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Abstract

Finite energy QCD sum rules with Legendre polynomial integration kernels
are used to determine the heavy meson decay constant fBc , and revisit fB
and fBs . Results exhibit excellent stability in a wide range of values of the
integration radius in the complex squared energy plane, and of the order of
the Legendre polynomial. Results are fBc = 528 ± 19 MeV, fB = 186 ± 14
MeV, and fBs = 222± 12 MeV.
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1 Introduction

The decay constant of a pseudoscalar meson Bq consisting of a heavy b-
quark and a lighter q-quark, with q = u, d, s, c, is defined through the matrix
element of the pseudoscalar current

〈Ω|(mb +mq)(qiγ5b)(0)|Bq〉 = fBqM
2
Bq
, (1)

where |Ω〉 is the physical vacuum, MBq is the mass of the Bq meson and fBq

the corresponding leptonic decay constant. These decay constants are of
great phenomenological interest since they enter as input in non-leptonic B
decays, in the hadronic matrix elements of B− B̄ mixing, and in the extrac-
tion of CKM matrix elements |Vcb|, |Vub| from the leptonic decay widths of
B mesons. The so-called hadronic B parameter, which is directly related to
the deviation from the vacuum saturation hypothesis, also requires knowl-
edge of these leptonic decay constants, which are of central interest to the
ongoing experiments carried out at B factories. Since their determination
involves non-perturbative QCD effects, one has to rely on essentially two
approaches, QCD sum rules (QCDSR) and lattice QCD (LQCD) simula-
tions. Since the pioneering work of Shifman, Vainshtein and Zakharov [1]
the sum rule method has been used successfully to calculate various low
energy parameters in QCD [2]. Specific sum rules are based on Borel trans-
forms, Hilbert transforms, positive moments or inverse moments. Sum rule
calculations of the decay constants have been performed since the 1980’s,
with results in the range fB = 160 − 230 MeV, fBs/fB = 1.1 − 1.4, and
fBc = 160 − 360 MeV [3]-[11]. A heavy quark effective theory calculation
[12] gives fB = 206± 20 MeV, while historical LQCD determinations fall in
the wide range fB = 161− 218 MeV, and fBs/fB = 1.11− 1.16 [13]. Recent
QCDSR calculations have narrowed the range of results to fB = 189− 207
MeV, and fBs = 216− 242 MeV [14]-[15], while LQCD calculations, claim-
ing high accuracy, give fB = 186 − 205 MeV, and fBs = 224 − 244 MeV
[16]. For Bc a compilation of many LQCD determinations [17] gives values
in the wide range fBc = 380−680 MeV. The experimental situation remains
unclear. For instance, using the recent Belle result for fB [18],

fB|Vub| = (7.4± 0.8(stat)± 0.5(syst))× 10−4 GeV , (2)

and |Vub| = (4.01± 0.56)× 10−3 [19], one obtains

fB = 185± 35 MeV (3)
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However, a recent value of the branching fraction of B+ → τ+ ν from BaBar
[20] gives fB = 295 MeV (fB = 221 MeV), depending on their value of Vub
from exclusive (inclusive) charmless semileptonic B-decays.
In a previous calculation of fB and fBs by some of the present authors [9],
a method was used based on finite energy QCDSR (FESR) which equates
positive moments of data with QCD theory. On the theoretical side, a large
momentum expansion in powers ofm2

b/s was taken from reference [21], where
mb is the mass of the bottom quark and s the square of the center-of-mass
energy. The perturbative expansion was considered up to second order in
the strong coupling constant, and up to seventh order in m2

b/s. On the
phenomenological side, a combination of positive moments involving Legen-
dre polynomials was used to optimize the experimental data, enhancing the
lowest lying Bq meson. The contribution of the unknown continuum data
was shown to be negligible, after a suitable choice of Legendre polynomials
[9].
The present paper is devoted to determining fBc , and updating results for
fB and fBs . We use more recent information on the QCD side of the sum
rule, and employ a new criterion for optimizing the stability of the result.
For the QCD correlator we use an O((m2

b/s)
7) expansion of the pseudoscalar

two-point function up to O(α2
s) [21]. For fBc and fBs we supplement this

with O(m4
q) light quark mass corrections up to O(αs) [8]. To account for

non-perturbative corrections we include terms up to dimension six in the
operator product expansion (OPE). Rather importantly, the correlator is
expressed in terms of the running quark mass, rather than the pole mass
[22], as it is well known that this improves the convergence of the perturba-
tive series [8].

