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“Which way I  ought to go from here?”

“That depends a good deal on where you want to get to, ” said the cat.
“I  don’t much care where. . . ” said Alice
“Then it doesn’t matter which way you go, ” said the cat.

Lewis Carrol, Alice in Wonderland. Cited by Jeffreys (1961)
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Abstract
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by Anabel Forte Deltell

Variable selection typically involves choosing among a large number of 
models, so tha t fast computation of Bayes factors is highly desirable. 

This desideratum has made common practice the use of p-priors and 
Laplace expansions, specially in large dimensions. It is well known, how­

ever, tha t priors with heavier tails often result in better performance 

for model selection. In this thesis, we use the Conventional approach of 
Jeffreys (1961) and generalize some ideas in Strawderman (1971, 1973) 

and Berger (1976, 1980, 1985) to propose a prior distribution for vari­

able selection. We show tha t this choice is, to the best of our knowl­

edge, the first proposal for variable selection which is fully justified from 

a theoretical point of view. This justification is heavily based on the 

invariance ideas in Berger et al. (1998). Moreover, it has Student-like 

tails and many optimal properties for model selection, and it generalizes 

previous proposals in the literature. In addition, for specific choices of 

the hyper-parameters, it produces closed-form marginal likelihoods (and 

hence, Bayes factors). We demonstrate its behavior in a couple of small 

problems and in a couple of large, but enumerable, ones.
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Chapter 1

The Bayesian approach to  
the model selection problem

1.1 Introduction

Developing suitable theories to explain phenomena of interest is a main 

scientific goal. Often different theories are proposed to explain the same 

phenomenon, and the important issue of choosing among them arises. 

A key question is which of the entertained theories is the most likely 

explanation of reality. This is the core background scenario in which we 

frame our work.

Choosing among competing theories is usually carried out in the light 

of data which we denote simply by y. We assume tha t each theory can 

be well represented by a statistical model or probability distribution ex­

plaining the joint random behavior of y . These models usually depend 

on unknown parameters 0 , and we adopt the usual convention of repre­

senting model M  by its probability density function f ( y  \ 0 ) (a density 

over y  given the value of the unknown 0).

1



2 1.2. The Bayesian approach

Suppose tha t m  different models are entertained and let

M  = { M i , . . . ,  M m)

be the set of all of them; M. is usually referred to as model space. Hence, 

the general scientific problem, succinctly introduced previously, simply 

becomes tha t of selecting one of the models in M.. In the sequel we refer 

to this problem as model selection.

It is important to  remark that each model Mi specifies a joint probability 

distribution for the whole set of observations y . Therefore, each model 

is a different, and complete explanation of reality, implicitly consider­

ing issues such as dependency among observed values in y , finite versus 

infinite population, etc.

An important particular case of model selection is hypothesis testing. In 

this thesis, we focus on a specific hypothesis testing problem (the variable 

selection problem) described in detail in Chapter 2. In the rest of this 
chapter we outline our preferred Bayesian approach to model selection.

1.2 The Bayesian approach

Quoting Kass and Raftery (1995), “the Bayesian approach to hypothesis 

testing was developed by Jeffreys (1939) as a major part of his program 

for scientific inference” . Jeffreys’ solution is based on posterior probabil­

ities or equivalently, on Bayes factors (see Kass and Raftery, 1995, and 

references therein).

Choosing a model among those in M. based on posterior probabilities 

seems intuitively sensible. This approach to model selection also arises 

formally in decision theory frameworks for specific choices of the loss 

function. As in Jeffreys’ solution, in this thesis model selection is based 

on posterior probabilities expressed in terms of Bayes factors which are
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defined and studied in Section 1.2.1 and will be the main focus of our 

work.

1.2.1 B ayes factors and posterior probabilities

Bayes factors (Jeffreys, 1961) were introduced to quantify the evidence 

in the data in favor of a model Mi and against another model M j, but 

of course they can be (and are) used to compare a set of m  > 2 models.

D efin ition  1.1. Let Mi and M j be two competing models. The Bayes 

factor in favor of Mj and against M j given data y  is defined as:

where, P{M{) represents the prior probability of model Mi and P(Mi \ y)  
is its corresponding posterior probability, for I = i , j .  The Bayes factor 

Bij is, hence, the ratio between posterior and prior odds in favor of Mi 
and against Mj.  Therefore, a Bayes factor Bij = 10 means tha t prior 

odds in favor of Mi  have been multiplied by 10 after observing the data.

If one of the models in M. is the true model, by Bayes theorem, the 

posterior probabilities are

/■>/ 7i/f i mi(y)P(Mi)
p ( M i  1 y)

where mi(y)  is the prior predictive distribution (or marginal likelihood) 

under model Mi,

m { y )  =  J f i { y \ 0 i ) n ( 0 i ) d e u i =  i , j  ( 1.2)
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and 7ti(Oi) is the prior density of 0/ under M/. It thus follows tha t the 

posterior odds in favor of Mi and against Mj  are

so tha t the Bayes factors can also be expressed as

In practice, (1.4) is usually taken as the definition of the Bayes factor, 

not requiring use of the prior odds.

To interpret Bayes factors between two models, Jeffreys (1961) suggested 

taking half-units on the log10 scale- In Table 1.1 we present a summary 
of Jeffreys’ interpretations:

logio(Bij) Bij Evidence against Mj
0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

There are several possibilities for choosing the prior probabilities of mod­

els P(Mi).  One obvious possibility is to choose them to reflect genuine 

subjective prior belief. When this is not possible or not desired, a pop­

ular choice is to give each model in M. = { M i,. . . ,M m} equal prior 

probability, that is P(Mi ) =  1/m. This is not always an optimal choice. 

Our preferred choice for P(Mi),  in the particular scenario of variable 

selection, is given in Section 2.3.4.

Posterior probabilities can easily be expressed in terms of Bayes factors. 

In fact, summing over i in (1.3) gives

P(Mj  | y)  _  rm(y)  P(MQ 
P ( M j \ y )  m ,(y ) ' P(M ,-)’

(1.3)

T a b l e  1 .1 : Bayes factors interpretation.
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Since Bayes factors are transitive in the sense tha t = BuBij for any 

model Mi, the usual approach to compare m  > 2 models consists in 

comparing each model with a fixed one Md which we call base model 
Hence, since Bij = BJ^

- l

• (1-5)

Bayes factors also arise formally in decision theoretical formulations. In­

deed, decision theory provides the most complete framework for model 

selection. Here the action (decision) space is M .. To keep with the usual 

notation a specific decision is denoted by “a” . The loss for deciding model 
a when the true model is M  is L(M, a). Often the loss also depends on 

the true parameter 0 m  under the true model M  in which case

L ( M , a )  =  E°M\y [ L( M, 0M, a) \  =  [  L ( M,  0 M , a) ttm (0 m  I y )  d0M,

where it m (0m  I y )  is the posterior distribution under model M  corre­
sponding to the prior density tha t is

_  fa l . . \  fM(V  I Om ) k m (Om )
* m {6m  1 v)  =   •

The optimal decision, or “Bayes action” (see Berger, 1985, Section 4.4) 

is the “a” minimizing the posterior expected loss

771

E[L(M,a)} =  £ £ ( M j , a )  • P(Mt \ y).
1 = 1

A common loss for hypothesis testing problems is the “0 - hi” loss function 

in which ki is the loss for incorrectly choosing a*, and correct decisions 

have 0 loss; tha t is, L(M, ai) = 0 if ai = M  and L(M, a{) = ki if ai ^  M.

P(M-  I v ) -  _ _ _ _
Y ^ i B u P m i + E

P(Mj)
P(Mj)

Bid
Bjd



6 1.2. The Bayesian approach

In particular, consider a hypothesis testing scenario where

V I 0 ~  f { y  | 0),

with 0 (E Kfc, and it is desired to test the m  hypotheses Hi : 0 G 0^

for {0;}-™! a partition of 0 . Here the actions (or decisions) are ai,

i =  1 , . . . ,  7 7 i ,  where ai is choosing Hi so the 0 - ki loss can be expressed 

as

L(0, =  0 if 0 6 0 i,

L(9,ai ) =  ki if 0 ^ 0*.

Often the ki s are taken to be equal for i =  1 , . . . ,  to, indicating tha t the
loss for a wrong decision is the same for all decisions.

The posterior expected loss for taking action is

E " !V[L{0 , ai)] =  [  L(0 , ai) v {0 \ y)dB = ki f  x (0 | y) d9
Je  V©9

=  k i l l -  P ( 0 i  | y )] =  h [  1 -  P(Hi  | y )],

tha t is, the expected loss for choosing Hi is proportional to the posterior 

probability of Hi  (the combined hypothesis 11 Hi is not true”). Hence, it 

can be easily seen tha t the Bayes action is ai if for all j  ^  i

E^y[L(0, <jj)] _  h  1 -  P(H,  | y) _ h  E v i B i d P ( Hl )  _ 
Ee\y[L(0,aj)} fc, ' 1 -  P(Hj  I y)  h j ' Z v j B u P m  ’

where Bid is the Bayes factor of model I to model d. So the Bayes action is 

defined in terms of Bayes factors or posterior probabilities. In particular 

if all the ki s are equal, then the optimal action is to choose the hypothesis 

with the maximum posterior probability.

Notice that in this decision theoretical framework we implicitly assume 

tha t one of the models is true. This requirement is often used as an argu­

ment against Bayes factors because this is not always the case. However
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Garcia-Donato (2003) shows that, even when the true model is not in M ,  

the evidence in favor of a model given some data is always proportional 

to its posterior probability (for which Bayes factors are essential ingre­

dients). Also Dmochowski (1996) shows that, in this same scenario, the 

Bayes factors select the closest model to the true one in Kullback-Leibler 

sense (see Kullback, 1999). Wasserman (2000) also advocates use of pos­

terior probabilities for comparing the relative evidence of models, even 

when they can not be considered “true” . Quoting Wasserman (2000):

Newtonian physics and general relativity are both wrong. Yet it 
make sense to compare the relative evidence in favor of one or the 

other. Our conclusion would be: “under the tentative working hy­
pothesis that one of these two theories is correct, we find that the 

evidence strongly favors general relativity. ” It is understood that 
the working hypothesis that “one of the models is correct” is wrong.
But it is a useful, tentative hypothesis and proceeding under that 
hypothesis, it makes sense to evaluate the relative posterior proba­
bilities of those hypotheses.

1.3 Objective Bayesian model selection

To compute Bayes factors, prior distributions for parameters under each 

model, 7Ti($i) i = 1 , . . . ,  m, are required. These priors play an important 

role in model selection. There are two main approaches to the assignment 

of prior distributions: the subjective or informative prior elicitation, in 

which 7Ti(0 i) quantifies the prior believes about Of, and the objective ap­

proach in which no subjective information is explicitly introduced, apart 

from tha t required to define the models.

There has been a long debate in the Bayesian community as to the roles of 

subjective and objective Bayesian analysis (see Berger, 2006; Goldstein, 

2006, and the discussion there). An objective Bayesian would argue that
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appearance of objectivity is often needed and it is usually very difficult to 

get the required subjective information from experts. In model selection, 

with a large number of models, this argument becomes even stronger, 

since it is unfeasible to assess subjective prior distributions for every pa­

rameter under each model. In particular, in a variable selection problem 

with p covariates one has to choose among 2P models, and 2P subjective 

assessments for 2P vectors of parameters have to be done. This becomes 
a basically impossible task for even moderate values of p. For this reason 

this thesis focus on objective Bayes methods for assessing prior distri­

butions in the variable selection problem. Moreover, as commented in 

Berger and Pericchi (2001), it is quite more useful to utilize the limited 
time of subject experts for model formulation than for the subjective elic­

itation of priors. An extensive discussion about objectivity and objective 
Bayes methods can be found in Berger and Pericchi (2001) and Berger 

(2006).

1.3.1 O bjective priors for m od el selection

The elicitation of prior distributions is always a delicate issue. In the 

context of estimation there seems to be general agreement on the priors 

tha t should be used, whether a subjective or an objective approach is 

adopted (see Berger et al., 2009; Garthwaite et al., 2005; O’Hagan, 1988; 

Press, 2003). In contrast, choice of suitable priors for model selection, is 

not obvious and should be carefully addressed. In particular:

• Bayes factors can be very sensitive to the choice of prior distri­

butions. Moreover, and in contrast to the situation in estimation 

problems, the influence of the prior on the Bayes factors remains 

even asymptotically (as the number of observations grows, see Kass 

and Greenhouse, 1989; Kass, 1993; Kass and Raftery, 1995, and ref­

erences therein).
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• Use o f improper, non-informative priors often yields indeterminate 

Bayes Factors. As an illustration, let H \ and H 2 be two competing 

hypotheses. If we take improper non-informative priors under each 

hypothesis, 7Ti(0i) and ^ { 62) it might seem tha t we could use (1.1) 

to (formally) compute the Bayes factor B 21. However, since these 

priors are improper, we could just as well use c\'K\{0 i) y 0 2 ^ 2 (0 2 ) 

obtaining (C2/c \)B 2i . Since the choice of C1/C2 is arbitrary, the 
Bayes factor is indeterminate. Nevertheless, there are situations 

(as invariant problems, see Berger et al., 1998) in which the use of 

objective, typically improper priors, is justified in the sense that the 

resulting Bayes factors are well defined (more details are given in 

Section 3.4.1; for a full exposition justification and further details 

see Berger et al., 1998)

•  Use of “vague proper prior” does not solve the difficulties arising 

with improper priors. Indeed, as shown in Berger and Pericchi 

(2001), using a vague proper prior (a proper prior but with an 
arbitrarily large scale) is never better than using an improper prior. 

Liang et al. (2008) also show the danger in choosing an arbitrarily 

large variance (see the description of B artlett’s paradox in Liang 

et al., 2008).

Jeffreys (1961) dealt with the indeterminacy of Bayes factors arising from 

use of non-informative priors by using (under some conditions) default 

proper priors (but never arbitrarily vague priors) for parameters that 

occur in one model but not in the others and non-informative priors only 

for common parameters (parameters appearing in all models). Many 

authors followed this recommendation, as for instance Zellner and Siow 

(1980, 1984) (see Berger and Pericchi, 1996, for more references).

In the sequel, and following Berger and Pericchi (2001), we call Conven­

tional approach to any method for choosing the prior distribution based 

on Jeffreys’ pioneering ideas.
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A more elegant way of dealing with indeterminacy is by exploiting invari­

ance properties. Berger et al. (1998) describe conditions under which the 

Bayes factor obtained from a specific improper prior (right Haar mea­

sure) is well defined. These conditions are related to invariance in the 

sense described in Section 3.4.1.

In this work we use ideas from both the Conventional and the invari­

ance approach, to  propose a prior distribution for variable selection (see 

Chapter 3).

Still another way of dealing with the indeterminacy of Bayes factors aris­
ing from objective priors is to use default Bayes factors like fractional 
Bayes factors, developed by O’Hagan (1995) or the intrinsic Bayes fac­
tors, defined in Berger and Pericchi (1996). (See Berger and Pericchi, 

2001, for an extensive review of these methods). Although these are not 
actual Bayes factors, (i.e. they are not computed directly from a explicit 
prior distribution), they can actually be shown to asymptotically corre­

spond to Bayes factors arising from proper priors called intrinsic priors. 
Hence, these methods can also be seen as a way of eliciting suitable ob­

jective priors for model selection.

1.4 Final remarks

As we commented at the beginning of Section 1.2, our preferred solu­

tion to model selection is based on posterior probabilities and Bayes 

factors. However, there exists other approaches to model selection which 

do not assign any prior probabilities to models and consequently are not 

based on posterior probabilities. Such approaches are taken for instance 

in Ibrahim and Laud (1994); Bernardo and Smith (1994); Gelfand and 

Ghosh (1998); Goutis and Robert (1998); Ibrahim et al. (2001) and ref­

erences therein. These methods are usually very difficult to calibrate (in 

the sense tha t the results are difficult to interpret). Moreover, they are
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clearly inappropriate when the alternative models are believable scien­

tific theories which is common in many scientific fields. For example an 

astronomer may want to investigate whether a recently discovered star 

system has zero, one, ore more planets.

In certain scenarios, like prediction, one is not required to chose a single 

model from M ,  but rather to do the statistical analysis incorporating 

the uncertainty about models. This is the model averaging framework 

in which posterior probabilities of models (and hence Bayes factors) also 

play a crucial role (see Hoeting et al., 1999; Kass and Raftery, 1995; 

Learner, 1978). Often, however, one is required to choose one single 

model from jM, as in the astronomer example mentioned above, or in 

many social sciences scenarios. In any case, the tools developed in this 

work are also relevant for model averaging.

The problem of model checking (or model validation) is also related to 
model selection. This approach tries to quantify the compatibility of 

a specific model with the observed data, without consideration of any 

alternative model or theory. Model selection instead compares different 

theories. Model checking will not be considered here, for further informa­

tion see Bayarri and Berger (1998, 2000); O’Hagan (2003); Bayarri and 

Castellanos (2007); Bayarri and Morales (2003) and references therein.





Chapter 2

Variable selection

2.1 Introduction

Variable selection is an important problem often encountered in applied 

statistics aimed at explaining a response variable Y using a set of ex­
planatory variables. In the problem we consider it is known tha t Y is 

affected by a given set of ko known variables and the goal is to find out 

which additional variables from a set { X \ , . . . ,  X p} of potential ones are 

also relevant to explain Y .

The variable selection problem can be seen as a particular model selection 
problem where each entertained model Mi corresponds to a particular 

subset of covariates. The simplest model, hereafter denoted by Mo, has 

ko covariates, while the most complex one contains ko +  p covariates. In 

this problem the model space M. contains a total of 2P models.

In this thesis we address variable selection in the framework of linear 

regression. However, variable selection also appears in many other sce­

narios such as generalized linear models and non-parametric function 

estimation (see George, 2000, and references therein).

13
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In the rest of this chapter we state the problem of variable selection and 

review im portant concepts which will be needed later on. In particu­

lar, we introduce some of the ideas motivating our proposed solution in 

Chapter 3 and review some tools needed for its development.

2.2 The problem

The problem of variable selection can be stated as follows: let y  = 

{yii • • •, VnY be a sample of size n  from the distribution of Y . Consider 

the set M. =  {Mo, . . . ,  of 2P possible models, where Mo denotes
the simplest model explaining Y :

M 0 : fo{y  | /30, a)  =  J\fn{y \ X 0f t , a 2I n) . (2.1)

Here X q  is a n  x ko matrix of variables assumed to enter for sure the 
model explaining Y ,  and f t  is a ko-vector of regression coefficients for 

the variables in X o. The matrix X o  is usually taken to  contain at least 
the intercept (recall tha t in Bayesian model selection each model has 

to be a plausible explanation of reality, and we usually need at least the 

intercept for Mo to be so). In the frequent particular case of it containing 

only the intercept, then Xo =  l n the n-vector of ones and f t  is a scalar 
value representing the overall mean of Y  under Mo. We refer to Mo 

as the “null” model. For the 2P — 1 extra models we consider p extra 

variables, apart from the variables in X o , which can be involved in the 

studied process. For simplicity and slightly abusing notation, we follow 

the common convention and express each of these 2P — 1 models as

Mi : f i ( y  | f t ,  f t ,  a) =  N n{y \ X 0f t  +  X ff t ,  a 2I n), (2.2)
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where X i  is a n x ki matrix containing the observed values of a subset 

of ki covariates out of the p entertained, and the fcj-vector /3{ is the cor­

responding vector of regression coefficients. Parameters (/30, cr) are usu­

ally known as common parameters or, in Jeffreys’ terminology, the “old” 

parameters, while the /3j’s are known as the extra or “new” parameters. 

Note tha t M q is nested in all the entertained models M i, i = 1 , . . . ,  2P — 1.

Let us consider a simple example:

E x am p le  2.1. Let Y  represent the price of a house. A bank wants 

to study what is affecting house pricing and considers five possible ex­

planatory variables: the location, the size, the views, the proximity to a 

shopping mall and the age. The bank has data about the price and the 
five variables of interest for n  houses. The simplest explanation for Y  is a 
normal distribution with unknown constant mean and variance. Hence, 

the null model here just contains the intercept (i.e. X o  = l n) and /?o rep­
resents an overall mean for the house pricing. The rest of the 25 — 1 =  31 
models are defined as containing all the different combinations of the five 

variables (always including the intercept, /3q).

One of the difficulties of variable selection is the large number of models 

in M. when p  is even of moderate size. Due to the high dimensionality 

of the model space:

1. It becomes virtually impossible, as commented in Section 1.3, to 

subjectively elicit prior distributions to the 2P vectors of parame­

ters. To cope with this difficulty we adopt, in this thesis, an objec­

tive point of view heavily inspired in the ideas of Jeffreys (1961) (see 

Section 2.3.3) and shown to have desirable theoretical properties.

2. Sometimes the model space can not (for all practical purposes) even

be enumerated and hence, posterior probabilities for all models can

not be computed. A possible solution is then to explore these huge

model spaces in search for “good” models accounting for a large
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proportion of posterior probability. Some approaches for searching 

huge model spaces can be found in George and McCulloch (1993, 

1997); Carlin and Chib (1995); Miller (2001); Robert and Casella 

(2004); Berger and Molina (2005) and references therein. However, 

searching in the model space is often a daunting task, and simple 

expressions for the computation of Bayes factors are preferred since 

they make it possible to devote computational resources to further 

exploration of the model space instead of to numerical computa­

tions. In this spirit, the proposal developed in this thesis produces 

closed-form expressions for marginal likelihoods and Bayes factors 

(see Chapters 3 and 4) being then specially suitable for solving 
large variable selection problems.

3. W ith such a large number of models, multiplicity issues arise. In­
deed as observed by Scott and Berger (2010), in many fields of sci­

ence as for example genetics, the number of entertained variables is 

enormous and scientists do not really trust any of the models but 
just wish to point out some interesting relations (e.g. which genes 

produce a certain cancer). Detecting signals (variables actually re­

lated to  Y )  in the presence of so much noise not only becomes a 

very difficult task, but also multiplicity correction is needed. In 

this thesis we consider the ideas in Scott and Berger (2010) who 

control for multiplicity with a suitable choice of the priors over the 

model space (see Section 2.3.4).

The next section introduces the methodology tha t will be used in Chapter

3 for developing our proposed prior.
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2.3 Objective Bayes variable selection

As shown in Section 1.2.1, posterior probabilities for model selection can 

be expressed as

i m (y )P (M j)  B idP(M j)
E l o 1 m ,(y)P (M t) E l o 1 BldP(Mi)

where P(M i) for i =  0 , . . . ,  2P — 1 are the prior probabilities over the 

model space, and rrii{y) is the prior predictive distribution under model 
Mi computed at the observed y. For the variable selection problem 

defined in (2.1) and (2.2)

m i(y) = J  f i (v  I /3*> 0o> °) A), 0o? ^)i (2-4)

for i = 0 . . .  2P — 1, where 7Tj(/3j, /30, <r) is the prior distribution for param­
eters under each model Mi. Chapter 3 is devoted to introduce and study 
our proposal for assigning this distribution, which is partly inspired in 

the Conventional approach of Jeffreys (1961) (which was briefly described 

in Section 1.3.1 and will be studied further in Section 2.3.3).

For the elicitation of 7rj(/3 ,̂ /30, a) as well as for the study of Bayes factors 

we will need some theoretical concepts of linear models tha t we review 

next in Section 2.3.2.

The elicitation of prior probabilities over the model space P {M i) is not 

the central part of this work. Hence we content ourselves with briefly 

reviewing in Section 2.3.4, several proposals, to account for multiplicity 

including the one by Scott and Berger (2010).

2.3.1 B ase  m odel

In (2.3) we only consider Bayes factors comparing each model Mi with 

a fixed model M^, referred to as the base model (see Section 1.2.1). In
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principle, the choice of this base model should be irrelevant (as it is the 

case in a subjective Bayes approach) but for the objective Bayes approach 

it is not so. In particular, for the Conventional approach of Jeffreys (1961) 

adopted in this thesis, the choice of 7Ti{(3i, (30, cr) depends on the model 

we are comparing Mi with, in the sense tha t it depends on which ones are 

the common and extra parameters and these are different for different 

models.

Our choice for the base model Md is the null model Mo. We consider this 

to be the most sensible choice since then every Bayes factor is computed 

between the nested models and Mo with the common parameters 

clearly being those of Mo, (/30, cr) while (3̂  is the new parameter. Hence, 

this choice produces unique model-specific priors ,ni{(3i , /30, cr) under ev­

ery model Mj. In this spirit, and without loss of generality we express 

the prior 7Ti(/3j, /30, cr) as:

*t(/3ii /30, cr) = tTi{(3i | /30, a)TTi((30, cr).

Note tha t for any other choice of Md the common and uncommon pa­

rameters will change depending on the specific comparison Mj vs Md and 

so will do the prior distribution under Md, ^d{(^di P q, &) which does not 
seem desireable. Other choices for the base model and some discussion 

about this issue can be found in Perez (1998); Casella and Moreno (2006); 

Liang et al. (2008) and references therein.

2.3.2 Som e th eoretica l asp ects o f linear m odels

We briefly review next some theoretical concepts of linear regression 

which will be needed both in the choice of 7rj(/3{, (30, cr) and in the deriva­

tion of the properties of the resulting We refer the interested reader 

to, for examples, Guttm an (1982) or Rao (1965) for notation and a deep 

treatm ent of linear models.



2. Variable selection 19

Estimators

Consider the model Mi in (2.2). Let (3 denote its entire (ko +  fci)-vector 

of regressors, that is, /3* =  [/3q | /3*] with X  = [Xo | X i]  being its full 

n  x (ko +  ki) design matrix. The maximum likelihood estimator for (3 is

$  =  ( X ' x y ' X ' y ,

and its sampling distribution is normal, centered at (3 and with covariance 

matrix

Cov[/3 \ = o 2 ( X tX ) ~ 1. (2.5)

Note tha t ( X tX )~ 1 exists if and only if X  is a full rank matrix so tha t 
n  needs to be at least ko +  ki.

In objective Bayes model selection, appropriate choice of the scale of the 
prior is crucial. For reasons that will become clear in the next chap-

i
ter, we base our choice for the scale of ^((3^ | /30, cr) on the marginal 

covariance matrix of /3j. This matrix is, of course, the corresponding 

block of Cov[/3] in (2.5) and can be easily derived with simple algebraic 

manipulations. This covariance matrix also arises when considering an 

orthogonal parameterization of Mi (i.e. a parameterization for which the 

Fisher information matrix is block diagonal). Jeffreys, and after him, 

Zellner and Siow popularized such reparameterization, which have been 

broadly followed in virtually all Conventional approaches to model se­

lection. Indeed in the Conventional approach, as well as in many other 

objective Bayes approaches to model selection, the orthogonal parame­

terization is usually stated to be “assumed without loss of generality” . 

