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Abstract

We present a Lattice QCD determination of the chiral quark condensate based
on a new method. We extract the quark condensate from the operator product
expansion of the quark propagator at short euclidean distances, where it repre-
sents the leading contribution in the chiral limit. From this study we obtain
〈q̄q〉MS(2GeV) = −(265± 5± 22 MeV)3, in good agreement with determinations of
this quantity based on different approaches. The simulation is performed by using
the O(a)-improved Wilson action at β = 6.45 on a volume 323 ×70 in the quenched
approximation.
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1 Introduction

An accurate determination of the chiral quark condensate is a task of prime interest. Its
non-vanishing value signals the spontaneous breaking of chiral symmetry in QCD and,
quantitatively, it is related to the pseudo-Goldstone bosons mass spectrum.

Due to the purely non-perturbative nature of the quark condensate, its estimate is
rather challenging. Traditional approaches have been based on QCD sum rules (a review
of these techniques can be found in refs. [1, 2]). In the last years, first principle deter-
minations of the quark condensate have been provided by Lattice QCD calculations, and
the accuracy of these results is expected to systematically improve in time. The standard
method to extract the quark condensate from lattice calculations exploits the well known
GMOR formula [3]-[6]. Alternative techniques have been also investigated, based on the
ǫ-expansion of QCD in a small volume [7]-[9] and on the study of the Goldstone pole
contribution to the pseudoscalar quark Green function [10, 11].

In this paper, we present an exploratory Lattice QCD determination of the chiral
quark condensate based on a new method. We study the quark propagator in coordinate
space and its operator product expansion (OPE) [12] at short euclidean distances. The
OPE is a powerful technique that systematically includes non-perturbative corrections
and parameterizes the non-trivial properties of the QCD vacuum in terms of conden-
sates [13]. We extract the quark condensate 〈ψ̄ψ〉 by evaluating the quark propagator at
short distances on the lattice, and comparing the result with the OPE prediction,

S(x) ∼ CI(x)
/x

(x2)2
+ Cm(x)

m

x2
+ Cψ̄ψ(x) 〈ψ̄ψ〉 + . . . (1)

where the dots represent higher powers of x2 and of the quark mass m.1 Our final result
for the chiral quark condensate, renormalized in the MS scheme at the scale µ = 2 GeV,
is

〈q̄q〉MS(2 GeV) = −(265 ± 5 ± 22 MeV)3 , (2)

where the first error is statistical and the second systematic. This result is in good
agreement with those obtained from the other methods listed above. It also provides a
remarkable non-perturbative test of the OPE predictions at short distance in QCD.

The OPE of the quark propagator can be also performed in momentum space, from
which a determination of the quark condensate might be possible as well. When working
on the lattice with Wilson fermions, however, the leading contribution to the OPE in
momentum space is a constant term induced by discretization effects. Though vanishing
in the continuum limit, this term is dominant at fixed lattice spacing with respect to the
mass and the condensate contributions, whose coefficients are suppressed by 1/p2 and 1/p4

respectively [14]. In coordinate space this major obstacle is bypassed, since the Fourier
transform of the unphysical term is a discretized delta function, whose effect is negligible
at distances larger than few lattice spacings.

Another advantage of the approach studied in this paper is that it greatly simplifies the
renormalization procedure. Specifically, once the quark propagator on the l.h.s. of eq. (1)

1Throughout this paper we use the notation x =
√

x2.
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is renormalized, all contributions appearing on the r.h.s. turn out to be expressed in terms
of renormalized quantities. In particular, the determination of the chiral quark condensate
in this approach does not require the evaluation of the corresponding renormalization
constant.

The applicability of the OPE to correlation functions evaluated on the lattice at fixed
value of the lattice spacing a relies on the existence of a short distance region where the
conditions

a <∼ x <∼ 1/ΛQCD (3)

are both satisfied. The upper bound in eq. (3) guarantees that the Wilson coefficients
entering the OPE at the typical scale µ = 1/x can be evaluated in perturbation theory.
The lower bound must be satisfied in order to keep under control discretization effects.
In the present study, though we use an O(a)-improved action and the value of the inverse
lattice spacing is as large as a−1 ≃ 4 GeV, we find that in the region x <∼ 1/ΛQCD

discretization effects in the quark propagator are not negligible. These effects are in fact
responsible for most of the systematic uncertainty quoted in eq. (2). In order to reduce
their contribution, we have followed a procedure similar to the one applied in ref. [15]:
we have corrected the lattice results for the quark propagator by the lattice artifacts
computed in the free theory, thus reducing their size from O(a2) to O(αs a

2).
We now summarize the procedure followed in this study and present the plan of the

paper.

