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Abstract

We present the first numerical implementation of a non-perturbative renormal-
ization method for lattice operators, based on the study of correlation functions in
coordinate space at short Euclidean distance. The method is applied to compute
the renormalization constants of bilinear quark operators for the non-perturbative
O(a)-improved Wilson action in the quenched approximation. The matching with
perturbative schemes, such as MS, is computed at the next-to-leading order in con-
tinuum perturbation theory. A feasibility study of this technique with Neuberger
fermions is also presented.
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1 Introduction

Correlation functions of quantum-field operators are computed non-perturbatively on the
lattice by Monte Carlo simulations. From their long-distance behaviour, in QCD, non-
perturbative features of the underlying theory, such as the hadron spectrum and matrix
elements, can be extracted. On the other hand, their behaviour at short distance is ex-
pected to be controlled by perturbation theory and by the operator product expansion
(OPE). As a result, relevant ultraviolet informations of the theory, such as the range of
applicability of the OPE, the values of the Wilson coefficients and the renormalization
constants of composite operators, can in principle be obtained by a comparison of the
perturbative formulæ with the numerical results at short distance. This is the basic idea
behind the non-perturbative renormalization techniques proposed in the last decade and
widely used in present simulations. With the RI/MOM method, renormalization condi-
tions are imposed on quark and gluon Green functions computed non-perturbatively in
momentum space, in a fixed gauge, with given off-shell external states of large virtual-
ity [1]-[10]. In the Schrödinger functional (SF) approach, the renormalization conditions
are imposed in coordinate space at a given finite physical distance on suitable gauge in-
variant correlation functions in finite volume with SF boundary conditions [11]-[14]. The
step-scaling technique [12] can then be used to convert the renormalization constants to
their renormalization group invariant definitions. An advantage of these methods is that
the conversion to more popular continuum schemes, such as the MS scheme, can be imple-
mented by performing a calculation only in continuum perturbation theory, by comparing
renormalized correlation functions at short distances computed in dimensional regulariza-
tion in the two schemes. In this way, more tedious calculations with lattice perturbation
theory are completely avoided.

In this paper we present the first numerical implementation of a non-perturbative renor-
malization method based on the study of lattice correlation functions at short Euclidean
distances in coordinate space [17]. We call this approach the “X-space” scheme. Prelimi-
nary results were presented in Refs. [18, 19]. We have computed numerically the two-point
functions of all dimension three bilinear quark operators by discretizing the gluons a lá Wil-
son and the fermions with the non-perturbatively O(a)-improved Wilson action. A feasibil-
ity study of this technique with Neuberger fermions is also presented. The multiplicatively
renormalization constants of lattice bilinear operators are evaluated non-perturbatively by
imposing renormalization conditions directly in x-space at short distance. The condition
x0 ≫ a, where a is the lattice spacing and x0 is the renormalization point, has to be satis-
fied in order to keep discretization errors under control. On the other hand, the matching
of the renormalization constants to the MS scheme (or any other continuum scheme) can
be computed in continuum perturbation theory when x0 ≪ Λ−1

QCD. In this study we show
that for a . 0.05 fm (i.e. 1/a & 4 GeV) it is possible to find a region on the same lat-
tice in which perturbation theory can be applied and discretization effects are still under
control. The existence of the window a . x0 . Λ−1

QCD requires however rather fine lattices,
large volumes and therefore expensive simulations. Alternatively, one can appeal to a step-
scaling technique analogous to the one proposed in Ref. [12]. The X-space renormalization
method involves only gauge-invariant correlation functions among local operators at finite
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physical distance, and can be easily applied to any fermion discretization. It can be very
powerful for the evaluation of the renormalization constants of composite operators, such
as the four-fermion operators relevant for the phenomenology of hadronic weak decays.
The matching to the MS scheme can be performed by using only continuum perturbation
theory and the method is very simple to implement.

The paper is organized as follows: in sec. 2 we summarize the relevant formulæ in
continuum perturbation theory and define the renormalization conditions which we will
use in coordinate space; in sec. 3 we discuss the numerical results and in sec. 4 we present
our conclusions.

2 X-space renormalization and perturbation theory

In this section we define the X-space renormalization scheme for bilinear quark opera-
tors and provide the perturbative expressions, at the next-to-leading order (NLO), needed
to convert the results to any other continuum renormalization scheme, such as the MS
scheme1.