Until now this has been, in fact, a main requirement for assessing a com­

mon prior for common parameters 7r(/30, cr) but wether or not it is also 

required for assessing a Conventional Prior for ^ ( / ^  | /30, cr) seems to not 

have been discussed. We hope to provide some insights in this regard. In 

Section 3.4 we show tha t interestingly, the orthogonal parameterization
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is not required and tha t the choice of 7t(/30, cr) can be fully justified from 

invariance arguments.

The orthogonal reparameterization of model Mi for Conventional Bayes 

analysis is:

y  = X 07  +  V iP i +  e, e ~  .V„(0 ,<72J„), (2 .6 )

where V* =  ( I n -  P o ) X i  with P 0 =  X 0( X t0X o ) ~ 1X t0, and 7  =  /30 +

Notice that, in the new parameterization (7 , /3̂ , cr) the parameter 

defining the different models remains unchanged, the new design matrix 

is X * =  [Xo | Vi],  and X ^ V i  = 0 so tha t 7  and /3̂  are orthogonal 

in Fisher sense. In fact, the Fisher matrix in this parameterization is 

proportional to:

X**X* =
'  X ^ X o 0

0 V \ V i  _

whose inverse is:

( x ^ x * ) - 1 =

Hence, in this reparameterization

0 i  = ( V ti V i)~1V ti y,

and

1 _ ' ( X ^ X o ) - 1 0

0 fv t V i r 1 .

Covlft] =  <72(V jV j) -1 (2.7)

which is equal to the corresponding block of (2.5). In fact, for any 

reparameterization such tha t /3j remains unchanged, the corresponding 

maximum likelihood estimator, /3j doesn’t  change and neither do the 

covariance matrix of /3{. Nevertheless, it is important to remark that 

with X i  being the original design matrix, is not the co-
^ 1

variance m atrix of (3̂  unless X ^ X q = 0.
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Hence, for the purposes of choosing the scale for the model-specific condi­

tional prior for /3i? the orthogonalization is not needed as long as this scale 

is expressed in terms of Cov[/3j] which, as remarked above, is invariant 

to transformations tha t leave (3̂  unchanged (as the orthogonal reparam­

eterization) and not in terms of the original design matrices, which are 

not. This im portant point seems to have gone unnoticed in the relevant 

literature. For simplicity in notation we write this covariance matrix in 

terms of V j.

Test statistics

The model selection problem of choosing between M q in (2.1) and M i  in 

(2.2) can be alternatively expressed as the hypothesis testing of

H0 : (3i =  0  vs H i:  ^  ^  0.

The usual test statistic for solving this testing is:

j p  SSEo SS E i n — ki — ko (rt
F  ~  SSE i---------------h  ’ (2'8)

where SSEo =  y t ( I n — P o ) y  is the residual sum of squares under model 

Mo and P 0 =  X 0( X o X 0)_1X o . Similarly SSEi =  y t { I n -  P i ) y  is 
the residual sum of squares under M i , where P i  =  X ( X tX ) ~ 1X t for 

X  =  [Xo | Xi]  (or equivalently X  =  [Xo | V^]). Under Ho, F  follows a 

Snedecor’s F-distribution with (ki, n  — ko~ h )  degrees of freedom (more 

details in Guttm an, 1982).

The F-statistic can also be written in terms of the ratio of the residual 

sum of squares under each model, Qio = S S E i/S S E o  as:

F  = n - k i  - k 0(Q_ , _  1}

We will repeatedly use Q io  in future chapters.
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Since SSEi  is always smaller than  SSEo  (more complex models always 

produce smaller residuals than simpler ones), Qio takes values in [0,1]. 

Values of Qio ~  0 indicate tha t SSE i «  SSEo  and hence, intuitively, 

tha t the data supports Mi. On the other hand, values of Qio ~  1 indicate 

SSEi  «  SSEo  and hence data gives as much support to the simpler model 

Mo as possible.

The ratio of residual sum of squares Qio is extensively studied in Moreno 

et al. (2009) and Casella et al. (2009). In particular, in each of the 2P 

comparisons Mi vs Mo it is shown tha t the corresponding distribution of 

QiO given the “true” model

M t  : I n ) ; M t  £  { M q ,  . . . ,  M 2P - 1} ,

is
Qio | M t  ~  Be(—— ^ — — , y , ratfi, n82), 

a doubly non-central beta distribution with non centrality parameters:

, ,  ,  0 ,  f t .

,  &

(See Appendix A for a description of the doubly non-central beta distri­

bution.)

When the true model is one of the models in the specific comparison Mi  

vs M q (for which Qio is computed) these non-centrality parameters take 

the following values:

If M t = Mq, then £1 =  82 = 0 and the sampling distribution of Qio
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with mean and mode given respectively by

E[Q« I Mo] =  " - k - V  (2.9)
n  — ko

.   f c f \    2
ModefQio I M)1 = --------------- :— » for k i>  3 and n >  ki +  ko +  3.

n — ko -  4

•  If M t = Mi, we have Ji =  0 and 82 =  where for (3* =  [f3\ | /3-] 

and X  =  [X 0 | X J

Sio = 0t xHin- p o) x 0
no*

Moreno et al. (2009) consider £io as a measure of the distance be­
tween Mi and Mo for a given sample of size n.

The next lemma (which follows from Lemma 1 in Moreno et al., 2009) 
shows the asymptotic behavior of the distribution of Qio under the true 
model (when n  grows).

L em m a  2 .1 . The sampling distribution of Qio degenerates to a point 
mass at

1 + 8!QM =
1 + 81+ 82

as n  —>• 0 0 .

Where qM = 1 for M t  = Mo and qm = 1/(1 +  £) for M t  =  Mi, with 

8 — limn—̂00 8io •

Proof, see Appendix D .l □

When Mi is the true model, Casella et al. (2009) and Moreno et al. (2009) 

interpret 8 = limn_).00 8io as the limiting “distance” between Mi and M q . 

In fact, assuming tha t

s = l i m X ^ - P o ) X
n—>00 Tl
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is a constant semi-definite positive matrix (which as shown in Casella 

et al. (2009) is not a too demanding condition) S depends just on the 

value of (3. In particular, for a fixed value of /30, it grows with H/3JI 

(indeed, when ||/3J|2 —>• oo with \\(3i\\2 =  /3 \X \X ij3 i, then 8 —>• oo). This 
gives support to the intuitive idea of considering 8 as a limiting distance 

between Mo and M*.

From Lemma 2.1 it is easy to see tha t if 8 —> oo then qM —> 0, so that 

the sampling distribution of Qio degenerates to a point mass at 0.

Figure 2.1 shows the density of Qio when the true model is Mi for varying 

n (left) and 82 (right) (recall that in this case 81 = 0) when ki = 3 and 

ko = 1. It can be seen in the left plot that the distribution concentrates 
sharply around 1/(1 +  82) a s n  grows (approximately around 0.01 for 

82 =  100). In the right plot we can see tha t this point mass moves to 0 

as 82 grows.

82 =  1 00; k| =  3; ko =  1 n =  100; k, =  3; ko =  1
Ooo
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F igure 2.1: Comparisons of non-central beta densities with non cen­
trality parameter 7182 for varying n and 82 = 100 (left) and for varying 

82 for n = 100 (right)

Note tha t the fact tha t Qio tends to concentrate around 0 under Mi 
and around 1 under Mo agrees with the intuition tha t values of Qio «  0 

support Mi and values of Qio «  1 support M q .
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2.3.3 C onventional priors for variable selection  in th e  lit­
erature

In this section we review some of the main ideas in the Conventional 

approach of Jeffreys (1961) for the elicitation of 7Tj(/3j, /30, cr). As previ­

ously mentioned, we express this prior as

Ab <*) = **(A I. Ab cr)7ri(A)i a )-

In Chapter 1 we refer to Conventional priors as those model specific 

distributions based on Jeffreys’ ideas, and particularly, on his arguments 

for testing a normal mean (yi ~  A/"(A, cr2), Ho : X = 0 vs H \ : A ^  

0). These ideas were extended to variable selection by Zellner and Siow 

(1980).

Specifically, Jeffreys’ idea was to assign, conditional on the “old” param­
eters, a proper prior distribution for the “new” parameters, 7Tf (/3̂  | /30, cr) 
and, a non-informative prior (possibly improper) for the “old” parameters 

7Ti(/30, cr). His arguments for doing so were heavily based on orthogonal­
ity. In particular, Jeffreys (and many authors after him) argue tha t using 

an improper prior for common parameters is intuitively justified only if 

the old and new parameters are orthogonal in Fisher sense (see Hsiao, 

1997; Kass and Vaidyanathan, 1992). This extended practice has become 

the agreed upon “default” objective choice for common parameters, but 

there seems not to be any theoretical arguments behind it.

As prior distributions for common parameters, Jeffreys (1961) and Zell­

ner and Siow (1980) use the reference or independent Jeffreys’ prior, 

7Tj(/30, cr) =  1/cr, under each model M i, i =  0 , . . . ,  2P — 1. In the next 

chapter we also recommend the use of this prior as the objective prior 

for common parameters under every model. Our choice, however, does 

not require orthogonality and is justified on theoretical basis (see Section 

3.4.1).
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Jeffreys also states some specific requirements for the Conventional choice

O f T T i iP i  I A )> cr) :

•  It should be proper. To avoid the indeterminacy of Bayes factors.

• It should be symmetric around the null hypothesis. Quoting Jeffreys 

(1961):

... we must say that the mere fact that it has been suggested 

that A is zero corresponds to some presumption that it is fairly 

small.

Hence Jeffreys centered his prior at A =  0. Also Zellner and Siow, 

considering nested models in the variable selection problem, stated 

their null hypothesis as Ho : f3{ = 0  and so centered their choice 

at zero.

• It should be scaled, in some sense, by the scale of the entertained 
models. Jeffreys (1961) remarks tha t

for consideration of similarity it [the prior for A under H\] 

must depend on o since there is nothing in the problem except 
a to give scale for A.

In particular, for the variable selection problem, Zellner and Siow 

(1980) propose to scale by “... a matrix suggested by the form of 

the Fisher information matrix” . Their actual choice for the scale 

matrix was n  times the m atrix (j2{ y \V i) ~ l where V i  is the design 

matrix of model Mi in the orthogonal parameterization, see (2.6). 

This scale matrix is, in fact, the inverse of the Fisher information 

matrix when the model is in its orthogonal parameterization.

• It should have no finite moments. In the context of hypothesis test­

ing regarding a univariate normal mean, A, and unknown variance 

cr2, Jeffreys realized of some undesirable features when the normal
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distribution AT (A | cr2) with known / j , is used as a prior for test­

ing hypothesis. These are in part a consequence of the shape of 

the normal tails. He proposed instead taking a prior distribution 

with no moments and hence heavier tails than those of the normal. 

Having no finite moments is quite a strong requirement. In fact, a 

Student’s t-distribution with two degrees of freedom is considered 

a heavy tailed distribution but it does have a mean.

Jeffreys, Zellner and Siow, agreed tha t the “simplest” distribution sat­

isfying these requirements is a Cauchy distribution. Specifically, for the 

variable selection problem Zellner and Siow (1980)’s proposal takes the 
form:

7r? S(fii I An*7) =  Caki(Pi | 0,n<72(V*V’t)-1 )-

This distribution can also be written as

/•oo
* i S(0i  I An*7) =  /  J^ki (Pi \Oi ga2 ( V \ V i ) ~ 1) h ^ s (g)dg (2.10) 

Jo

where h%s (g) is

hnS (9) = IGa(g  | i ,  | ) ,  g > 0.

Distributions following the structure in (2.10) are known as scale mixture 

of normals and the corresponding hn(g) is referred to as mixing function. 

This can also be interpreted as building the prior in a hierarchical way 

(first using a normal prior for /3̂  given g and then using a proper prior 

hn{g) over g). Berger (1985) points out tha t eliciting priors in this hier­

archical way usually induce heavier tails.

Other authors also use this hierarchical structure for their proposal for 
prior distributions. For instance, Liang et al. (2008) use, in (2.10), the 

mixing function

h Ln (g) =  T ( 1  +  1 ) - § ,  g > 0 .
In  n
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Previously, Zellner (1986) takes a degenerated point mass for g (i.e. choos­

ing a specific value for g) in order to keep the normal form and thus 

obtaining closed-forms expression for the Bayes factors. These are popu­

larly referred to as g-priors. Obviously the choice of g in p-priors becomes 

crucial (Liang et al., 2008) and it can not be taken to be arbitrarily large 

(see the problems with vague priors in Section 1.3.1). There have been 

several proposals for suitable choice of g , some of which are discussed in 

Liang et al. (2008). The closed-form expressions for the resulting Bayes 

factors have made the p-priors very popular despite its not entirely sat­

isfactory behavior for some values of g.

Our particular proposal for 7Ti(/3j | /30, a) introduced in Chapter 3, follows 
the spirit of Conventional Priors described here and, as will be shown in 

Section 3.3.1, it also can be expressed as a scale mixture of normals.

2.3.4 Prior d istribu tion s over th e  m od el space. M ultip lic­
ity  issues

Prior probabilities over the model space P( Mi ) are im portant ingredients 

for computing posterior probabilities. When no information is available, 

it might seem reasonable to take them equal for each model. In partic­

ular, for variable selection this is P(Mi)  = 1/2P for i = 0 , . . . ,  2P — 1. 

However, a closer inspection makes it obvious th a t with this uniform 

prior, the most probable models are those for which the number of extra 

covariates, is around p /2  (since there are many more models of this 

complexity). This effect becomes more pronounced as p  grows. This is 

clearly inadequate if the possible number of explanatory variables have 

been chosen intentionally very large (trying to  “discover” influential vari­

ables in a, somewhat blind, way) whereas it is expected tha t only some 

few variables affect the response. Interestingly these ideas are connected 

to multiplicity as it is shown in Scott and Berger (2010). Specifically 

they show how P(M{)  can be chosen to account for multiplicity control.
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Multiplicity control is particularly needed in scenarios, like variable se­

lection, with huge model spaces. Indeed, Scott and Berger (2010) argue

hence for the difficulty of detecting influential covariates when p and, 

presumably the background noise, grow.

This multiplicity penalty must not be confused with Occam’s razor pen­

alty. Occam’s razor is a penalty against complexity of models and is 

inherent to Bayesian analysis due to the behavior of prior predictive dis­

tributions. But the Bayes factor between any two models remains fixed 

no m atter how many models we are comparing. Hence, a constant and 

equal P(Mi ) across models, producing Bayes factors as posterior odds 

(see Section 1.2.1), accounts for Occam’s razor but it does not account 

for multiplicity.

As Scott and Berger (2010) point out, a standard practice in variable 

selection is to give probability q to each variable being in the model, and 

consider their inclusion in a model as exchangeable Bernoulli trials. That 

is

instance, selecting q = 1/2 gives the same results as giving an equal prior 

probability to each model. Scott and Berger (2010) show that treating 

q as an unknown parameter and allowing learning from data results in 

an automatic penalty for multiplicity. Choosing a uniform prior for q in 

(2.11), and integrating it out results (Scott and Berger, 2010) in

tha t it is important to account for the increasing number of models and

P{Mi  | q) = <f‘( l  -  qY~k'. (2 .11)

A fixed value of q (independent of p ) does not control multiplicity. For

(2 .12)

The corresponding posterior probabilities are:
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Note tha t the prior (2.12) is equivalent to assessing an uniform prior 

to each dimension k , tha t is P (k ) =  l / (p  +  1) for k = 0, . . . , p ,  and 

then dividing this probability equally among the (^) models of dimension 

kt = k.

It is interesting to remark tha t Scott and Berger proposal results in 

marginal prior inclusion probability of 1/2 for each variable, the same 
as the one for the constant prior P(M{)  but the behavior is very different 

due to the way of apportioning the probability among models.



Chapter 3

Prior specification through  
Conventional arguments 
and invariance

3.1 Introduction

In this chapter we present and formally justify a novel proposal for prior 

distributions in the variable selection scenario introduced in Chapter 2. 

Recall tha t this problem consists of 2P comparisons, Mi as given in (2.2) 

vs Mo in (2.1). In each of these comparisons we need to specify a prior 

distribution iri(0i, f30, a), under model Mi. As commented in Section 

2.3.1, following Jeffreys’ Conventional approach it is convenient to express 

these priors as:

M 0 i,  0o, o) = *i(0i I 0o, a ) * i{0o> <*) (3-1)

For the specification of 7ri(/3j | /30, a) we extend proposals by Strawder- 

man (1971, 1973) and Berger (1976, 1980, 1985). These proposals were

31
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developed in a context of robust and minimax estimation. In this chapter 

we generalize these priors and adapt them to the scenario of variable se­

lection (see Sections 3.2 and 3.3). Interestingly, these prior distributions 

achieve good properties, also in this scenario for which they were not 

originally developed. Their suitability for model selection remained un­

noticed until Berger et al. (2010a) rescued them for developing BIC-like 

expressions. Many of these desirable properties are due to the robust, 

thick tails of these priors (recall tha t having thick tails is related to the 

fourth requirement of Jeffreys’ conventional approach, see Section 2.3.3). 

Priors with thick tails are typically difficult to work with; in particu­
lar they usually do not produce closed-form expressions for the marginal 
likelihood; interestingly, as we show in Section 3.5.1, our proposal does. 

This attractive property also makes it particularly suitable for model se­
lection, specially for very large model spaces, which is often the case in 

variable selection problems.

After choosing 7Ti(/3j | /30, a), we show (see Section 3.4) tha t the usual 

(but somewhat ad hoc) choice of 7Ti(j30, <j) = 1/cr can be formally derived 
and its use in our approach to variable selection is justified with invariance 

arguments.

Finally in Section 3.5 we show some good properties of our ultimate 

proposal for the joint prior which, along with the previous arguments, 

justifies all the components in the prior elicitation (3.1).

3.2 An extension of Berger’s Robust priors

3.2 .1  O riginal idea

We begin by succinctly reviewing the arguments in Strawderman (1971, 

1973) and Berger (1976, 1980, 1985). Their work was developed for the
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estimation of a /c-variate normal mean, 0,

X ~ A 4 ( 0 , S )  (3.2)

where £  is a known covariance matrix.

Strawderman original prior distribution was proposed to derive admissi­

ble minimax estimators for 0 when £  =  Ik,  Berger (1976, 1980, 1985) 

generalizes this idea to  any known £ . Berger realizes tha t the resulting 

prior distribution is extremely well suited for Bayesian robust analyses, 

producing estimators for 0 which are still minimax and also robust.

To introduce this robust prior we follow the notation and developments 
in Berger (1980, 1985), where prior beliefs are incorporated through a 
guess pi for 0, and a matrix A  reflecting the accuracy of this guess. This 

prior is defined in a hierarchical way. Specifically:

tt(0 | A) =  Mk (6  | /*, A” V  (S  +  A )  -  E ), (3.3)

7 r ( A )  =  aA“-1 ; A €[0,1].

The rather odd looking form of the covariance matrix of the normal 

distribution considerably simplifies calculations. Indeed, despite the fact 

tha t this prior has not itself a closed-form, it results in simple expressions 

for the corresponding estimators and also for the corresponding prior 

predictive distribution (see Berger, 1980, 1985).

Notice tha t this prior is defined up to two parameters, a and p , which 

values need to  be chosen based on desirable properties of the resulting 

inferences. In this sense, it is important to remark that this prior distri­

bution is a proper density only for values of a >  0. We briefly summarize 

here several choices of a and p which were considered for estimation pur­

poses:
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•  Parameter a. Berger (1980) chooses a = — 1 (resulting in an im­

proper distribution), because the corresponding prior produces a 

robust minimax estimator with good frequentist (coverage) prop­

erties. In fact, the resulting estimator will be admissible for any 

a > — 1 but good coverage properties require a < —1, hence, a 

natural choice for a is a = — 1. However, in his 1985 book, for a 

purely robust Bayesian analysis, Berger’s choice is a = 1/2.  This 
value results in a proper robust prior which also produces robust 

minimax estimators.

•  Parameter p. Berger (1980) argues tha t a good choice is

2 a +  k 
2a —|— 2 —I- k

This choice was based on the similarity of the resulting estimator to 

the best linear estimator in scenarios where the latter proved to be 

reasonable. For the two choices of a above this gives p = (k — 2)/k  
in Berger (1980) and p = (k + l)/(fc +  3) in Berger (1985). Anyway, 

Berger (1985, p. 240, Theorem 6) and Berger (1980, Theorem 2.2.1) 

show that the resulting Bayes estimator will be minimax for k ^  5 

no m atter which p is used.

Although these choices of a and p have very good properties for esti­

mation we can not adopt them blindly without investigating optimal 

properties for model selection. In particular, we can not choose a = — 1 

since the resulting prior is improper (see Section 1.2.1).
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3.2 .2  G eneralized form ulation

We generalize (3.3) by introducing a new (adjustable) parameter b as 

follows

tr(0 | A) =Afk(0  | /i, A~V (b£  +  A)  -  b £ ); (3.4)

7r(A) =  aA°_1; A € [0,1].

Berger’s prior (3.3) corresponds to the particular choice 6 =  1. By in­
troducing this new parameter, the Robust prior in (3.4) can be seen to 

generalize other proposals in literature (further details in Sections 3.3.1 

and 3.3.2).

In the next section we adapt the generalized version of Berger’s Robust 
prior in (3.4) to be used as model specific priors in variable selection.

3.3 Adapting Berger’s Robust priors for vari­
able selection

In adapting (3.4) for variable selection first note tha t variable selection 

fits the estimation of a multivariate normal mean framework consid­

ered by Strawderman and Berger. Indeed, for each model Mi  and given 

(/30, cr), it suffices to consider the sampling distribution of the maximum 

likelihood estimator of (see Section 2.3.2, Estimators):

4 i ~ v * iG3i,<72 (v S v  i ) - 1),

where V i  =  (I n — P o ) X i  is the design matrix in the orthogonal param­

eterization of the model. Here the multivariate normal mean of interest 

is (3i (of dimension hi).
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Hence, following the ideas of Strawderman and Berger we use the general­

ized version of the Robust prior in (3.4) as our proposal for 7rj(/3j | /30, cr):

7 r f ( / 3 i | / 3 0 , < 7 ) =  f  \ - 1pi (bV + A ) - b Z ) i r ( * ) d \  ( 3 . 5 )
Jo

with S  =  Covfo] =  ^ ( V f V j ) - 1.

Note that (3.5) does not depend on /30 so we are implicitly assuming that 

/3; and (30 are independent given cr.

Also note tha t in (3.5) the parameter p has a subindex z, reflecting the 

fact tha t we will be considering differing pi for each model M{. This is in 

agreement with the choices in Berger (1980, 1985) wThich depend on the 

dimension of (3 (see Section 3.2.1), and hence, different for each model 

in the particular scenario of variable selection. But pi is not the only 

parameter in (3.5). In fact we distinguish two sets of parameters:

1. Subjective parameters (p, A ). These were introduced in the orig­

inal proposal to incorporate prior beliefs. In this thesis, we assign 

them from an objective Bayes point of view (see below).

2. Adjustable parameters (a, b, pi). These are chosen so as to endow 

the prior with properties which are desirable for variable selection. 

The ultimate choice for (a, b, pi) will rely on further theoretical 

results and is delayed till Chapter 5.

In objective Bayesian analyses p  and A  are not chosen based on any 

subjective prior information. To guide our choice, we follow instead the 

Conventional approach desiderata, tha t is:

•  the resulting prior should be centered at and symmetric around the 

null hypothesis. In our approach the null model in every comparison 

is Mo, which is equivalent to Hq : /^  =  0. Hence we take the prior 

guess to be p  = 0;
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• the resulting prior should be scaled (in some sense) by the vari­

ance o f the entertained models. We take A  = n  £  where £  =  

1 is the covariance matrix of the maximum likelihood 

estimator of /3i . Note tha t this choice is the popular scale matrix 

in Zellner and Siow (1980), but our formulation in terms of the 

covariance matrix of /3j does not require the preliminary orthogo- 

nalization (see Section 2.3.2, Estimators). We have not seen this 

alternative formulation so far and we think tha t it is more elegant 

than the usual one.

In the proposal for A, the covariance matrix of the maximum likelihood 

estimator, £  =  Cov[/3j] is corrected by the sample size n, in the hope 

of having the information to roughly be of unitary size. This simple 

choice, which is appropriate for i.i.d. observations, might not work well 

in complex situations. Indeed, we think tha t a better choice would be 
to correct by an appropriately chosen effective sample size (see Berger 

et al., 2010a,b, and references therein). This attractive idea is still under 

investigation and there is not general agreement in literature about which 

is the best choice for effective sample size. For this reason, in this work, 

we consider the default choice of taking the sample size n  as effective 

sample size. Note th a t all the properties and developments use n  and may 

not be applicable to correction by other effective sample sizes. Anyway, 

in the examples (see Chapter 6) we investigate the impact of correcting 

by other definitions of effective sample size using the ideas in Berger et al. 

(2010b).

W ith the choices for /i and A  detailed above our proposal is as follows:

Definition 3.1 (Conventional Robust prior). The conditional prior dis­
tribution under Mi in (3.1) is taken to be

7rf {/3i | /30, cr) =  f  Afki (/3i | 0, ( A~lpi (b +  n) -  b ) £ )  tt(A) d \,  (3.6) 
Jo
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where £  =  Cov[/3j]- The prior distribution for A is taken as in (3.4). 

Recall tha t £  =  ^ ( V f V i ) " 1.

The restrictions required for the propriety of the resulting prior result in 

the following parametric space for (a, b, pi):

A  = {(a ,b ,p i): a > 0, 1 < b < n, Pi > b/(b + n)}. (3.7)

We remark tha t as long as the assessment of the scale of 7t/*(A \ /30, cr) 

is done in terms of Cov[/3j] this prior would remain the same for any 

reparameterization of the type

(An ° )  ->• (7, P ii <t)

tha t leaves A  unchanged since then the Cov[A] would not change. Notice 
tha t the orthogonal parameterization is of this type. Note also that repa- 

rameterizations involving (3i would alter the definition and interpretation 

of the models and does not seem to make sense in variable selection.

Summarizing, for the purpose of uniquely defining the scale of 7r/?(A  I 

00, cr), the preliminary orthogonalization is not needed. We will later 

see tha t it is not needed either for the purposes of choosing a common 

objective prior 7Ti(/30, cr) for all models, (the usual main reason for or- 

thogonalizing in Objective Bayes variable selection).

In the rest of this section and, in general in the rest of this thesis we 

exhaustively study all the good properties th a t this prior achieves for 

variable selection as well as its relationship with other Conventional Pri­

ors in the literature.

