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Abstract

We perform a quark model calculation of the bb and cc spectra from a screened

funnel potential form suggested by unquenched lattice calculations. A con-

nection between the lattice screening parameter and an effective gluon mass

directly derived from QCD is established. Spin-spin energy splittings, lep-

tonic widths and radiative decays are also examined providing a test for the

description of the states.
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I. INTRODUCTION

Heavy quarkonia, bb and to a lesser extent cc (for tt the weak decay rates are too large for
these resonances to be observed), are ideal systems to test quark potential models derived
from QCD. Actually for the low-lying states (the ground state for cc and the ground and
first excited states for bb) one can test the theory itself at the perturbative regime [1]. This
may provide a quantitative estimate of the approximations involved when using a potential
model interaction derived from QCD to describe heavy quarkonia.

At very short distances a nonrelativistic coulombic potential, with strength proportional
to αs, the quark-gluon-quark coupling constant, is derived perturbatively from the one-
gluon exchange interaction in QCD. Relativistic corrections involve spin-independent, spin-
spin, spin-orbit and tensor terms. Radiative corrections have been estimated as well. At
long distances nonperturbative effects involving multigluon interactions, in particular those
related to confinement, have to be considered. Lattice calculations in the so-called quenched
approximation (only valence quarks) derive a heavy quark long range potential linearly
dependent on the interquark distance [2].

The resulting interaction can then be parametrized by a funnel shape coulomb+linear
potential. Such a potential has been applied to get a good description of the spectrum of
spin-triplet states for cc and for the first excited states of bb [3]. When completed with some
relativistic plus radiative corrections it can give account, through a phenomenological fit of
the mass parameters, for the whole meson spectrum ranging from heavy to light mesons, as
well as for the electromagnetic, strong and weak decays [4,5].

Further QCD corrections to the coulomb+linear form can be incorporated in the potential
through unquenched (valence+sea quarks) lattice calculations [2]. The spontaneous creation
of light quark pairs may give rise to a breakup of the color flux tube between the two heavy
quarks. It has been proposed that this translates into a screened funnel potential [2,6,8],
say the potential does not rise continuously with the interquark distance but it saturates at
the splitting energy of the heavy quark pair. Although string breaking can not be said to
be definitely confirmed through lattice calculations [7] a quite rapid cross-over from a linear
rising to a flat potential is well established in SU(2) Yang-Mills theories [8]. The analysis of
the consequences of such a screening in heavy quarkonia is our main goal in this article. To
this purpose we discuss in Sec. II the screened form of the potential and connect it to an
effective running gluon mass in QCD. In this form we can obtain from the underlying theory
the value of the screening parameter for a given energy scale. Then, via a sensible choice
of this scale, we calculate in Secs. III to V the spectra, spin-spin splittings, leptonic widths
and radiative decays of bb and cc mesons. The dependence of our results on the chosen scale
is studied in Sec. VI. Finally in Sec. VII we summarize our results.

II. THE SCREENED FUNNEL POTENTIAL

The long range behavior of the heavy quark potential can be assigned to the saturation
property of the running QCD coupling constant, αs(Q

2), at the low momentum scale. In
a particular framework it has been shown [9], through a solution of the Schwinger-Dyson
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equation, that when decreasing Q2, αs does not increase continuously but instead it saturates
at a constant value αs(0) ≃ 0.8. Explicitly:

αs(Q
2) =

4π

β0 ln
[

(Q2 + 4M2
g (Q

2))/Λ2
] (1)

where β0 = (33 − 2nf)/3, being nf the number of flavors with mass much smaller than Q.
Λ is the QCD scale parameter for which we shall take 300 MeV hereforth and Mg is an
effective gluon mass given by:

M2
g (Q

2) = m2
g





ln
[

(Q2 + 4m2
g)/Λ

2
]

ln
(

4m2
g/Λ

2
)





−12/11

(2)

with mg ∼ 300 MeV. Hence the effective gluon mass, Mg, runs from 0 at Q2 → ∞ to mg

at Q2 → 0. Correspondingly αs runs from 0 at Q2 → ∞ (asymptotic freedom) to ∼ 0.8 at
Q2 → 0. By implementing the one-gluon-exchange diagram with αs(Q

2) as given above but
substituting M2

g (Q
2) by M2

g (Q
2 → 0) ≃ Λ2, a long range (r >> Λ−1) linear potential comes

out [1] (one should keep in mind that fine structure splittings might require a scalar [10] or
a mixed scalar-vector structure for the confinement [11]).