– In sect.2, we derive the OPE of the quark propagator in coordinate space, by including
QCD corrections up to the next-to-leading order (NLO).

– Details of the lattice simulation are presented in sect.3, where the tree-level correction
of lattice artifacts is also discussed.

– In sect.4 we compute the renormalization constant of the quark propagator non-pertur-
batively in the X-space scheme. The X-space method has been proposed in ref. [16], and
applied in [15] to compute the renormalization constants of bilinear quark operators. Our
result for the quark field renormalization constant, converted to the MS scheme, reads

ZMS
ψ (µ = 2 GeV) = 0.871 ± 0.003 ± 0.020 , (4)

in good agreement with the result obtained in ref. [17] by using the non-perturbative
RI-MOM method.

– In sect.5 we evaluate the chiral quark condensate by fitting in coordinate space the quark
propagator, extrapolated to the chiral limit, to its OPE. A second estimate is obtained by
first using the OPE at finite values of the quark mass and then extrapolating the result to
the chiral limit. Different functional forms are considered in the fits, and the differences
among the results are taken into account in the estimate of the systematic error. The two
approaches give completely consistent results.

– The final result quoted in eq. (2) is presented in sect.6, where we discuss in details the
evaluation of the systematic error.

– Finally, we sketch in the appendix the NLO QCD calculation of the Wilson coefficients
entering in eq. (1)

2



2 OPE of the quark propagator in coordinate space

The quark propagator can be expressed in terms of two scalar form factors, Σ1(x) and
Σ2(x), which are defined from

S(x) =
/x

(x2)2
Σ1(x) +

1

x2
Σ2(x). (5)

The leading terms in the OPE of Σ1(x) and Σ2(x) can be read from eq. (1):

Σ1(x) =
1

2π2
CI(x) + · · ·

Σ2(x) =
1

4π2
Cm(x)m− 1

4Nc
Cψ̄ψ(x) 〈ψ̄ψ〉 x2 + · · · (6)

where, at variance with eq. (1), the Wilson coefficients CI(x), Cm(x) and Cψ̄ψ(x) are
normalized to unity in the free theory. Nc is the number of colors and the quark condensate
is defined as

〈ψ̄ψ〉 ≡ 〈ψ̄αi (0)ψαi (0)〉 , (7)

where a summation over repeated color and spin indices is understood.
By using the known two-loop results for the quark field and the quark mass anomalous

dimensions in QCD, a simple one-loop calculation provides the renormalization group
improved expressions for the Wilson coefficients in eq. (6), at the NLO. The main steps
of the calculation are given in the appendix. We find, in the MS scheme,

ΣMS
1 (x, µ) =

1

2π2
Wψ(µ, 1/x)

[

1 − 2
αs(1/x)

4π
CF ξ (γE − log 2)

]

(8)

ΣMS
2 (x, µ) = Wψ(µ, 1/x)

[

1 − 2
αs(1/x)

4π
CF ξ (γE − log 2)

]

{

1

4π2
Wm(µ, 1/x)

[

1 +
αs(1/x)

4π
CF (4 − 2(ξ − 3)(γE − log 2))

]

mMS(µ) (9)

− 1

4Nc
W−1
m (µ, 1/x)

[

1 + 2
αs(1/x)

4π
CF (1 − (ξ + 3)(γE − log 2))

]

〈ψ̄ψ〉MS(µ) x2

}

.

The terms in square brackets represent the Wilson coefficients at the scale µ = 1/x,
whereas WI(µ, 1/x), with I = ψ,m, are the NLO evolution functions,

WI(µ, 1/x) =

(

αs(1/x)

αs(µ)

)

γ0

I
2β0

[

1 +

(

β1γ
0
I

2β2
0

− γ1
I

2β0

)

αs(µ) − αs(1/x)

4π

]

. (10)

The coefficients of the beta function and of the quark mass and quark field anomalous
dimensions at the LO and NLO read:

β0 =
11Nc − 2nf

3
, β1 =

34

3
N2
c −

10

3
Ncnf − 2CFnf

3



κ 0.1349 0.1351 0.1352 0.1353

amMS
AWI(2 GeV) 0.0305(4) 0.0227(3) 0.0188(2) 0.0149(2)

amMS
VWI(2 GeV) 0.0288(3) 0.0215(2) 0.0178(2) 0.0141(1)

Table 1: Quark masses in lattice units for the non-perturbatively O(a)-improved Wilson
action at β = 6.45. The results are taken from ref. [19] (where they are quoted in the
RI-MOM scheme at the scale µ = 3 GeV).

