistency with the light baryon spectra. There is therefore a remnant ef-
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fect of pseudoscalar forces in the two-light quark subsystem. Models based only on boson
exchanges cannot explain the dynamics of heavy baryons, but it becomes also difficult for
models based only on gluon exchanges, if consistency between light and heavy baryons is
asked for. One-gluon exchange models would reduce the problem to a two-body problem
controlled by the dynamics of the heaviest subsystem, and we find evidences in the spectra
for contributions of both subsystems.

Our results contain the equal mass spacing rules obtained for heavy baryons by means
of heavy quark symmetry and lowest order SU(3) flavor symmetry breaking to the same
accuracy than experimental data. The study of the charmed sector shows a nice agreement
with most of the states recently reported and it allows to predict spin and parity quantum
numbers for recently measured states. The experimental confirmation of these assignments
would give further support to the dynamical model used.

We are probably seeing the arrival of a possible understanding of basic features of quark
dynamics in phenomenological models. The parametrization of the true degrees of freedom
of any theory becomes a challenge that will allow us to advance in the understanding of low-
energy realizations of QCD. Although this has been searched studying large-orbital angular
momenta baryon states or subtle effects in the light baryon spectra, the combined study
of light, heavy and doubly heavy baryons could be the appropriate laboratory for these
achievements.
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TABLE I: Quark-model parameters.

mu = md (MeV) 313

Quark masses ms (MeV) 545

mc (MeV) 1659

mb (MeV) 5034

mπ (fm−1) 0.70

mσ (fm−1) 3.42

mη (fm−1) 2.77

Boson exchanges mK (fm−1) 2.51

Λπ = Λσ (fm−1) 4.20

Λη = ΛK (fm−1) 5.20

g2
ch/(4π) 0.54

θP (o) −15

ac (MeV) 340

Confinement µc (fm−1) 0.70

OGE r0 (fm) see Table V
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TABLE II: Masses of bottom baryons from the present work (CQC) and other approaches in the

literature compared to experimental data (in MeV). In all cases we quote the central values, in

Ref. [12] error bars are of the order of 100 MeV, 40 MeV in Ref. [8], 125 MeV in Ref. [17].

State JP CQC Exp. [7] [8] [9] [10] [12] [15] [16] [17] [18] [19]

Λb 1/2+ 5624 5624 5585 5620 5638 5623 5672 5637 5612 5622

1/2+ 6106 6045 6188 6107 6086

1/2− 5947 5912 5978 5929 5939 5930

1/2− 6245 6100 6268 6180 6328

3/2+ 6388 6145 6248 6181 6189

3/2+ 6637 6305 6488 6401 6540

Σb 1/2+ 5807 5808 5795 5820 5845 5828 5847 5790 5809 5833 5805

1/2+ 6247 6200 6370 6294 6202

1/2− 6103 6070 6155 6099 6108

1/2− 6241 6170 6245 6401

3/2+ 5829 5829 5805 5850 5875 5852 5871 5820 5835 5858 5834

3/2+ 6260 6250 6385 6308 6222

Ξb 1/2+ 5801 5793 5810 5806 5806 5788 5788 5780 5844 5812

1/2+ 6258 6306 6264

1/2′+ 5939 5950 5941 5950 5936 5903 5958 5937

1/2′+ 6360 6416 6327

1/2− 6109 6116 6106 6108 6119

1/2− 6223 6236 6192 6238

3/2+ 5961 5980 5971 5968 5959 5929 5982 5963

3/2+ 6373 6356 6294 6341

Ωb 1/2+ 6056 6060 6034 6061 6040 6052 6036 6081 6065

1/2+ 6479 6504 6472 6440

1/2− 6340 6319 6301 6352

1/2− 6458 6414 6624

3/2+ 6079 6090 6069 6074 6060 6060 6083 6063 6102 6088

3/2+ 6493 6519 6478 6518
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TABLE III: Masses, in MeV, of different bottom baryons with two-light quarks with (Full) and

without (Vπ = 0) the contribution of the one-pion exchange potential. The same results have been

extracted from Table III of Ref. [24] for strange baryons. ∆E stands for the difference between

both results.

State Full Vπ = 0 ∆E

Σb(1/2
+) 5807 5822 −15

Σb(3/2
+) 5829 5844 −15

Λb(1/2
+) 5624 5819 −195

Λb(3/2
+) 6388 6387 + 1

State VCON + VOGE + Vπ VCON + VOGE ∆E

Σ(1/2+) 1408 1417 −9

Σ(3/2+) 1454 1462 −8

Λ(1/2+) 1225 1405 −180

TABLE IV: Mass difference (in MeV) between Σi and Λi states for different flavor sectors.

Mass difference Exp. CQC [9] [13, 19] [17] [18]

Σ(3/2+) − Λ(1/2+) 269 260 − − − −
Σ(3/2+) − Σ(1/2+) 195 169 − − − −

Σc(3/2
+) − Λc(1/2

+) 232 217 250 221 263 251

Σc(3/2
+) − Σc(1/2

+) 64 67 80 79 123 64

Σb(3/2
+) − Λb(1/2

+) 209 205 237 212 198 246

Σb(3/2
+) − Σb(1/2

+) 22 22 30 29 26 25

TABLE V: r
qiqj

0 in fm.

(qi, qj) r
qiqj

0

(n, n) 0.530

(s, n) 0.269

(n, c) 0.045

(s, c) 0.029

(n, b) 0.028

(s, b) 0.017
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TABLE VI: Equal spacing rules of Eqs. (5) and (6) for bottom baryon masses obtained in this

work (in MeV).