2 Preliminaries

To study the decay constants of Bq mesons, with q ∈ {u, d, s, c}, we consider
the pseudoscalar two-point correlator

Π(q2) = i

∫
dx eiqx〈Ω|T (j5(x)j5(0)†)|Ω〉 , (4)

where j5(x) is the divergence of the axial-vector current

j5(x) = (mb +mq) : q(x)iγ5b(x) : , (5)
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and mb and mq are the masses of the bottom quark b and the lighter quark q,
respectively. We then analytically continue Π(q2) over the complex squared
energy s-plane and invoke Cauchy’s theorem

1

2πi

∮
Γ
P (s)Π(s)ds = 0 , (6)

valid for all holomorphic functions P (s), and all closed curves Γ which do
not encircle a singularity of Π(s). The correlator has singularities only on
the positive real axis for |s| > sthr, the physical threshold. Choosing Γ to
correspond to a circle of radius |s| = s0, along both sides of the cut on the
real axis, and using the Schwarz reflection principle, one finds

1

π

∫ s0

sthr

Im [P (s) Π(s)]ds = − 1

2πi

∮
|s|=s0

P (s)Π(s)ds . (7)

This leads to a relation between QCD parameters and experimental observ-
ables, after invoking quark-hadron duality, i.e. assuming that Π(s) in the
contour integral is given by QCD if s0 is large enough, i.e.

Π(s)||s|=s0 = ΠpQCD(s) + ΠnpQCD(s) , (8)

where we have explicitly separated the perturbative, ΠpQCD(s), and the non-
perturbative, ΠnpQCD(s) QCD contributions. In this case one obtains the
FESR

1

π

∫ s0

sthr

Im [P (s)ΠHAD(s)]ds = − 1

2πi

∮
|s|=s0

P (s)ΠQCD(s)ds . (9)

The use of non-trivial integration kernels P (s) in FESR was pioneered in [23]
in order to account for potential quark-hadron duality violations, e.g. in the
Weinberg sum rules. Since then they have been frequently and successfully
used in a variety of QCDSR applications. In particular, Legendre polynomial
kernels subject to global constraints have been employed in extractions of
the chiral condensates from τ -decay data [24], and on the chiral corrections
to the Gell-Mann-Oakes-Renner relations [25]. The current most precise
determinations of the charm- and bottom-quark masses [26]-[27] are also
based on FESR involving these kernels. The general purpose of these kernels
is to tune the FESR so as to emphasize or quench energy regions where the
information is well or poorly known, respectively. In this way systematic
uncertainties can be considerably reduced.
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3 Phenomenological Contribution and P (s)

As usual we parametrize the phenomenological correlator with a single pole
for the Bq meson. For the unknown hadronic continuum we define the
physical threshold

sphys = (MB∗ +MPq)2 , (10)

where B∗ is a vector meson and Pq is the lightest pseudoscalar meson with
q = u, d, s, c quantum numbers, namely, Pq = π, K, D, respectively. The
spectral density can then be written as

ρ(s) ≡ 1

π
Im ΠHAD(s) =

1

π
Im Πpole(s)

+
1

π
Im Πcont(s) θ(s− sphys)

= M4
Bq
f2
Bq
δ(s−M2

Bq
)

+ ρh(s) θ
[
(s− (MB∗ +MPq)2

]
, (11)

where ρh(s) is given by the sum over all hadronic intermediate states with
the quantum numbers of Bq. To minimize the contribution of the unknown
hadronic continuum we shall make a judicious choice of P (s). We choose a
polynomial

Pn(s) = a0 + a1s+ a2s
2 + . . .+ ans

n , (12)

and determine the coefficients, ai, subject to the global constraint∫ s0

scont

skPn(s)ds = 0 ∀k ∈ {0, . . . , n− 1} . (13)