γ0
m = 6CF , γ1

m = CF

(

97

3
Nc + 3CF − 10

3
nf

)

(11)

γ0
ψ = −2ξCF , γ1

ψ = −4CF

((

25

8
+ ξ +

ξ2

8

)

Nc −
1

2
nf −

3

4
CF

)

where CF = (N2
c − 1)/(2Nc), ξ is the gauge parameter (ξ = 0 in the Landau gauge) and

nf is the number of active flavors (nf = 0 in the quenched approximation).
The result in coordinate space for the Wilson coefficient of the quark condensate given

in eq. (9) corresponds to the one obtained in ref. [18] in momentum space. Eqs. (8) and
(9) will be used in sects.4 and 5 to extract the quark field renormalization constant and
the chiral quark condensate with NLO accuracy in the MS scheme.

3 Analysis of discretization effects

In this section we present the details of the lattice simulation, illustrate the results ob-
tained for the bare quark propagator and discuss the free theory correction implemented
in order to reduce the lattice artifacts.

We have generated 180 gauge configurations in the quenched approximation with the
non-perturbatively O(a)-improved Wilson action on a volume 323 × 70 at β = 6.45. As a
value of the inverse lattice spacing we use a−1 = 3.87(19) GeV, as obtained in ref. [19] from
the studies of the quark-antiquark potential [20] and by using in input the reference scale
a−1(β = 6.0) = 2.0(1) GeV.2 We have computed the quark propagator at four values of
the hopping parameter, κ = 0.1349, 0.1351, 0.1352, 0.1353, corresponding to light quark
masses in the range ms/2 <∼ m <∼ ms. The corresponding values of the renormalized quark
masses have been obtained in ref. [19] from the study of both the vector and axial-vector
Ward identities, and are given in lattice units, in the MS scheme, in table 1. These values
have been used in the study of the OPE of the quark propagator and to perform the chiral
extrapolations of the quantities we are interested in. The statistical errors quoted in this
paper have been evaluated with the jackknife technique.

We have fixed the Landau gauge on the lattice by minimizing the quantity:

θ =
1

V

∑

x

Tr [∆µAµ(x) ∆νAν(x) ] (12)

2Had we used in input r0 = 0.5 fm we would have obtained a−1 ≃ 4.10 GeV.
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where V is the lattice volume and ∆µAµ is the discretized version of the gauge field
divergence ∂µAµ. We have required θ ≤ 5.0 × 10−4 for all the configurations used in this
study.

In order to compute the quark condensate and the quark field renormalization con-
stant, we have extracted from the quark propagator in the Landau gauge the bare form
factors Σ1(x) and Σ2(x) defined in eq. (5). The results are shown in fig. 1(top) for
κ = 0.1349 as functions of (x/a)2.

Lorentz invariance requires that, when approaching the continuum limit, the form
factors should become functions of x2 only. At fixed value of the lattice spacing, however,
the plots in fig. 1(top) show that points corresponding to the same value of (x/a)2 are
significantly spreaded out. This is true especially at short distances ((x/a)2 <∼ 10), where
discretization effects are expected to be larger. A better understanding of these effects
can be obtained by studying the lattice quark propagator in the free theory. Indeed, in
the short distance region which is relevant for the X-space method the interacting theory
is expected to approach the asymptotic free regime, up to small perturbative corrections.
One finds that Σ1(x) and Σ2(x), computed on the lattice in the free theory, present similar
deviations from the expected continuum behavior. The free theory results, obtained at
infinite volume and in the chiral limit, are shown in fig. 1(center), and they can be
compared with the lattice results shown in the top panels. This similarity suggests that
one can identify the discretization patterns in the free case in order to subtract them in
the interacting case of interest [15]. The practical implementation of this approach passes
through the definition of the “corrected” form factors.

In the case of Σ1(x) we define

Σcorr
1 (x) =

(

Σcont
1, free(x)

Σlat
1, free(x)

)

Σ1(x) , (13)

where Σcont
1, free(x) and Σlat

1, free(x) are the free theory form factors computed respectively in
the continuum and on the lattice, at infinite volume and in the chiral limit. For finite
values of the lattice spacing, the difference of the ratio Σcont

1, free(x)/Σ
lat
1, free(x) from unity

is a measure of tree-level discretization errors. After the correction of eq. (13), we expect
these errors to be reduced from O(a2) to O(αsa

2).
Concerning Σ2(x) one observes that, in the continuum and in the chiral limit, the

form factor vanishes at any order of perturbation theory. Therefore, in the case of Σ2 we
implement the following correction:

Σcorr
2 (x) = Σ2(x) − Σlat

2, free(x), (14)

where Σlat
2, free represents a pure discretization effect. After eqs. (13) and (14) have been

implemented, we also average the results for the form factors Σ1(x) and Σ2(x) obtained
at lattice points which correspond to the same value of x2.