This linear tendency gets modified by qq pair creation in between the heavy quarks
since a screening of the quark color charge at large distances takes place. Moreover the
effective coulomb coupling is also affected by the presence of sea quarks. These effects were
parametrized in exploratory lattice studies by a screened funnel potential [6]. For the sake
of simplicity we shall follow this parametrization though it does not reproduce the rapid
turnover around 1 fm from linearly rising to flat potential suggested by modern lattice
results [8]. For a meson the potential has the form:

V (r) =
(

σr −
4

3

αs
r

)

(

1 − e−µr

µr

)

(3)

where µ is the screening parameter (with units of an inverse length) and the hat over the
parameters in the potential distinguishes them from the nonscreened case: V (r) = σr− 4

3
αs

r
.

V (r) behaves like a coulomb potential for r → 0 whereas it tends to σ/µ for r → ∞.
Regarding the value of µ let us realize that for µ → 0 one formally recovers the non-

screened potential with the long distance linear behavior one had when doing Mg(Q
2) ∼ Λ.

On the other hand the confining part of the potential can be written in the form

V conf(r) =
σ

µ
− σr

e−µr

µr
= V conf(r → ∞) − σr

e−µr

µr
(4)

what suggests that µ should be connected to an exchanged (Yukawa type) mass. From these
considerations we propose this mass to be the effective gluon mass through the identification

µ = Λ −Mg (5)

so that for a given scale specified by Q2
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V conf(r) =
σ

µ
− σr

e−µr

µr
=
σ

µ
− σr

[

e−(Λ−Mg(Q2))r

(Λ −Mg(Q2))r

]

(6)

This identification establishes a deep connection between the saturation of the coupling
constant and the interquark pair creation mechanism both effects governed by Mg(Q

2).
Therefore µ runs with Q2 so that 0 ≃ µ(Q2 = 0) ≤ µ(Q2) ≤ µ(Q2 → ∞) ≃ 1.52 fm−1.

The splitting energy of quark and antiquark in the meson is given by σ/µ, the maximum
value of the potential. No bound state can be found for higher energies due to the breaking
of the color flux tube and the most favored subsequent decay in multimeson states. We
shall assume that this splitting energy does not depend on flavor or, more precisely, that
it does not depend on the scale Q2. Hence σ should also run with the scale Q2 in such
a way that σ(Q2)/µ(Q2) ≃ constant. For us σ will be a free parameter to be determined
phenomenologically at a chosen scale. As a value for comparison we could think of the
string tension value for the nonscreened case, σ ≃ 1000 MeV fm−1 [12]. A more physical
comparison can be done by evaluating, from σ, µ, and αs, a hadronic scale R0 defined
through the force between static quarks at intermediate distances as F (R0)R

2
0 = 1.65. For

the nonscreened case R0 ≃ 0.5 fm [13]. Concerning the other parameter of the model, αs,
since we have established a link between saturation and screening we shall assume αs ≃ αs
as given by Eq. (1) at the chosen scale.

Our meson hamiltonian will then be written, up to an additive constant, as:

H = mq +mq +
p2
q

2mq

+
p2
q

2mq

+ V (r) (7)

where the constituent quark and antiquark masses, mq and mq, are taken as free parameters.

III. THE bb, cc AND cb SPECTRA.

In order to apply the screened potential to obtain the bb and cc spectra we should first
identify theQ2 scale in each case. For the sake of simplicity and universality let us investigate
the possibility to describe bb and cc mesons with the same set of potential parameter values,
say by using the same Q2 scale. A sensible guess may be to choose Q2 as some intermediate
value between the square quark masses m2

b and m2
c . But it turns out that our quark model

masses are parameters to be determined from the spectra. Nonetheless we can consider as
a reference the central quark mass values (MS scheme) quoted by the Particle Data Book
[14], mb = 4.2 GeV and mc = 1.2 GeV, and select Q2 = (2.7 GeV)2.

Once Q2 has been chosen αs and µ are determined by Eqs. (1),(2) and (5). Then we
should establish the protocol to fix the other parameters. We shall fix the quark masses and
σ to get the experimental mass for the ground states of bb and cc and the first excited state
of bb. Indeed this corresponds to a possible definition of the mass for the confined quarks.
Let us note that we do not expect to get the reference MS quark masses since they do not
correspond to the same definition but quite different values will not be compatible with the
self-consistency of our scheme. The values of the parameters used are compiled in Table I.
The resulting spectra, square mean root radii and square quark velocities appear in Tables
II, III and IV.
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Let us note that our hamiltonian is spin independent what means that S = 0 and
S = 1 states are degenerated. Assuming that the energy difference between spin singlet and
triplet states comes out mainly due to the spin-spin interaction and taking into account the
magnitude of these splittings and the fact that the matrix element for the spin-spin operator
~Si · ~Sj is three times bigger for singlets than for triplets, we shall consider our quark model
states as close description to spin triplets.