3.3.1 C onn ection s w ith  oth er C onventional priors

In a similar way as many other Conventional priors (see Section 2.3.3), 

the Conventional Robust prior in Definition 3.1 can also be expressed as
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the scale mixture of normals distribution given in next proposition:

P ro p o s itio n  3.1. The Conventional Robust prior in (3.6) can be ex­
pressed as the following scale mixture of normals

roo
^  (A  I a ) = -A/** ( f t  I 0, g o 1 ( V \V i ) - 1) h%{g) dg (3.8)

Jo

with

uRf \ I ° ( a ( 6 +  n ))“(3 +  b) (“+1) 9 > P i ( b  + n ) - b
K (9 )  =  { (3-9)

0 otherwise

Proof It suffices to make the change of variables:

g = A_Vi(6 +  n) -  b

□
C oro lla ry  3.1. Liang et a l Hyper-g/n prior (see Liang et a l, 2008) is 

a particular case of the Conventional Robust prior in (3.6) for b = n, 
a = 1/2 and pi = 1/2. In this case pi(b + n) — b = 0 and the support of 
g in the mixing density is [0, oo).

Proof Just recall (from Section 2.3.3) that

hn(g) = -z- 0- +  ^ ) -  ̂ =  (g +  n ) ~ ^ +1\In  n I

□

An important remark about the shape of the mixing function should 

be made at this point. Note that for every scale mixture of normals, 

tha t is, priors of the form (3.8) for a general mixing density hn(g), the 

normal distribution part degenerates to a point mass at = 0 for g =

0. This would in principle lead to Bayes factors close to 1 for mixing 

densities accumulating a lot of mass in the neighborhood of g =  0 when
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the likelihood is concentrated around /3t — 0 (or equivalently, for data  

supporting Mo). This is because, in such a scenario, the corresponding 

marginal likelihood r r i i ( y )  is large and so is B zo (but still B zo <  1 because 

the data  is compatible with Mo). Zellner-Siow proposal avoids (at least 

partially) this effect because its mixing density is an inverse gamma, 

which goes to zero when g  goes to zero. Similarly, the Conventional 

Robust prior given by (3.6) and (3.8) avoids concentrating prior mass 

in g  = 0 by effectively truncating the mixing density away from g —

0. Unlike these two Conventional priors, for the prior in Liang et al. 

(2008) the mixing density has a positive mass arbitrarily close to g  = 0. 

As a consequence, at least for the univariate case hi = 1 Liang et al. 

conditional prior for /3Z is not differentiable at 0. Therefore, Liang et al. 

prior would seem to produce Bayes factors larger than  the Zellner-Siow 

or robust ones under data  compatible with A/q (larger meaning closer to 

1). We will revisit this effect and its consequences when studying our 

final choice and the resulting Bayes factor in Chapter 5.

In Figure 3.1 we show mixing densities for some values of the hyper­

parameters. Dashed lines represent the lower bound of the support of 

the mixing density for the Conventional Robust prior.
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F i g u r e  3.1: Comparisons of different mixing functions.
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3.3.2 B ehavior on  th e  ta ils

One of Jeffreys’ requirements for a Conventional prior distribution was 

that it should have no finite moments, a property tha t is strongly related 

to the heaviness of the prior tails. Jeffreys also noticed tha t the behavior 

on the tails is related to the notion of information consistency, which we 

will explore later in Section 4.3.2. Then, having thick tails becomes a 

very important feature for a model selection prior. Jeffreys (1961) and 

Zellner and Siow (1980) achieved this property by taking a Cauchy prior.

Berger (1980) mentions th a t his proposed Robust prior behaves in the 

tails as a multivariate Student’s t-distribution. Indeed, one of his main 

motivations for using this prior was to keep the robustness properties 

of Student’s tails while considerably simplifying the computations. This 

remains true for our particular adaptation of his Robust prior to variable 
selection (3.6), as we show in the following result:

P ro p o s itio n  3.2. Let llftll2 = (3\(V \V O ft, then

lim . o,<0 =  j
||/34IP-tao S tki(0i I 0, C l  2a)

where:
_  cpi B t  (b, a)

C i ~  a  ’ 

c =  ( a r ( a ) )1/ “, and, cr) = a2(b +  n ) ( V \V i ) ' 1

Proof. See Appendix E .l □

C oro lla ry  3.2. ttr  has no moments for a <

Proof. It follows trivially from the the ta il’s behavior in Proposition 3.2
□

Notice tha t Corollary 3.2 indicates that for achieving the fourth require­

ment of Jeffreys we need to take a € (0,1/2]. Interestingly for a =  1/2,
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b = 1, pi = 2/ tt and large n, 7r(i(l3i | /30, cr) and Zellner-Siow’s Cauchy 

prior have equal tails.

Summarizing, our proposed conditional prior in Definition 3.1 follow Jef­

freys’ desiderata, that is:

1. It is proper (for n > ko +  ki, which is the sample size required for 

Cov[/3j] to be defined, see Section 2.3.2, Estimators).

2. It is centered on the simpler model Mo.

3. It is scaled by cr2 ( V jV  i)_1.

4. It does not have any finite moment (for a < 1/2).

According to the pioneering work of Jeffreys (1961) these are basic prop­
erties for objective priors in model selection to have. These desiderata 

have been adopted and advocated by many other authors after him (see 
for example Zellner and Siow, 1980; Berger and Pericchi, 2001; Casella 
and Moreno, 2006; Bayarri and Garcfa-Donato, 2007; Liang et al., 2008, 

and references therein).

We illustrate the behavior of the prior distributions described above in 

the univariate case ki = 1. Consider a simple example with ko = 1, 

a = 1, n = 100 and X {  being a simulated vector from a M {5, 9). In 
Figure 3.2 we represent the Conventional Robust prior with: i) Berger 

(1985)’s choices of the parameters (a = 1/2, b = 1, pi = 1/2); ii) Liang 

et al. (2008) choices (a = 1/2, b = n, pi = 1/2); and the Cauchy prior 

distribution of Zellner and Siow (1980) similar in the tails to n R with 

(a =  1/2, b = 1, pi = 2/7t). Notice that, as commented in Section 3.3.1 

Liang et al. prior has a peak at /% =  0 that makes it not differentiable 

at this point. It is also remarkable tha t Zellner Siow prior and Liang et 

al. one are quite close in the tails (see right picture). We will revisit this 

effect on Chapter 6.
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FI GU R E 3.2: Comparisons o f different prior distributions in the uni­
variate case. The left p ic ture presents the center o f the distributions  

and the right one the  tails (notice th a t the scales are different).

3.4 A n  i n v a r i a n t  p r i o r  f o r  “ c o m m o n ”  p a r a m e ­

t e r s

Once 7Tj(/3j | (30,cr) has been chosen as in Definition 3.1, we now turn  

to the choice of the marginal prior for the common param eters tt1(i3q,(t ) 

and thus complete the specification of our prior distribution under each 

model Mi

( f t  I A ) , ^  7 ^ ( 0 0 ,  C ^

Here we depart from the usual justification which (dating back to Jeffreys, 

1961) was based on:

1. Orthogonalizing /3̂  and (/30, cr) (in Fisher sense) as in (2.6).

2. Intuitively arguing th a t in this case, (/30, cr) could be taken to have 

similar meaning in all models.

3. Arguing th a t under these conditions a common prior distribution 

7t(/30, cr) could be taken under each of the models.
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4. Going one step further and arguing tha t in the case of taking im­

proper priors for the common 7t(/30, cr), the same arbitrary constant 

can be used in all models.

This intuitively reasonable (but ad-hoc) procedure results in very sensible 

priors for model selection and is adopted by virtually every Conventional 

approach to variable selection. However it has not been formally justified.

We have found tha t invariance arguments, developed in next section, 

provide a powerful and solid basis to chose the corresponding right-Haar 

measure as prior distribution for the common parameters under each 

model. In particular, for our framework the right-Haar measure turns 

out to be, 7r(/30, cr) = \ /o .  Hence we take 7r/*(/30, cr) =  7r(/30, cr) =  1/cr 
for i =  0 , . . . ,  2P — 1. This prior distribution is also the usual choice in 

literature but we i) formally justify its choice by invariance arguments 
and ii) do so without requiring preliminary orthogonalization.

3.4.1 Invariance

Invariance and its implications are thoughtfully explored by many au­

thors as for example by Berger (1985), where it is also shown tha t invari­

ance is strongly related to objective Bayesian analysis. In this work we 

use invariant-based arguments to guide our choice of an appropriate prior 

distribution. We briefly review some needed concepts of invariance and 

refer to Berger (1985) and Eaton (1989) for notation and further details.

We begin with the definition of an invariant family of densities:

D efin ition  3.2. The family of densities for y  G Rn, #  :=  { f ( y  \ 0)  : 

0 G ©} is said to be invariant under the group of transformations 0  := 

{,g : Mn —>• Rn} if for every g G 0  and 0 G 0 , there exists a unique 0* G 0  

such tha t X  = g (Y )  has density f ( x  \ 0*). In such a situation, 0* will 

be denoted g{0).
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E x am p le  3.1 (Location-Scale invariance). Let Y  be normally distrib­

uted with fy ( y  | p, cr) = M {y | //, cr2) and consider the group of location 

scale transformations, 0 =  {pC)& : gc,b{y) = cy + b; c > 0}. Then the 

density for X  = g^c{Y) is

f x ( x  | At, cr) =  \ p , a )  = N { x  \ p*, a*)

with fi* = cp + b and cr* =  ccr. That is, the normal density is invariant 

under location-scale transformations.

We are interested in the impact of invariance in the elicitation of improper 

non-informative priors for model selection. In this sense Berger et al. 
(1998) show that, even though Bayes factors can not usually be defined 

with improper objective priors (see Section 1.2.1), when the problem is 

invariant under a group of transformations, the use of the right Haar 
density (see Berger, 1985), although improper, results in well defined 
Bayes factors (in the sense studied in Berger et al., 1998).

We next show tha t the (conditional) marginal likelihood, m f-{y \ (30, cr) 
is invariant, thus providing a powerful justification of the use of the right- 

Haar prior on these problems.

P ro p o s itio n  3.3. The likelihood rrii(y | /30, a) for  (/30, cr) under model 
Mi for i = 1 , . . .  2P — 1 derived by integrating out /3  ̂ with any prior of the 

form:

I 0 O, a) = (3.10)
G

for any known density on M.ki, fi, is invariant under the group of trans­
formations

0  =  {9c,b ■ gc,b{y) = cy-\- X 0b\ b £ R k°; c > 0}. (3.11)

Proof. See Appendix E.2. □
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C oro lla ry  3.3. The marginal likelihood of (/30, (?) for the Conventional 
Robust prior in (3.6) is invariant under the group o f transformations in 

(3.11).

Proof. Corollary 3.3 follows trivially since n f1 (/3j | /30, cr) is of the form 

(3.10). □

Note tha t mo{y \ cr) =  Mn{y \ X q/30, cr2/ n) is also invariant under 

the group in (3.11).

Berger et al. (1998) justify the use of the corresponding right Haar den­

sity when all the models are invariant with respect to the same group of 

transformations. They also show th a t the corresponding right Haar den­

sity under this group of transformation is 7t(/30, <t) = 1/cr. This provides 
a formal justification for the, very popular use, of the reference prior or 
independent Jeffreys’ prior

(An <J) = ^(An <?) =  -(7

for variable selection and under all models i = 0 , . . . ,  2P — 1.

Another important remark has to be done here. Note tha t in order to 

have the above invariance structure, cr needs to be a scale parameter in 

7Ti(/3i | /30, a). This very extended practice is virtually always adopted 

in Conventional priors since the pioneering work of Jeffreys, but again to 

the best of our knowledge it has never been formally justified before.
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3.5 Appealing properties arising from the pro­
posed prior

The model specific (joint) prior tha t we propose for the parameters in 

is

(0i5 A>, (7) =  ~  ^ ( 0 *  I 0o> CT) ’ (3 -12)<7

with 'Ki'{Pi | 0oi cr) given in Definition 3.1.

This is an improper joint Conventional Robust prior with many desirable 

properties for variable selection. Note tha t properties of 7r/*(0j | 0 O, cr) 

were crucial in deriving 7Ti(0o, a). Some of the highlights of the formu­

lation of our proposal are:

• It justifies the commonly adopted inclusion of a  in the scale matrix 

of 7r^(/3j | 0 O, cr). Indeed the fact tha t cr is a scale parameter 
in | 0o, cr) was needed to achieve the invariance result in 

Corollary 3.3.

• The orthogonal parameterization is not longer a required prerequi­

site

— neither for the specification of the scale of the conditional prior 

for (3i,

— nor for the specification of 7Ti(/30, cr) =  1 /cr, which now is fully 

justified in terms of invariance.

• The use of V \V i  is justified by the choice of the scale matrix for

| 0o> a ) in terms of Cov[0j], which, exclusively for simplicity 

of notation is represented as cr^V ^V i)-1 .

The joint prior (3.12) has additional attractive properties as we next 

show.
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3.5.1 C losed-form  expressions for prior pred ictive d istri­
bu tions

From a computational point of view, an interesting characteristic of our 

proposed prior distribution is tha t it results in closed-form expressions 

for the prior predictive distribution under each model and hence for the 

corresponding Bayes factors. Indeed the prior predictive distribution 

(marginal likelihood or evidence) can be expressed in terms of the hyper­

geometric function of two variables (also known as Appell hypergeometric 

function, see Appell, 1925):

P ro p o s itio n  3.4. For any (a , b, pi) € A , (where A  is the parametric 

espace in (3.7)) and n > ki + ko, the prior predictive distribution for y  

under Mi using the Conventional Robust prior is:

R<
n-ko 2 a

ki -f- 2 a
(pi (n + b)) A P (3.13)

where

n  — kr
2 r

n  — ko
S S E n (3.14)

and APio is a hypergeometric function of two variables or Appell hyper­
geometric function:

APio = Fi
ki ko +  ki — n n — ko

a + r — 2 — - — 2 ~

a +  X +  t  V ■ b Q 'i
-1 
iO

2 ’ pi (b +  to) ’ pi(b-\-n).

Recall that Qio is the ratio of residual sum of squares under each model 

S S E i/S S E o  and was defined in Section 2.3.2.

Note that for computing m i(y) a sample o f size n  > ki + ko is needed. In ­

deed, if  we want to compute m i(y) for every model Mi with i = 0 , . . . ,  2P— 

1 we need a sample of size n >  p ko-



3. Prior specification through Conventional arguments and invariance 49

Proof. See Appendix E.3. □

The hypergeometric function is considered a closed-form expression in 

the sense th a t it is originally defined as an infinite sum (the interested 

reader can find a careful definition in Appendix C, for further information 

see Appell, 1925). The expression of m f-{y) is substantially simplified 

with some specific values of the parameters as we will see in Chapter 4. 

Practical benefits of this simpler formulation in variable selection will be 

studied in detail in Chapter 6 with some real and simulated examples.

3.5.2 P red ictive  M atch ing

The motivating argument for what is, generally, known as predictive 

matching can informally be stated as follows:

It seems intuitively reasonable that when the information in 

the sample is barely enough for estimating the model specific 

parameters there is not enough information for distinguishing 

among models. In such a situation model comparison can not 
really be conclusive.

Predictive matching has been studied in literature from many different 

points of view. Berger and Pericchi (2001) describe predictive matching 

as follows: “in comparing two models Mi and M j, 7Tj and 7Tj should be 

chosen so th a t for a sample of minimal sample size m i(y)  and nrij(y) 
are as close as possible” . Spiegelhalter and Smith (1982) and Ghosh 

and Samanta (2002) consider tha t predictive matching holds when the 

Bayes factor Bio is exactly 1 for any sample of “minimal sample size” 

obtained under Mo. This is a particular case of Berger and Pericchi 

(2001)’s predictive matching. Similar ideas are used in, for example, 

Kadane et al. (1980); Suzuki (1983); Ibrahim and Laud (1994) and Laud 

and Ibrahim (1995).
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A common concept in all approaches to predictive matching is the concept 

of “minimal sample size” . In Berger and Pericchi (2001) the minimal 

sample size is defined as the size of a proper minimal training sample 

defined as follows:

D efin ition  3.3. A training sample y* is called proper if, given a non- 

informative (usually improper) prior for the parameters ir^(0{), the cor­

responding marginal likelihood m N (y*) is 0 <  m f(y * )  < oo for all M  

and minimal if it is proper and not subset is proper.

The size of a minimal proper training sample can thus depend on the 

prior ttn  used. In particular it will be different for the usual Jeffreys 

independent or reference prior 7r(/3j, /30, cr) =  1/cr and our Conventional 
Robust prior.

Specifically, in variable selection, Berger and Pericchi show that, using 

the usual objective joint prior 7Tf (/3f, /30, cr) = \ j a , for i =  0 , . . . ,  2P — 1, 
the size of a proper minimal training sample is n* = p +  ko + 1 , but as we 

show below this is not the minimal sample size when using our proposed 

joint prior (recall th a t our joint proposal, despite being improper, is 

defined in two steps with the first part '7rft (/3i | /30, cr) being proper for 

any sample of size n > ki +  ko). It is anyway im portant to remark that 

Berger and Pericchi’s minimal sample size n* =  p +  ko +  1 is still the 

sample size needed from a purely frequentist point of view to estimate 

all the parameters in all the models.

We now revise the concept of minimal sample size as well as predictive 

matching to the problem of variable selection.

Predictive matching for variable selection

To define our idea of predictive matching we first need to determine which 

is our minimal sample size.
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R e su lt 3.1. Given any model Mi the corresponding minimal sample size 

fo r the Conventional Robust prior is n* =  ki +  ko.

Proof. Let y* be a sample of size n* = ki +  ko then mf-{y* | /30, o') 

is proper since 7r/*(/3j | /30, cr) it is so. Integrating over (/30, cr) using 

7t(/30, cr) =  1/cr we need a sample of size n > ko +  1 for the result to be 

bounded. As we already have a sample of size n > ko + 1  (n* = ki + ko >

k0 + 1 )

= J  I An °)^d(/30, a)

is finite. In fact the exact value of mf-{y*) for a sample of size n* = ki-\-ko 

is given in Proposition 3.5. □

An important remark has to be done here. Note tha t in the definition 

of a minimal training sample of Berger and Pericchi (2001) an unique 
minimal sample size is defined for every model Mj. For our prior this 

would be n* =  p 4- ko. For reasons tha t will become clear in the sequel 

we consider instead minimal sample sizes for each specific model Mi, so 

tha t n* — ki + ko- We remark again that for estimating the parameters 

of model Mi from a purely frequentist point of view (or from a Bayes 

perspective with the usual improper estimation prior) the sample size 

needed is n  =  ki +  ko +  1, and not n  =  ki +  ko.

Once tha t the minimal sample size in our scenario has been defined, we 

now introduce our idea of predictive matching which is closely related 

to the proposal in Berger and Pericchi (2001) mentioned above, but it 

incorporates some interesting twists. As a m atter of fact, we are much 

less ambitious in our demands for predictive matching. Indeed whereas 

Berger and Pericchi would predictively match m i(y ) and rrij{y) no m atter 

the complexity of Mi and M j , we consider tha t such matching makes the 

most sense when it is entertained among models of the same complexity 

ki = k j , and we will only aim for that.
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D efin ition  3.4  (Weak Predictive Matching.). In a model selection prob­

lem entertaining m  models M j , j  = 1 , . . . ,  m, we say tha t model specific 

priors 7Tj,j = 1, . . . , m  result in weak predictive matching, if the evi­

dence (prior predictive) rrii(y*) is the same for all models Mi of the same 

complexity and for all data y * of minimal sample size for that complex­

ity (that is, the minimal sample size for which the posteriors for those 

models are proper). We assume th a t equally complex models have the 

same minimal sample size (an intuitively sound requirement for objective 

Bayes model selection).

In the context of variable selection for linear models, the complexity 

of model is clearly characterized by the dimension ki of the extra 

parameter. As previously established, with the Conventional Robust 
prior the minimal sample size for a model with ki extra parameters is 

ki +  ko, so tha t indeed all models of the same complexity have the same 

minimal sample size. This sample size is also increasing with model 

complexity, as intuitively expected.

The motivation behind weak predictive matching is to have a less re­
strictive criteria than the full predictive matching of Berger and Pericchi 

(2001) but still allowing assessment of wether the priors are well balanced 

across models (an important criteria in objective Bayes model selection). 

Weak predictive matching only indicates tha t the priors for models of 

the same complexity are well “calibrated” among themselves. It does 

not say anything one way or the other for comparisons of models of dif­

fering complexity. This might be “too weak” and some other requirement 

might have to be investigated in order to have all priors “well balanced” 

across all models.

The next Proposition and its Corollary show tha t the Conventional Ro­

bust prior results in weak predictive matching. In addition they also show 

th a t the base model Mo is matched to  every model Mi for the minimal 

sample size for tha t model.
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P ro p o s itio n  3.5. Given a model Mi with hi extra covariates, for any 

sample y* of size n* =  ki + ko we have

m?{y*) = m §(y*) = i  tt- ^  T

which only depends on SSEo, X o  and k{.

Proof. See Appendix E,4 □

C o ro lla ry  3.4 (Weak Predictive Matching). For any sample of size 

ft* = ko + ki there is predictive matching for all models Mi with ki extra 
covariates in the following sense: for  any sample y* of size n*

1. The prior predictive evaluated at y*, mf-(y*) is the same for all 
models with ki extra covariates; hence, all models of dimension ki 
are predictively matched for all such y* .

2. Each Bayes factor B-q = rnf'{y*)/m o(y*) = and hence all mod­
els Mi of dimension ki and Mo are predictively matched for all such

y*  ■

Proof. I t ’s trivial from Proposition 3.5. □

The first part of the Corollary gives weak predictive matching, thus show­

ing well calibrated priors within all models of the same dimension. The 

second part provides the additional property tha t all such models are 

also well “balanced” with the base model Mo in the sense that, for their 

minimal training sample, there is predictive matching. Notice tha t each 

Mi matches Mo for possibly different sample sizes n*. Since all Bayes 

factors Bij are defined through comparisons of each model with the base 

model Mo, Corollary 3.4 is in fact showing tha t the Conventional Robust 

prior is calibrated across all models; here this ‘calibration’ is in a much 

weaker sense than usually required in the literature.

SSE0 2



54 3.5. Appealing properties arising from the proposed prior

A major advance is the recognition tha t “minimal training sample size” 

needs to reflect the necessary proper priors for “uncommon” parameters, 

and be based only on models of the same complexity; Corollary 3.4 is a 

very strong statement in this context.



Chapter 4

Conventional Robust Bayes 
Factors: Closed-form  
expression and consistency  
issues

4.1 Introduction

The model posterior probabilities can be expressed in terms of the 2P 

Bayes factors in favor of model M{ and against model M q as:

P(M i | y) =
E fio

for z =  0 , . . . ,  2P — 1.

In this chapter, we focus on the Bayes factors resulting from the Con­

ventional Robust prior defined in Chapter 3, referred to as Conventional 

Robust Bayes factors and denoted by B-q.

55
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4.2 Definition, closed-form and posterior prob­
abilities

As it was shown in Section 1.2.1 Bayes factors can also be expressed as 

the ratio of marginal likelihoods:

where m i(y ) for i = 0 , . . . ,  2P — 1 is

When using our prior distribution ^ { ( 3 ^  /30, a) in (3.12) this marginal 

likelihood has a closed-form expression, as shown in Proposition 3.4. 

Hence, the resulting Conventional Robust Bayes factor also has a closed- 
form expression.

P ro p o s itio n  4.1. The Conventional Robust Bayes factor in favor of 
model Mi and against model M q is

Proposition 3.4, and Qio = S S E i/S S E o  is the ratio of residual sum of 
squares under each model (see Section 2.3.2).

(V) = J  fi(y I Pi, Po, <T)*i{PiJ Po, a) d{Pii Po, &)

r ^ o -  2 a 
ki 2 a

(pi(n -\-b )) ~2 APio, (4.1)

where A P ^  is the hypergeometric function o f two variables defined in

Proof. This expression follows directly from Proposition 3.4. □

Expression (4.1) is further simplified for b = 1 as shown in Corollary 4.1. 

C o ro lla ry  4.1. For 6 = 1 ,

n —fcn 0/7 k  ■

B & =  Qi0 2 (Pi (n +  1 ) r "  HGi0, (4.2)



4. Conventional Robust Bayes Factors 57

where HGio is the hypergeometric function of one variable:

h .  1 QjO 
2  ’ pi(l  + n). '

Proof It follows directly from Proposition 4.1 □

Having closed-form expressions is a very appealing characteristic specif­

ically for problems with large model spaces, as is usually the case for 

variable selection. Consider, for example, a problem where the number

all practical purposes). In such a problem we make a search over the 

model space trying to  find the most probable models. For each visited 

model, Bio should be computed. It is obvious tha t the simpler the ex­

pression of Bio the faster the computation, and hence, for a given time of 

computation, the larger the number of visited models. Also, if the model 

space can be enumerated, the time needed to compute the 2P Bayes fac­

tors can be substantially reduced if B iq has a simple expression.

The hypergeometric function of two variables and hypergeometric func­
tion of one variable are both considered closed-form expressions and can 

be computed with several statistical and mathematical software. But the 

latter is implemented in a wider range of computer software. Moreover, 

its computation is noticeably easier and faster, and so, it is considered 
a simpler expression (in terms of computation) and thus preferred for 

variable selection.

of covariates is so large tha t the model space can not be enumerated (for
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For the Bayes factors B-q in (4.2) the posterior probabilities are:

(Pi (”  +  HGi° p (Mi)
n - k 0 _ fc.

(ft ("  +  6) ) ' ^  HGj0 P(Mj )

kj +  2a pY 2 HG.o P(M i)

for i = 0 , . . .  2P — 1.

A curiosity is that, for models Mi differing with Mo in one covariate (i.e. 

ki =  1), for certain values of a and b the Conventional Robust Bayes 
factor have a extremely simple expression:

C o ro lla ry  4.2. I f  a = 1/2, 6 = 1  and ki = 1 (i.e. Mi has one more 
covariate than Mo), then:

In a framework like ours where the base model is fixed (recall tha t we 

always consider Mq as base model, see Section 2.3.1) the expression in

typically differ from the base model in just one covariate. Nevertheless,

VPi{l + n)(Qio) - 1̂
n  — fcf) — 2 

2

(n -  fco -  2)(Qi01 -  1)
(4.3)

for n  > ko +  2 and

=  \ y j p i ( k0 +  3) ( l  -  Q io)-1 log [l +  ^  +  3 }

for n = ko +  2.

Proof. It follows easily from Proposition 4.1 □

(4.3) is not really useful because just few models in the problem would

this simple closed-form expression can be convenient when considering
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some numerical methodologies as some stepwise methods in which Bayes 

factors are always computed between models differing in one covariate 

(see for example Berger and Molina, 2005).

4.3 Consistency of Conventional Robust Bayes 

factors

Studying the consistency of any statistical procedure is commonly asso­

ciated with studying its behavior when the sample size tends to infinity. 

In model selection, this is known in the literature as model selection con­
sistency. In this section we study model selection consistency for the 
Conventional Robust Bayes factors.

We also study other types of consistency, in particular we study the 

behavior of Conventional Robust Bayes factors for a fixed n  when:

1. the data overwhelmingly support M*. This type of consistency is 

referred to as information consistency (see Section 4.3.2).