The remarkable effect of the correction on the two form factors is shown in fig. 1
(bottom). In the following analysis, otherwise indicated, we will always use the corrected
form factors defined in eqs. (13) and (14).

5



Figure 1: The bare form factors Σ1 (left panels) and Σ2 (right panels). We show, from
top to bottom: the form factors in the interacting theory, as obtained from the lattice
simulation at k=0.1349; the form factors computed in the free lattice theory, at infinite
volume and in the chiral limit; the “corrected” form factors defined in eqs. (13) and (14).
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4 Renormalization of the quark propagator in the X-

scheme

In this section, we define theX-space renormalization scheme [15] for the quark propagator
and discuss the determination of the corresponding renormalization constant.

The quark field renormalization constant ZX
ψ (µ), in the Landau gauge X-scheme, is

determined non-perturbatively by imposing the condition

ZX
ψ (µ = 1/x) Σ1(x)

∣

∣

∣

ξ=0
m→0 = Σcont

1, free(x) (15)

where the value of the form factor in the free continuum theory and in the chiral limit
is Σcont

1, free(x) = 1/(2π2). The limit m → 0 in eq. (15) guarantees a mass-independent
definition of the renormalization scheme. It also guarantees that, when using the O(a)-
improved Wilson action, the renormalization constant computed from eq. (15) is auto-
matically O(a)-improved, without need of further improving the quark field [17].3

In order to extrapolate the form factor Σ1(x) to the chiral limit we have assumed a
linear dependence on the quark mass. This dependence describes well the lattice data as
can be seen from fig. 2, where the linear fit is shown for three values of x2 in the range
of interest. A quadratic fit has been also performed in order to evaluate the systematic
error involved in the chiral extrapolation.

By combining the renormalization condition (15) with the NLO evolution function of
Zψ given in eq. (10) and considering that the LO anomalous dimension of the quark field
vanishes in the Landau gauge, one finds at the NLO

ZX
ψ (µ) = Wψ(µ, 1/x)ZX

ψ (1/x) =

(

1 −
γ1
ψ

2β0

αs(µ) − αs(1/x)

4π

)(

Σcont
1, free(x)

Σ1(x)

)

. (16)

We also note that, in the Landau gauge, the equality of the renormalized form factor Σ1(x)
at one loop in the MS and X schemes implies that the NLO anomalous dimensions γ1

ψ are
also equal in the two schemes. In the numerical analysis, αs(1/x) has been evaluated at the

NLO in the MS scheme by using nf = 0 and the quenched estimate Λ
nf=0

QCD = 0.225(21) GeV

(obtained from r0Λ
nf=0

QCD = 0.602(48) [21] and using r0 = 0.525(25) fm).
As already discussed in the introduction, the X-space non-perturbative renormaliza-

tion approach relies on the existence of a window a <∼ x <∼ 1/ΛQCD which permits matching
the lattice results with the perturbative ones and, at the same time, to avoid the region at
very short distances affected by contact terms and large discretization effects. In practice,
in the present study, we consider this condition satisfied in the range 9 <∼ (x/a)2 <∼ 25
(the upper bound corresponds to x−1 ∼ 1 GeV).

3In the definition of the O(a)-improved quark field,

qI(x) = q(x) + a bq m q(x) + a c ′

q( /D + m) q(x) + a cNGI /∂ q(x)

the second term vanishes in the chiral limit, while the third one produces in the quark propagator a
contact term in x = 0. The contribution to the quark propagator of the last non gauge-invariant term
has been found to be practically indistinguishable from the contact term proportional to c ′

q [14].
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Figure 2: Quark mass dependence of Σ1(x) at three different values of x2. The dashed
lines represent the result of a linear fit.

ZX
ψ (µ) (x/a)2-range fit

0.871 ± 0.003 [9, 25] constant

0.852 ± 0.003 [9, 40] linear

Table 2: Zψ(µ) in the X-space scheme at µ = 2 GeV as obtained from either a constant
or a linear fit in x2. The quoted errors are statistical only.

The results for ZX
ψ (µ = 2 GeV) as obtained from eq. (16) at different values of x2 are

shown in fig. 3. One observes that even in the region (x/a)2 = [9, 25] the data show some
spread, at the level of few percent. This spread is due to discretization errors which remain
after the free theory correction has been implemented. It represents the main source of
systematic uncertainty in the evaluation of Zψ. A second source of uncertainty is due
the fact that one cannot exclude, even in the fitting region (x/a)2 = [9, 25], a systematic
dependence of the data on x2, which could be due to higher order contributions to the
OPE of Σ1(x) neglected in eq. (6). In order to evaluate this systematics, we have evaluated
Zψ(µ) from both a constant and linear fit in (x/a)2, by considering in the latter case larger
intervals in x2 (up to (x/a)2 = 40). The results of the fits are presented in table 2.