The good agreement of the mass prediction with data for bb and cc up to 1 GeV excitation
energy allows an unambiguous identification of experimental JP = 1− states: 1s, 2s, 1d, 3s
and 4s for bb, and 1s and 2s for cc. This is reinforced by the calculation of leptonic width
ratios, [Γe+e−/Γe+e−(1s)], (see Sec. IV). The same analysis suggests that for cc our 1d and
3s states must have some mixing in order to explain the experimental values of the leptonic
width ratios, bigger for 1d and smaller for 3s than our approximated results.

For p states and higher energies the situation is much less clear and the interpretation
of our results requires some additional considerations. First, relativistic effects, specially for
the cc system (see the 〈v2/c2〉 column in Tables II, III and IV) may be quite relevant: higher
order kinetic energy terms increase in importance when increasing the excitation energy, the
spin-orbit force can be responsible for the p splittings and for differences between L = 0 and
L = 2 states, the tensor interaction can induce s − d mixing, the color magnetic potential
breaks the degeneracy with 0− states. Second, coupling to D and B mesons may become
relevant [15]. Third, there can be some bias in the results associated to the Q2 scale assumed.
Anyhow a glance at the experimental leptonic width ratios and their comparison to our
calculation, Tables V, suggests that Υ(10860) and Υ(11020) should be mostly s states since
for d states the predicted ratios would be three orders of magnitude smaller. For ψ(4160)
and ψ(4415) an s state association seems also to be favored, Tables VI and IX.

Concerning cb the commented results and the good prediction for the ground state gives
us also confidence about the predicted masses of its lower excitations.

The quality of the spectra we get is quite similar to that of other quark model calculations
that use strict (nonscreened) confinement [3,4]. The major difference concerns the possible
number of quark-antiquark bound states which is finite in our case and infinite for the strict
confinement models. This also affects the pattern of energy differences but mostly for higher
excited states. Unfortunately the uncertainties associated to the calculation of these states
are such that a comparison to data cannot discriminate against any model. The upper
energy cut for the spectrum is given in our model by mq + mq + σ/µ. From the values of
the parameters we obtain a splitting energy σ/µ ≃ 2070 MeV and the energy thresholds
Eth(bb) ≃ 11400 MeV, Eth(cb) ≃ 7973 MeV and Eth(cc) ≃ 4547 MeV. Although these values
have to be taken very cautiously (actually they are significantly lower than the ones obtained
from a Regge analysis [17]) since they depend on the somewhat arbitrary Q2 scale (see Sec.
VI) the qualitative consequence is clear: the mere existence of a threshold means that a
detected state above it would correspond to a wide resonance, a glueball or an exotic state.
Moreover, it could even correspond to a narrow resonance provided the existence of selection
rules preventing its strong decay.

It is worth to remark that our quark mass values are smaller than the ones obtained
from strict confinement models (mb ∼ 5000 MeV, mc ∼ 1700 MeV) may be indicating that
relativistic effects associated to quark pair creation can be taken into account in an effective
way, following the philosophy of quark model calculations, via a bigger nonrelativistic quark
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mass. Concerning the value of σ (1470 MeV fm−1) it is quite big as compared to commonly
accepted values for the string tension σ. However the hadronic scale provided by our model
R0 ≃ 0.43 fm is much closer to the nonscreened case. We should also keep in mind that σ is
an effective parameter which may give account of some nonconsidered corrections and that
σ runs with Q2 in such a way that the lower the Q2 the lower the σ (see Sec. VI).

A. Singlet-triplet states

As the screened potential we use has no spin-dependence, spin singlet (S = 0) and triplet
(S = 1) states are degenerated. If we consider the color-magnetic spin-spin term coming
from the one-gluon-exchange diagram in QCD and screen it in the same manner than the
rest of the potential, i.e.,

Vss =
4

3
αs

8π

3mqmq

~Si · ~Sj δ(~r)

(

1 − e−µr

µr

)

(8)

we realize that when using it in the Schrödinger equation the presence of δ(~r) gives rise
to an unbound low-energy spectrum. This difficulty can be overcome substituting the δ(~r)
by a spreading function depending on a characteristic length. However as this substitution
represents also some kind of screening, avoiding the contact interaction, the inverse screening
length, µ, appearing in Eq. (8) could not coincide with the value of µ for the rest of the
potential. Then we would be left with two new parameters, the spreading length and a
modified inverse screening length, to fit one established and two to be confirmed experimental
splitting energies: M(J/ψ) −M [ηc(1s)], M [ψ(2s)] −M [ηc(2s)] and M [Υ(1s)] −M [ηb(1s)],
what does not seem to be a big deal. Instead we can try to preserve the simplicity of our
model and apply first order perturbation theory. Thus the splitting energies obtained from
J/ψ, ψ(2s) and Υ(1s) are expressed as