To fix the last coefficient we use an arbitrary overall normalization condition.
The functions Pn(s) are then Legendre polynomials defined in the interval
[scont, s0], where we fix scont ∼ sphys by demanding maximum duality in the
sense explained below. The introduction of this polynomial kernel in the
sum rule minimizes the continuum contribution to the phenomenological
side. In fact, to the extent that Im Πcont(s) can be approximated by an
(n− 1)-th degree polynomial, these conditions lead to an exact cancellation
of the continuum contribution on the left hand side of Eq. (9). At the same
time, the role of the Bq pole will be enhanced. Increasing n increases the
OPE truncation error, but this is compensated by increasing the integration
radius |s0|. It will turn out that the latter is of reasonable magnitude on the
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relevant scale, i.e., m2
B. If, on the other hand, the radius of integration is

chosen too high, the polynomial fit will deteriorate. It is hoped, and actually
confirmed, that there is a wide intermediate region of stability. To find this
region of stability we begin by choosing a value of n = 3, 4, 5, .. and then
increasing s0 until stability is reached in each case. In order to make the
duality region more pronounced we allow the value of the threshold scont

to vary around the physical threshold sphys, as in [28], and in such a way
that the dependence of fBq on s0 shows maximum stability. This means
requiring that the first and second derivatives vanish at the same point.
Reassuringly, we find that the value of scont which maximizes this stability
is very close to sphys, thus validating this procedure. The contribution of the
threshold region is then estimated separately. We have reasons to believe
that if the resulting fBq is independent of n and s0 in some finite region,
then the unknown theoretical and hadronic contributions effectively cancel
there. This follows from general properties of Legendre polynomials [29],
the details of which will appear in a separate work. We are then left with
the key relation

M4
Bq
f2
Bq
Pn(M2

Bq
) = − 1

2πi

∮
|s|=s0

Pn(s)ΠQCD(s)ds . (14)

4 Perturbative Contribution

We now turn to the perturbative part of the QCD correlator, ΠpQCD(s). To
calculate fBs and fBc we need to take into account the effect of the lighter
quark. We separate the correlator into its expression in the mq = 0 limit,
and add to it the lighter quark mass corrections

ΠpQCD(s) = ΠpQCD
mq=0 (s) + ΠpQCD

mq
(s) (15)

For ΠpQCD
mq=0 (s) we use the high-energy expansion given in [21]. This is an

expansion to order O(α2
s)

ΠpQCD
mq=0 (s) = Π

(0)
mq=0(s) + Π

(1)
mq=0(s)

(
αs(µ)

π

)

+ Π
(2)
mq=0(s)

(
αs(µ)

π

)2

(16)
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and is given to O(z−7) in z = s/m̂2
b , where m̂b is the pole mass of the b

quark. For example, to leading order in αs [21]

Π
(0)pQCD
mq=0 (s) =

3

16π2
(m̂b + m̂q)

2s

{
3 + 4Lz − 8Lz

1

z

+ (−3 + 4Lz)
1

z2
+

2

3

1

z3
+

1

6

1

z4
+

1

15

1

z5

+
1

30

1

z6
+

2

105

1

z7

}
(17)

where Lz = −(ln(−z))/2 and m̂q is the pole mass of the light quark (note
that we keep the light quark mass in the pre-factor arising from the diver-
gence of the axial-vector current). It is well known that the convergence of
the QCD correlator is improved if it is expressed in terms of the running
quark masses [8, 9]. We thus write the pole masses in terms of the running
masses, mb(µ) and mq(µ), expand the final expression as a series in αs(µ),
and truncate at O(α2

s). As the perturbative expansion is not known to all
orders in αs(µ) the final result will have some dependence on the renor-
malization scale, µ. To improve the convergence we take µ = mb, which

re-sums the ln(
m2

b
µ2

) terms appearing in the running quark mass [9]. We later

investigate the effect of varying µ, retaining the ln(
m2

b
µ2

) terms. The O(z−7)
truncation has a very good convergence over the range of s used here, and
it introduces a negligible error.