The other sources of systematic effects, as those deriving from the determination of
the lattice scale, the estimate of ΛQCD, the difference between linear and quadratic chiral
extrapolations and the use of the vector or the axial-vector definitions of the quark masses
in these extrapolations, are found to be negligible. As final estimate of ZX

ψ (µ) we thus
quote

ZX
ψ (2 GeV) = 0.871 ± 0.003 ± 0.020 (17)

where the first error is statistical and the second systematic. The central value in eq. (17)
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(x/a)
2

0.75
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0.81

0.84

0.87

0.90
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0.96

0.99
constant fit  [9,25]
linear fit [9,40]

Z
X

ψ(µ=2 GeV)

Figure 3: Values of ZX
ψ (µ = 2 GeV) as obtained from eq. (16) for different values of

(x/a)2. The solid lines indicate the results obtained from a constant fit in x2 and the
estimated systematic error (eq. (17)). The dashed vertical lines show the range in (x/a)2

where the constant fit is performed. The result of a linear fit in x2 is also shown (dashed
line). In the latter case, the estimate of ZX

ψ (µ = 2 GeV) is given by the intercept.

is the one obtained from the constant fit in the shorter distance range (x/a)2 = [9, 25],
where the contribution of higher power corrections is more suppressed. The few percent
error on the value of Zψ introduces an uncertainty in the estimate of the chiral quark
condensate discussed in the next section which is completely negligible.

The vanishing of the one-loop contribution to the form factor Σ1(x) in the Landau
gauge implies that the quark field renormalization constant at the NLO is equal in several
commonly used renormalization schemes. In particular,

ZX
ψ (µ) = ZMS

ψ (µ) = ZRI−MOM
ψ (µ) (18)

at the NLO. The result in eq. (17) can be therefore directly compared to the value
ZRI−MOM
ψ (2 GeV) = 0.865 ± 0.003 obtained non-perturbatively in ref. [17] by using the

RI-MOM method. It can be also compared with the prediction of one-loop boosted per-
turbation theory ZMS

ψ (2 GeV) ≃ 0.880.
We also quote the value of ZX

ψ obtained by using the rough lattice data, without
implementing the tree-level correction of discretization effects: ZX

ψ (2 GeV) = 0.868 ±
0.003 ± 0.080. The difference in the central value with respect to eq. (17) is less than
0.5%. As expected, however, the systematic uncertainty is much larger in the latter case,
due to the significantly larger spread of the points in the fitting region. In practice, the
tree-level correction has smoothed the overall behavior of the quark propagator at short

9



distances allowing the reduction of the systematic uncertainty by about a factor 4, but
affecting the central value by only a small amount.

5 Extraction of the quark condensate

One of the advantages of the approach considered in this paper to evaluate the chiral quark
condensate is that the renormalization procedure is greatly simplified: in the OPE of the
quark propagator, expressed by eq. (1), once the propagator on the l.h.s. is renormalized
by the quark field renormalization constant, the r.h.s. turns out to be expressed directly
in terms of renormalized quantities. In particular, the quark condensate, renormalized at
a scale µ, can be extracted directly from the trace of the quark propagator (i.e. the scalar
form factor Σ2) renormalized at the same scale. Furthermore, once the quark propagator
is improved at O(a), the operator matrix elements which enter its OPE are automatically
improved at the same order.

In the study of the OPE, the physical quantity which we are interested in is the quark
condensate in the chiral limit. To reach this limit, we have followed two procedures. In
the first approach, we extrapolate to the chiral limit the scalar form factor Σ2(x) for
each value of x2. The quark condensate is then evaluated by using the OPE expressed
by eq. (9), which is accurate at the NLO, in the massless case. In this limit, the quark
condensate represents the leading term of the expansion. In the second approach, which
we consider for a consistency check of the calculation, the order of the extrapolations is
inverted. At finite values of the quark mass, the OPE of Σ2 at order x2 contains, besides
the quark condensate, a term proportional to m3. In this case, we first extract the whole
O(x2) contribution to the OPE and then extrapolate the result to the chiral limit. As
we will show in the following, the two procedures yield completely consistent predictions.
We now discuss the two approaches in more detail.