∆Ess =
4

3
αs

8π

3mqmq

|Ψ(0)|2 (9)

where Ψ(0) stands for the wave function at the origin for J/ψ, ψ(2s) and Υ(1s) respectively.
So we predict:

M(J/ψ) −M [ηc(1s)] ≃ 118.6 MeV (10)

M [Υ(1s)] −M [ηb(1s)] ≃ 104.3 MeV (11)

M [ψ(2s)] −M [ηc(2s)] ≃ 69.4 MeV (12)

to be compared to the experimental data [14]:

M(J/ψ) −M [ηc(1s)] = 117.9 ± 2.1 MeV (13)

M [Υ(1s)] −M [ηb(1s)] = 160 ± 40 MeV (14)
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and [18]

M [ψ(2s)] −M [ηc(2s)] = 64 ± 12 MeV . (15)

Though we get a remarkable agreement, as the magnitudes of the splittings are not much
smaller than the nonperturbed Schrödinger equation eigenvalues we have [620 MeV for J/ψ,
1202 MeV for ψ(2s) and 131 MeV for Υ(1s)], specially for bb, the first order perturbed
values should not be taken for granted. Anyhow we can tentatively make some additional
predictions for the next two splittings:

M [Υ(2s)] −M [ηb(2s)] ≃ 50 MeV (16)

M [ψ(3s)] −M [ηc(3s)] ≃ 52 MeV (17)

IV. LEPTONIC WIDTHS

A complete calculation of V (vector meson)→ e+e− widths involves radiative and rel-
ativistic contributions out of the scope of our quark model estimation. Fortunately these
corrections can be factorized [19]. Thus for s states we can write the leptonic width Γe+e−
as

Γe+e−(ns) = Γ
(0)
e+e−(ns)

[

1 −
16αs
3π

+ ∆(ns)
]

(18)

The second (−16αs/3π) and third [(∆(ns)] terms in the parenthesis on the right hand
side stand for the leading order radiative and higher order radiative+relativistic corrections
respectively and

Γ
(0)
e+e−(ns) =

16πe2qα
2

M2
ns

|Ψns(0)|2 (19)

where eq is the electric quark charge, α the fine structure constant, Mns the mass of the ns
state and Ψns(0) its wave function at the origin.

From Eqs. (9), (18), and (19) we can establish an approximate relation between the
correction factors and the quark masses through experimental quantities:

m2
c

m2
b

[

1 − 16αs

3π
+ ∆(1s)

]

cc
[

1 − 16αs

3π
+ ∆(1s)

]

bb

≃
[Γe+e−(1s)]cc
[Γe+e−(1s)]bb

[M(Υ(1s)) −M(ηb(1s))]

[M(J/ψ) −M(ηc(1s))]

[

M(J/ψ)

M(Υ(1s))

]2

(20)

From Eqs. (18) and (19) it is also clear that a comparison of the calculated Γ
(0)
e+e−(ns)

to data will give us the effective magnitude of ∆ needed in our model. So for bb we obtain
Γ

(0)
e+e−(1s) = 2.13 keV and ∆(1s) = 0.16 and for cc we have Γ

(0)
e+e−(1s) = 6.37 keV and

∆(1s) = 0.36. We observe that higher order corrections are much more important for the
cc system as expected.
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As ∆ includes relativistic corrections it depends on the ns state. Inasmuch this depen-
dence is not very strong we could assume a mean value for all these states. Then we could
consider the ratio:

Γe+e−(ns)

Γe+e−(1s)
≃

Γ
(0)
e+e−(ns)

Γ
(0)
e+e−(1s)

=
|Ψns(0)|2

|Ψ1s(0)|2
M2

1s

M2
ns

(21)

where correction factors cancel. Indeed as far as the masses of the states agree with data
this is a test of the ratio of the wave functions at the origin.