To calculate at µ = mb, and to investigate the µ-dependence, we use the
running coupling αs(µ) to four-loop order [30, 31], and running quark masses
to four-loops [32]. We performed the contour integral in two complementary
ways, i.e. analytically and numerically. Analytically, we followed the method
outlined in [9]. Numerically, we used standard computational methods to
perform the contour integral. The final results agree to a few MeV, and the
error estimates are entirely compatible.
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5 Light Quark Mass Corrections

The light quark mass corrections were originally obtained to O(αs) in [33,
34]. These corrections to the full correlator are somewhat unwieldy, but the
imaginary part to O(m4) is presented in a compact form in [8]. For example,
the O(α0

s) term is

Im Π(0)pQCD
mq

(s) =
3

8π2
(mb +mq)

2
{

2(1− x)mbmq

− 2m2
q − 2

(1 + x)

(1− x)

mbm
3
q

s

+
(1− 2x− x2)

(1− x)2

m4
q

s

}
(18)

where x = m2
b/s. The O(αs) term can be found in the appendix of [8]. In

the case of fBc , where the lighter (charm) quark mass correction is almost
10 %, the O(m4) terms contribute less than 1 %, so we are justified in
making this approximation. Of the 10 % correction, around 4 % comes from
the O(αs) term, indicating that the convergence is not ideal. It is, however,
good enough for the present level of precision, and in any case it is somewhat
included in the determination of the error from varying µ in the range 3 -
6 GeV. In the case of fBs the light quark mass correction is around 5 %.
For fB we take mu = md = 0. To evaluate the integral of Pn(s)ΠpQCD

mq (s)
we again use the Cauchy integral theorem to rewrite it as the integral over
the imaginary part along the real axis, now starting from s = (mb + mq)

2,
the start of the cut, and use Eq. (7). This is purely a mathematical device,
unrelated to the discussion leading to Eq. (9), so the result is exact and no
error is introduced due to the poor convergence of the QCD expansion at
low s.

6 Non-perturbative Contribution

The non-perturbative contributions to the correlator can be parametrized
through Wilson’s operator product expansion. In our calculation we include
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the effects of quark and gluon condensates up to dimension six [33]-[34]

ΠnpQCD(s) = (m̂b + m̂q)
2

{
m̂b 〈q̄q〉
s− m̂2

b

(
1 + 2

αs
π

)
− 1

12

1

(s− m̂2
b)

〈
αsG

2

π

〉
− m̂b 〈q̄σGq〉

2

[
1

(s− m̂2
b)

2

+
m̂2
b

(s− m̂2
b)

3

]
− 8παs 〈q̄q〉2

27

[
2

(s− m̂2
b)

2

+
m̂2
b

(s− m̂2
b)

3
−

m̂4
b

(s− m̂2
b)

4

]}
(19)

Note that we include the effect of the light quark mass only in the pre-
factor. The non-perturbative part contributes around 10 % to fB, and
it is dominated by the lowest dimensional condensate 〈q̄q〉. Its value is
usually given at 2 GeV, and determined e.g. from the Gell-Mann-Oakes-
Renner relation, with the result [25] 〈q̄q〉 = (−267 ± 5 MeV)3. To run this
condensate to the renormalization scale µ we use the fact that mq(µ) 〈q̄q〉 is
renormalization group invariant. For the strange quark condensate, and the
mixed condensates we use

〈s̄s〉 = Rsq 〈q̄q〉 , (20)

〈q̄σGq〉 = m2
0 〈q̄q〉 , (21)

〈s̄σGs〉 = m2
0 Rsq 〈q̄q〉 , (22)

where Rsq = 0.6± 0.1 is from [36], and m2
0 = 0.8± 0.2 GeV2 from [37]. The

gluon condensate has been determined from data on the hadronic decays

of the τ -lepton [35], i.e.
〈
αsG2

π

〉
= 0.07 ± 0.02 GeV4. The terms involving〈

αsG2

π

〉
and 〈q̄σGq〉 both contribute around 0.1 %, while the term involv-

ing 〈q̄q〉2 contributes around 0.001 %, so we are justified in ignoring higher
dimensional operators. In fBs the non-perturbative part plays a smaller
role, while for fBc it is negligible. The O(αs) correction to the 〈q̄q〉 conden-
sate term contributes around 1 % to fB, so this approximation is accurate
enough. As with the perturbative part, we rewrite the pole mass in terms
of the running mass [22], expand in powers of αs and truncate the series
at O(α2

s). The resulting integral is easily evaluated using Cauchy’s residue
theorem.