Method I: For each value of x2, the renormalized form factor Σ2(x) is extrapolated to
the chiral limit, both linearly and quadratically in either the vector or the axial-vector
quark masses. Examples of this chiral extrapolation, for three typical values of x2, are
shown in fig. 4. For each value of x2 we have then computed the quantity

QI(x, µ) ≡ − (ΣMS
2 (x, µ))chiral

Cψ̄ψ(x, µ) x2/4Nc

= 〈ψ̄ψ〉MS(µ) + O(x2) (19)

and performed a fit to the form

QI(x, µ) = 〈ψ̄ψ〉MS(µ) +B x2 . (20)

Both constant (B = 0) and linear fits have been performed, and the results are presented
in table 3, see also fig. 5. Since the results of the linear fit are unstable when the fit is
limited to the interval (x/a)2 = [9, 25], we have considered in this case larger distances,
up to (x/a)2 = 40. In all cases, we find consistent results for the quark condensate, as can
be seen from table 3. We also find that the contribution of the O(x2) term is completely
negligible, and the coefficient B is compatible with zero within the statistical errors.

10



0.015 0.020 0.025 0.030

am
AWI

0.0006

0.0008

0.0010

0.0012

Σ2(x=15)
Σ2(x=20)
Σ2(x=25)
linear fits

Method I - Chiral Fit

Figure 4: Quark mass dependence of Σ2(x) at three different values of x2. The dashed
lines represent the result of a linear fit.

0 5 10 15 20 25 30 35 40 45 50 55 60 65

(x/a)
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-4.0e-04

-3.0e-04

-2.0e-04

QI(x, µ=2 GeV)
Constant fit [9,25]
Linear fit [9,40]

Method I - x
2
 Fit

Figure 5: Values of QI(x, µ = 2 GeV) as a function of (x/a)2. The solid lines indicate the
results obtained from a constant fit in x2 and the estimated systematic error. The dashed
vertical lines show the range in (x/a)2 where the constant fit is performed. The result of
the linear fit in x2 is also shown (dashed line).
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〈ψ̄ψ〉MS(µ = 2 GeV)[ MeV 3] (x/a)2-range
Constant fit Linear fit
−(265 ± 5)3 − [9, 25]
−(266 ± 4)3 −(265 ± 7)3 [9, 40]

Table 3: Values of the chiral quark condensate in the MS scheme at the scale µ = 2 GeV
as obtained from either the constant or the linear fit of eq. (20).

As a further check of our results, we have also extracted the quark condensate directly
from the ratio Σ2/Σ1 of the two form factors. From eq. (6) one finds that, in the chiral
limit, this ratio behaves as

ΣX
2 (x, µ)

ΣX
1 (x, µ)

=
Σ2(x)

Σ1(x)
= − π2

2Nc

Cψ̄ψ(x, µ)

CI(x, µ)
〈ψ̄ψ〉MS(µ) + O(x2) . (21)

The determination of the quark condensate from eq. (21) bypasses the evaluation of the
quark field renormalization constant Zψ. This constant cancels in the ratio, since it enters
the renormalization of both the form factors Σ1 and Σ2. This also implies that the r.h.s.
of eq. (21) is independent of the choice of the renormalization scale µ. We also find
that this ratio, when computed by using the non-corrected form factors, exhibits a more
stable plateau as a function of x2. The results for the quark condensate obtained with
the two approaches are in excellent agreement (within less than 2%), indicating that the
uncertainty connected with the evaluation of Zψ is actually negligible.

Method II: In this second approach we study the OPE of Σ2(x) at finite values of the
quark mass, extract the O(x2) contribution to the expansion and extrapolate it to the
chiral limit, in order to get the chiral quark condensate.

The fit of the form factor Σ2 to its OPE is shown in fig. 6, for two values of the quark
mass. We find that the mass term contribution to the OPE, which is leading at very
short distances where lattice artifacts are more severe, is poorly estimated from the fit.
For this reason, we have chosen to fix the renormalized quark mass in eq. (9) to the values
determined in ref. [19] and collected in table 1. Therefore, for each value of the quark
mass we compute the quantity

QII(x,m, µ) ≡ −ΣMS
2 (x, µ) − Cm(x, µ)mMS(µ)/4π2

Cψ̄ψ(x, µ) x2/4Nc
. (22)

Notice that, in the chiral limit, QII(x,m, µ) reduces to QI(x, µ) defined in eq. (19). The
small spread of the results coming from choosing the vector or the axial-vector quark
masses is included in the systematics. We then fit QII(x,m, µ) either to a constant or
linearly in x2 and extrapolate the result, denoted as QII(m,µ) in fig. 7, to the chiral limit,
where it reduces to the chiral quark condensate. The quark mass extrapolation is shown
in fig. 7. Though the points in the plot look very well aligned, a quadratic fit in the
quark mass has been also performed, in order to evaluate the corresponding systematic
uncertainty. We find that the results obtained for the chiral quark condensate with this
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Figure 6: Values of ΣX
2 (x, µ = 2 GeV) as a function of (x/a)2 for two different values

of the quark mass. The solid lines represent the results of the fit to the OPE prediction
performed by using for the renormalized quark masses the values given in table 1.
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Figure 7: Linear fit of QII(m,µ = 2 GeV) as a function of the quark mass. The extrapo-
lated value is the chiral quark condensate in lattice units.
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second approach are indistinguishable, within the statistical errors, from those derived by
using the method I and presented in tab. 3.