Moreover from Eqs. (9) and (21) we can predict

[

Γe+e−(2s)

Γe+e−(1s)

]

cc

≃

[

M(ψ(2s)) −M(ηc(2s))

M(J/ψ) −M(ηc(1s))

] [

M(J/ψ)

M(ψ(2s))

]2

(22)

close to the experimental data,
[

Γe+e−(2s)

Γe+e−(1s)

]

cc

= 0.41 ± 0.07 , (23)

[

M(ψ(2s)) −M(ηc(2s))

M(J/ψ) −M(ηc(1s))

] [

M(J/ψ)

M(ψ(2s))

]2

= 0.55 ± 0.04 . (24)

For d states we use:

Γ
(0)
e+e−(nd) =

25e2qα
2

2m4
qM

2
nd

∣

∣

∣R”
nd(0)

∣

∣

∣

2
(25)

where R”
nd(0) stands for the second derivative of the radial wave function at the origin.

Our results, shown in Tables V and VI, are quite encouraging, they seem to confirm the
correctness of our assumptions about the validity of the prediction of ratios and support the
state identification done in Sec. III (let us comment that there could be some bias due to
the Q2 scale value chosen, see Tables VIII and IX, Sec. VI).

V. E1 AND M1 DECAY WIDTHS

According to the identification of our states with spin triplets done in Sec. III, we
shall center in E1 decays in the bb and cc sectors involving only triplet states, for instance
χcJ (1p) → γJ/ψ, Υ(2s) → γχbJ (1p), .... Then for i → γf , [i(f) stands for the initial(final)
meson], using a single quark current operator and the nonrelativistic approximation, we can
write for the width

ΓE1
if =

4

27
e2qαk

3
if(2Jf + 1)D2

if (26)

where kif is the photon energy or momentum, Jf is the total angular momentum of the final
meson and Dif the transition matrix element

Dif =
∫ ∞

0
drui(r)

3

kif

[

kifr

2
j0

(

kifr

2

)

− j1

(

kifr

2

)]

uf(r) (27)
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being ui,f(r) the reduced radial wave functions for the initial and final mesons respectively
and j0 and j1 spherical Bessel functions. In the limit kifr → 0 one recovers the dipole form:

Dif →
∫ ∞

0
drui(r)ruf(r) (28)

In our simple quark model all the J states for p waves, χJ , are degenerated. Let us
assume that this degeneration can be dropped out by the consideration of some perturbative
interaction such as a spin-orbit one and that first order perturbation theory can give us the
right masses. This is quite reasonable since the needed splittings are about one tenth of the
energy eigenvalues. Hence we shall use our wave functions (first order perturbation theory
does not affect the wave functions) altogether with the experimental masses to get the E1
rates.

Certainly there are relativistic and radiative corrections to the formulas above (involving
wave function corrections also). We shall take as a criterium to estimate its importance the
value of kifR (R can be assimilated to the mean radius of the initial meson) as compared to 1.
Then for the transitions we consider next and from Tables II and III we have (kifR)bb ≃ 0.35
and (kifR)cc ≥ 1. Hence we expect a much more reasonable description for bb than for cc.
This expectation is confirmed by our results as can be checked in Table VII: the bb data are
quite well described whereas the cc widths deviate by a factor of about 2.

The much bigger quality of the results we obtain for bb as compared to the ones obtained
with a simple nonscreened linear potential [3] points out the importance of screening effects.
On the other hand by taking into account that with a more refined model without screening
[4] both bb and cc widths are correctly described we can interpret that the effect of screening
is taken into account in this model in an effective manner through the fitted parameters.

Less satisfactory from the experimental point of view is the situation for M1 decays since
there are only a few experimental cc data available [J/ψ → γηc(1s) and ψ(2s) → γηc(1s)].
The nonrelativistic theoretical expression for the width is:

ΓM1
if =

16

3

(

eq
2mq

)2

µ2
qαk

3
if(2Jf + 1)M2

if (29)

with the transition matrix element Mif given by

Mif =
∫ ∞

0
drui(r)j0

(

kifr

2

)

uf(r) (30)

and where we have used an effective magnetic factor µ2
q to take into account corrections to

the quark magnetic moment beyond the Dirac particle term.
As the J/ψ−ηc(1s) and the ψ(2s)−ηc(2s) mass splittings are reasonably well reproduced

by first order perturbation theory we follow the same philosophy as above and assume the
same wave function for J/ψ and ηc(1s) and analogously for ψ(2s) and ηc(2s). Let us realize
that if we fit µ2

q from data this factor can effectively incorporate corrections of the same
type mentioned for the E1 case as well as corrections that would come from a better wave
function description (specially for singlet states).

Then, for J/ψ − ηc(1s), by using that Mif ≃ 1 we can estimate ΓJ/ψ→γηc(1s) ≃ 4.26 µ2
c .