We consider the correlation functions of flavor non-singlet bilinear quark operators of
the form

〈OΓ(x)OΓ(0)〉 , (1)

where
OΓ(x) = ψ̄(x)Γψ(x) (2)

with OΓ = {S, P, Vµ, Aµ Tµν} for Γ = {1, γ5, γµ, γµγ5,
1
2
[γµ, γν] } respectively and with

flavor indices omitted.
Following [17], we impose non-perturbatively, in x-space and in the chiral limit, the

renormalization conditions

lim
a→0

〈OX
Γ (x)OX

Γ (0)〉
∣

∣

∣

x2=x2
0

= 〈OΓ(x0)OΓ(0)〉freecont (3)

where the renormalized operator is OX
Γ (x, x0) = ZX

Γ (x0)OΓ(x) and x0 is the renormalization
point. The renormalization condition (3) defines the X-space scheme. Note that x0 must
satisfy the condition a ≪ x0 ≪ Λ−1

QCD to keep non-perturbative and discretization effects
under control.

In order to illustrate the procedure and get the expressions needed to convert to the
more popular continuum schemes, we have computed the correlation functions, at two loop
in näıve dimensional regularization (NDR), in the massless case. The results, in Euclidean

1All formulas presented in this section are obtained in the infinite-volume limit. When correlation
functions in small volumes are considered, their perturbative expressions may need to be modified according
to the boundary conditions used [15, 16]
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space, read

〈S(x)S(0)〉 = 〈P (x)P (0)〉 =
Nc

π4 (x2)3

{

1 +
2αs

4π

(

4

ǫ̂
+

4

3
+ 8 γE −

γ
(0)
S

2
ln(

µ2x2

4
)

)}

〈Vµ(x)Vν(0)〉 = 〈Aµ(x)Aν(0)〉 = −
2Nc

π4 (x2)3

(

1

2
δµν −

xµxν

x2

)

{

1 + 4
αs

4π

}

(4)

〈Tµν(x)Tρσ(0)〉 = −
2Nc

π4 (x2)3

(

1

2
T (1)

µνρσ − T (2)
µνρσ

)

{

1 +
2αs

4π

(

−
4

3 ǫ̂
+ 4 −

8

3
γE −

γ
(0)
T

2
ln(

µ2x2

4
)

)}

where

T (1)
µνρσ = δµρδνσ − δµσδνρ

T (2)
µνρσ =

xµxρ

x2
δνσ −

xµxσ

x2
δνρ −

xνxρ

x2
δµσ +

xνxσ

x2
δµρ . (5)

In these expressions αs is the strong coupling constant, 1/ǫ̂ = 1/ǫ− ln(4π)− γE (we define

d = 4 − 2ǫ the space-time dimension) and the LO anomalous dimensions are γ
(0)
S = −8,

γ
(0)
T = 8/3, and γ

(0)
V = 0, the latter due to the conservation of the vector current. This

conservation also determines the tensor structure of the vector current correlator. Note
that, as expected, the leading short distance behaviour of the correlation functions in
Eq. (4) is governed by (x2)−3. For the scalar and vector correlators the results in Eqs. (4)
agree with previous computations [20, 21, 22].

By imposing the renormalization conditions (3) to the results in Eq. (4), we obtain the
correlation functions for the renormalized operators in the X-space scheme:

〈SX(x, x0)S
X(0, x0)〉 =

Nc

π4 (x2)3K
X
S

(

x, x0

)

〈V X
µ (x, x0)V

X
ν (0, x0)〉 = −

2Nc

π4 (x2)3

(

1

2
δµν −

xµxν

x2

)

KX
V

(

x, x0

)

(6)

〈TX(x, x0)µνT
X(0, x0)ρσ〉 = −

2Nc

π4 (x2)3

(

1

2
T (1)

µνρσ − T (2)
µνρσ

)

KX
T

(

x, x0

)

with

KX
Γ

(

x, x0

)

= 1 − γ
(0)
Γ

αs

4π
ln
(x2

x2
0

)

. (7)

In the MS scheme, on the other hand, the correlation functions of the renormalized
composite operators, OMS

Γ (x, µ) = ZMS
Γ (µ)OΓ(x), are obtained by subtracting the pole 1/ǫ̂

on the r.h.s of Eq. (4). The relations between the MS and the X-space scheme are thus
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the following

KMS
S

(

x, µ
)

=

{

1 +
2αs

4π

[

4 ln

(

µ2x2
0

4

)

+ 8γE +
4

3

]}

KX
S

(

x, x0

)

KMS
V

(

x, µ
)

=
(

1 + 4
αs

4π

)

KX
V

(

x, x0

)

(8)

KMS
T

(

x, µ
)

=

{

1 +
2αs

4π

[

−
4

3
ln

(

µ2x2
0

4

)

−
8

3
γE + 4

]}

KX
T

(

x, x0

)

.