6 Results and discussion

Our final estimate for the chiral quark condensate is obtained from the results given in
table 3 after including the evaluation of the systematic error. We quote:

〈ψ̄ψ〉MS(2GeV) = −(265 ± 5 ± 22 MeV)3 , (23)

where the first error is statistical and the second systematic. The latter, which amounts
to about 25%, is due to:

- the spread of the points in the fitting regions. As discussed in sect.3, this spread is
mostly due to discretization effects which are left after the tree-level O(a)-correction
has been applied to the lattice data. This error, of about 18%, represents the main
source of systematic uncertainty, besides the quenching approximation.

- Arbitrariness in the choice of the fitting interval (within the window a <∼ x <∼
1/ΛQCD). This yields a 4-5% uncertainty.

- Different functional forms considered in the fits. Performing a quadratic fit instead
of a linear one in the quark mass extrapolations introduces a systematic difference
of about 9%. Including the O(x2) contribution in the fits of QI and QII to their
OPEs gives a 4-5% variation in the results.

- The statistical error associated to the determination of the lattice spacing. This error
introduces an uncertainty of about 15% in the estimate of the quark condensate.
Notice that the systematic error associated in the quenched approximation to the
dependence of the lattice spacing on the physical quantity used to fix the scale is
not included. We consider this error as a part of the systematic quenching effect.

- The uncertainty on the quark field renormalization constant Zψ, used to renormalize
the quark propagator. This effect is completely negligible in the determination of
the quark condensate, as discussed in sect.5.

- The difference between the results obtained using either the vector or the axial-
vector definitions of the quark masses. The systematics is slightly affected by this
effect, by less than 1%.

- The 10% error on the quenched estimate of ΛQCD gives a completely negligible
uncertainty in the determination of the quark condensate.

The uncertainty coming from finite volume effects cannot be directly estimated in the
present study, since our results have been obtained at fixed volume. A study of lattice
artifacts performed in ref. [15] has shown that in the short distance region, which is the one
relevant for the X-space method, finite volume effects on the lattice correlation functions
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in the free theory are negligible with respect to discretization effects. We expect this result
to remain valid in the interacting theory as well, though a more quantitative conclusion on
this point would require further investigations. The main source of uncertainty which is
not evaluated in our estimate of the chiral quark condensate is the effect of the quenching
approximation.

In conclusion, in this exploratory study we have investigated on the lattice the OPE
of the quark propagator at short euclidean distances, and shown the feasibility of this ap-
proach to compute the chiral quark condensate. The result obtained in this way is in good
agreement with previous determinations of this quantity based on different approaches.
The strategy investigated in the present study can be also applied to compute on the
lattice the matrix elements of other local operators which enter the OPE of correlation
functions at the leading orders. It can be also directly implemented in lattice simulations
performed with dynamical quarks.
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Appendix: NLO calculation of the Wilson coefficients

In this appendix we sketch the NLO QCD calculation of the Wilson coefficients introduced
in eq. (6).

The OPE of the quark propagator in euclidean space is expressed by

T (ψ(x)ψ̄(0)) =
1

2π2
CI(x)

(/x)

(x2)2
+

1

4π2
Cm(x)

m

x2

− 1

4N
Cψ̄ψ(x) (ψ̄ψ) + . . . (24)

where the dots represent higher powers of x2 and of the quark mass m. All quantities in
eq. (24) are renormalized at a given scale and in a given renormalization scheme. In the
following, we will choose the MS renormalization scheme.