By comparing with the experimental value, ΓJ/ψ→γηc(1s) = 1.2 ± 0.4 keV we get µc ≃ 0.52.
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We can compare this value with the corresponding to the second order correction to the
magnetic moment operator [20] (1 − 2v2

c/3c
2) ≃ 0.8. Since our µc has a very effective

character the value determined from ψ(2s) → γηc(1s) could be different. If keeping in mind
these caveats we assume the same µ2

c we can predict Γψ(2s)→γηc(1s) ≃ 1.24 keV to be compared
to Γψ(2s)→γηc(1s) = 0.8 ± 0.3 keV.

Let us also realize that we can get rid of the presence of µq by taking the ratio of the
widths. Thus we can predict for the non-measured yet ψ(2s) → ηc(2s) transition:

Γψ(2s)→γηc(2s)

ΓJ/ψ→γηc(1s)

≃

(

kψ(2s)→γηc(2s)

kJ/ψ→γηc(1s)

)3

≃ 0.5 (31)

since Mif ≃ 1 for both transitions.
Finally for bb, since we expect relativistic corrections to be much less important, by

assuming µb ≃ (1 − 2v2
b/3c

2) = 0.94 (very close to 1, the value for a Dirac particle), we
predict ΓΥ(1s)→γηb(1s) = 0.17 keV (we have used M [ηb(1s)] = 9300 MeV [14]; by including
the experimental range M [ηb(1s)] = 9300±20±20 MeV we have ΓΥ(1s)→γηb(1s) = 0.07−0.33
keV).

VI. THE Q2 SCALE

Although our results are good enough to provide an ad hoc justification for the universal
Q2 chosen for bb and cc there can be convenient to try to justify it from more physical
grounds. If we write Q2 = −q2, being q is the momentum transfer between quark and anti-
quark, we have, in the center of mass system, Q2 = 4~p 2

q where ~pq is the quark trimomentum

~p 2
q = m2

qv
2
q/
(

1 − v2
q

)

. By taking as a reference the values of quark masses and velocities

previously obtained for 1s states we get Q2
bb

≃ (2.9 GeV)2 and Q2
cc ≃ (2.4 GeV)2, pretty

close to the Q2 scale value we guessed Q2 = (2.7 GeV)2. Let us also note that if we had used
the nonrelativistic expressions for the trimomentum we would have got Q2

bb
≃ (2.8 GeV)2

and Q2
cc ≃ (1.3 GeV)2 what reflects the much more relativistic character of cc. Anyhow

as we are using a nonrelativistic scheme it can be of help to analyze the variation of our
results when a Q2 ≃ (1.3 GeV)2 scale is chosen for cc. Actually it is possible to choose
Q2
cc = m2

c = (1357 MeV)2, so that µ = 0.556 fm−1 and σ = 1175 MeV fm−1, very close to
the string tension value. Furthermore σ/µ = 2113 MeV, very close to the value obtained
with the former universal scale what seems to confirm our assumption about its constancy.
The results are shown in Tables VIII and IX. Due to the bigger value of the quark mass
the upper energy threshold increases with respect to our former value (4827 MeV vs 4547
MeV). From the comparison with Tables II, III, IV, V and VI, it is clear that the effect of
lowering the scale translates in a smaller size and a bigger wave function value (for ns waves)
at the origin. The rates Γe+e−(ns)/Γe+e−(1s) get reduced approaching data. E1 decay rates
change also, although by a small amount, in the direction pointed by data. These tendencies
though not very significant seem to favor for cc a lower scale than the one used in Sec. III.
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VII. SUMMARY

We have studied heavy quarkonia from a simple screened funnel quark potential model.
The form of the potential is suggested by unquenched lattice calculations. The screening
inverse length, i. e. the parameter of the potential controlling the onset of screening ef-
fects, has been related to an effective gluon mass derived from QCD. As such a mass is also
responsible for the saturation property of the running coupling constant in QCD an under-
lying connection between saturation and screening comes out. The model provides a quite
accurate description of bb masses, spin-spin splittings, leptonic widths and radiative decays.
This may be pointing out the relevance of string breaking effects although the more genuine
predictions associated to screening, say the finiteness of the quark-antiquark bound state
spectrum, its corresponding upper energy threshold and the breaking color flux tube energy
between quarks, remain to be tested in the future since current high energy excitation data
do not allow to extract neither quantitative nor qualitative conclusions about their validity.

For cc the implementation of other relativistic corrections, apart from screening, seems
to be essential to approach data as confirmed by the accurate description provided for more
refined models. There could be, in our opinion, interesting to implement screening effects
in such kind of models to try to disentangle the role played by relativistic effects of different
character.

Let us say finally that the model can be also applied to light hadrons, mesons and
baryons, but at the price of introducing more effectiveness in the values of the parameters,
losing the stringent connection established with the underlying theory.
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TABLES

TABLE I. Parameters of the model.