This also implies that the renormalization constants in the two schemes are related by

ZMS
S (µ)

ZX
S (x0)

= 1 +
αs

4π

[

4 ln

(

µ2x2
0

4

)

+ 8γE +
4

3

]

,

ZMS
V (µ)

ZX
V (x0)

= 1 + 2
αs

4π
, (9)

ZMS
T (µ)

ZX
T (x0)

= 1 +
αs

4π

[

−
4

3
ln

(

µ2x2
0

4

)

−
8

3
γE + 4

]

.

The renormalization condition (3) does not satisfy the vector and axial vector Ward Iden-
tities. At the NLO this can be easily seen by noticing that in the MS scheme, which
preserves them, KMS

V (x0, µ) has a finite term proportional to αs. In the X-space scheme

this contribution is included in the renormalization constant and therefore ZMS
V /ZX

V 6= 1,
i.e. the Ward Identities are broken. They can be recovered by using continuum per-
turbation theory, which for the vector correlator is known up to four loops [21, 22], or
non-perturbatively by matching the result for ZV in the X-space scheme with the Ward
Identity determination [23].

We conclude this section by recalling the expression for the renormalization group
evolution of the renormalization constants at the NLO in αs:

ZMS
Γ (µ′) =

cMS
Γ (µ′)

cMS
Γ (µ)

ZMS
Γ (µ) (10)

where

cMS
Γ (µ) = αs(µ)

γ
(0)
Γ

2β0

{

1 +
αs

4π

(

γ
(1)
Γ

2β0
−
β1

β0

γ
(0)
Γ

2β0

)}

(11)

with αs defined in MS scheme. In the quenched theory, i.e. with Nf = 0, the first
two coefficients of the expansion of the β-function are β0 = 11 and β1 = 102, while
the two-loop anomalous dimensions in the MS scheme are γ

(1)
S = −404/3, γ

(1)
V = 0 and

γ
(1)
T = 724/9 [24, 25, 26]. In our study, the matching between X-space and MS schemes has

been performed at a scale µ ∼ 1/x0. With this choice, logs in Eqs. (9) are small and need
not to be resummed. In contrast, larger logs enter the evolution from the scale µ ∼ 1/x0

to the conventional scale µ = 2 GeV at which our final results are quoted. For this reason,
the evolution function in Eq. (11) has been resummed by using the renormalization group
equations at the NLO.
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Figure 1: The vector correlator CV V (x) for different values of x2 as a function of the quark mass.
The line represents the result of the linear extrapolation to the chiral limit.

3 Numerical results

In this section we provide the numerical details of our computation and present the re-
sults obtained non-perturbatively for the renormalization constants of the bilinear quark
operators.

We generated a sample of 180 gauge configurations in the quenched approximation with
the standard SU(3) Wilson gluonic action at β = 6.45 (a ∼ 0.048 fm) and V = 323×70. For
these configurations we evaluated fermion propagators with the non-perturbatively O(a)-
improved Wilson action for hopping parameter values κ=0.1349, 0.1351, 0.1352, 0.1353.
We computed the two-point flavor non-singlet correlation functions

CSS(x) = 〈S(x)S(0)〉 , CPP (x) = 〈P (x)P (0)〉 ,

CV V (x) =
∑

µ

〈Vµ(x)Vµ(0)〉 , CAA(x) =
∑

µ

〈Aµ(x)Aµ(0)〉 ,

CTT (x) =
∑

µ,ν,ρ

(

1

6
δµν −

1

3

xµxν

x2

)

〈Tµρ(x)Tνρ(0)〉

(12)

of local bilinear operators in the standard way and estimated the statistical errors by a
jackknife procedure. These functions have been averaged over points which are equivalent
under hypercubic rotations. In the range of x2 we have studied, our data show a mild mass
dependence, and a linear or quadratic extrapolations to the chiral limit give compatible
results within the errors. In the following we will show the results linearly extrapolated to
the chiral limit. An example of this extrapolation, in the case of the vector correlator, is
illustrated in Fig. 1.