In order to determine the Wilson coefficients at the NLO in QCD, we calculate both the
left and the right hand side of eq. (24) up to O(αs) by choosing a common set of external
states. The coefficients CI(x) and Cm(x), in particular, can be determined by taking the
vacuum expectation value of eq. (24) in perturbation theory, where the contribution of
the quark condensate is vanishing. Eq. (24) then simply reduces to

S(x) =
1

2π2
CI(x)

(/x)

(x2)2
+

1

4π2
Cm(x)

m

x2
, (25)
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where S(x) is the quark propagator computed in one-loop perturbation theory. By using
dimensional regularization, with D = 4 − 2ε, one has

S(x) =
∫

dD k

(2π)D
e−ik·xS(k) (26)

where

S(k) = Zψ
/k

i k2



1 − αs
4π

CF ξ

(

k2

µ2

)

−ε (
1

ε̂
+ 1

)



+

+ Zψ
Z−1
m m

k2



1 +
αs
4π

CF

(

k2

µ2

)

−ε (
3 − ξ

ε̂
+ 4

)



 , (27)

and 1/ε̂ ≡ 1/ε + log(4π) − γE . From eq. (27) one derives the expressions of the quark
field and the quark mass renormalization constants in the MS scheme:

Zψ = 1 +
αs
4π

CF
ξ

ε̂
, Zm = 1 +

αs
4π

CF
3

ε̂
. (28)

By inserting eq. (27) into eq. (26) and using

∫

dD k

(2π)D
e−ik·x

(k2)r
=

1

(4π)D/2
Γ(D/2 − r)

Γ(r)

(

x2

4

)r−D/2

(29)

we obtain

S(x) =
1

2π2

[

1 − αs
4π

CF ξ
(

2γE + log(µ2x2/4)
)

]

(/x)

(x2)2
+

1

4π2

[

1 +
αs
4π

CF
(

4 − (ξ − 3)
(

2γE + log(µ2x2/4)
))

]

m

x2
. (30)

From this result, after comparing with eq. (25), the Wilson coefficients CI(x) and Cm(x)
can be readily identified:

CI(x) = 1 − αs
4π

CF ξ
[

2γE + log(µ2x2/4)
]

Cm(x) = 1 +
αs
4π

CF
[

4 − (ξ − 3)
(

2γE + log(µ2x2/4)
)]

. (31)

In order to compute the Wilson coefficient of the quark condensate, Cψ̄ψ(x), we derive
a matching equation by inserting both sides of eq. (24) in a connected Green function
with two external quark fields at fixed momenta:

〈(ψaα(x)ψ̄bβ(0))ψ̄cγ(p1)ψ
d
δ (p2)〉 = − 1

4N
δαβδ

abCψ̄ψ(x) 〈(ψ̄(0)ψ(0))ψ̄cγ(p1)ψ
d
δ (p2)〉. (32)

By putting

Cψ̄ψ(x) = C0
ψ̄ψ(x) +

αs
4π

C1
ψ̄ψ(x) (33)
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Figure 8: Feynman diagram relevant for the calculation of the Wilson coefficient Cψ̄ψ(x)
at O(αs).

and summing in eq. (32) over Dirac (α,β) and color (a,b) indices, one immediately obtains
the O(1) contribution to the Wilson coefficient,

C0
ψ̄ψ = 1 . (34)

At O(αs), the matching equation can be schematically written as

〈(ψ̄(0)ψ(x))ψ̄ψ〉1 = C0
ψ̄ψ〈(ψ̄(0)ψ(0))ψ̄ψ〉1 + C1

ψ̄ψ〈(ψ̄(0)ψ(0))ψ̄ψ〉0 (35)

where 〈. . .〉0 and 〈. . .〉1 represent respectively the O(1) and O(αs) contributions to the
Green functions. We now consider the amputated Green functions, and use eq. (34)
together with the relation

〈(ψ̄(0)ψ(0))ψ̄ψ〉amp0 = I , (36)

to obtain
C1
ψ̄ψ · I = 〈(ψ̄(0)ψ(x))ψ̄ψ〉amp1 − 〈(ψ̄(0)ψ(0))ψ̄ψ〉amp1 . (37)

The Feynman diagram which contributes to eq. (37) at O(αs) is shown in fig. 8. Since the
matching condition is independent of the choice of the external states, we can evaluate
this diagram by putting directly p1 = p2 = 0. In addition, by having neglected in
eq. (24) higher power corrections in the quark mass, we can compute the amputated
Green functions in eq. (37) directly in the limit m = 0. We then find:

C1
ψ̄ψ · I = 16 π2CF µ

2ε
∫

dD k

(2π)D

(

e−ik·x − 1
)

[

γµ
1

/k

1

/k
γν
]

1

k2

(

δµν − (1 − ξ)
kµkν
k2

)

+

[

(Zψ − 1) −
(

Zψ̄ψ − 1
)]

· I (38)

where Zψ̄ψ = Z−1
m . By evaluating the Feynman integral with the aid of eq. (29), we finally

obtain
Cψ̄ψ(x) = 1 +

αs
4π

CF
[

2 − (ξ + 3)
(

2γE + log(µ2x2/4)
)]

(39)

The complete NLO expressions for the Wilson coefficients are derived from eqs. (30) and
(39) by applying the standard NLO evolution functions introduced in eq. (10).
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