8



n fB (MeV) fBs (MeV) fBc (MeV)

3 188.7 222.2 521.9
4 186.9 221.7 525.1
5 186.4 221.8 526.7
6 186.2 221.9 527.6

Table 1: Results for the decay constants for different values of n.

Uncertainties (MeV)

INPUT VALUE ∆fB ∆fBs ∆fBc

O(α2
s) doubling/removing ∓7 ∓4 ±13

αs(MZ) 0.1184± 0.0007 ∓0.5 ∓0.3 ±0.6

mb(mb) 4.18± 0.03 GeV ∓10 ∓10 ∓9

ms(2 GeV) 94.0± 9.0 MeV ø ±1.5 ø

mc(mc) 1.278± 0.009 GeV ø ø ±0.6

−〈q̄q〉(2 GeV) (267± 5)3 MeV3 ∓2.1 ∓1.1 -

〈αsG2/π〉 0.07± 0.02GeV4 ±0.5 ±0.3 ±0.2

Rsq 0.6± 0.2 ø ±1.7 ø

m2
0 0.6± 0.2 ∓0.1 - -

MB 5279.58± 0.17 MeV - ø ø

MBs 5366.77± 0.24 MeV ø - ø

MBc 6277± 6 MeV ø ø ±1.7

Table 2: Input values of parameters (see text for references) and their contribution to the
uncertainties in the decay constants. A ø indicates not applicable.
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7 Results

Given the complete QCD expansion, and the correct hadronic continuum,
the final results would be independent of the two parameters n and s0. In
practice, though, there is a finite region in this parameter space where re-
sults are stable. The wider this region, the more accurate the results. As
explained earlier, we allow scont to vary so that the first and second deriva-
tives of fBq with respect to s0 vanish at some point. We then extract our
prediction for each n from this inflection point. In figures 1 - 3 we show fBc ,
fB and fBs for different choices of n. It can be seen from these figures that
for each n there is range of s0 where the decay constant is virtually inde-
pendent of s0. The extension of this range increases with increasing n, as
the unknown contributions are better modeled by higher order polynomials.
These plateau agree very well for different n and exhibit very good converge
with increasing n, as shown in table I, and in the figures. The excellent
stability in s0, combined with the good convergence in n, indicates that the
contributions from the unknown hadronic continuum, and the unknown part
of the QCD correlator should be small. We conservatively estimate system-
atic errors as the difference between the n = 3 and n = 6 result, giving 3
MeV, 1 MeV and 6 MeV for fB, fBs and fBc , respectively. From the stabil-
ity criterion we find e.g. with n = 6, and for B, Bs and Bc, respectively, the
values scont = 31.3 GeV2, 33.0 GeV2, 50.6 GeV2. These are very close to
the values of the actual physical thresholds sphys = 29.9 GeV2, 33.8 GeV2,
51.7 GeV2. To understand the effect of the variation of scont we estimated
the contribution of the continuum near the physical threshold in the deter-
mination of fB, where some phenomenological information is available. We
considered the phase space contribution of the Bππ and B∗π intermediate
states near threshold, with form factors taken from chiral perturbation the-
ory [38]-[39] and LQCD [40], respectively. In both cases the contributions
are negligible compared with the dominant pole contribution of the B me-
son. We also investigated the contribution of a possible excited B state such
as the B1(5721) predicted in [41] from heavy quark effective theories. The
contribution of such a resonance will increase fB by 4− 5 MeV, which must
be considered as part of the systematic error. We expect a similar situation
for fBs and fBc . The final result should be independent of the renormaliza-
tion scale, µ. However, due to the various truncations of expansions in αs(µ)
some µ dependence is introduced, which is roughly related to the conver-
gence of the asymptotic expansion. To estimate the error we either remove
or double the O(α2

s) correction. This is shown in the first line of table II.
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Figure 1: The decay constant fBc as a function of the integration contour
radius s0, for different values of n. The crosses denote the inflection point
where the prediction is extracted.
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Figure 2: The decay constant fB as a function of the integration contour
radius s0, for different values of n. The crosses denote the inflection point
where the prediction is extracted
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Figure 3: The decay constant fBs as a function of the integration contour
radius s0, for different values of n. The crosses denote the inflection point
where the prediction is extracted