2. the “information” in the data is very large in favor of Mo; we refer 

to this as null information consistency (see Section 4.3.3).

4 .3 .1  M odel selection  consisten cy

Informally stated, model selection consistency requires that: (quoting 

O’Hagan, 1994)

“[...] as the number of observations tends to infinity, the probability 

of selecting the correct model tends to one” .

More precisely, if the true model is Mi, a model selection procedure 

(and in particular Bayes factors) is consistent if the posterior probability
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P(Mi  | y ) converges in probability to 1 as the sample size, n, grows (or 

equivalently if plimn Bji = 0 for all Mj ^  Mi).

Model selection consistency is an important property tha t has been amply 

studied in literature. A number of recent references include: Fernandez 

et al. (2001); Berger et al. (2003); Liang et al. (2008); Casella et al. (2009); 

Guo and Speckman (2009); Moreno et al. (2009).

We next show tha t under very weak conditions, Conventional Robust 

Bayes factors are model selection consistent. This result is based on a 

previous one of Liang et al. (2008).

P ro p o s itio n  4.2. I f  lim ^oo  pi (b +  n) =  oo, then the Conventional 
Robust Bayes factors are consistent.

Proof. See Appendix F.4 □

This is a fundamental property of our methodology and the only require­
ment is tha t pi(b-\-n) tends to oo as n  grows. When later on, in Chapter 

5, we study the possible choices for pi it will be im portant to keep this in 

mind and avoid values of pi tha t make pi(b 4- n) go to  a constant when 

n —> oo (as for example any expression of order n -1 ).

4.3 .2  Inform ation  con sisten cy

When the observed data provides a lot of “information” in favor of model 

Mi, it is reasonable to expect tha t the corresponding Bayes factor B ^  

would reflect this “information” by having a large value. Moreover, as 

the information favouring Mi grows without limits we would expect B ^  

to tend to infinity. This desirable property is usually referred to as in­

formation consistency (see Bayarri and Garcfa-Donato, 2008). When a 

Bayes factor is not information consistent it is said to  suffer from the 

Information Paradox (see Liang et al., 2008).
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The information paradox phenomenon was first noted by Jeffreys (1961) 

and caused him to reject certain type of priors suffering from it. Con­

jugate prior, as the p-priors of Zellner (1986) suffer from information 

paradox (see Berger and Pericchi, 2001; Liang et al., 2008).

Of course, it is im portant to specify what “information in favor of model 

Mi” means in statistical terms. In particular, in terms of the statistic 

Qio because it is the only summary of the data used in the computation 

of Bio. The statistic Qio was defined in Section 2.3.2 as the ratio of the 
residual sum of squares for Mi  and Mo, Qio = SSEi/SSEo.  There we 

also remarked tha t a value of Qio —> 0 indicates an increasing support 
for Mj.

It is thus easy to state information consistency in terms of Qio:

The Bayes factor B(q is said to be information consistent if it 

tends to  infinity when Qio tends to 0. Than is if

lim Bjji = oo 
Qio->0

The conditions under which Conventional Robust Bayes factors are in­

formation consistent are given in the following result.

P ro p o s itio n  4.3. The Bayes factor, B-q is information consistent i f  and 

only i f n > k i  + ko + 2a.

Proof See Appendix F.2 □

Similar results are derived by Liang et al. (2008) for Bayes factors arising 

from a “scale mixture of normals” prior (as in (3.8)) which, as shown in 

Proposition 3.3.1, includes our Conventional Robust prior distribution.

In Proposition 4.3 we see tha t the parameter a controls the sample size 

needed to achieve information consistency. In fact it follows easily that



62 4.3. Consistency of Conventional Robust Bayes factors

in a problem of variable selection with p covariates, we need a sample of 

size n > p  +  ko +  2a for the 2P — 1 Bayes factors B-q to be information 

consistent. If, in particular, a £ (0,1/2] it suffices to have n > p-\- ko + 1 .

Interestingly, recall tha t the parameter a also controls the thickness of 

^ ( ( 3 i | /30, tails, which were shown to be like those of a Student’s t- 

distribution with 2a degrees of freedom. This is indeed not a coincidence. 

Jeffreys realized tha t the tails of the conditional prior distribution for the 

“new” parameter is closely related to information consistency and that 

thick tails are required to obtain this desirable property. In fact this 

idea is reflected in his fourth desideratum “the conditional prior should 

have no finite moments” (see Section 2.3.3) and was his main reason for 

choosing a Cauchy distribution instead of the normal distribution (in 

spite of the latter resulting in simpler expressions).

4.3 .3  N ull inform ation con sisten cy

Along the same lines as in information consistency, we next show tha t B-q 

is always smaller than 1 when the data strongly supports the simplest 

model, Mo. Recall tha t in Section 2.3.2 we interpreted this limiting 

support for Mo with Qio —> 1.

P ro p o sitio n  4.4. For any n, B ^  is bounded above by a constant for  

Qio —)• 1. This constant is smaller than 1, and depends only on ki and a. 

Specifically,
T fc 1 -1

< 1.lim B-n <
Qio^i 1 2a

Proof. See Appendix F.3 □

Since the upper bound is smaller than 1, B-q always supports Mo as 

QiO —» 1. Note tha t this bound is increasing with a. In particular if 

a € (0,1/2] (the range of values tha t produces conditional priors with 

no moments, see Section 3.3.2) this bound is smaller than 1/2 giving
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even stronger support for M q (recall tha t the smaller B - q the larger the 

support for M q) and hence, being more consistent with the information 

provided by the data. It should also be noted tha t the larger the value 

of a the less parsimonious Bayes factors, in the sense tha t the larger a 

the more complex models are favored. Again the relationship between 

consistency and ta il’s shape arises since a controls the bound of the B(q 

in this case, and hence the strength of the support for Mo in the resulting 

Bayes factor.

This argument jointly with the specific expression of limQi0_».i B-q (given 

in Appendix F.3) is used in the next chapter to partly guide our recom­

mended choices for a and pi in the Conventional Robust priors.

Finally note tha t this bound is decreasing with ki, thus showing clearly 

the penalty for complexity or Occam’s razor effect.





Chapter 5

The hyper-parameters

( a ,  b ,

5.1 Introduction

So far we have proposed a prior distribution for addressing variable se­

lection problems and studied its convenient properties in this framework. 

But recall tha t our proposal 7 r / 3 0, &) in (3.12) depends on three 

parameters (a, 6, pi). It is quite remarkable tha t all the studied proper­

ties are achieved for all the values of (a, 6, pi). To summarize, for any 

(a, b, pi) with: a € (0, oo), b € [l,n], and pi > 6/(6 +  n), the prior 

in (3.12):

• Follows most of Jeffreys’ desiderata for model selection (see Section 

2.3.3), and all of them if a G (0,1/2].

•  Has attractive and novel predictive matching properties (see Sec­

tion 3.5.2).

•  Results in well defined (see Section 3.4.1) closed-form (see Section

4.2) and consistent (see Section 4.3) Bayes factors.

65



66 5.2. The Parameter a and the behavior on the tails

In this chapter, we propose “optimal” objective choice of specific val­

ues for (a, 6, pi). Indeed we show tha t our recommended choices result 

(in some sense to be defined later) in an improvement of the properties 

mentioned above as well as in achieving some new desirable ones.

5.2 The Parameter a and the behavior on the  

tails

As we have seen, the parameter a is closely related to tails behavior. In 

particular, it controls the degrees of freedom of the Student’s distribution 

which define the tails of 7r/*(/3j | (3 0 , cr) in (3.6) (see Section 3.3.2) and 
hence the number of moments of this conditional prior. Recall that one of 

Jeffreys’ requirements for a conditional prior for the new parameters was 
th a t it should have no finite moments. This gives us our first guideline 

for choosing suitable values for a:

1. The parameter a should be a <  1 /2  so that 7r/*(/3j | /30, cr) has no 

finite moments.

Moreover, information consistency studied in Section 4.3.2 is also related 

to this behavior in the tails and hence it is relevant in guiding the choice 

of a. Indeed in Proposition 4.3 it is shown that a controls the sample 

size needed for the 2P — 1 paired Bayes factors Bio for i  = 1 , . . . ,  2P — 1 

to be information consistent. Specifically, n > p-\- ko +  2a. This gives us 

another reason to  follow requirement 1 above and choose a < 1 /2 , because 

we then have information consistency even for samples of minimal size 

in the frequentist sense, th a t is n = ki +  ko +  1.

Also related with the value of a is null information consistency. In propo­

sition 4.4 it is shown tha t for data the most compatible with Mq the
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corresponding Bayes factor (which we denote B-g) is bounded above by

£?o<

iOj

-1

This quantity is, for a E (0, oo), bounded by 1 which as described in 

Section 4.3.3 is very reasonable since data is compatible with Mo. More­

over, when a < 1/2 as in the previous requirement, this bound becomes 

< 1/2 thus reflecting even clearer the support in the data for Mo. 

However, it is im portant to remark that a very small value of Bf0 will 
result in very conservative procedures (which might favour simple models 

too much). This consideration along with the fact tha t the bound above 

is increasing with a gives us our second guideline for choosing a:

2. Smaller values of a result in smaller upper bounds for *8. so too 
small values for a might result in excessively conservative Bayes 

factors.

Point 1 induces a choice of a < 1/2 while Point 2 indicates tha t we need 

to  find a balance between being null information consistent (choosing a 

not too big) and not being too conservative (choosing a not too small). 

A compromise between these ideas is to choose a = 1/2 which is our 

final proposal for this parameter. This choice matches the proposal in 

the original paper by Berger (1980). Moreover, with this choice, nf- has 

Cauchy tails like the popular proposals of Jeffreys (1961), and Zellner 

and Siow (1980, 1984).

In Summary, taking a = 1/2 makes our proposal to achieve Jeffreys’ 

desiderata, be information consistent (for n > p  + ko + l)  and being null 

information consistent (with B®0 < 1/2) without being too conservative.
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5.3 A com putational convenient choice for b and 

a sensitivity study

One of the original motivations for this thesis was to develop a method­

ology for variable selection with good properties and simple expressions. 

As shown in Corollary 4.1 the simplest expressions are obtained with 

6 = 1  which is our recommended choice for the value of parameter 6. For 

this value of 6 the resulting Bayes factor has a closed-form expression in 

terms of the hypergeometric function of one variable.

Recall tha t for any other value of 6 the expression of the Bayes factors is 

in terms of the hypergeometric function of two variables. As commented 

in Section 4.2, there it is a noticeable difference between the hypergeo­

metric function of one variable and the hypergeometric function of two 
variables in terms of computational availability and complexity. This 

makes the hypergeometric function of one variable way more suitable for 

variable selection, and hence, supports the choice of 6 =  1. Moreover, for 

this choice of 6, Berger (1985) gives an alternative, very simple way of 

computing predictive distributions (and hence Bayes factors) and nothing 

similar seems to be available when 6 ^ 1 .

However, this choice of 6 is not based on any strong theoretical argument 

and so, an obvious question arises: How large is the impact of 6 in the 

results? As an attem pt to investigate this question, we present an em­
pirical analysis to  gain understanding on the sensitivity of Bayes factors 

with respect to 6. In particular we study the ratio

r>/L\ Bio(b) /c -I \
( 5 - 1 }

as 6 changes (recall tha t 6 can take values in [l,n] as shown in (3.7)).

For this study we consider n = 100, ki = 3 and ko = 1 taking a = 1/2 

(our choice) and two different values for pp.
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•  Pi =  1/2;

•  Pi = (ki + 1 )/(k i +  3) =  2/3 (the one proposed by Berger, 1985).

Given these parameters we consider three different scenarios for the val­

ues of Q i o , considering little, medium, and strong support for Mf. In 

particular,

1. S cenario  1: The first scenario considers values of Qio giving little 

support for In particular, we take values of Q io  close to 1 

(Qio € [0-9,1]). This interval has, for the considered values of 
n, ki and ko, a 90% of the probability in the distribution of Qio 

under Mo. Indeed, in Section 2.3.2 we show tha t Qio \ Mo ~  

Be((n — ki — ko)/2, k i /2), which here is Qio \ Mo ~  Be(48,1.5) 

for which P(Qio € [0.9,1]) =  0.9. Specifically, we use the values 

Qio =  1, 0.95, 0.92, 0.9.

2. Scenario  2: Our second scenario considers values of Qio which 

give medium support for Mi.  Those are values of Qio not too close 

to 1 (where there is strong support for Mo) and not too close to 0 

(which indicates strong support for Mi).  In particular we use the 

values Qio = 0.8, 0.6, 0.4, 0.2.

3. S cenario  3: Our third and last scenario considers values of Qio 

strongly supporting M*. As shown in Section 2.3.2 values of Qio 

giving strong support for Mi  are values of Qio close to 0. Specifically 

in this scenario we take Qio =  0.05, 0.01, 0.005, 0.001.

A remark is in order here for the reader who might wonder why the 

sensitivity to b is not being studied for our recommended choice of pi 

(to be discussed later). The reason is tha t our ultimate choice pi = 

l/(k i-\-ko  + 2) will specifically be derived for b = 1. Moreover it can not 

be used with every value of b due to the restrictions of the parametric 

space in (3.7) (pi > b/(b +  n)), so it is not well suited for this exercise.
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Results are presented in Figures 5.1, 5.2 and 5.3, which are commented 

below.

Scenario 1

Figure 5.1 shows tha t the impact of b depends considerably on the value 

of pi. Indeed, for the choice of pi = 1/2 (top) the sensitivity of R(b) in 

(5.1) to b is larger than for the choice of pi = (ki 4- 1 )/(ki 4- 3) (bottom). 
Specifically, for pi = 1/2, R(b) goes from 1 to 11.87 as b goes from 0 to 

100, while the ratio for pi = (ki 4- 1 )/(k i +  3) stays between 1 and 1.25.

Note tha t for all the values of Qio in this scenario, the ratio R(b) grows 
with b taking its maximum value at b = n. Indeed, for pi = 1/2, -B^(6 =  

n) is more than 11 times larger than B ^(b  = 1) when Qio =  1. In a sense, 

this was expected since B(q for b = n, a = 1/2 and pi = 1/2 corresponds 

to Liang et al. prior which, as exposed in Section 3.3.1, spikes sharply 

around /3j =  0 (i.e. the null model) resulting in Bayes factors which, 
for data compatible with Mo, are larger (closer to 1) than any other 

Conventional Robust prior with the same a and pi but smaller values of 

b.

Notice that, for pi = 1/2, the various R(b) increase slowly from b =  1 up 

to b «  50 when they start growing dramatically. This indicates th a t the 

sensitivity of this ratio to the value of b increases as b gets close to n  and 

tha t small and moderate values of b seem to be quite more stable than 

the larger ones. This also supports, somewhat, the choice 6 =  1, for the 

parameter 6.

In spite of the sensitivity of the ratio of Bayes factors to 6 in this scenario, 

it is worth noting tha t the values of all of these Bayes factors are always 

less than 1, as they should be for values of Qio the most compatible with 

M q.
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F i g u r e  5 . 1 :  Scenario 1: Ratio R(b) of Conventional Robust Bayes
factors as a function of b

Scenario 2

Figure 5.2 shows tha t, similarly to the previous scenario, the sensitivity 

is larger for pi =  1/2 (top) than  for pi =  (k{ +  1 )/(k i +  3) (bottom). 

However, in this scenario the sensitivity is considerably smaller than  in 

scenario 1. In scenario 2 R(b) € (0.6, 2.15), so Conventional Robust 

Bayes factors are remarkably robust to the choice of b.
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In any case, these values of the ratio do no really make a difference in 

practice since the resulting Bayes factors are all between 102 to 1030 and 

having B ^(b  = 1) or Bj^(b = n) «  2 B^{b — 1) will result in the same 

very clear conclusion: da ta  supports Mi.
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FIGU RE 5.2: Scenario 2: Ratio R(b) of Conventional Robust Bayes
factors as a function of b
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Scenario 3

Figure 5.3 show th a t the maximum absolute value of the ratio i?(6), 

th a t is R{h = n), tends to 1.4 as Qto —» 0. Moreover, a ratio of 1.4 

is of not practical significance at all, since in this scenario the order of 

Bayes factors is about 1040, hence giving overwhelmingly support for Mi 

whatever the value of 6, as expected.
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F i g u r e  5.3: Scenario 3: Ratio R(b) of Conventional Robust Bayes
factors as a function of b

In summary,
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1. Bayes factors are very sensitive to b only when i) the data is the 

most compatible with Mo; and ii) b is close to n.

2. Whatever the value of b, the decision taken based on the values of 

Bio seems to be quite robust and intuitively correct.

Finally 1. and 2. together with the simple expression of the Bayes factor 

achieved suggest tha t our choice of b = 1 is a very sensible one.

5.4 The choice of p*: revisiting the predictive 

matching criteria

In this section we explore the role of pi and suggest a good choice for the 

value of pi given our preferred choice for the other parameters: a =  1/2 
and 6 =  1.

The assessment of pi is quite a delicate issue specially because of its 

potentially large impact in the tail behavior of the prior distribution. This 

is because Conventional Robust priors behave in the tails as Student’s 

t-distributions (see Section 3.3.2) with scale matrix:

S* =  Pi a - V M ] 1/”1 (6 +  n ) ^ ( V f V i) ” 1. (5.2)

Clearly pi enters the scale matrix as a multiplicative constant and multi­

plicative terms in the scale of priors for model selection have the potential 

for a very large impact on Bayes factors. Since for 6 =  1, pi can take 

values in [1/(1 +  n),oo), a choice of a specific value in this huge range 

does have a direct, and important impact on the scale matrix, and hence 

on the tails of ^ ( / ^  | /30, a).

Our initial choice was to consider pi = (ki +  1 )/(k i -I- 3) since this is the 

“optimal” value suggested in Berger (1985). However, this choice was 

developed for an estimation scenario so it may not be the optimal choice
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for model selection. We therefore try  here to use optimality criteria 

in model selection to guide our recommendation for pi. Moreover, we 

study the implications of our choice later in this chapter as well as in the 

examples of Chapter 6. We also compare them with the Bayes factors 

from other approaches.

Recall tha t our prior distribution achieves Jeffreys’ desiderata for model 

selection priors (see Section 2.3.3) as well as many other desirable prop­

erties reviewed at the beginning of this chapter, and it does so no m atter 

the value of pi. At the same time, we saw above tha t this parameter has 

the potential for a large impact in the results, so we need some criteria 

to choose a specific value for it. We base our choice for pi on predictive 
matching ideas.

Weak predictive matching, studied in detail in Chapter 3, postulates that 

given a sample of minimal size n = ki +  ko the predictive distribution 
should be the same under any model containing ki extra covariates. This 

is a nice property because, as commented in Section 3.5.2, with such a 

sample size, data can not really be expected to have enough information 
to discriminate between models of complexity ki.

Weak predictive matching holds no m atter the value of a, b and pi so it 

is not of much help in choosing a suitable value for p i .  We, hence, look 

at some related criteria.

Since, B?q =  1 for a sample of size n = ki + ko, a natural question arises: 

W hat should we expect for a sample of size n  =  ki 4- ko +  1? Can one 

single observation provide enough information to strongly discriminate 

between M i  and M qI

Our intuition is tha t it shouldn’t. Therefore, for a = 1/2 and b = 1 we 

look for a value of pi tha t still makes B-q close to 1 for samples of size 

n  = ki +  ko +  1. Intuitively, with this sample size the data itself can fit 

the model, but barely so, and hence there is no much information left for 

model comparison. Unfortunately, except for a reduced (but important)
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set of problems, this criteria is not applicable since the Bayes factor 

associated with the minimal information depends on the specific data (see 

Berger and Pericchi, 2001, and references therein). We therefore take a 

more modest requirement aiming instead for Bayes factors as close to 1 

as possible for data  clearly compatible with the simpler model. This idea 

is similar to the predictive matching approach of Ghosh and Samanta 

(2002) and Spiegelhalter and Smith (1982). For the purposes of this 

chapter, we use it to help in choosing a good value for p{. We refer to 

this type of predictive matching as null predictive matching. Notice tha t 

this criterion is not the same as the weak predictive matching discussed 

in Section 3.5.2.

On the other hand, it would not be reasonable to aim for perfect matching 
(i.e. B-q = 1) for a sample of size n = ki +  ko +1 since a sample of this size 

allows the frequentist estimation of parameters (but barely so, see Section
3.5.2) and so it gives some useful (even if small) information about the 

comparison with our partially informative prior. Also, since the models 

under comparison are of different dimensions, a sample of this size could 

provide some information about the adequacy of Mo- Moreover, and 

since we are supposing data compatible with Mo, the Bayes factor should 

intuitively be < 1.

We combine both reasonings above and aim to be “close” to null predic­

tive matching for n  =  ko +  ki + 1 , but without the probably unreasonable 
requirement of “exact” predictive matching.

Specifically, we choose pi to make the Bayes factor as close as possible to 

1 when the sample size is n = ki -I- ko +  1 and the test statistic Qio —> 1. 

That is, choose pi to make BJq =  limQi0_>.i B-q, as close as possible to

1. For a =  1/2, b =  1 and n =  ki +  ko +  1 this means to make (see 

Proposition 4.4 and its proof in Appendix F.3)

B$) = \.Pi(ki +  ko -I- 2)] 2 ,
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as close as possible to 1. It is easy to see tha t BJq is a decreasing function 

of pi, bounded above by 1/2. Therefore, pi should be taken as small as 

possible, tha t is

Pi = l/ (k i  + k0 + 2). (5.3)

Notice tha t (5.3) satisfies the condition pi > 1/(1 +  n) for all values of 

n > ko +  ki + 1  and hence it is a valid value for pi (recall tha t pi has to be 

Pi > 6/(6 +  1) to ensure propriety of the conditional prior for the “new” 

parameters).

Strictly speaking, if we consider tha t the minimal size is n = ki +  ko, the 

lower bound on pi would be l/(/co +  ki +  1) which is slightly larger than 

the one in (5.3). This consideration would lead us to choose pi =  l/(&o +  
ki +  1) and to  a procedure tha t additionally enjoys the weak predictive 

matching discussed in Section 3.5.2. The subsequent computations in the 

section devoted to the examples have been done with pi in (5.3) and we 

would expect essentially identical results with p = l/(&o +  h  +  1) this 
being a question of further research.

It is important to remark tha t the choice in (5.3) does make the Bayes 

factor model consistent. Recall tha t this happens whenever pi(b +  n) 
tends to infinity with n  (see Proposition 4.2) which holds for this choice 

of pi.

When requiring “null predictive matching” we have taken “compatibil­

ity with the null” to  mean Qio —> 1, but this is not the only possiblity. 

Indeed, even though, Qio —> 1 intuitively provides the most evidence in 

favor of Mo, the distribution of Qio | Mo for n = ki +  ko 4- 1 (a beta 

with parameters 1/2, k i /2) accumulates very sharply around 0 making 

values of Qm close to 1 virtually impossible. This suggests that, in order 

to choose pi we should also check the behavior of B-q for data tha t is 

compatible with the null model in the sense of being compatible with the 

distribution of Qio under Mo. We next explore other forms of compati­
bility of the data with Mq.
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In particular, in the next proposition we show tha t B is also decreasing 

with pi for a wide range of Qio values compatible with Mo, including the 

mean under Mo, E[Q*o | -Mo] =  l/(&i +  1)- Hence, our recommended 
choice is still pi =  l/(fcj +  ko +  2) for a much wider range of data tha t 

could be considered “compatible” with Mo- Moreover, the Bayes factor 

can also be shown to be less that 1. Also, as intuitively natural, B-q is 
decreasing with ki.

P ro p o s itio n  5.1. Let y  be any sample of size n  =  ki +  ko +  1 with

QiO > {h  +  l ) - 1 .

• For a = 1/2 and 6 = 1 ,  B(q is decreasing with pi, reaching its
maximum at pi =  l / (k i  +  ko +  2).

•  The maximum value of B ^  in this scenario is always less than 1.

•  B -o is decreasing as a function of k i.

Moreover, for the distribution ofQio under M q the region Qio > (fcj+1)-1 

accumulates a 30% of probability and contains the mean.

Proof. See Appendix G .l □

In summary, the choice pi = l/ (k i  +  ko +  2) gives us a procedure which 

agrees in several ways with predictive matching idea, and as a conse­

quence, is not too conservative (not giving an extremely large support 

for simple models). But at the same time provides an Occam’s razor 

effect since the Bayes factor is < 1 (thus supporting the simplest model 

Mo) and is decreasing with ki (giving more support for simpler models 

over the larger ones) for data compatible, in several ways, with Mo.

Its im portant to remark that, taking a = 1/2 and 6 =  1 the scale matrix 

in (5.2)

EJ = f t - ( l  + n)<72(VjVi) - 1.
7T
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Asymptotically, choices of pi close to one roughly correspond to unit 

information types of prior scale, while the proposed choice seems to cor­

respond to dividing unit information by the number of parameters. This 

intriguing relation with unit information ideas is certainly worth of fur­

ther research.

5.5 Recommended Conventional Robust Bayes 

factor: a comparison with other proposals

Our ultimate Conventional Robust Bayes factor is the one computed with 

the Conventional Robust prior with

a = 1/2, 6 = 1 ,  pi = 1 /(k i 4- kQ + 2),

and it is given by:

tjR
&i0

1
ki +  1 

2^1

n  4-1
_ki +  ko 4“ 2 ^

^t/2 n —fc,
Q ~ ~

a
2 iO

'ki 4-1 n  — ko ki 4- 3 (1 — Qi(^)(ki 4- ko 4- 2)
2 ’ 2 ’ 2 ’ (1 +  n)

a very simple, computationally fast, closed-form expression.

]. (M

In what follows we compare the Bayes factor in (5.4) (to be denoted 

by R l) with other alternatives. Specifically, we compare R1 with the 

Conventional Robust Bayes factors of Berger (1985) (denoted by R2) 

and Liang et al. (2008) (referred to as Li) and also with the Bayes factor 

resulting from the use of the Cauchy distribution of Jeffreys (1961) and 

Zellner and Siow (1980) (denoted here by JZS). We present in Table 5.1 

the notation and the colour code for those approaches.

In Figure 5.4 we display log10 of the Bayes factors for the entertained 

approaches, computed at E[Qfo I Mo\. Pictures on the left column show 
the behavior of the different Bayes factors as ki grows with: i) a sample
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Notation Color Description

R l ■
our recommended B*q, th a t is, a  =  1/2, b =  1 
and pi = \ / ( k i  + ko T 2)

R2 ■
Berger's estimation proposal, th a t is, B-q 
with a  =  1/2, 6 = 1  and pi  =  (1 +  /c;)/(3 +  ki)

Li ■
Liang et al. B to, which corresponds to the B ^  
with a  =  1/2, b = n  and p  = 1/2

JZS ■
B xo resulting from the Cauchy prior distribu­
tion of Jeffreys (1961) and Zellner and Siow 
(1980)

T a b l e  5 . 1 :  Notation for the entertained approaches

of size n  =  1000 (top); and ii) a sample of minimal size n = ki + ko + I 

varying for each ki (bottom ). Because our approach (R l) and Liang et al. 