αs 0.317

µ (fm−1) 0.71

σ (MeV fm−1) 1470

mb (MeV) 4664.5

mc (MeV) 1238.5

TABLE II. bb spin-triplet bound state masses (in MeV) and properties. We denote by a ’*’ the

states used to fit the parameters and by a ’†’ experimental states with different possibilities for the

orbital angular momentum, it could be L = 0 and/or L = 2. Experimental data are taken from

Ref. [14] except for that quoted by a ’**’ taken from Ref. [16]. p states are taken as the centroid

of the np0, np1 and np2 experimental data.

Mass Exp.
〈

v2/c2
〉 〈

r2
〉1/2

(fm)

1s 9460 ∗ 9460.30 ± 0.26 0.09 0.23

2s 10023 ∗ 10023.26 ± 0.31 0.08 0.51

1d 10159 10162.2 ± 1.6 ∗∗ 0.07 0.55

3s 10350 10355.2 ± 0.5 0.08 0.78

2d 10436 0.08 0.82

4s 10588 10580.0 ± 3.5 0.09 1.05

3d 10649 0.08 1.10

5s 10773 10865 ± 8 † 0.09 1.33

4d 10819 0.08 1.40

6s 10921 11019 ± 8 † 0.08 1.60

5d 10956 0.08 1.70

7s 11040 0.08 1.90

1p 9909 9900.1 ± 0.5 0.07 0.40

2p 10262 10260.0 ± 0.5 0.08 0.70
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TABLE III. cc spin-triplet bound state masses (in MeV) and properties. We denote by a ’*’

the states used to fit the parameters and by a ’†’ the experimental states with different possibilities

for the orbital angular momentum, it could be L = 0 and/or L = 2. Experimental data are taken

from Ref. [14]. p states are taken as the centroid of the np0, np1 and np2 experimental data.

Mass Exp.
〈

v2/c2
〉 〈

r2
〉1/2

(fm)

1s 3097 ∗ 3096.87 ± 0.04 0.28 0.46

2s 3679 3685.96 ± 0.09 0.32 0.97

1d 3794 3769.9 ± 2.5 † 0.31 1.00

3s 4023 4040 ± 10 † 0.31 1.50

2d 4093 0.31 1.60

4s 4248 4159 ± 20 † 0.29 2.10

3d 4294 0.27 2.20

5s 4397 4415 ± 6 † 0.23 2.95

4d 4427 0.22 3.10

6s 4494 0.21 3.70

1p 3517 3525.3 ± 0.2 0.12 0.75

2p 3914 0.20 1.3

TABLE IV. bc spin-triplet bound state masses (in MeV) and properties. Experimental data

are taken from Ref. [14].

Mass Exp.
〈

v2/c2
〉 〈

r2
〉1/2

(fm)

1s 6362 6400 ± 400 0.18 0.37

2s 6927 0.20 0.79

1d 7045 0.19 0.82

3s 7269 0.20 1.20

2d 7342 0.20 1.25

4s 7506 0.20 1.70

3d 7556 0.19 1.71

5s 7677 0.17 2.16

4d 7713 0.17 2.24

6s 7799 0.15 2.78

5d 7825 0.15 2.89

7s 7884 0.12 3.56

1p 6779 0.18 0.60

2p 7163 0.20 1.02
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TABLE V. Leptonic widths Γe+e− (in keV) for bb. We denote by a ’†’ the experimental states

with different possibilities for the orbital angular momentum, it could be L = 0 and/or L = 2.

Experimental data are taken from Ref. [14].

Γ
(0)
e+e−

(

1 − 16αs

3π

)

(Γe+e−)exp Γ
(0)
e+e−/Γ

(0)
e+e−(1s) [Γe+e−/Γe+e−(1s)]exp

1s 0.98 1.32 ± 0.05 1 1

2s 0.41 0.520 ± 0.032 0.42 0.41 ± 0.07

1d 3.7 × 10−4 3.8 × 10−4

3s 0.27 seen 0.27 seen

2d 5.8 × 10−4 5.9 × 10−4

4s 0.20 0.248 ± 0.031 0.21 0.19 ± 0.03

3d 6.7 × 10−4 6.8 × 10−4

5s 0.16 0.31 ± 0.07 † 0.16 0.24 ± 0.06 †

4d 7.9 × 10−4 8.1 × 10−4

6s 0.12 0.130 ± 0.030 † 0.13 0.10 ± 0.03 †

5d 7.1 × 10−4 7.3 × 10−4

7s 0.10 0.10

TABLE VI. Leptonic widths Γe+e− (in keV) for cc. We denote by a ’†’ the experimental states

with different possibilities for the orbital angular momentum, it could be L = 0 and/or L = 2.