As an alternative one could vary µ in the range 3 - 6 GeV, which changes
fBc , fB and fBs by up to 10 MeV, 8 MeV, and 10 MeV, respectively. As
these two errors are highly correlated we use only the error estimated from
the O(α2

s) correction.
Of the various inputs, the largest error comes from the running mass of the
bottom quark, mb(MS). We use the Particle Data Group world average
mb(mb) = 4.18 ± 0.03 GeV [42], very close to the most recent and accu-
rate value mb(mb) = 4.171 ± 0.009 GeV [27], [43]. In table II we show the
change in the decay constants when mb(MS) is changed by ± 1σ. Despite
the relatively large uncertainty in the s-quark mass [39], [43], ms(2 GeV) =
94 ± 9 MeV, it only has a small effect on fBs , reflecting the relative small-
ness of this correction. The uncertainty in the larger c-quark mass m̄c(mc) =
1.278 ± 0.009 GeV [43], [44] has also a small impact on fBc .

Although the non-perturbative part contributes only around 10 % to fB,
and less to fBs , the errors of the condensates are not all negligible. The
uncertainty in the quark condensate, 〈q̄q〉(2 GeV), affects fB and fBs by
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around 2 MeV and 1 MeV, respectively (the effect on fBc is negligible). The
relatively large uncertainty in 〈αsG2/π〉 has a small effect, while the errors
in the higher dimensional condensates have a negligible effect, reflecting the
fact that the quark condensate dominates the non-perturbative contribution.
The uncertainty in m2

0 has a non-negligible effect only for fB. There is some
disagreement in the literature on the value of Rsq. A recent LQCD result [45]
claims Rsq = 1.08± 0.16, which is in conflict with almost all determinations
leading to Rsq < 1 (for an exception see [46]). This value translates into
fBs = 230 MeV. The uncertainty in the strong coupling constant, αs(MZ),
has a small effect on the decay constants. The masses of the lowest lying
pseudoscalar resonances are now very well known [42], and the only non-
negligible error arises from the uncertainty in MBc . Adding these errors in
quadrature we find

fBc = 528± 9± 17 MeV , (23)

fB = 186± 11± 9 MeV , (24)

fBs = 222± 11± 4 MeV , (25)

where the first error comes from the inputs and the second is systematic,
arising from the dependence on n, the O(α2

s) truncation, and the light quark
mass expansion. The ratio of decay constants fBs

fB
(which is unity in the

chiral limit) can be determined quite accurately since many of the errors are
correlated. We find

fBs

fB
= 1.19± 0.02± 0.04 , (26)

where again the first error comes from the inputs and the second is system-
atic. The effect of including the light quark mass terms in the perturbative

expansion, Π
(0)pert
mq (s), is similar in size to the O(α2

s) correction for fBs but
is considerably larger for fBc . The mass corrections increase fBs by 11 MeV,
whereas fBc is increased by 45 MeV.

8 Conclusion

In this paper we discussed a new QCDSR determination of the heavy me-
son decay constant fBc , and an update of fB and fBs . We used Legendre
polynomial integration kernels, and proposed a new technique allowing the
continuum threshold, scont, to vary. This variation leads to an effective sup-
pression of the unknown hadronic continuum, and the unknown terms in the

13



QCD correlator. For the latter we used an O(α2
s), and O((m̂2

b/s)
7) expan-

sion of the pseudoscalar two-point function, supplemented by O(αs), and
O(m4

q) lighter quark mass corrections. Non-perturbative terms were incor-
porated through the OPE up to dimension six. For all three decay constants
we found excellent stability over a wide range of s0 and good convergence
in n, the order of the Legendre polynomials.

The result for fBc agrees with some LQCD, and a few determinations in
other frameworks reviewed in [17], but it is around 20 % higher than that
obtained in [47] from LQCD. However, it has been argued [48] that LQCD
results for this constant may underestimate its value by some 23%. It must
be pointed out that results for fBq are very sensitive to the mass of the
q-quark. For instance, in the case of fBs the impact of a strange-quark
mass ms ' 100 MeV results in a 20% increase in fBs relative to fB. For
fBc , with mc ' 1.3 GeV, this rough argument would imply an increase over
fB of some 200 %. New and more accurate determinations should resolve
this issue. It should be stressed in closing that for fB and fBs our results
are perfectly consistent within errors with LQCD and recent experimental
results.
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