(2008)’s approach (Li) can not really be distinguished in the scale of the 

pictures on the left, we present, on the right, a “blown up'1 of these two 

approaches. Figure 5.5 show the same pictures but for computed at 

QiO =  1.

It is interesting to remark tha t, when n is fixed all of the L^o’s computed 

at E[Qio | Mo] decrease with ki until kt is close to the corresponding 

minimal sample size (ki as n  — ko — 1). At this point B to grows to 1. This 

behavior is clearly reflecting the idea of null predictive matching under 

minimal sample size n = ki +  ko -f 1.

On the other hand, when Q ro =  1 this is no longer true, except for our 

proposal (R l). Since we consider th a t this behavior is according with 

intuition, we take this as further support for our recommended choice for 

Pi-

Notice th a t in sharp contrast, Li stays close to 1 all the way. We explain 

this effect in light of the results in Section 3.3.1, where it was shown 

th a t the prior distribution of Liang et al. sharply spike around f3t =  0.
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This results in Bayes factors that, under Mo, tend to be closer to 1 than 

any other Conventional Robust Bayes factor, and also than the Jeffreys, 

Zellner and Siow’s Bayes factor (JZS).

Note tha t for a sample of size n = ki +  ko + 1 (bottom pictures) our 

proposal (R l) is always the closest to 1. This is, in fact, what we were 

aiming to with the choice of pi in Section 5.4. We can also observe in this 

pictures that, for n = ki +  ko +  1, all the entertained configurations are 

decreasing with even R l in E[Qfo | Mo] (Figure 5.4 bottom pictures) 
but it decreases so slowly that it can not be noticed in the pictures.
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Chapter 6

Examples

6.1 Introduction

In this chapter our approach (described and studied in Chapters 3, 4 and 

5) is illustrated in a number of data sets. We compare the results with 

those obtained from the use of standard Conventional (Bayes) approaches 

(see Section 2.3.3).

In particular we use four data sets, three of which are real data sets, 

widely studied in the literature, while the fourth one is a simulated (cor­

related) example. Two of the data sets entertain a small number of 

covariates {p = 4 and p = 15). The other two, consider a larger number 

of explanatory variables (p = 27 and p = 30).

In each one of these examples we have computed the corresponding pos­

terior probabilities of the 2P potential models P(M i | y ) .  These posterior 

probabilities are summarized here through the highest posterior proba­

bility models, posterior probability of dimensions, and inclusion proba­

bilities of covariates.

We interpret the posterior probabilities of dimensions as an interesting 

summary for measuring the preference of each approach for more or less
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complex models. The posterior probability of each dimension k where 

k € {0, . . .  ,p} is :

P{ k  I y ) =  E  I » ) •
{Mt: kt=k}

The inclusion probability of each covariate is defined (see Barbieri and 

Berger, 2004) as the sum of the posterior probabilities of the models that 

include tha t covariate:

P ( X j  \ y ) =  E p (M ‘ I » ) '
{Mt: XjZMt}

for j  = I , . . .  ,p. These probabilities have interesting theoretical proper­

ties (see Barbieri and Berger, 2004). Also, they are useful for synthesizing 

the results, specially when the number of models is large and the pos­

terior probabilities are so small tha t they become difficult to interpret. 

We also present the median probability model which contains all the co­
variates with inclusion probability higher than 0.5. This model (which 

does not necessarily equal the higher posterior probability model) has 

appealing predictive characteristics (see Barbieri and Berger, 2004, for 

details)

In the assignment of prior probabilities over the model space, P(Mi) ,  we 

assume two different approaches:

1. The default approach tha t considers every model equally probable 

a priori. That is: P (M i) =  1/2P for i = 0 , . . . ,  2P — 1. This prior 

could also be alternatively interpreted as reporting Bayes factors 

(which are equal to posterior odds for this prior). In what follows 

we refer to this approach as PMD.

2. The multiplicity control approach presented by Scott and Berger 

(2010). That is: P (M i) =  (£) 1/(p  4- 1) (see Section 2.3.4). In 

what follows we refer to this approach as PMSB.
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Finally, for 7r,(/3j, /30, <r) we use six different Conventional priors, in­

cluding, of course, our final proposal in Chapter 5. These are explicitly 

introduced in the next section.

6 . 2  E n t e r t a i n e d  a p p r o a c h e s

The six Conventional priors entertained for the com putation of Bayes 

factors (and hence of posterior probabilities) are summarized in Table 

6.1. In this table we also introduce the color code used in the figures 

presented throughout the chapter.

Notation Color Description

R l ■

Our proposal for the Conventional Robust 
prior, th a t is, a =  1/2, b = 1 and pi =  
1/ {ki ko + 2).

R2 ■
Berger’s prior, i.e. Conventional Robust prior 
with a =  1/2, b = 1 and pi = (l-hfcf) /(3-|-/ci).

TESS1 ■

Conventional Robust prior with a = 1/2, b = 
1 and px =  1/2 using the effective sample size 
n j  instead of n.

TESS2 ■
Same as TESS1 but taking pi = m ax{l/(fcj+  
^o +  2), 1/(1 +  n j ) } .

Li ■
Liang et al. prior, i.e. Conventional Robust 
prior taking a = 1/2, b = n  and p = 1/2.

JZS ■
Cauchy prior distribution of Jeffreys (1961) 
and Zellner and Siow (1980).

T a b le  6.1: N otation for the entertained approaches

We next give a brief description of each prior.
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6.2.1 Our recom m ended C onventional R ob u st prior (R l)

We denote by R l the Conventional Robust prior in (3.12) with the rec­

ommended choices for the parameters given in Chapter 5:

a = 1/2, b = 1, pi = 1 /(k i +  k0 +  2).

The final expression of the Bayes factor using this prior is:

B Rl
iO ki +  1

2 F\

n  +  1
ki +  ko +  2

k i /  2 n —fen

'iOQ\ 2

'ki +  1 n — ko ki +  3 (1 — Q ^ )  (ki -I- ko +  2)i
~ 2 ~ 2 ~ ] ^ 2 T 5 ( I T n ) J

6.2 .2  B erger (1985)’s Prior (R 2)

We call R2 the Robust prior of Berger (1985)’s, tha t is the Conventional 

Robust prior in (3.12) taking a =  1/2, 6 =  1, and pi = (ki +  1 )/(k i 3).

It is im portant to recall tha t Berger’s choices of the parameters were 

chosen to be optimal for the robust estimation of a normal mean, not for 

model selection.

This choice of parameters also result in a Bayes factor depending on the 

simple hypergeometric function of one variable:

r>R2
&i0 ki +  1 

2^1

(ki +  1) (n +  1)
ki +  3

- k i / 2 n  — kfl

Q, 2HO
ki + 1  u — fco ki +  3 (1 — Qjo*) (&t +  3) 

2 ’ 2 ’ 2 ’ (fci -I-1) (1 +  rr)
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6.2 .3  C orrecting by th e  effective sam ple size (TESS1 and  
T E SS2)

When choosing the appropriate scale for objective priors and, in partic­

ular, for our Conventional Robust priors, the sample size is needed. The 

sample size “corrects” (by multiplying) the information (variance) in the 

sample in an attem pt of making it of unitary size. As discussed in Sec­

tion 3.3, this correction may work well for i.i.d. observations but might 

not in more complex situations. An appropriate “correction” requires a 

suitable definition of an effective sample size, alas, this seems to still be 

under investigation.

So far we have assumed the default and simplest choice, which is to take 
the effective sample size equal to the sample size n. However, it is ob­
viously interesting to gain some understanding in the impact of using 

other choices for the effective sample size. In particular, we assume here 

the novel definition of effective sample size of Berger et al. (2010b) re­

ferred to as The Effective Sample Size (TESS). The definition of TESS 

in Berger et al. (2010b) is adapted in Appendix B to be used in our spe­

cific framework. Interestingly, a different TESS, n f  is obtained for each 

model Mi depending on the specific design of the model (i.e. the included 

covariates).

The sample size n j  is a value between 1 and n  reflecting the quantity 

of information provided by the data. Notice tha t a value of n f  ~  n  

indicates tha t the observations are almost i.i.d. and equally informative, 

while a value of n j  «  1 might indicates large correlation in the data for a 

situation in which one observation provides most of the information see 

Berger et al. (2010b) for examples and discussions.

The definition of n j  and some more insight about this topic can be found 

in Appendix B.
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A note of caution is needed here: all the theoretical developments in this 

thesis have been done using n  as sample size and might not be applicable 

when using n f  instead. For instance, the permissible parametric space 

in (3.7) when using n f  becomes:

A T = {(a,b,pi) : a > 0, 1 <  b < n f , pi > 6/(6 +  n f )}.

Then, the choices for a and b in Chapter 5 (a =  1/2 and 6 = 1 )  are still 

valid. Unfortunately, given 6 =  1, pi should be pi > l / ( l  + n f )  and, since 

n f  can be smaller than ki +  ko +  1, the choice of pi =  l/(fcj +  ko 4- 2) is 

not longer valid in general. Notice also, tha t the asymptotic behavior of 

n f  is not clear. In particular, it might happen tha t n f  does not grow to 

infinity with n. Therefore, the asymptotic properties in this thesis can 

not be assumed to hold when simply replacing n by n [ .

A detailed study of the optimal choice for pi when using n f  is beyond 

the scope of this thesis, and hence, we don’t  have any theoretical basis 
for its choice. Anyway, in an attem pt to study the impact of TESS in 

the results we present two possible choices of pi (for a and 6 we consider 

the same choices as in R l and R2, a =  1/2 and 6 = 1 ) .

1. TESS1. A general choice valid for any 1 <  n f  < n, and any value 

of 6 (and particularly for our recommended value 6 =  1) is =  1/2.

2. TESS2. Following the ideas in Chapter 5 (in the sense of maxi­

mizing the value of Bio for a sample of minimal sample size n  =  

ki -I- ko +  1 and data compatible with Mo), another possible choice 

is to take pi as small as possible. For 6 =  1 this leads to

pi =  max{l/(fcj +  &o +  2), 1/(1 +  n f)} .

For both, TESS1 and TESS2, we choose 6 =  1 so we still achieve the at­

tractive property of having a closed-form Bayes factors which, depending
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on the choice of pi are:

B™SSj=i d n M {ni+1)
-ki/ 2 n~fco

Qio 2

2-̂ 1
ki +  1 n -  k0 ki +  3 (1 -  Q ^1) 

2 5 2 ; 2 yi{ i  +  nT) ]•

for j  =  1,2, with pj =  1/2 and pf =  m ax{l/(k i +  &o +  2), 1/(1 +  n j )}J2 _

6 .2 .4  Liang et al. (2008)’s prior (Li)

Liang et al. (2008) ’s prior distribution is a particular case of our Con­
ventional Robust prior when taking a = 1/2, b =  n, and pi = 1/2. We 

denote this approach by Li.

In this case the expression of Bayes factors depend on the hypergeometric 
function of two variables here computed through numerical integration, 

using its original expression in Liang et al. (2008):

r • Z"00 n  — kn — k i  n—kn 1 0 3
B io = (1 +  9) 2 (1 +  Qiog) 2 — (1 +  —) 2 dg.

6.2 .5  Jeffreys and Zellner-Siow  approach (JZS)

The Conventional approach of Jeffreys for testing a normal mean was 

extended to variable selection by Zellner and Siow (1980). Their proposal 

for 7Ti(/3i | /30, cr) is a Cauchy distribution which has been shown to give 

very good results in this framework. We denote this approach by JZS.

The resulting Bayes factors do not have closed-form expression and must

be computed by numerical integration. Its integral expression is:

r°° n  — kn  — k j  n - k n  1 77,

B i0 = Jo (1 + g) 2 ( l +  Q ios) 2 IGa(g \ - ,  - ) d g .
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6.3 Com putation

Our code to compute the 2P posterior probabilities, the inclusion proba­

bilities and the dimension probabilities, was programmed in ansi C.

To navigate the model space, the binary representation of the natural 

numbers proved to be a very efficient and powerful tool.

One of the slowest parts of the analysis was the computation of the 

residual sums of squares (S S E ). For this calculation it was very useful 

to compute the S S E  of a regression model (response y  and n  x k design 
matrix X )  as the sum of the squares of the last n — k components of 

the vector Q 'y , where Q R  is the qr-decomposition of X .  All algebraic 

expressions were evaluated using the GNU Scientific library (gsl) (see 

Galassi et al., 2009).

The gsl-library is also used for the computation of the Bayes factors. 

In particular, the approaches using 6 =  1, R l, R2, TESS1 and TESS2 
are computed using the hypergeometric function included in gsl-library. 

Finally, for Li (Conventional Robust Bayes factor with 6 =  n), and JZS 
we use numerical integration provided also by gsl-library.

The examples with p = 4 and p — 15 are computed in few seconds (even 
for the problem with 215 =  32768 models).

For the examples entertaining a larger number of covariates, in Sections

6.4.3 and 6.4.4, we preferred a parallel computation. The problem is triv­

ially ‘parallelized’ by simply assigning a bunch of marginal likelihoods to 

be computed by each separate CPU. This is so obvious, tha t it is called 

“an embarrassing parallel problem” (Tierney et al., 2007). This solu­

tion reduces considerably the computational time. Still, the numerical 

integrations are very time consuming. Another issue with numerical in­

tegration in this examples is tha t it sometimes does not work properly 

and do not produce reasonable results. In particular, the routines for
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computing Li and JZS tha t worked properly in the first two examples, 

worked very slowly or even would not work at all (for instance JZS do 

not produce numerical results in the Ozone example but nan’s) in the 

large examples. Hence, we decided just to compute R l, R2 and TESS1 

for those problems.

6.4 Examples

We next present the results for the four entertained data sets. In all of 

this examples and since no other information is available, we suppose 

tha t the simpler model Mo contains only the intercept (so ko = 1).

6.4 .1  H ald  data

The following data relates to an engineering application tha t was inter­
ested in the effect of the cement composition on heat evolved during 

hardening (for more details, see Woods et al., 1932). The response vari­

able is the heat evolved per gram of cement (in calories). The entertained 

covariates (p = 4) are described in Table 6.2. This data has been ana­

lyzed by many authors (e.g. George and McCulloch, 1993; Hald, 1952; 

Laud and Ibrahim, 1995; Perez, 1998, among others).

Covariate Description
X \ Amount of tricalcium aluminate
X i  Amount of tricalcium silicate
X 3  Amount of tetracalcium alumino ferrite
X 4  Amount of dicalcium silicate

T a b le  6.2: Hald data. Description of covariates

As a summary of the results we give the following tables and figures:

•  Tables 6.3(a) (PMD) and 6.3(b) (PMSB) display the five models 

with largest posterior probabilities according to R l.
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•  Tables 6.4(a) (PMD) and 6.4(b) (PMSB) provide the inclusion 

probabilities for each covariate.

• Figure 6.1 presents the dimension probabilities (top) and the cumu­

lative dimension probabilities (bottom) for PMD (left) and PMSB 

(right)

• Figure 6 .2  presents the distribution of the log10 of the posterior 

probabilities of the 2P models through box-plots for PMD (left) and 

PMSB (right). It is important to keep in mind tha t they represent 

the distribution of the model probabilities and not the distribution 

of the models per se.

T h e  effect o f 7Tt(/3j, /30, cr)

We do not find large differences among the approaches as posterior prob­

abilities do not change much with 7ri(/3j, /30, cr).

In Figure 6.2 we appreciate two slightly different ways of apportioning 
the probability. The approaches R2, Li and JZS seem to produce a 

flatter distribution of model probabilities, having slightly larger tails for 

small probabilities (that is, smaller values of the probability “appear” 

more often) than R l, TESS1 and TESS2 do. However, the shape of the 

tail for the large values of model probabilities is similar in all the six 

approaches.

T h e  effect o f P(M{)

The choice of P{Mi ) seems to have a larger effect in the results than 

the choice of the prior in the parametric space. The most significative 

differences are observed in Figure 6.1. In this Figure the effect of the 

prior distribution (p(k) =  -P(-Mi), represented by a dashed line)

is clearly reflected in the posterior result. In this sense, the posterior
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dimension probability using PMD is concentrated around 2 (i.e. p/2) 

while, it is a little bit flatter when using PMSB.

(a) The 5 most probable (using R l) models with PMD
Covariates R l R2 TESSl TESS2 Li JZS
{ X 1 X 2} 0.546 0.523 0.543 0.531 0.542 0.535
{Xx X 4) 0.174 0.167 0.157 0.170 0.167 0.169

{Xx x2 x4) 0.090 0.100 0.098 0.096 0.095 0.096
{ X ,  X 2  X 3} 0.089 0.099 0.097 0.095 0.094 0.095
{ X ,  X 3  X 4} 0.072 0.079 0.073 0.076 0.075 0.076

(b) The 5 most probable (using R l) models with PMSB
Covariates R l R2 TESSl TESS2 Li JZS
{ X U X 2} 0.464 0.437 0.456 0.446 0.458 0.451
{ X u  X 4) 0.148 0.139 0.131 0.143 0.141 0.142

{ X u  X 2, X 4} 0.115 0.125 0.123 0.121 0.120 0.121
{ X u  x2, X 3} 0.114 0.123 0.122 0.120 0.119 0.119
{ X u  x3, X 4) 0.091 0.099 0.092 0.096 0.095 0.096

T a b l e  6 . 3 :  Hald data. The 5 highest probability models according to 
R l and their probabilities under the other approaches.

(a) Inclusion probabilities with PMD
Covariate R l R2 TESSl TESS2 Li JZS

| X l
0.980 0.978 0.977 0.979 0.981 0.9801

\ x 2 0.750 0.750 0.766 0.750 0.755 0.7521
x3 0.190 0.210 0.203 0.203 0.196 0.200
x4 0.365 0.378 0.360 0.373 0.364 0.370

(b) Inclusion probabilities with PMSB
Covariate R l R2 TESSl TESS2 Li JZS
X! 0.976 0.974 0.973 0.975 0.977 0.9761
x 2 0.757 0.758 0.773 0.758 0.761 0.759

*3 0.272 0.299 0.290 0.290 0.280 0.286
x 4 0.422 0.440 0.422 0.434 0.423 0.430

T a b l e  6 . 4 :  Hald data. Inclusion probabilities. The median probabil­
ity model contains the covariates corresponding to the gray coloured

rows.
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Dim ension probability, PMD

Dim ension cum ulative probability, PMD

Dim ension probability, PMSB

Dim ension cum ulative probability, PMSB

F i g u r e  6.1: Hald data. Posterior probabilities (top) and cumulative 
posterior probability (bottom) of the dimension of the true model for 
priors PMD (left) and PMSB (right). Induced prior over dimension is 

represented by a dashed line.

M odel p ro b ab ilitie s . PMD M odel p ro b ab ilitie s , PMSB

ST

I T 7

«

F i g u r e  6.2: Hald data. Distribution of model posterior probabilities 
for priors PMD (left) and PMSB (right).
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6.4 .2  C rim e data

Our second example relates USA rate crime data with several social ex­

planatory variables. The experiment was designed and performed by 

Ehrlich (1973) and revised by Vandaele (1978). The data is distributed 

as part of the library MASS in R and has been analyzed from a Bayesian 

perspective by a number of authors, including Fernandez et al. (2001); 

Hoeting .et .al. (1999); Liang et aL (2008); Raftery et al. (1997). The 

experiment consists on observations of rate crime during 1960 in n  =  47 
states in the US. Apart from the intercept, p = 15 covariates (briefly 

described in Table 6.5) are considered for explanation of the rate crime. 

Ehrlich (1973), based on theoretical arguments, concentrated on two re­

gression models that included the covariates indicated with a in Ta­
bles 6.7(a) and 6.7(b). As in the papers cited above, we transform the 
data into the logarithmic scale (except for the indicator variable So).

Covariate Description
M Percentage of males aged 14-24
So Indicator variable for a southern state
Ed Mean years of schooling
P o l Police expenditure in 1960
Po2 Police expenditure in 1959
LF Labour force participation rate
MF Number of males per 1000 females
Pop State population
NW Number of nonwhites per 1000 people
U1 Unemployment rate of urban males 14-24
U2 Unemployment rate of urban males 35-39
GDP Gross domestic product per head
I n e q Income inequality
P ro b Probability of imprisonment
Time Average time served in state prison

T a b l e  6.5: Crime data. Description of the covariates

After computing the 215 =  32 768 Bayes factors with each configuration 

we present the following tables and figures as a summary of the results:
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• Tables 6 .6  (PMD) and 6.7 (PMSB) display the 15 most probable 

models as ordered by R l. In each of these tables we include a 

column indicating the order tha t the model has when the other 

approach to prior probabilities over the model space is used instead 

(O. PMSB indicates the order in posterior probabilities of models 

when the multiplicity control prior is used, and O. PMD indicates 

the order for the default prior over the model space).

•  Tables 6 .8 (a) (PMD) and 6 .8 (b) (PMSB) provide the inclusion 

probabilities for each covariate.

• Figure 6.3 presents the dimension probabilities (top) and the cumu­

lative dimension probabilities (bottom) for PMD (left) and PMSB 
(right).

•  Figure 6.4 presents the distribution of the log10 of the posterior 
probabilities of the 2P models through box-plots for PMD (left) 
and PMSB (right).

•  Figures 6.5(a) (PMD) and 6.5(b) (PMSB) present the number of 
models needed to achieve some fixed probability with each of the 

approaches. In particular, ordering the 2p-vector of posterior prob­

abilities within each approach we compute the minimum number 

of models needed for achieving a probability of (0.2, 0.5, 0.7, 0.9) 

respectively

The effect of (30, cr)

In this example, prior choice seems to play an important role.

For description purposes we differentiate three types of behavior among

the entertained approaches
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• The first group is formed by R l, TESSl and TESS2. These ap­

proaches seem to behave quite similarly in all the summaries pre­

sented here with two small differences. First we find that when 

using TESS as the sample size, the results seems to be slightly less 

conservative (giving larger probability to more complex models) 

as we can appreciate in Figure 6.3. Also, in Figure 6.4 we notice 

tha t the distribution of posterior probability of models is slightly 

favouring higher probabilities for TESS2 (note tha t the lower tail 

of the box-plot is shorter for TESS2 than for R l and TESSl). The 

similitudes among these distributions are not extremely surprising 

because these approaches use almost the same prior distribution 
with the only differences being the definition of the sample size 

(here n = 47 while n f  «  10) and the choice of pi and its seems 

tha t, in this specific example, those are not very influent.

• The second group comprises Li and JZS approaches. These two 

approaches present certain similitudes which can be appreciated 

mainly when looking at high model posterior probabilities. For in­

stance, the highest probability models set probabilities which are 

very close to each other in both approaches (see Tables 6 .6  and 

6.7). Also, in Figure 6.4 we observe that the upper tails, represent­

ing high probabilities, are quite similar (note, however, that it is not 

so for lower tails). Looking back to Section 3.3.2, we find a likely 

explanation for this effect. Asymptotically (with large n) Li and 

JZS have similar tails. Recall tha t both distributions have Cauchy 

tails with asymptotically similar covariance matrices (JZS’s covari­

ance matrix is n o 1 (V \V i ) _ 1  and Li’s one is ( i r /2)nc2 (V 'fVj)-1 ). 

These similitudes in the tails will be evident in problems, as this 

one, where there is clear support for complex models and little sup­

port for models very close to Mo in complexity. Note that, indeed, 

the highest model posterior probabilities in this example correspond 

to complex models (containing around 8  covariates for PMD and
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15 for PMSB, of the 15 entertained). We presume that this similar­

ities will disappear in problems with data supporting the simplest 

models. (Recall tha t we expect Li and JZS priors to be very similar 

only on the tails; Li is quite more concentrated than JZS around 

0.)

• The third group just comprises R2. Berger4s Robust prior seems to 

behave in a completely different way. The most likely explanation 

is the fact tha t this prior was developed for estimation and not for 

model selection.

As we can observe in Figure 6.3, the first group is the less conservative 

among the three (not too far from Li and JZS), assigning larger proba­

bility to models with larger number of covariates. On the other hand, 

R2 is the most conservative and even more when using PMSB. This is 
clearly displayed by the red graph which is clearly located to the left of 
all the others.

The different behavior of R2 is reflected in a different ordering of the 

models, as we observe in Tables 6 .6  and 6.7. We also find significative 

differences in the inclusion probabilities. Indeed, the median probability 

model for PMSB with R2 contains a considerable smaller number of 

covariates than the other approaches.

In Figure 6.4 we observe very different ways of apportioning probability. 

R2 presents longer tails than any of the other approaches, followed by 

JZS, TESSl and R l. Note also tha t the central part of the distribution 

of model probabilities with R2 is placed towards the bottom of the rest of 

approaches. This effect is clarified in Figures 6.5(a) and 6.5(b). In these 

pictures we observe tha t R2 assigns very large probabilities to a small 

bunch of models (this explain tha t the upper tail in Figure 6.4 is larger 
for R2) and, hence, assigning smaller probabilities to the rest of models 

(what produces the displacement of the center towards the bottom and 

the long lower tail of the distribution of model probabilities). In fact,
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when using PMD, for R2 to achieve a 90% of the probability, we conly 

need around 1000 models while for JZS and Li we need around 1500 

models and for R l, TESSl and TESS2 we need around 2000 modelss.

Summarizing, whereas R l, TESSl, TESS2, Li and JZS give in gemeral 

very similar results, we can find large differences for R2. This suggests 

the following considerations:

•  Since R2 was developed in an estimation framework it may nott be 
doing an optimal job in model selection, being maybe too comser- 

vative. On the other hand, the fact tha t it concentrates a lo>t of 

probability in a smaller number of models (which, except for little  

differences in the ordering, are the most probable models w ith all 

the approaches) may be useful for entertaining search methodolo­

gies over the model space, making it easier to quickly detect the 
most probable models.

•  JZS has been proved to be a very good choice for model selection, 

hence having a methodology which give similar results to this one, 

as is the case of R l, which can be computed in closed-form, is a very 
appealing situation and encourages the use of our novel approach.

The effect of P{M{)

The two choices of priors over the model space also have a large im ­

pact in the results. In Tables 6 .8 (a) and 6 .8 (b) we see tha t the order of 

the higher posterior probability models is quite different from PMD tco 

PMSB. While PMSB seems to concentrate high posterior probabilities 

around the same models tha t PMD does: notice tha t the 15 most probat- 

ble models with PMD are included in the 40 most probable models witlh 

PMSB. However, PMSB also gives high posterior probability to severail 

models not “captured” by PMD. In particular, PMSB seems to prefeir 

more complex models. Note that the most probable model with PM SB
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contains all the 15 covariates while the most probable models with PMD 

(the 5th with PMSB) just contains 8  of them.