In Fig. 2 (left) we show the correlation function CV V (x) as a function of x2 and the
corresponding one parameter fit to A (x2)

−3
. The näıve expected behaviour is clearly

satisfied, even if a large scattering of the points due to lattice artifacts is visible, particularly
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Figure 2: CV V (x) in the interacting (left) and in the free (right) theory. In the first case, the

dotted curve is a one parameter fit showing the (x2)
−3

behaviour. In the free case the curve
represents the prediction of the free theory in the continuum limit
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Figure 3: The corrected vector correlator C ′

V V (x). The dotted curve is a one parameter fit

showing the (x2)
−3

behaviour.
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in the short distance region. Lorentz invariance requires the correlator in the continuum
limit to be a function of x2 only. The lattice data presented in Fig. 2 (left) show instead
that the results for CV V (x) computed at points which correspond to the same value of x2

are often quite separated. To clarify the origin of these effects, we studied the correlators
in the free theory as a function of volume, lattice spacing and quark masses. The free
theory prediction for the lattice correlation function CV V (x), in infinite volume and in the
chiral limit, is shown as an example in Fig. 2 (right). The spread of the data observed in
the interacting case turns out to be well reproduced in the free theory, at fixed volume and
lattice spacing. For values of x2 in the perturbative region, finite volume effects are found
to be negligible in the range of masses we use. On the other hand, the spread of the data
in the free case is considerable reduced by decreasing the lattice spacing. This suggests
that the dominant contributions due to lattice artifacts comes from discretization effects.

In order to reduce discretization effects in the interacting case, we define “corrected”
correlation functions

C ′

ΓΓ(x) =
CΓΓ(x)

∆ΓΓ(x)
(13)

where ∆ΓΓ(x) is the ratio of free correlator on the lattice over the continuum one, computed
in infinite volume and in the chiral limit,

∆ΓΓ(x) =
〈OΓ(x)OΓ(0)〉freelat

〈OΓ(x)OΓ(0)〉freecont

. (14)

By construction, ∆ΓΓ(x) is equal to unit up to discretization effects. The results for the
corrected function C ′

V V (x) are shown in Fig. 3. These results, as well as those used in
the following analysis, have been also averaged over points which correspond to the same
x2. The comparison between CV V (x) and C ′

V V (x) shows that, once tree-level discretization
effects are removed, the spread of the data is greatly reduced. This analysis further supports
the interpretation that the spread in the interacting theory is due to discretization effects.
Similar conclusions apply also to other correlators.

Once the correlators have been corrected at tree level with the factor that attempt to
reduce discretization effects at the leading order, they still suffer for remaining discretiza-
tion errors, at O(g2 a2) and higher. Their effects is shown in Fig. 4, where we plot the
corrected correlation functions C ′

ΓΓ(x) normalized to their continuum counterparts in the
free theory,

RΓΓ(x) =
C ′

ΓΓ(x)

CΓΓ(x)free
cont

(15)

in the case of the vector current and the scalar density operators. Note that, particularly
in the scalar case, the remaining lattice artifacts are still larger than statistical errors. A
further reduction of these effects could be obtained by computing the O(g2 a2) terms in
lattice perturbation theory.

In order to extract the renormalization constants, the previous analysis suggests to
implement the renormalization condition defined in Eq. (3) directly to the corrected cor-
relation functions C ′

ΓΓ(x). This is equivalent to impose

〈OX
Γ (x)OX

Γ (0)〉

〈OΓ(x)OΓ(0)〉freelat

∣

∣

∣

x2=x2
0

= 1 . (16)
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Figure 4: The ratios RV V (x) (left) and RSS(x) (right) defined in Eq. (15).
ZV ZA ZT

This work 0.801(2)(18)(6) 0.833(2)(27)(6) 0.895(2)(21)
RI-MOM 0.803(3) 0.833(3) 0.898(6)

SF 0.808(1) 0.825(8) −−

ZP/ZS ZS ZP

This work 0.888(2)(8) 0.702(4)(27)(23) 0.624(3)(19)(21)
RI-MOM 0.897(4) 0.679(8) 0.609(8)

SF 0.912(9) −− 0.61(1)

Table 1: Wilson results for the renormalization constants in the MS scheme at µ = 2 GeV, and
comparison with other non-perturbative techniques: RI-MOM [9] and Schrödinger Functional
[13, 14, 28].