CQC

MΣb
+ MΩb

11863

2MΞ′

b
11878

MΣ∗

b
+ MΩ∗

b
11908

2MΞ∗

b
11922

δΣb
+ δΩb

45

2δΞb
44

TABLE VII: Equal spacing rule of Eq. (7) for different models in the literature. Masses are in

MeV.

Mass difference CQC [8] [9] [10] [11] [12] [17] [18] [19]

Ξ′

b(1/2
+) − Σb(1/2

+) 132 130 96 122 130 89 94 125 132

Ωb(1/2
+) − Ξ′

b(1/2
+) 117 110 93 111 90 104 133 123 128

Ξb(3/2
+) − Σb(3/2

+) 132 130 96 116 120 88 94 124 129

Ωb(3/2
+) − Ξb(3/2

+) 118 110 93 106 100 101 134 120 125
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TABLE VIII: Masses of charmed baryons from the present work (CQC) and other approaches in

the literature compared to experimental data (in MeV). Those data with a question mark stand

for recently measured states whose quantum numbers are not determined and they are confronted

against the possible corresponding theoretical state. In all cases we quote the central values, in

Ref. [12] error bars are of the order of 100 MeV, 40 MeV in Ref. [8].

State JP CQC Exp. [7] [8] [9] [10] [12] [15] [17] [18] [19]

Λc 1/2+ 2285 2286 2265 2285 2285 2284 2290 2271 2268 2297

1/2+ 2785 2765? 2775 2865 2791 2772

1/2− 2627 2595 2630 2635 2625 2598

1/2− 2880 2880? 2780 2885 2816 3017

3/2+ 3061 2910 2930 2887 2874

3/2+ 3308 3035 3160 3073 3262

5/2+ 2888 2880? 2910 2930 2887 2883

Σc 1/2+ 2435 2454 2440 2453 2455 2452 2452 2470 2411 2455 2439

1/2+ 2904 2890 3025 2958 2864

1/2− 2772 2765? 2765 2805 2748 2795

1/2− 2893 2840 2885 3176

3/2+ 2502 2518 2495 2520 2535 2532 2538 2590 2534 2519 2518

3/2+ 2944 2940? 2985 3065 2995 2912

3/2− 2772 2800? 2770 2805 2763 2761

Ξc 1/2+ 2471 2471 2468 2467 2468 2473 2432 2492 2481

1/2+ 3137 3123? 2992 2923

1/2′+ 2574 2578 2580 2567 2583 2599 2508 2592 2578

1/2′+ 3212 3087 2984

1/2− 2799 2792 2792 2763 2801

1/2− 2902 2897 2859 2928

1/2− 3004 2980? 2993 3186

3/2+ 2642 2646 2650 2647 2644 2680 2634 2650 2654

3/2+ 3071 3076? 3057 2984 3030

5/2+ 3049 3055? 3057 3042

5/2′+ 3132 3123? 3167 3123

Ωc 1/2+ 2699 2698 2710 2675 2704 2678 2657 2718 2698

1/2+ 3159 3195 3152 3065

1/2− 3035 3005 2977 3020

1/2− 3125 3075 3371

3/2+ 2767 2768 2770 2750 2747 2752 2760 2790 2776 2768

3/2+ 3202 3235 3190 3119
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TABLE IX: Possible model states and spin-parity assignments for recently discovered charmed

baryons. The ’star’ indicates radial excitations.

Experimental resonance (MeV) Model states

Λc or Σc

2765 Σc(1/2
−) or Λc(1/2

+)
∗

2880 Λc(1/2
−)

∗
or Λc(5/2

+)

2940 Σc(3/2
+)

∗

2800 Σc(3/2
−)

Ξc or Ξ′
c

3055 Ξc(5/2
+)

3123 Ξc(1/2
+)

∗
or Ξ′

c(5/2
+)

2980 Ξc(1/2
−)

∗

3076 Ξc(3/2
+)

∗

TABLE X: Ground state JP = 1/2+ of doubly charmed and doubly bottom baryons from the

present work (CQC) and other approaches in the literature. Masses are in MeV.

Ξcc Ωcc Ξbb Ωbb

CQC 3579 3697 10189 10293

[8] 3660 3740 10340 10370

[9] 3607 3710 10194 10267

[12] 3588 3698 − −
[18] 3676 3815 10340 10454
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TABLE XI: Excitation spectra of doubly charmed and doubly bottom baryons (M(JP )−M(1/2+))

from the present work (CQC) and other approaches in the literature. Masses are in MeV.

State JP CQC [8] [9] [12] [18]

3/2+ 29 30 41 20 27

3/2+∗
312 386 238

Ξbb 1/2+∗
293 355 236

1/2− 217 262 153

1/2−
∗

423 462 370

3/2+ 28 30 38 19 32

3/2+∗
329 383 267

Ωbb 1/2+∗
311 359 239

1/2− 226 265 162

1/2−
∗

390 410 309

3/2+ 77 80 93 70 77

3/2+∗
446 486 366

Ξcc 1/2+∗
397 435 353

1/2− 301 314 234

1/2−
∗

439 472 398

3/2+ 72 40 83 63 61

3/2+∗
463 498 373

Ωcc 1/2+∗
415 445 365

1/2− 312 317 231

1/2−
∗

404 410 320
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