This preference for more complex models is also reflected in Figure 6.3 

where we observe a displacement of the dimension probability distribu­

tion towards higher dimensions from PMD to PMSB. Notice tha t refer­

ring to PMSB as the “multiplicity control” approach may be confusing 

since, here, this approach is reflecting certain preference for complex 

models. In fact, PMSB will actually favor larger models in examples 

where larger models have significant weight. But, at the same time, this 

choice will penalize larger models when the posterior support is primarily 
on smaller models as we will see in the next example. This is what it 

is usually desired in classical “multiplicity control” , hence we retain the 

name, but keeping in mind th a t this does not imply always penalizing 

for larger models, only when data does discourage them.

The inclusion probabilities also change from one approach to the other 

as we can see in Tables 6 .8 (a) and 6 .8 (b). Even the median probability 
models are different (except for R2 which seems to have a quite different 

behavior as commented above). The median probability model for PMB 

(and R2 in PMSB) consider 8  covariates and among them we find 4 of 

the 7 covariates indicated by Ehrlich, while the median probability model 

for PMSB includes 11 covariates and among them 6  of the 7 Ehrlich’s 

covariates, again reflecting the preference of PMSB for more complex 

models.

These ideas indicates tha t the results are quite sensitive to the choice 

of priors over the model space, so this choice should be done carefully. 

Among other reasons, the fact tha t the approach in Scott and Berger 

(2010) PMSB accounts for multiplicity (see Section 2.3.4) makes this 

choice the most attractive to us.
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represented by a dashed line.
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O. PMSB Covariates R1 R2 TESS1 TESS2 Li ZS fej
5 {M, Ed, P o l ,  NW, U2 , Ineq,  Prob,  Time} 0.015 0.024 0.014 0.015 0.018 0.018 8

6 {M, Ed, P o l ,  NW, U2 , Ineq,  Prob } 0.015 0.027 0.014 0.014 0.017 0.018 7

11 {M, Ed, Po2 , NW, U2 , Ineq,  Prob} 0.010 0.018 0.009 0.009 0.012 0.012 7

14 {M, Ed, P o l ,  Pop, NW, U2 , Ineq,  Prob} 0.009 0.013 0.009 0.009 0.011 0.011 8

9 (M, Ed, P o l ,  U2 , Ineq,  Prob} 0.009 0.018 0.008 0.008 0.010 0.010 6

18 {M, Ed, P o l ,  NW, Ineq,  Prob, Time} 0.008 0.013 0.007 0.007 0.009 0.009 7

10 (m, Ed, P o l ,  NW, U2 , GDP, Ineq,  Prob,  Time} 0.008 0.010 0.008 0.008 0.009 0.009 9

25 { M, Ed, Po2 , NW, U2 , Ineq,  Prob, Time} 0.007 0.010 0.007 0.007 0.008 0.008 8

36 {M, Ed, P o l ,  NW, U2 , GDP, Ineq,  Prob} 0.006 0.009 0.006 0.006 0.007 0.007 8

19 {M, Ed, Po2 , U2 , Ineq,  Prob } 0.006 0.012 0.005 0.006 0.007 0.007 6

38 {M, Ed, P o l ,  Pop, NW, Ineq,  Prob} 0.006 0.010 0.006 0.006 0.007 0.007 7

41 {M, Ed, Po2 , NW, U2 , GDP, Ineq,  Prob} 0.006 0.008 0.005 0.006 0.006 0.007 8

23 {M, Ed, P o l ,  NW, Ul ,  U2 , Ineq,  Prob, Time } 0.006 0.006 0.006 0.006 0.006 0.006 9

28 {Ed, P o l ,  Pop, NW, Ineq,  Prob } 0.005 0.010 0.005 0.005 0.006 0.006 6

29 {M, Ed, P o l ,  NW, Ineq,  Prob } 0.005 0.010 0.005 0.005 0.006 0.006 6

Table 6.6: Crime data. The 15 highest probability models according to R1 and their probabilities under the other
approaches for PMD.



0 .  PMD Covariates R1 R2 TESS1 TESS2 Li ZS

4447
{M, So,  Ed, P o l ,  Po2 , LF, M.F, Pop, NW, U1 , 

U2 , GDP, Ineq,  Prob,  Time }
0.037 0.004 0.044 0.043 0.031 0.028 15

2356
{M, So,  Ed, P o l ,  LF, M.F, Pop, NW, Ul ,  U2 , 

GDP, Ineq,  Prob,  Time}
0.009 0.002 0.011 0.011 0.008 0.008 14

2452
{M, So,  Ed, P o l ,  Po2 , LF, M.F, Pop, NW, U2 , 

GDP, Ineq,  Prob,  Time}
0.009 0.002 0.010 0.010 0.008 0.008 14

2490
{M, Ed, P o l ,  Po2 , LF, M.F, Pop, NW, Ul ,  U2 , 

GDP, Ineq,  Prob, Time}
0.008 0.002 0.009 0.010 0.008 0.007 14

1 {M, Ed, P o l ,  NW, U2 , Ineq,  Prob,  Time} 0.007 0.016 0.007 0.007 0.009 0.009 8

2 {M, Ed, P o l ,  NW, U2 , Ineq,  Prob} 0.007 0.018 0.006 0.006 0.009 0.009 7

2842
{M, So,  Ed, P o l ,  Po2 , M.F, Pop, NW, U l ,  U2 , 

GDP, Ineq,  Prob,  Time}
0.007 0.001 0.008 0.007 0.006 0.006 14

3063
{ M, So,  Ed, Po2 , LF, M.F, Pop, NW, Ul ,  U2 , 

GDP, Ineq,  Prob,  Time}
0.006 0.001 0.007 0.006 0.005 0.005 14

5 {M, Ed, P o l ,  U2 , Ineq,  Prob} 0.006 0.015 0.005 0.005 0.007 0.007 6

7 {M, Ed, P o l ,  NW, U2 , GDP, Ineq,  Prob,  Time} 0.005 0.008 0.005 0.005 0.006 0.006 9

3 (M, Ed, Po2 , NW, U2 , Ineq,  Prob} 0.005 0.012 0.004 0.004 0.006 0.006 7

1072
{M, So,  Ed, P o l ,  LF, M.F, Pop, NW, U2 , GDP, 

Ineq,  Prob,  Time}
0.005 0.002 0.006 0.005 0.005 0.005 13

1091
(M, Ed, P o l ,  LF, M.F, Pop, NW, Ul ,  U2 , GDP, 

Ineq,  Prob, Time}
0.005 0.002 0.005 0.005 0.005 0.005 13

4 {M, Ed, P o l ,  Pop, NW, U2 , Ineq,  Prob} 0.005 0.009 0.004 0.004 0.005 0.006 8

3423
{M, So,  Ed, P o l ,  Po2 , LF, Pop, NW, Ul ,  U2 , 

GDP, Ineq ,  Prob,  Time}
0.004 0.001 0.005 0.005 0.004 0.004 14

TABLE 6.7: Crime data. The 15 highest probability models according to R1 and their probabilities under the other
approaches for PMSB.



106 6.4. Examples

(a) Inclusion probabilities with PMD
Covariate E h l Eh2 R l R2 TESS2 TESSl Li ZS
M • 0.836 0.836 0.839 0.837 0.848 0.850
So 0.288 0.217 0.311 0.299 0.272 0.270
Ed 0.965 0.974 0.969 0.966 0.972 0.9731
Pol 0.661 0.663 0.663 0.662 0.664 0.664
Po2 0.462 0.416 0.465 0.464 0.449 0.448
LF • 0.218 0.143 0.227 0.224 0.201 0.199
M.F 0.220 0.148 0.224 0.225 0.203 0.202
Pop 0.376 0.313 0.387 0.383 0.366 0.365
NW • • 0.675 0.654 0.679 0.677 0.686 0.688
Ul 0.264 0.192 0.271 0.269 0.250 0.248
U2 0.596 0.576 0.607 0.602 0.607 0.609
GDP • • 0.366 0.290 0.371 0.371 0.355 0.355
Ineq • • 0.994 0.997 0.995 0.995 0.996 0.996
Prob « • 0.883 0.882 0.887 0.884 0.893 0.896
Time • • 0.369 0.309 0.376 0.376 0.365 0.366

Covariate
(b) Inclusion probabilities with PMSB 

E hl Eh2 R l R2 TESS1 TESS2 Li ZS
M 0.880 0.816 0.890 0.885 0.882 0.883

0.420 0.244 0.457
0.973
0.725
0.558

0.387
0.971
0.712
0.520

0.966 0.969
0.723
0.556

0.969
0.713
0.524

0.716 0.677

0.384 0.411
0.427

0.405
0.4250 . 04

0.435
0.191
0.208

0.354
0.375

0.348
0.370

Pop
NW • •

0.527
0.762

0.353
0.646

0.554
0.779

0.546
0.774

0.506
0.761

0.503
0.762

Ul 0.415 0.233 0.439 0.434 0.389 0.384
U2 0.703 0.580 0.725 0.718 0.701 0.701
GDP • • 0.536 0.346 0.559 0.556 0.516 0.513
Ineq • • 0.995 0.995 0.996 0.995 0.996 0.996
Prob • • 0.904 0.840 0.915 0.909 0.906 0.908
Time • • 0.530 0.352 0.553 0.550 0.514 0.511

Table 6.8: Crime data. Inclusion probabilities. The median proba­
bility model contains the covariates corresponding to the gray coloured

rows.
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6.4 .3  O zone data

Our last real example uses the ground-level ozone data analyzed by 

Breiman and Friedman (1985). More recently it has also been stud­

ied by Miller (2001); Casella and Moreno (2006); Liang et al. (2008) and 

Scott and Berger (2010) among others.

The original dataset (which is distributed as part of the library mlbench 

in R) consists in a response variable, the daily measurements of the max­

imum ozone concentration near Los Angeles, and 12 meteorological vari­

ables described in Table 6.9. The total number of observations were 366, 
but after removing observations containing missing data we are left with 

a sample of size n  = 203, (for the purpose of this exercise this seems 

appropriate).

Over the years, authors studying this data have considered different sub­

sets of the 1 2  variables (removing some variables for different reasons), 
sometimes including the quadratic effect and the interactions of the en­

tertained covariates. The intersection of the different considered sets of 

covariates consists in 7 variables. For our analysis we remove one of this 

7 covariates (wind) based on its small posterior probability, as well as in 

the small probability of its quadratic effect and of its interactions with 

the rest of variables (as shown in Scott and Berger, 2010; Garcia-Donato 

and Martmez-Beneyto, 2010). In Table 6.9 we present a summary of the 

original variables indicating which ones of them are considered here, as 

well as the ones considered in the papers cited above.

So, our data  set entertains 6  covariates, their quadratic effects and in­

teractions, with a total of p = 27 covariates. The motivation for consid­

ering only 6  meteorological variables (and p=27 covariates) is to obtain 

a model space which is on the one hand small enough so tha t it can be 

completely enumerated and all the models visited, but at the same time 

is large enough to show the potential of having tractable expressions to 

compare posterior probabilities.
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Covariate CM L SB Here Description
m • • Month: l=January, ..., 12=December
Dm • • Day of month
Dw • • Day of week: l=Monday, ..., 7=Sunday

vh 500 millibar pressure height (m) mea­
sured at Vandenberg AFB

wind Wind speed (mph) at Los Angeles In­
ternational Airport (LAX)

hum • • • • Humidity (%) at LAX

tempi • • • • Temperature (degrees F) measured at 
Sandburg, CA

temp2 Temperature (degrees F) measured at 
El Monte, CA

ibh • • • • Inversion base height (feet) at LAX

dpg • • • • Pressure gradient (mm Hg) from LAX 
to Daggett, CA

ibt Inversion base temperature (degrees F)
at LAX

v is • • • • Visibility (miles) measured at LAX

T a b l e  6 .9 : Ozone data. Description of covariates. “CM” represents 
the variables considered in Casella and Moreno (2006), “L” the ones 
in Liang et a1. (2008), “SB” the covariates in Scott and Berger (2010) 

and “Here” the covariates in this work.

We compute the posterior probabilities of the 227 =  134217728 models as 

well as the distribution of the dimension and the inclusion probabilities. 

This takes about 10 minutes with 135 cores or around 10 hours with a 

single core depending, of course, on the cores used. However, due to 
the huge dimension of the model space, we can not save the posterior 

probabilities for all the models. Instead, our program keeps probabilities 

of the 10000 most probable models (ordered by R l). In this specific 

problem this represents a 20 — 30% of the total probability. Of course, 

the distribution of dimensions and inclusion probabilities are computed 

with all the models.

In a different run of the program we kept the probabilities of the 10000 

highest probability models for the R2 approach.

We present the following summaries:
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•  Tables 6.10 (PMD) and 6.11 (PMSB) show the 25 most probable 

models ordered by R l.

•  Tables 6.12 (PMD) and 6.13 (PMSB) provide the inclusion proba­

bilities for each covariate.

• Figure 6 .6  presents the dimension probabilities (top) and the cumu­

lative dimension probabilities (bottom) for PMD (left) and PMSB 

(right).

•  Figure 6.7(a) presents the distribution of the log10 °f the model 
probabilities for the 10000 most probable models for R l through 

box-plots for PMD (left) and PMSB (right). Figure 6.7(b) compare 
the distribution of model probabilities for the 1 0 0 0 0  most probable 

models when those are chosen with R l and when they are chosen 

with R2, both for priors PMD (left) and PMSB (right).

The effect of ^((3^ f30, a)

As in the Crime example, R l and TESS1 show here a similar behavior 

while R2 presents a different one.

Again R2 appears to be more conservative with the red line in Figure 6 .6  

placed clearly to the left of the green and black ones.

But the most significant differences can be found in the way of apportion­

ing probability in the distribution of the model posterior probabilities. 

R2 concentrates most of the probability mass in a small number of mod­

els. In particular, the 10000 most probable models with R l and TESS1 

accumulates around a 2 0 % of the probability while the 1 0 0 0 0  most prob­

able models for R2 accumulates an 80%. Figures 6.7(a) and 6.7(b) show 

clearly this effect. In Figure 6.7(a) where the probability of the 10000 
most probable models with R l is represented, we can see tha t R2 is 

slightly displaced toward higher probabilities. This indicates tha t the
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probabilities of the 10000 most probable models with R l obtain slightly 

higher probabilities with R2. On the other hand a longer lower tail indi­

cates tha t some of them obtain a smaller probability in R2 than in R l. 

This is because the most probable models with R l are not necessarily 

the most probable models with R2. In fact, in Figure 6.7(b) we observe 

th a t the 10000 most probable models with R2 have a larger probability 

tha t the 10000 with R l. This is reflected in the distribution of model 

probabilities being displaced toward higher probabilities. This effect is 
less evident in PMSB, although again the upper tail is larger for R2.

Again, the different behavior of R2 maybe justified by the fact th a t this 
approach was developed in an estimation scenario.

We do not find important differences between our approach R l and 

TESS1. The only small difference is that TESS1 seems to be a little 

bit less conservative than R l as was also observed in the two previous 
examples.

The conclusions about the behavior of R2 are very similar to the ones 

obtained in the crime example.

This example provides a clear demonstration th a t the closed-form for the 

Bayes factors can be clearly crucial for “routine and easy” implementa­

tions. Indeed, JZS and Li could not even be computed with the same 

routines used successfully in the previous, simple, examples.

The effect of P(Mi)

The PMSB approach spreads more the probability among dimensions 

(this was previously observed also in the Hald and Crime examples). 

But contrary to the behavior showed in the two previous examples, here 

the PMSB approach moves the probability mass towards the simpler 

models instead of toward the most complex ones. However, note that 

in Hald and Crime data the distribution derived with PMD was slightly
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displaced to the right while here it is displaced towards left, indicating 

a preference in the data for the simpler models. In fact in Hald and 

Crime data the models reported with PMD as the most probable ones 

contained a large number of covariates in contrast with the total number 

of entertained ones (2 of 4, and 8  of 15 respectively) while in this exam­

ple the most probable model contains only 8  out of the 27 entertained 

variables. Hence, as commented in the previous example, PMSB seems 

to be amplifying the preference in the data for simpler models (as well 

as it did for complex models in Hald and Crime data examples).

This preference for simpler models of PMSB is also reflected in the in­

clusion probabilities (see Tables 6.12 and 6.13). Note tha t for PMSB the 

median probability model contains only three covariates, while for PMD 
it contains 6  of them (5 for R2, which again shows a different behavior 

as commented previously).
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represented by a dashed line.
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Covariates R l R2 TESS1 dim
{hum2 , dpg .vh , v is .v h ,  tem pi.hum , ibh.hum , dpg .tem pi, v is .te m p i, dpg.ibh} 0.0003 0.0010 0.0003 8

{ v is , tem pi2 , dpg2, tem pi.hum , ibh.hum, v is .te m p i} 0.0003 0.0021 0.0002 6
{tem pi2 , dpg2 , v is .v h ,  tem pi.hum , ibh.hum , v is .te m p i } 0.0003 0.0020 0.0002 6

{dpg.vh, tem pi.hum , ib h .te m p i, dpg .tem pi, dpg.ibh} 0.0003 0.0018 0.0002 6
{ v is , hum2, dpg .vh , tem pi.hum , ibh.hum, dpg .tem pi, v is .te m p i , dpg.ibh} 0.0003 0.0008 0.0002 8
{hum2, ib h 2 , dpg .vh , v is .v h , tem pi.hum , dpg .tem pi, v is .te m p i, dpg .ibh} 0.0003 0.0008 0.0003 8
{dpg, hum2, v i s .v h ,  tem pi.hum , ibh.hum , dpg .tem pi, v is .te m p i, dpg.ibh} 0.0003 0.0007 0.0002 8

{tem pi, hum2, tem p i.v h , dpg.vh, tem pi.hum , ibh.hum, dpg .tem pi, dpg.ibh} 0.0002 0.0007 0.0002 8
{tem pi, hum2, tem p i.v h , dpg.vh, tem pi.hum , ib h .te m p i, dpg .tem pi, dpg.ibh} 0.0002 0.0007 0.0002 8

{tem pi, dpg, hum2, tem p i.v h , tem pi.hum , ibh.hum , dpg.tem pi , d p g .ib h  } 0.0002 0.0006 0.0002 8
{tem pi, dpg, hum2 , tem p i.v h , tem pi.hum , ib h .te m p i, dpg .tem pi, dpg.ibh} 0.0002 0.0006 0.0002 8

{dpg, hum2 , tem pi.hum , ib h .te m p i, dpg .tem pi, d p g .ib h  } 0.0002 0.0014 0.0002 6
{ ib h , hum2, dpg .vh , v is .v h ,  tem pi.hum , dpg .tem pi, v is .te m p i , pg .ibh} 0.0002 0.0006 0.0002 8

{hum2, dpg .vh , v is .v h ,  tem pi.hum , ibh .tem p , dpg .tem pi, v is .te m p i , dpg.ibh} 0.0002 0.0006 0.0002 8
{ v is , hum2, ib h 2 , dpg .vh , tem pi.hum , dpg .tem pi, v is .te m p i, dpg .ibh} 0.0002 0.0006 0.0002 8

{hum2, ib h .v h , dpg .vh , v is .v h , tem pi.hum , dpg .tem pi, v is .te m p i, dpg.ibh} 0.0002 0.0006 0.0002 8
{dpg, v i s ,  hum2, tem pi.hum , ibh.hum, dpg .tem pi, v is .te m p i, d p g .ib h  } 0.0002 0.0006 0.0002 8
{dpg, hum2, ib h 2 , v is .v h ,  tem pi.hum , dpg .tem pi, v is .te m p i, dpg .ibh} 0.0002 0.0005 0.0002 8

{ v is , tem pi2, tem pi.hum , ibh.hum, v is .te m p i} 0.0002 0.0017 0.0001 5
{hum2, dpg2 , v i s .v h ,  tem pi.hum , ibh.hum , dpg.hum, dpg .tem pi, v is .te m p i} 0.0002 0.0005 0.0001 8

{hum2, dpg .vh , tem pi.hum , ib h .te m p i, dpg .tem pi, v is .te m p i, d p g .ib h , v is .ib h } 0.0002 0.0005 0.0002 8
{ v is , tem pi2 , dpg2, hum.vh, ibh.hum , v is .te m p i } 0.0002 0.0011 0.0001 6

{tem pi2 , dpg2 , hum.vh, v is .v h ,  ibh.hum , v is .te m p i} 0.0002 0.0011 0.0001 6
{ v is , hum2, dpg2, tem pi.hum , ibh.hum, dpg.hum, dpg .tem pi, v is .te m p i } 0.0002 0.0005 0.0001 8

{ v is , hum2, dpg .vh , tem pi.hum , ib h .te m p i, dpg .tem pi, v is .te m p i , dpg.ibh} 0.0002 0.0005 0.0002 8

T able 6.10: Ozone data. The 25 highest probability models according to R l and their probabilities under the other
approaches for PMD.



Covariates R l R2 TESS1 dim
{hum , tem pi.hum , ibh.hum } 0.0258 0.0766 0.0199 3

{tem pi2 , tem pi.hum , ibh.hum } 0.0147 0.0432 0.0107 3
{tem pi, tem pi2 , tem pi.hum , ibh.hum} 0.0082 0.0195 0.0065 4

{ v is , tem pi2 , tem pi.hum , ibh.hum , v is .tem p i} 0.0073 0.0132 0.0058 5
{tem pi2 , v is .v h ,  tem pi.hum , ibh.hum , v is .tem p i} 0.0066 0.0119 0.0053 5

{hum2 , dpg2, tem pi.hum , ibh.hum} 0.0063 0.0150 0.0047 4
{tem pi2 ,hum. vh, ibh .hum } 0.0055 0.0160 0.0045 3

{tem pi2 , dpg2, tem pi.hum , ibh.hum} 0.0048 0.0112 0.0034 4
{ v is , tem pi2 , hum.vh, ibh.hum , v is .te m p i} 0.0043 0.0076 0.0036 5
{tem pi, tem pi2, dpg2, tem pi.hum , ibh.hum} 0.0041 0.0073 0.0032 5

{tem pi2, hum.vh, v is .v h ,  ibh.hum , v is .tem p i} 0.0039 0.0070 0.0034 5
{hum, tem pi2, ibh.hum } 0.0035 0.0100 0.0028 3

{ v is , tem p i2 , dpg2 , tem pi.hum , ibh.hum , v is .tem p i} 0.0035 0.0045 0.0027 6
{tem pi2 , dpg2, v is .v h ,  tem pi.hum , ibh.hum , v is .tem p i} 0.0034 0.0044 0.0027 6

{vh, hum, tem pi2 , hum.vh, ibh.hum} 0.0032 0.0057 0.0030 5
{hum2, tem pi.hum , ibh .tem pi} 0.0030 0.0088 0.0025 3

{hum2 , dpg .vh , tem pi.hum , ib h .te m p i, dpg .tem pi, d p g .ib h } 0.0030 0.0039 0.0028 6
{hum, v i s ,  tem pi2, ibh.hum v is .tem p i} 0.0028 0.0050 0.0024 5

{hum, tem pi2 , v is .v h ,  ibh.hum , v is .te m p i} 0.0028 0.0049 0.0024 5
{tem pi2 , tem p i.v h , tem pi.hum , ibh.hum} 0.0027 0.0063 0.0022 4

{vh, hum, tem pi2 , hum.vh, ibh .tem pi} 0.0025 0.0045 0.0025 5
{dpg, hum2 , tem pi.hum , ib h .te m p i, dpg .tem pi, dpg.ibh} 0.0024 0.0031 0.0023 6

{hum2, tem pi.hum , ibh.hum , v is .te m p i} 0.0023 0.0054 0.0018 4
{hum, tem pi.hum , ibh.hum} 0.0022 0.0063 0.0018 3

{hum, vh2 , tem pi2, hum.vh, ibh.hum} 0.0021 0.0037 0.0020 5

T able 6.11: Ozone data. The 25 highest probability models according to R l and their probabilities under the other
approaches for PMSB.

6. Exam
ples



116 6.4. Examples

Covariate R l R2 TESS1
vh 0.306 0.230 0.308
hum 0.414 0.341 0.428
tempi 0.354 0.281 0.358
ibh 0.266 0.205 0.288
dpg 0.450 0.319 0.458
v is 0.339 0.284 0.340
vh2 0.307 0.226 0.309
hum2 0.615 0.533 0.621
tem pi 0.455 0.467 0.454
ib h 2 0.207 0.139 0.224
dpg2 0.617 0.523 0.614
v is 0.164 0.099 0.165
hum.vh 0.413 0.349 0.427
te m p i. vh 0.353 0.280 0.358
ib h .vh 0.267 0.208 0.287
dpg .vh 0.460 0.336 0.468
v i s .vh 0.346 0.293 0.348
tempi.hum 0.749 0.710 0.748
ib h .hum 0.576 0.612 0.564
dpg.hum 0.227 0.137 0.231
vis.hum 0.156 0.091 0.158
ib h .tem p i 0.314 0.286 0.319
dpg.tempi 0.610 0.461 0.620
vis.tem pi 0.589 0.539 0.584
dpg . ibh 0.491 0.365 0.501
v i s . ibh 0.214 0.140 0.215
v is .d p g 0.136 0.079 0.139

T able 6.12: Ozone data. Inclusion probabilities with PMD. The 
median probability model contains the covariates corresponding to the

gray coloured rows.
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Covariate R l R2 TESSl
vh 0.177 0.100 0.189
hum 0.300 0.225 0.323
tempi 0.229 0.156 0.239
ibh 0.164 0.099 0.192

dpg 0.206 0.083 0.226
v is 0.226 0.147 0.232
vh2 0.171 0.092 0.182
hum2 0.454 0.392 0.468
tem pi2 0.505 0.527 0.497
ib h 2 0.105 0.053 0.123
dpg2 0.417 0.278 0.424
v i s 2 0.075 0.033 0.079
hum.vh 0.314 0.244 0.335
te m p i. vh 0.219 0.133 0.231
ib h .vh 0.167 0.102 0.194
dpg. vh 0.217 0.091 0.238
v i s .vh 0.228 0.145 0.236
tempi.hum 0.704 0.723 0.697
ib h .hum 0.672 0.749 0.646
dpg.hum 0.097 0.038 0.104
vis.hum 0.072 0.033 0.076
ibh .tem p i 0.263 0.215 0.280
dpg. tempi 0.298 0.135 0.327
v is .te m p i 0.433 0.303 0.437
dpg. ibh 0.236 0.105 0.259
v i s . ibh 0.105 0.050 0.110
v i s . dpg 0.060 0.025 0.065

Table 6.13: Ozone data. Inclusion probabilities with PMSB. The 
median probability model contains the covariates corresponding to the

gray coloured rows.
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(b) The 10000 most probable models each approach with its own order

F i g u r e  6 . 7 :  Ozone data. Distribution of model posterior probabilities 
for priors PMD (left) and PMSB (right).
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6.4 .4  S im ulated data w ith  correlated  covariates

W ith this simulated example we pretend to show the potential of hav­

ing tractable expressions to compute posterior probabilities (that is, a 

Conventional Robust prior with b =  1) in a problem of considerable size. 