Since OX
Γ (x) = ZX

Γ (x0)OΓ(x), the above condition implies

ZX
Γ (x0) = 1/

√

RΓΓ(x0) . (17)

The renormalization constants ZV , ZA, ZS, ZP , ZT in the X-space scheme and the
ratio ZP/ZS are shown in Fig. 5 as a function of (x0/a)

2. The scattering is reduced
for (x0/a)

2 ≥ 8, signaling that discretization effects are moderate above this point. For
(x0/a)

2 ≤ 21, which corresponds to 1/x0 & 0.9 GeV, the dependence of the renormal-
ization constants on the renormalization scale is compatible with the NLO prediction of
perturbation theory, indicated by solid lines in Fig. 5. In particular, the ratio ZP/ZS

is expected to be independent of the renormalization scale and we see that in the range
(x0/a)

2 = [9, 21] a reasonable good plateau is observed. In this window we extract the val-
ues of all renormalization constants by fitting the corresponding correlation functions with
the perturbative formulæ given in sec. 2. The results, translated to the MS scheme at the
scale µ = 2 GeV are presented in Tab. 1. The first quoted error is statistical and it is by far
the smallest one. The second is an estimate of the uncertainty coming from the spread of
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Figure 5: Renormalization constants in the X-space scheme as a function of the renormalization
scale x0. The solid line indicate the scale dependence predicted by NLO perturbation theory.
The dashed lines show the boundaries of the fitting window .

the points within the fitting window. This error could be further reduced by going to finer
lattices or by evaluating the O(g2 a2) terms in lattice perturbation theory. The third error
in Tab. 1 is an estimate of the systematics due to higher orders in continuum perturbation
theory, obtained by varying the renormalization scale µ in the perturbative expressions of
Eq. (9) in the range 1 ≤ µx0 ≤ 2. This uncertainty can be reduced by performing a N2LO
computation in perturbation theory and/or by implementing the step scaling technique2

proposed in Ref. [12]. The latter would require simulations at several lattice spacings and
goes beyond the scope of this exploratory study.

In order to investigate the applicability of the X-space renormalization method to dif-
ferent discretizations of the fermionic action, we also performed a feasibility study by using
Neuberger fermions. We used 80 configurations generated with the same gluonic action
at β = 6.0 (a ∼ 0.093 fm) and V = 163 × 32 which were retrieved from the repository
at the “Gauge Connection” [27]. For these configurations, overlap propagators at bare
masses ma = 0.040, 0.055, 0.070, 0.085, 0.100 have been evaluated, see Refs. [7, 8] for
details. The results have been quadratically extrapolated to the chiral limit, as suggested
by perturbation theory. The results for the renormalization constants of the vector and
axial-vector currents are shown in Fig. 6 as a function of (x0/a)

2. Since in this case the
lattice spacing is larger than in the case of Wilson fermions, the window contains at most
three points, which makes it difficult a reliable comparison with perturbation theory. Nev-
ertheless the data plotted in Fig. 6 show a smooth behaviour compatible with the chiral
properties of Neuberger fermions, and the value of ZV = ZA for 3 ≤ (x0/a)

2 ≤ 5, corrected
for the matching factor in Eq. (9), is compatible with the Ward identity estimate obtained

2It is interesting to note that, since the running of the operators with the renormalization scale is
scheme dependent but regularization independent, it is possible to implement the step scaling technique
by using any discretization of the fermionic action. The results, extrapolated to the continuum limit, can
then be used to evolve the renormalization constants computed non-perturbatively also with a different
discretization.
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Figure 6: Renormalization constants ZV , ZA and the ratio ZV /ZA for Neuberger fermions as a
function of x0.

in Ref. [7, 8], ZA = 1.55(4). In this case, the implementation of a step scaling technique
would have allowed us to impose the renormalization conditions at shorter distances, where
perturbation theory is reliable but discretization effects remain negligible.

4 Conclusions

We have studied the correlation functions of two fermion bilinear operators in coordinate
space at short Euclidean distances. A good statistical signal can be obtained with a small
number of configurations. The spread of the data computed at different lattice points with
the same x2, indicates that discretization errors can be large. This spread has been greatly
reduced by normalizing the correlation functions with the analogous ones computed in the
free theory at finite lattice spacing. A straightforward application of these results is a
determination of the renormalization constants of the composite operators. Even if with
larger uncertainties, the values of the renormalization constants which we have obtained
are in good agreement with previous non-perturbative determinations. This technique can
be easily applied to any fermion discretization, as shown in this paper, and it involves only
gauge-invariant correlation functions among local operators at finite Euclidean distance.
The matching with more popular renormalization schemes, such as the MS scheme, is
easy because it requires calculations only performed in continuum perturbation theory.
Therefore in the future, after more accurate studies of the systematic, the X-space method
could become a powerful technique to renormalize the four-fermion operators relevant in
hadronic weak decays.
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