Experimental data are taken from Ref. [14].

Γ
(0)
e+e−

(

1 − 16αs

3π

)

(Γe+e−)exp Γ
(0)
e+e−/Γ

(0)
e+e−(1s) [Γe+e−/Γe+e−(1s)]exp

1s 2.94 5.3 ± 0.4 1 1

2s 1.22 2.19 ± 0.15 0.42 0.41 ± 0.06

1d 0.026 0.26 ± 0.04 † 8.8 × 10−3 (5.0 ± 1.1) × 10−2 †

3s 0.76 0.75 ± 0.15 † 0.26 0.15 ± 0.04 †

2d 0.03 1.1 × 10−2

4s 0.43 0.77 ± 0.23 † 0.15 0.15 ± 0.05 †

3d 0.03 9 × 10−3

5s 0.27 0.47 ± 0.10 † 0.09 0.09 ± 0.03 †

4d 0.02 7.9 × 10−3
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TABLE VII. E1 decay widths for bb and cc (in keV). Experimental data are taken from Ref.

[14].

bb cc

Transition ΓE1 Γexp Transition ΓE1 Γexp
Υ(2s) → γχb0(1P ) 1.46 1.7 ± 0.5 χc0(1P ) → γJ/ψ(1s) 63.94 169 ± 51

Υ(2s) → γχb1(1P ) 2.27 3.0 ± 0.8 χc1(1P ) → γJ/ψ(1s) 125.07 295 ± 71

Υ(2s) → γχb2(1P ) 2.32 3.1 ± 0.8 χc2(1P ) → γJ/ψ(1s) 161.64 392 ± 73

Υ(3s) → γχb0(2P ) 1.71 1.4 ± 0.4 ψ(2s) → γχc0(1P ) 62.56 26 ± 5

Υ(3s) → γχb1(2P ) 2.80 3.0 ± 0.6 ψ(2s) → γχc1(1P ) 59.39 26 ± 4

Υ(3s) → γχb2(2P ) 3.04 3.0 ± 0.6 ψ(2s) → γχc2(1P ) 42.39 21 ± 4

TABLE VIII. cc spin-triplet bound state masses (in MeV) and properties from a screened

funnel hamiltonian with parameters: αs = 0.451, µ = 0.556 fm−1, σ = 1175 MeV fm−1, and mc =

1357 MeV. We denote by a ’*’ the states used to fit the parameters and by a ’†’ the experimental

states with different possibilities for the orbital angular momentum, it could be L = 0 and/or

L = 2. Experimental data are taken from Ref. [14]. p states are taken as the centroid of the np0,

np1 and np2 experimental data.

Mass Exp.
〈

v2/c2
〉 〈

r2
〉1/2

(fm)

1s 3097 ∗ 3096.87 ± 0.04 0.28 0.42

2s 3686 ∗ 3685.96 ± 0.09 0.29 0.92

1d 3816 3769.9 ± 2.5 † 0.07 0.97

3s 4039 4040 ± 10 † 0.30 1.41

2d 4119 0.15 1.47

4s 4286 4159 ± 20 † 0.30 1.92

3d 4341 0.18 2.00

5s 4467 4415 ± 6 † 0.28 2.50

1p 3542 3525.3 ± 0.2 0.11 0.72
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TABLE IX. Leptonic widths Γe+e− (in keV) for cc with the same model as in Table VIII. We

denote by a ’†’ the experimental states with different possibilities for the orbital angular momentum,

it could be L = 0 and/or L = 2. Experimental data are taken from Ref. [14].

Γ
(0)
e+e−

(

1 − 16αs

3π

)

(Γe+e−)exp Γ
(0)
e+e−/Γ

(0)
e+e−(1s) [Γe+e−/Γe+e−(1s)]exp

1s 2.30 5.3 ± 0.4 1 1

2s 0.87 2.19 ± 0.15 0.38 0.41 ± 0.06

1d 1.3 × 10−2 0.26 ± 0.04 † 5.5 × 10−3 (5.0 ± 1.1) × 10−2 †

3s 0.47 0.75 ± 0.15 † 0.20 0.15 ± 0.04 †

2d 1.72 × 10−2 7.4 × 10−3

4s 0.34 0.77 ± 0.23 † 0.15 0.15 ± 0.05 †

3d 1.74 × 10−2 8.2 × 10−3

5s 0.24 0.47 ± 0.10 † 0.10 0.09 ± 0.03 †
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