Again, as in the Ozone example, the routines used successfully for com­

putation of Li and JZS in the two first examples do not behave properly 

in this example and so we just center our attention in R l, R2 and TESS1.

We choose a simulated data set with n = 60 observations and 30 explana­

tory variables, X \  through X%q, apart from the intercept. This problem 

has more than one thousand millions of possible models. We simulated 

data as in Kuo and Mallick (1998); specifically, for j  = 1, . . . , 30 ,  the 
correlated covariates are simulated as

X j  = X *  +  Z,

where, independently

x\,x*2,...,x\o,z

The vector of dependent observations is simulated as Y  =  a l n +  X /3  +  e 

where e ~  J\fn{0 ,4 In) and

/3‘ =  (0, M’>.,0,1,.1?).,1,2,??).,2).

The correlations between the regressors in our simulated data  varied in 

[0.32,0.73].

We keep the probabilities of 10000 models which concentrate a 99% of 

| the total probability, this indicates a high degree of concentration in 

; surprisingly few models, something that is not usual in real examples as
t
; we saw in the Ozone data.
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The computations have been done approximately in 16 hours using 100 

cores (note th a t this time obviously depends on the cores used).

We also present the posterior probabilities and dimension probability in 

the following summaries.

• Tables 6.14 (PMD) and 6.15 (PMSB) shows the 25 most probable 

models ordered by R l.

• Tables 6.16 (PMD) and 6.17 (PMSB) provide the inclusion proba­

bilities for each covariate.

•  Figure 6 .8  presents the dimension probabilities (top) and the cumu­

lative dimension probabilities (bottom) for PMD (left) and PMSB 

(right).

•  Figure 6.9 presents the distribution of the log10 of the probabilities 

of the 10000 most probable models through box-plots for PMD 
(left) and PMSB (right).

The effect of ^((3^  /30, cr)

This is a very special example in which the most probable models seem 

to be pretty clear and so, the results are very robust to the entertained 

approaches. In fact, as commented before, the 10000 most probable 

models with R l accumulate more than a 99% of the probability with any 

of the entertained approaches. We do not appreciate any significative 

differences, in neither the posterior probabilities (see Tables 6.14 and 

6.15, and Figure 6.9) neither in the inclusion probabilities (see Tables 

6.16 and 6.17) nor dimension probabilities (see Figure 6 .8 ).

The covariates X 21 , . . . ,  X 30 (whose regressor coefficient’s value in the 
simulation is 2 ) have posterior inclusion probabilities of 1. On the other 

hand the covariates X u , . . . ,  X 20 (whose regressor coefficient’s value is 1 )
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have lower probabilities, with just a half of them achieving a probability 

higher than 0.5. The rest of variables X i , . . .  , X \ o  (whose regressor 

coefficient’s value is 0) have really small probabilities except for X j  which 

reaches a posterior inclusion probability over 0.5, thus being one of the 

variables in the median probability model.

The median probability model is finally formed by 16 variables from 

which 15 of them are actually in the model. This model is the second 

most probable model with every entertained approach.

The effect of P(Mi)

The differences among the approaches to assess the probabilities over the 
model space are also inexistent. Only in Figure 6.8 we appreciate that 

PMSB is spreading a little bit more the probability among dimensions, 
but it is hardly appreciable.

The main goal of this example is to show tha t our approach can deal with 

such a large problem directly without the necessity for search methods. 

And this is due to the closed-form expressions of Bayes factors.
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F i g u r e  6 . 9 :  Simulated data. Distribution of model posterior prob­
abilities for priors PMD (left) and PMSB (right) for the 10000 most

probable models.



Covariates Rl R2 TESSl dim
{X 7 , X u ,  X 13 , X i6 , X i7 , X i8 , X 19 , X 2 1 , X 3 0} 0.056 0.057 0.057 17

{X 7 , X n ,  X 1 3 , X i6 , X 17, X is, X 21 , X 3 0} 0.052 0.052 0.052 16
{X 7 , X n , X 13, X i6 , X 17, X 2 1 , X 30} 0.052 0.050 0.051 15

{X 7 , X n , X 13, X i6 , X 17, X 19, X 2 1 , X 3 0} 0.046 0.045 0.045 16
{ X n , X 13, X 16, X 17, X i8 , X 2 1 , X 3 0} 0.030 0.029 0.029 15

{ X n , X 13, X i6 , X 17, X i8 , X 19, X 2 1 , . . . ,  X 3 0} 0.025 0.025 0.025 16
{X 7 , X n ,  X 13, X 15 , X i6 , X 17, X is, X 19, X 21 , . . . ,  X 3 0} 0.016 0.017 0.017 18

{ X n ,  X 13, X 15, X i6 , X 17 , X is, X 21 , . . . ,  X 3 0} 0.016 0.016 0.016 16
{X 7 , X n , X 13, X i6 , X 17, X 2 0 , X 21 , . . . ,  X 3 0 } 0.015 0.015 0.015 16

{X 7 , X 13, X i6 , X 17, X is, X 21 , . . . ,  X 30} 0.015 0.014 0.014 15
{X 7 , X n ,  X 13 , X i6 , X 17, X is, X 20 , X 21 , . . . ,  X 30 0.014 0.015 0.015 17

{X 7 , X n , X 13, X is , X i6 , X 17, X is, X 21 , . . . ,  X 3 0 } 0.014 0.015 0.015 17
{ X n ,  X 13, X 15, X i 6 , X 17, X i 8 , X 19, X 21 , . . . ,  X 3 0 } 0.014 0.014 0.014 17

{X 7 , X n , X 13 , X 15 , X i6 , X 17 , X 21 , . . . ,  X 30} 0.013 0.013 0.013 16
{X 7 , X n , X 13, X 15 , X i6 , X 17, X 19 , X 21 , . . . ,  X 3 0 } 0 .0 1 2 0 .0 1 2 0 .0 1 2 17
{ X n , X 12, X 13, X i6 , X 17 , X is, X 19, X 21 , . . . ,  X 3 0 } 0 .0 1 1 0 .0 1 1 0 .0 1 1 17

{ X n ,  X 13, X 16, X 17 , X is, X 2 0 , X 2 1 , . . . ,  X 3 0} 0 .0 1 1 0 .0 1 1 0 .0 1 1 16
{ X n ,  X 13, X i 6 , X 17 , X 2 1 , X 3 0} 0 .0 1 1 0 .0 1 0 0 .0 1 0 14
{X7 , X 13 , X i 6 , X 17, X 2 1 , . . .  , X 3 0} 0 .0 1 1 0 .0 1 0 0 .0 1 0 14

{ X n ,  X 15, X i6 , X 17 , X is, X 2 1 , . . . ,  X 3 0} 0.008 0.008 0.008 15
{ X n ,  X 13, X i 6 , X 17 , X 19 , X 2 1 , . . . ,  X 3 0} 0.007 0.007 0.007 15

{ X n ,  X 12 , X 13 , X 15, X i6 , X 17 , X is, X 19, X 21 , . . . ,  X 3 0 } 0.007 0.007 0.007 18
{X 7 , X n ,  X 12, X 13 , X i6 , X 17, X is, X 19 , X 21 , X 3 0} 0.007 0.007 0.007 18

{X 2 , X 7 , X n , X 13, X i6 , X 17, X 2 1 , . . . ,  X 3 0 } 0.006 0.006 0.006 16
{X4 , X 7 , X n ,  X 13 , X i6 , X 17, X is, X 19, X 2 1 , . . . ,  X 3 0 } 0.006 0.006 0.006 18

T able 6.14: Simulated data. The 25 highest probability models according to R l and their probabilities under the other
approaches for PMD.
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Covariates Rl R2 TESSl dim
{X 7 , X u ,  X 1 3 , X 1 6 , X 1 7 , X l8 , X 1 9 , X 2 I, . . . ,  X 3 0 } 0.054 0.054 0.054 17

s {X 7 , X n , X 1 3 , X l6 , X 1 7 , X 1 8 , X 2 1 , . . . , X 3 0 } 0.042 0.041 0.041 16

tS
T}i

{ X 7 , X u ,  X 1 3 , X i e ,  X n ,  X 2 1 , X 3 0 } 0.039 0.037 0.037 15
{ X 7 , X n , X 1 3 , X 1 6 , X 1 7 , X 1 9 , X 2 1 , X 3 0 } 0.036 0.036 0.036 16

{ X n , X 1 3 , Xi6, X 1 7 , X is, X 2 1 , X 3 0 } 0.022 0.021 0.021 15
{X 7 , X n , X 1 3 , X 1 5 , Xi6, X 1 7 , X is, X 1 9 , X 2 1 , X 3 0 } 0.022 0.023 0.022 18

{ X n , X 1 3 , Xi6, X j7 , X is, X 1 9 , X 2 1 , X 3 0 } 0.020 0.019 0.019 16
{X 7 , X n , X 1 3 , Xi6, X 1 7 , X is, X 2 1 , . . . ,  X 3 0 } 0.014 0.014 0.014 17

{X 7 , X n , X 1 3 , X 1 5 , Xi6, X 1 7 , X is, X 2 1 , X 3 0 } 0.014 0.014 0.014 17
{X n , X 1 3 , X 1 5 , X 1 6 , X 1 7 , X is, Xjg, X 2 1 , . . . ,  X 3 0 } 0.014 0.014 0.014 17

{ X n , X 1 3 , X 1 5 , Xi6, X 1 7 , X is, X 2 1 , X 3 0 } 0.013 0.012 0.012 16
{X 7 , X n , X 1 3 , Xi6, X 1 7 , X 2 0 , X 2 1 , . . . ,  X 3 0 } 0.012 0.011 0.011 16

{X 7 , X n , X 1 3 , X 1 5 , Xi6, X 1 7 , X 1 9 , X 2 1 , . . . ,  X 3 0 } 0.012 0.012 0.012 17
{X 7 , X 1 3 , Xi6, Xi7, Xi8, X 2 1 , . . . ,  X 3 0 } 0.011 0.010 0.010 15

{ X n , X 1 2 , X 1 3 , Xi6, X 1 7 , X is, X 1 9 , X 2 1 , . . . ,  X 3 0 } 0.011 0.011 0.011 17
{X 7 , X n , X 1 3 , X 1 5 , X 1 6 , X 1 7 , X 2 1 , . . . ,  X 3 0 } 0.011 0.010 0.010 16

{ Xn ,  X 1 2 , X 1 3 , X 1 5 , Xi6, Xj7, X is, X 1 9 , X 2 1 , . . . ,  X 3 0 } 0.009 0.010 0.010 18
{X 7 , X n ,  X 1 2 , X 1 3 , Xi6, Xj7, X is, X 1 9 , X 2 1 , . . . ,  X 3 0 } 0.009 0.009 0.009 18

{ X n , X 1 3 , Xi6, X 1 7 , X is, X 2 0 , X 2 1 , . . . ,  X 3 0 } 0.009 0.009 0.009 16
{ X n , X 1 3 , Xi6, X 1 7 , X 2 1 , . . . ,  X 3 0 } 0.009 0.008 0.008 14
{X 7 , Xi3, Xi6, Xi7, X 2 1 , . . . ,  X 3 0 } 0.008 0.008 0.008 14

{X4, X 7, X n , X 13, X 16, X 1 7 , X is, X 1 9 , X 2 1 , . . . ,  X 30} 0.008 0.009 0.009 18
{ X n , X 1 5 , Xi6, X 1 7 , X is, X 2 1 , . . . ,  X 3 0 } 0.006 0.006 0.006 15

{X 7 , X n , X 1 3 , Xi6, X 1 7 , X is, X 1 9 , X 2 0 , X 2 1 , . . . ,  X 3 0 } 0.006 0.006 0.006 18
{ Xn ,  X 1 3 , Xi6, X 1 7 , Xjg, X 2 1 , . . . ,  X 3 0 } 0.006 0.005 0.005 15

CM
t-H

T able 6 .1 5 : Simulated data. The 25 highest probability models according to R l  and their probabilities under the other
approaches for PMSB.
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Covariate Rl R2 TESSl
X i 0.054 0.056 0.055
x 2 0.067 0.068 0.068
x 3 0.036 0.036 0.036
x 4 0.070 0.072 0.072
x 5 0.067 0.068 0.068
X 6 0.036 0.037 0.037
x 7 0.651 0.654 0.652
X s 0.045 0.046 0.046
x 9 0.039 0.040 0.040
X i o 0.042 0.043 0.043
X n 0.896 0.899 0.899
X l 2 0.125 0.129 0.129
X xz 0.923 0.926 0.926
X n 0.038 0.039 0.039
X \§ 0.258 0.263 0.262
X u 1.000 1.000 1.000
X l7 0.988 0.989 0.989

X u 0.584 0.589 0.588
X u 0.403 0.411 0.410
X 20 0.145 0.148 0.147
X 2i . . .  X 3o 1.000 1.000 1.000

Table 6.16: Simulated data. Inclusion probabilities with PMD. The 
median probability model contains the covariates corresponding to the

gray coloured rows.



126 6.4. Examples

Covariate R l R2 TESS1
Xx 0.068 0.070 0.070
x2 0.081 0.082 0.082

*3 0.047 0.049 0.049
x 4 0.095 0.098 0.097
x 5 0.081 0.083 0.083

0.049 0.051 0.051
* 7 0.673 0.677 0.675
x 8 0.059 0.061 0.061
x9 0.052 0.054 0.054
Xio 0.058 0.060 0.060

X u 0.912 0.915 0.916
X 12 0.165 0.170 0.171
X 13 0.936 0.939 0.939
X l4 0.051 0.053 0.053
X u 0.304 0.310 0.309
Xi e 1.000 1.000 1.000
Xl 7 0.990 0.991 0.991
X l 8 0.628 0.634 0.633
X i 9 0.472 0.481 0.480
X 20 0.167 0.170 0.169
X 21 ■ ■. X 30 1.000 1.000 1.000

T able 6.17: Simulated data. Inclusion probabilities with PMSB. The 
median probability model contains the covariates corresponding to the

gray coloured rows.



Chapter 7

Conclusions and future 
work

7.1 Thesis summary and conclusions

Many of today’s scientific problems require identifying which variables 

from an entertained set are involved in a specific phenomenon. For in­

stance, many public health studies require the identification of the causes 

of a certain disease.

This problem is referred to as variable selection and can be seen as a 

particular case of model selection. In this specific model selection prob­

lem each model contains a certain subset of the entertained covariates. 

This means a total of 2P possible models for a problem with p  potential 

covariates. The variable selection problem is difficult to address both 

from a theoretical and from a computational point of view.

In particular, in this work the problem of variable selection is addressed 

in the framework of linear regression, but it also appears in many other 

scenarios such as generalized linear models and non-parametric function 

estimation (see George, 2 0 0 0 , and references therein).

127
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Our preferred Bayesian way for solving model selection, and, in particular 

variable selection, is to base the choice on the posterior probabilities of 

the competing models. These posterior probabilities can be expressed in 

terms of the prior probabilities of the models and the 2P Bayes factors.

For the assignment of prior probabilities over the model space we en­

tertain and compare some approaches, and state our preferred choice. 

However, this is not the main topic of this thesis.

Posterior probabilities require the computation of 2P Bayes factors in fa­

vor of each model Mi and against a base model Md for i =  0 , . . .  2P — 1 . 

Our choice for is the simplest model explaining the data, which as 

usual we denote Mo; Mo is nested in every model M{. The computation 

of those 2P Bayes factors require the elicitation of priors for the corre­
sponding parameters under each model. Subjective elicitation of priors 

assessed by experts knowledge in this scenario is practically impossible 

due to  the very large number of models, and model-specific parameters. 

The idea is hence, to adopt an objective point of view (see Berger, 2006, 
and references therein) but the objective elicitation of priors in model se­

lection has to be done carefully due to the high sensitivity of Bayes factors 

to the choice of objective priors. In fact, the usual non-informative (usu­
ally improper) priors, which work well in estimation problems do not 

always produce sensible results in model selection (see Berger and Peric- 

chi, 2001, and references therein) often resulting in indeterminate Bayes 

factors.

The large number of models also posses a computational challenge since 

the numerical computation of the 2P Bayes factors is required. When p 

is so large that the models space can not even be enumerated (for all 

practical purposes), many authors (see, for example, George and McCul- 

loch, 1993; Carlin and Chib, 1995; George and McCulloch, 1997; Miller, 

2001; Robert and Casella, 2004; Berger and Molina, 2005, and references 

therein) propose methods for searching over the model space trying to 

find models with high posterior probabilities. But usually Bayes factors
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are hard to compute, so that even this solution can be computation­

ally very demanding. This difficulty can be largely alleviated if simple 

expressions for Bayes factors are available.

The aim of this thesis is to propose a novel, suitable and rigorously jus­

tified prior distribution for the variable selection problem. In particular, 

we look for a prior distribution which achieves many desirable properties 

and provides simple expressions for the Bayes factors.

We follow the Conventional approach of Jeffreys (1961), who outlined a 

number of desiderata for a good objective prior distribution to have in 

the variable selection problem.

Following Jeffrey’s Conventional scheme, the prior distribution under 
each model Mj is assessed in two steps. The first one consists in as­

signing a proper prior distribution for those parameters in Mi th a t are 
not in Mo conditionally on those parameters in both models (in particu­

lar, as Mo is nested in Mi this means conditionally on the parameters in 
Mo). The second step consists in assigning a non-informative prior for 

the parameters in Mo.

For assessing the conditional prior in the first step we found some inter­

esting ideas in the work of Strawderman (1973, 1971) and Berger (1976, 

1980, 1985). Their work, originally developed in a context of robust and 

minimax normal mean estimation, is extended and adapted here to solve 

the variable selection problem.

For the prior distribution of the parameters in Mo (occurring in all mod­

els) we consider a prior which makes the problem invariant. In this case, 

it happens to coincide with the reference prior or independent Jeffreys’ 

prior which is the usual choice in the literature. Hence, the usual choice 

gets fully justified.

The result is a joint prior distribution in the parametric space which, 

following Berger (1985) we call Conventional Robust prior. This prior
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distribution is defined up to some parameters tha t can be tuned to achieve 

a number properties. Our specific proposal for these parameters is based 

in certain optimality properties of the resulting procedure.

The theoretical highlights of this distribution for variable selection are

• The choice of the prior is justified from a theoretical point of view. 

Jeffreys (1961)’s Conventional approach scheme for the elicitation 

of prior distributions was based on the orthogonal parameteriza­

tion of the model. Our choice is instead completely justified by a 

sensible choice of the scale matrix and the use of invariance ideas 

in Berger et al. (1998). This fully theoretical justification makes 

the orthogonal parameterization no longer required.

• It produces well defined Bayes factors with good consistency proper­
ties from many points of view. The resulting Bayes factors are well 

defined in the sense tha t they are not indeterminate as is usually the 
case when using objective (improper) priors. This indeterminacy 

is avoided here through invariance arguments. On the other hand, 

the consistency properties of the resulting Bayes factor, closely re­

lated to the shape of the prior’s tails, makes this choice a suitable 

prior for variable selection.

• It agrees with the predictive matching idea. In particular, our prior 

distribution accords with our preferred and weaker interpretation of 

predictive matching for this problem. Specifically, we require that, 

if the information in the sample is barely enough for estimating the 

specific parameters of any model entertaining k extra covariates 

(i.e. n  =  ko +  k), then this information should not be enough to 

discriminate among those models.

In addition, our approach produces simple, tractable, closed-form expres­

sions for Bayes factors considerably simplifying computation.

The outline of the thesis is as follows
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Chapter 1 introduces the general problem of model selection and presents 

posterior probabilities based on Bayes factors as our preferred tool for 

solving it. Then, in Section 1.3, we introduce the objective Bayesian 

point of view for model selection, concluding with a brief review of some 

other approaches to model selection.

Chapter 2  is mainly devoted to the study of the variable selection problem 

and the objective Bayesian approaches to this problem, including the 

Conventional approach of Jeffreys (1961).

Chapters 3, 4 and 5 present our novel approach. First in Chapter 3 we 

review the work of Strawderman (1973, 1971) and Berger (1976, 1980, 
1985) and, based on those, we define (up to three adjustable param­

eters) our proposal for the prior distribution in the parametric space. 

We theoretically justify this choice and study many of its good proper­

ties for variable selection. In Chapter 4 we define Conventional Robust 
Bayes factors using our proposed distribution. We show tha t they can 

be computed in closed-form and study the consistency properties that 

they achieve. Then, in Chapter 5 we complete the choice of the prior 

by assessing the adjustable parameters to endow the methodology with 

even better properties for variable selection.

Finally in Chapter 6  we apply this methodology to some real and sim­

ulated examples and compare the solution obtained with our proposed 
approach to the ones provided by other Conventional approaches in lit­

erature.

7.2 Suggestions for future work

In this thesis we address variable selection in a framework of linear re­

gression. It might also be interesting to consider the suitability of this 

methodology for other scenarios as, for instance, for generalized linear 

models.
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As we observe in the examples of Chapter 6  the use of TESS (Berger 

et al., 2 0 1 0 b) seems to  produce slightly less conservative results than  the 

use of the sample size n. This issue may be something worthy of further 

research. Moreover, understanding the implications of using TESS in the 

properties achieved by the resulting methodology is an im portant issue. 

For instance, to achieve model consistency when using n  we need tha t 

P i ( b  + n ) tends to infinity with n. But, when using TESS what we need is 

Pi  ( b  +  n f )  —>■ oo with the number of observations n, for i  = 1 , . . . ,  2P — 1 

(recall tha t n f  is the corresponding TESS under each model Mi as defined 

in Appendix B). Establishing the conditions under which this property 

holds is something tha t also deserves further work. At the same time, a 
good choice for pi when using TESS needs to be addressed.



Appendix A

Usual D istributions

Bernoulli distribution

A random variable X  has a Bernoulli distribution X  ~  B(p) with param­

eter p £ [0 , 1] if its probability function is:

f ( x  | p) = px (1  -  p)l~x for x  £ {0 , 1 }.

The mean and variance are:

E [ X \ =p ,

Var[X] =  p  (1 — p).

Binomial distribution

A random variable X  has a binomial distribution X  ~  B i(N , p) with 

parameters p £ [0,1] and N  (a finite integer) N  £ N if its probability
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function is

f ( x  | N , p )  = px (1 -  p)N~x for x  G { 0 ,1 ,. . . ,  N}.

The mean and variance are:

E[JV] =  N p ,

Var[A] =  N p  (1 — p).

B eta distribution

A random variable X  has a beta distribution X  ~  Be(a, (3) with param­

eters a  > 0  and f3 > 0  if its probability density function is:

f { x  | a, P )=  z Q _1 (1  -  x f - 1 for z  E (0 , 1 ).
r ( a ) r ( 0 )

The mean and variance are:

VaA X ] = {a + ^ + 0  + i y  

Doubly non-central beta distribution

A random variable X  has a doubly non-central beta distribution X  ~  

Be(a, /3; A i ,  A 2 )  with parameters a  > 0, /3 > 0, A i  > 0 and A > 0 

if it can be expressed in terms of independent non-central chi-squared 

distributions as:
x  = x 2(2q; ^ 1)

X 2 ( 2 a ;  A i )  +  x 2 (2 /3 ;  A2 ) ’
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where x 2 (fc; A) follow a non-central chi-square distribution with k degrees

of freedom and non-centrality parameter A. For further details about this 

distribution see Chattamvelli (1995).

Gamma distribution

A random variable X  has a gamma distribution X  ~  Ga(a, /?) with 

parameters a > 0  and /3 >  0  if its probability density function is:

Inverse gamma distribution

A random variable X  has a inverse gamma distribution X  ~  IG a (a , (3) 
with parameters a  >  0 and (3 > 0 if its probability density function is:

The mean and variance are:

VarM = -p.

x  (Q+1) e i  for x  >  0 .

The mean and variance are:

E[X1 =  — —  if a  >  1,
a — 1

if a  > 2 .
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M ultivariate normal distribution

A k-dimensional random vector X  has a multivariate normal distribution 

X  ~  ^ 4 ( ^ 5  52) with location parameter / i G #  and scale matrix 52, for 

x  e  if its probability density function is:

/ ( x  I 33) =  \ H \ - ^ ( 2 - K ) - ^ e x p  .

The mean an variance are:

E[X] =  fi,

Var[X] =  52.

M ultivariate Student’s t-distribution

A k-dimensional random vector X  has a Student’s t-distribution X  ~  

52, v) with location parameter // G scale matrix 52 and v 

degrees of freedom, for x  € if its probability density function is:

f ( x  | /x, 52) =
T ( ^ )

r ( f ) ( i / 7r) fc/2
i52r1/2

52—1
1 +  (x  -  //)* (x -  /i)

n

t>+k 
2

The mean and variance are:

E[X]  =  /x if v > 2, 

Var[X] =  52 if v  >  3.

M ultivariate Cauchy

A multivariate Student’s t-distribution with 1 degree of freedom, X  ~  

S t  k in , 52, v = 1 ) is called a Cauchy distribution X  ~  52). Hence,

the Cauchy distribution won’t  have mean nor variance.
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Snedecor’s F-distribution

A random variable X  has a Snedecor’s F-distribution X  ~  X(di ,  d2) with 

parameters d\ and d2, positive integers, if for x  € [0 , 0 0 ) its probability 

density function is:

f ( x  | di, d2) = x  Beta [ y ,  y
1 - 1 (dix)dl (d2)d2 

(d\x  -I- d2)dl+d2'

d\ and d2 are referred to as degrees of freedom and Beta(a, b) is the beta 

function:
r ( a ) r ( 6 )Beta(a, b) =
r ( a +  6) *

The mean and variance are:

E[X} = d2
d2 — 2

if d2 > 2 ,

v  rY i 2  (d2)2 (di +  d2 -  2 )
V a r [ X  1 =  *  ( d 2 -  2 ) 2  ( *  -  4 )  l f  d2 > 4 -





A ppendix B

The efective sample size 
TESS in variable selection

Appropriate scale of objective priors for model selection and, in particu­
lar, for variable selection, are usually based on the “information provided 

by one observation” . This desideratum usually implemented by dividing 

a measure of the information in the sample by n, the sample size. How­

ever, the information in the sample can basically be contained in a smaller 

number of observations the effective sample size (see Berger et al., 2010b, 

for examples and discussion).

The intuitive idea is tha t if all the observations are i.i.d. the “effective” 

number of observations containing the information in a sample is n. How­

ever, when for instance the observations are correlated, its seems intu­

itively reasonable th a t the effective sample size is less than  n. Indeed, if 

all observations are perfectly correlated the effective sample size should 

be 1 .

In an attem pt of giving a definition for this measure of information, 

Berger et al. (2010b) define the effective sample size (TESS). TESS has
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been analyzed in a broad variety of scenarios giving reasonable answers 

even where other proposals fail.

We adapt here their definition of TESS to the problem of variable selec­

tion.

Consider the model M , containing all the p  potential covariates, with the 

orthogonal parameterization as in (2 .6 ):

M : Y  ~ A rn( X o-y + V 0 ,  a21). (B .l)

Where V  is the n  x p  matrix of covariates, which has been orthogonal- 

ized to  X o  (X qV  =  0), /3 = [/3i,. . .  ,/3p]* is the p-vector of regression 

parameters.

The definition of TESS does not directly apply to the vector /3 but only to 

scalar parameters. In particular, for obtaining TESS for each component 

j3j Berger et al. (2010b) derive an “effective sample size matrix” which 

diagonal values correspond to the “effective sample sizes” of each /3j. Our 

strategy is to use this values to obtain an averaged TESS for the whole

/3.

Following Berger et al. (2010b), TESS for each (3j is

Where Cj’s can be chosen in few different ways. In this work we adopt 

the choice of Berger et al. (2010b):

Cj = max \vji\,

the maximum absolute value among all values of the j t h  variable. W ith 

this choice TESS goes from 1 to n which, as commented above, is intu­

itively appealing.
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Other possible choices are:

1. Taking
2

which is inspired by the Fisher information matrix. W ith this value 

rij =  n. That is, the default choice for the sample size.

2. taking Cj as the mean for the corresponding covariate. But in this

case rij can be larger than n, which is not allways intuitive.

Hence, our ultimate choice of TESS for M  is the mean of all the rij

corresponding to a {3j involved in the model.

(B.2)





Appendix C

Hypergeom etric functions

Appell hyper geometric function

The Appell hypergeometric function  (Appell, 1925) is an analytical func­

tion of a, 6 1 , 6 2 , c, zi, Z2 defined in C6 usually denoted

Fi(a; 6 1 , 6 2 ; c; z\, z2).

This function is also referred to as hypergeometric function of two vari­
ables. This function can be expressed as an infinite sum which converges 

only for \zk\ < 1 for k = 1,2; However, convergence can be extended to 

any value of Zk by considering its integral representation which is valid 

whenever Re(a) > 0 and Re(c — a) > 0, namely:

p ,
F i(a; 6 1 , 6 2 ; c; zlt z2) = w

r(a)r(«

• [  ta~l (1 -  t)c~a~l (1 -  t z i ) ~bl (1 - t z 2)~b2 dt.
Jo

For a deep study of this function see Wolfram (2010a) and references 

there.
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Gauss hypergeometric function

When, in the hypergeometric function of two variables (or Appell hyper- 

geometric function) z\ =  0 or Z2 = 0, then F\ becomes the hypergeomet­

ric function o f one variable 2-F1 also referred to as Gauss hypergeomet­

ric function. As it is the case with the hypergeometric function of two 

variables, the Gauss hypergeometric function is considered a closed-form 

expression. Indeed for \z\ < 1 this function is defined by an infinite con­

vergent sum. Outside the unit circle, \z\ > 1 it is defined as the analytic 

continuation with respect to z of this sum whose integral expression is:

2F i(a; b; c; z) = ^  [  ta_1 (1 -  t)c- a_1 (1 - t z ) ~ bdt.
T { a ) T { c - a )  J0

The hypergeometric function 2F\ has been extensively studied (see e.g. 

Abramowitz and Stegun, 1964), and it is widely implemented in many 

computer software packages, so it has become quite a standard’ func­
tion. Fast approximations are also available, see Wolfram (2010b) and 

references therein (see also the related H m function in Berger, 1985).



A ppendix D

Proofs of results in Chapter 2

D .l  P roof of Lema 2.1

Lemma. The sampling distribution o f Qio degenerates to a point mass 

at
I + 61 

9 M  ~  1 +  <5i +  S2

as n  co.

Where qM = 1 for M t  = Mo and qM =  1/(1 +  $) for M t  = Mi, with
6 =  l im r j^ o o  SiO.

Proof. This lemma is easy to proof from the following lemma taken from 

Casella et al. (2009)

Lemma. Let {X n, n  ^  1} be a sequence of random variables with distri­

bution
v  „  fn -  Pi P i -  po s  s  ^
x n ~  Be(— 2— ’ — 2— ’

where po, pi, £i and 62 are positive constants. Then:

145



146 D.l. Proof of Lema 2.1

(i) the sequence X n converges in probability to the constant

1 +  f t
1 +  4- 82

(ii) I f  5i = 62 = 0, then X n degenerates in probability to 1. However, 
the random variable —n / 2 \ o g X n does not degenerate and has an 

asymptotic gamma distribution Ga(pi — po, 1)

□



A ppendix E

Proofs of results in Chapter 3

E .l Proof of proposition 3.2

P ro p o sitio n . Let \\0i\\2 = j3ti (V lV i)/3 i , then

( f t  | f t ,  a) =
| | f t | | 2 ->oo  < S t f e ( f t  | 0 ,  C l  2a)

where:
/-i* _  cPi B* (b, a)
C i ~  a ’

c =  ( a r ( a ) )1/a , and B*(b, a) = a 2(b +  n ) ( Y \V  i)~l

The proof requires the following lemma:

L em m a E . l .  Assume m  > 1 and p > 0, then

lim z a+k [  Xa~1( — — e~ m~x p zd \  = m a T(a +  k) p~^a z ►oo J0 \m  — A/

Proof. Clearly, for any 0 < e < 1 and all A € [e, 1] the limit
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Then

e- ^ P * dX =lim za+k f
OO J o \ 771 — A /

=  lim za+k [  Aa_1( — — r )  e~™->>'p'z d \  +Z—+OQ J q \m  — A/

+  lim za+k f 1 e ~ ^  p z dX, (E .l)z-* oo \m  — A/

where the limit and the integral in (E .l) can be interchanged because the 

integrand is continuous and the integral is over a compact set. Hence,

lim za+k Y  Aa -1 ( — p z dX = 
z^oo J  o \m  — A/

=  lim za+k f  X— ')kz->oo J q \m  — XJ e- ^ ” z dX.

Next, make the change of variables t = X/{m  — A) to get

f e 1 /  A \fc A t k+a -1
/  A' ( — ^ - t )  e - ^ v z d \  = m a /  — ——r e pz dt.

Jo Vro — A/ y0 ( l  +  i ) ^ 1

Since for t € (0, e/(m  — e))

1 1
< < 1,(1 + e / ( m - e ) ) a+1 ~  (1 + t)a+1 

the integral of interest can be bounded as follows

m a (zp)“(a+fc) (r(a +  k) -  r(a +  k , pz)^j

(1 +  e/(m  — e))a+1

i k + a — 1

<

r ^ l  j f c+a- l

< m  t t — r r r r  e~t pz  dt <  (E.2)-  Jo ( l  +  t ) ^ 1 -  v >

< m° (zp)~(u+k̂ (r(a + k) — T(a + fc, —-— pz)),
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where r ( ^ i , v2) is the incomplete gamma function,

poo
T{vi, v2) =  /  dt,

J  i/2

which goes to zero as v2 goes to infinity. Multiplying the three parts of 

the inequality in (E.2) by z(a+fc) and taking limits as z —> 0 0 , gives

m a p - ( a+fc )r (a + M r ^ r e f h + a - 1
„  F v „  J  < lim m  za+k / ------- ------- — T e~t pz  dt <(1 + e/(m  — e) ) a + 1  *-► 00 J0 (1 + t)a+1

< m ap - {a+k)T(a + k).

Since this holds for every value e > 0, it follows tha t

f r n ^ l  f k + a —1
lim m ° za+k /  yi-— r— r e - t ', z dt = m ap - ^ +k^T(a + k),Jo (l + t)“+1  ̂ ’

or equivalently

lim za+k [  X ^ f — Y  e - ^ p z d \  = m ar(a  + k ) p - ( a+k). 
z  voo J 0 \ m  — A /

□

Now we can prove proposition 3.2

Proof. In the sequel we remove the subindex i for simplicity in notation. 

It can be easily shown that

lim StU/3  I 0, C*, 2a) =
||/3||2—>00

= « (**P (*> + «))“ IVVI1/* ( p ip )-(•+*/».
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It then follows that

irR ( 0  | 0 o ,  a )  (2o-2) - ( a+ * /2> b ~ kl 2
lim
2—>oo S t k(j3 | 0 ,  C *, 2a) T(a +  k/2)  (p(b +  n))a

• lim m 2)aU/2 / 1 A“- 1( ^ ) ' !/2e - ^ !>M2dA,\\/3\\2-+oo Jo \m  — A/

where m  = (p(b 4- n ))/6  and p =  l/(2cr26). Since p > 6/(6 +  n), m > 1 

we can apply Lemma E .l and the result follows. □

E.2 Proof of proposition 3.3

P ro p o sitio n . The likelihood rrii(y \ (30, a) for  (/30, cr) under model Mi  

for i = 1, . . .  2P — 1 derived by integrating out f3j with any prior of the 

form:

MPi I A)> = v~kifi(—),G

for any known density on M.ki, fi , is invariant under the group of trans­

formations

® =  {9c,b ■ 9c,b(y) = c y  + X 0b; 6 € R k°; c > 0}.

Proof. We need to find /3q and cr* such tha t y* = c y  +  X ob  with c > 0 

and bl G M.k° has density rrii(y* | /3q, cr*). We know that:

The distribution of y * given (/30, cr) is

K ( y *  \ c ( X o 0 o + X i 0 i )  + X 0b, ( c a f l ) .

This density can also be expressed as

M .(y* \ X O0*O +  X i0 * , ( a ' f l )



E. Proofs of results in Chapter 3 151

where (j3q, (3*, cr*) =  (c/30+6, c/3i? ccr). Therefore, taking/3J =  c(30 + b 

and cr* = ccr the integrated likelihood can be expressed as

mi(y* I 00. **) =  f  I JCo/35 +  Xi i cPi ) ,  <rt2i y
JRki

and making the change of variables /3* = c (3 i gives the desired result.

□

E.3 Proof of proposition 3.4

P ro p o s itio n . For any (a, b, pi) € A , (where A  is the parametric espace 

in (3.7)) and n > ki + ko, the prior predictive distribution for y  under 
Mi using the Conventional Robust prior is:

m?( y )  = m $(y) Qi0
- n~ fcQ 2 a

ki -f- 2a
(pi(n  +  6)) 'a i4Pi0,

where

n  — ko n — ko

SSE~ 2

and .APio a hypergeometric function o f two variables or Appell hyper­

geometric function:

APio =  Fi
ko +  ki — n n — ko

a + V  2------- ' - 2 ~

i i i ^ i. i)  . ^
+  2 ’ Pi(6 +  n ) ’ pi(6 +  n)J

Recall that Qio is the ratio of residual sum of squares under each model 

S S E i/S S E o  and was defined in Section 2.3.2.
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Note that for computing rrii(y) a sample of size n  > ki + ko is needed. In ­

deed, if we want to compute m i(y ) for every model Mi with i = 0 , . . .  ,2P — 

1 we need a sample of size n  > p +  ko.

First of all let us introduce some results we need for this proof.

R e su lt E . l .  Let X  be any n  x k matrix, then

=  |X * A :r1/2 exp{ - ^ S S E }  (27R72)(fc- n)/2. 

where S S E  = y l (In -  X ( X 1 X ) ~ l X 1) - 1 y .

Proof. See Garcfa-Donato (2003). □

Result E.2. Given any model Mi in its orthogonal parameterization

Mi : J \fn (y  | X q̂  +  Vi(3i, a 2I n),

then for every positive constant, c,

S S E 0 -  (1 +  c ) - 1 y ‘ ( V i i V l V i ) - 1 V |)  y  =  (1 +  c ) ' 1 (SSEt +  c S S E „), 

where SSEi is the residual sum of squares under model Mi.

Proof. See Garcia-Donato (2003). □

R esult E.3.

/ ° V (<I+1)ex p { - ^ } da  =  « .

Proof. See Garcia-Donato (2003). □

Now we can proceed with the proof:
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Proof. First of all, let’s proof tha t m f'{y)  does not change whether the 

model is in its orthogonal parameterization or not.

The orthogonal reparameterization is:

( f t ,  f t ,  a )  -► ( f t ,  f t ,  +  ( X l X o y ' X l X i P i ,  <t).

The Jacobian of this change of variables is 1:

J  =  det
In  ( X l X o  y ' X l X i  0 

0 I n 0
0 0 1

=  1.

Hence, the likelihood does not change.

On the other hand, the Conventional Robust prior is invariant under any 
parameterization tha t leaves f3i unchanged, tha t is:

(A), A, cr) ->■ (7 > A» <r)

with 7  =  L(30 and L  any n  x ko matrix, including the orthogonal pa­

rameterization. Then, as neither the likelihood nor the prior change, the 

resulting m f-{y ) does not change either. For simplicity in calculations we 

assume here the orthogonal parameterization.

Given any sample size n, the prior predictive distribution under Mo is 

m o { y )  -  f [  N n ( y  | X o ' y ,  cr2I n) -  d j 0 da,
JRk0 JO &

and using Result E .l for integrating out /30

<(v) = (2^)-^ |XSX0r* y 0V<"-'!»+1> exp( - ^ ) d o
1 , t v  ,_ i \ n -  k0= -7r 2 |X0X 0| 2r  —

n  — KQ

SSEq 2
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Also, the prior predictive distribution under Mi is

m f{ y )  = [ N n{y | +  V iP i, a2I n) •

J e

'N ki(Pi | 0,B(A)) a Aa _ 1  a ' 1 d(7 , /3i5 cr, A),

with 0  =  R ko x R ki x [0, oo) x [0,1].

First we integrate out /3f and 7  using Result E .l, giving

mf ( y )  = ( 2 7 r ) - ^

A
J  6XP I ~2c? SSE° ~  (* + pi(b + n) - b X  

a Xa+^ - la - ^ - ko+1)(pi(b +  n) -  (b -  1)X)~% d(a, X)

Now, using Result E.2 and integrating out a through Result E.3, we 
finally obtain

r>  1 Tl — k n  . 1

m ? ( y )  =  2 \x ox o\~* r
n — ko

f 1 a A0 + ^ _ 1  (pi (b + n ) - ( b -  1 ) A) 1̂ 1 Jo (E.3)

n —fcp
(SSEj (pi (b + n) -  b A) +  A SSE0)— * d X .

This expression can be rewritten as:
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and using the expression of the Appell function in Appendix C the pre­

vious expression can be written as

 n —fcp
m f (y) = m 0{y) Qi0 2 {npi +  APi0,

where AP;o is the hypergeometric function of two variables or Appell 

hypergeometric function.

APio = Appell2Fi
ki ho +  ki — n n — ko

a + r  2  ’ ~~2 ~ 1

n +  t + h -  t6 " 1) ■ 6 -  Qio1 ' 
2 ’ pi (b + n ) ’ pi{b + n)

□

E.4 Proof of Proposition 3.5

P ro p o sitio n . Given a model, Mi with ki extra covariates, for any sample 

y* of size n* = ki + ko we have

m ?{y*) = m $(y*) = r

which only depends on SSEo, X o  and ki.

Proof. The proof follows immediately from next Result and equation 

(E.3) in Appendix E.3.

R esu lt E .4 . For a specific model Mi with ki extra variables i f  the sample 

size is n  = ki + ko the corresponding residual sum of squares is S S E i = 0

Proof. For a sample of size n = ki + ko the design matrix, X  =  [Xo | 

is a square, full rank matrix and

SSEn ,

x ( x ‘a :)  l x t = i ki+ia. (E.4)
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Now, recall S S E i = y \ I n  ~  P i)y  with P i = X  ( X fX )  1 X \  then, if 
n = ki +  ko it is easy to see th a t SS E i =  0 □



A ppendix F

Proofs of results in Chapter 4

F .l  Convergence Theorems.

T h eo re m  F . l  (Monotone convergence.). Let («S, E,/x) be a measure 

space. Let f n be a pointwise non-decreasing sequence of positive func­
tions. I f  3 M  > 0 such that f s  f n{%) dx < M  and 3 f  = limn .̂oo f n 
almost every where, then f  is integrable and

/  /  dp = lim /  f n dp.
Js  n _ > 0 °  Js

C o ro lla ry  F . l .  Let f n(x) denote a sequence of real-valued measurable 
functions on a measure space {S, S,/x). Assume that 3 f  = l im n -^  f n 

almost every where and that f  is not measurable in S , then:

lim I f n dp = oo.

T h eo re m  F .2  (Dominated convergence). Let f n be a sequence of real­

valued measurable functions on a measure space (S,T>,p). Assume that 

the sequence converges pointwise to a function f ,  limm_).00 f m = f ,  and
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it is dominated by some integrable function g

1/nWI < g(x); V x€<S

Then the limiting function f  is integrable and

f  dp = lim /  f m dp
Js  m ^ ° °  Js

F.2 Proof of proposition 4.3

P ro p o s itio n . The Conventional Robust Bayes factor is information con­
sistent i f  and only if  n >  ki +  ko 4- 2a.

Proof. Conventional Robust Bayes factor can be written as

r-» k-i Tl — fcn i fc-i i
B ^= a (p i(n + b ))-^ (Q ia) - ^ SL A0+"^-1

./0

1 -
6 —1 ,1 2 L 6 - Q - l  ■

<o_.A
pi(6 +  n) J [ Pi(6 + n) 

=a (*(« + &))"* f 1 Aa+̂ _1
Jo

dX = (F.l)

Pi\b +  n) QiO ( 1 —
6A

+Pi(b +  n)J pi{b + n)_ dX.

Let {Qm} be an arbitrary decreasing sequence of real numbers such tha t 
limm_>.00 qm =  0 and define / m(A, a, 6, n) as

/ m(A,a,6,n) =  A“+ ^ - 1
1 — Pi (6 +  n)

6A
Q m  I 1 +pi(b +  n)J pi(b +  n)

dX.
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It is easy to  proof tha t / m(A,a, 6, n) is also an increasing sequence of 
functions with m  such that | / m| < h, with

and

h(A) =  A“- 1 (p,(& + n)) * , (F.2)

lim / m(A, a, 6, n) =  h(A).
m —►oo

C ase  1: n < 2a +  ki +  ko or equivalently a — 1 — n~ko~ki > 

Since (F.2) is integrable for a — 1 — n~kj>~ki <  —1? it follows from 

the dominated convergence theorem tha t

lim /  f m( \ ,a ,b ,n ) d \  
n-*°° 7o

< oo.

C ase 2: n > 2a +  ki +  ko or equivalently a — 1 — < —1.
Since (F.2) is not integrable for a — 1 — n~kQ~ki < —1? it follows 

from Corollary F .l that

lim /  f m( \ ,a ,b ,n ) d \  
n->°° 7o

=  oo.

Since this holds for every increasing sequence such tha t qm —> 0 it also 

holds for Qio —> 0 as desired. □

F.3 Proof of proposition 4.4

P ro p o s itio n . For anyn, B-q is bounded above by a constant for Qio -» 1. 

This constant is smaller than 1, and depends only on ki and a. Specifi­

cally,

lim B m < 1 + ki_ 
2 a

- l
< 1.
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Proof. It can be seen tha t for Qm close to 1, the integrand in (F.l) is 

bounded by

g(\ ,a,b,pi )  = K  x Xa+^ 1 -  b. 1 . A
pi(b + n)

which is an integrable function. So by the dominated convergence theo­

rem we can exchange limit and integral to  get

lim B% = a(pi(n + b)) f  Xa+^  1
Jo

1 -   ̂ 1 . A
Pi(b + n) _

d \.

We next proof tha t this function is bounded by 1. Define the constant 

B i0 as i

5 ° ) =  f  a X ^ - ' i p i i b  + ^ - i b - V X y ^  d\ .  (F.3)

Since pi > we have that pi (b + ri) > b. Moreover

{pi(b + n) -  (b -  1)A) ^  (pi(b + n) -  b+  1) .

It then follows tha t 

pCt>AiO ^  [  a ■
Jo

Xa+~£ dX = 1 + 2^

-1

and, since ki ^  1 and a < oo, we finally get

B i0 ^  n
i + 2 a

as desired. □

F.4 Proof of proposition 4.2

P ro p o s itio n . I f  lim ^oo  pi (b +  n) =  oo, then the Conventional Robust 
Bayes factors are consistent.



F. Proofs of results in Chapter 4 161

Proof. First of all recall tha t the Conventional Robust prior distribution 

can be expressed as a scale mixture of normals as shown in Proposition 

3.1.

Liang et al. (2008) showed that model consistency holds for Zellner-Siow 

prior, the Hyper-# prior, Hyper-#/n prior and, in general, for any “scale 

mixture of normals” prior, if

poo ^
/  (1 + 9 ) ~ ^  hn(g)dg,

Jo

vanishes as n  grows to infinity.

In Liang et al. (2008) this condition is shown to hold for Zellner-Siow and 
Hyper-#/n prior. For the Conventional Robust prior mixing function we 
get

f  ( l  +  g ) ~ !* h * { g ) d g  =  f  ( l  +  9 T ^ a^ f b? f l l - d g .
Jo J  p i ( b + n )  — b { 9  +  0 ) ^ a + 1 >

Now, making the change of variables: z =  g — {pi(b +  n) — b),

fJo
(1 + #) ^h%(g)dg =

- I .
a(pi(b + n))a

o (z + Pi{b + n))(a+1) (1 + z + pi{b + n) — b)~*
dg.

It is now easy to see that, if pi(b -I- n ) goes to oo with n, this integral 

vanishes as n —> oo as desired. □





A ppendix G

Proofs of results in Chapter 5

G .l Proof of Proposition 5.1

P ro p o s itio n . Let y  be any sample of size n  =  ki +  ko +  1 with Qio > 

(ki +  I ) -1 .

•  For a = 1/2 and 6 = 1 ,  B-q is decreasing with pi, reaching its 

maximum at pi =  l / ( k i  4- ko +  2).

•  The maximum value of B-q in this scenario is always less than 1.

•  B^q is decreasing as a function of ki.

Moreover, for the distribution ofQio under Mo the region Qio > (fcf+1)-1 

accumulates a 30% of probability and contains the mean.

Proof. Suppose tha t a = 1/2, 6 =  1 and Qio > (ki +  I ) -1

163
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1. B \J is decreasing  w ith  pi, w ith  its  m ax im um  a t  pi = 1 /(&* +  

&o +  2).

Next lemma identify the conditions under which the Conventional Robust 

Bayes factor is decreasing with pf.

L em m a G .l .  L et’s A , and C be positive constants; then:

g(x) = x~% J  A V 1 d \, (G .l)

is decreasing with x  if

i A V ( 1 + v) d A < 2 ( 1 + §) ' (G'2)
Proof. First, let us compute the derivative of g:

Integrating by parts, the second term of this expression becomes:

Then we finally have:
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Hence, for g(x) to be decreasing with x,  we need the inequality in (G.2)

□

Note tha t B-q for a = 1/2 and 6 =  1 can be seen to be proportional to 

the expression in Lemma G .l by taking A  = C =  Q ^1 — 1 and

x = pi(n  +  1). Then if we want the Bayes factor to be decreasing with p, 

we need the inequality in (G.2) to hold, which is equivalent to:

r  + 1) +  Qjo1 - 1 \  n- ^ d X < 2 ,
J0 \A (n +  l) +  (QiO — 1 )^ /

When n =  k2 +  ko +  1, the left hand side is:

f 1 (  Pi(kj +  kg +  2) +  Qjp1 - 1  \  2 ^
Jo \ P i { k i  +  &0 +  2) +  (Qio1 — 1 )^ /

_  f 1 ^ - i  ( +  fcp +  2)A +  (Q ^1 -  1)A\  2 ^
«/o V Pi(ki +  ko +  2) +  (Q iJ — 1)A /

■ r  a_i (• - t

Since pi > we have Pi(ki + ko + 2) > 1 thus the expression above is 

bounded by:

/  a - 1 f l  1 x )  2 dA. (G.3)
Jo \  1 +  ( Q ^ - 1 ) X J  K ’

The idea is to find a value Q*0 for which the expression (G.3) is smaller 

than 2. Then, since this expression is decreasing with Q& for all values 

of Qio > Qlq, the inequality is still true. Making the change of variables

1 - A 
‘ “  1 +  (Q -o1 -  1 )A ’
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the expression in (G.3) can be rewritten as:

c t i  l o 1(1" t ) h f l  (1 +  (Q"  "  1)t)_1 dX' (G 4)

We can bound this expression with:

1 f 1 hi-1—  /  ( l - t ) - J3 - r f A  =
W i O  J O (k{ +  l)Qio

Then for (G.3) to  be smaller than 2, we just need to take

Qlo =  (ki + I ) ' 1.

The value of pi maximizing B*q in this scenario is then the minimal value 

for pi in A  (see (3.7)). For 6 =  1 and n =  ki +  ko +  1, this value is 

Pi =  1/ (ki +  ko +  2).

2 . < 1.

We just proved tha t, for a = 1/2, 6 =  1 and n  =  ki +  ko +  1

n — kQ n —kQ

Taking pi = l / (k i  +  &o +  2) this inequality turns out to be

[  (1 +  (Q ’o1 -  1 )A )“ ^  (ZA <  2 (Q i0) ^ .
Jo

fcj+1 p
Multiplying both sides by 0.5 (Qio) 2 , we finally get: B-q < 1.
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3. B -o is decreasing as a function of ki.

The Conventional Robust Bayes factor for n = ki + ko + l, a = 1/2, b = 1, 

and pi = l / (ki  -I- k0 +  2) is:

Bi0 = i(Qio)- ^  j \ ^ ( l  + ( Q ^ - l ) X ) ~ ^ d X

= \ [  V 1 (QjoA"1 + (1 -  Qio))'^ dA

= \  f  X-' iQioiX-' -V + i y ^ d X .

Since [<2io(A-1 -  1) +  1] > 1 VA, this function is clearly a decreasing 

function of ki. □

4. P(Qm > (h  + I ) ” 1 | M0) «  0.3.

As we show in Section 2.3.2, under Mo Qio follows a beta distribution 
Be(n~k£~k° , ^-). In particular, for a sample of size n = ki +  ko +  1

Q ,o |M 0 ~ B e ( i  | ) .

It is easy to proof tha t under this distribution the region Qio > (ki + 1)-1 

represents 30% of the values under the null. This region clearly includes 

the mean E[Qio | Mo] =  (fcj +  l ) -1 , and of course Qio = 1, the usual 
values of Qio indicating “compatibility” with Mq.





Bibliography

Abramowitz, M. and Stegun, I.A. (1964). Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables. New 

York: Dover.

Appell, P. (1925). Sur les Fonctions Hypergeometriques de Plusieurs 

Variables. Paris: Gauthier-Villars.

Barbieri, M.M. and Berger, J.O. (2004). Optimal Predictive Model Se­

lection. The Annals of Statistics, 32(3): pp. 870-897.

Bayarri, M.J. and Berger, J.O. (1998). Quantifying Surprise in the Data 

and Model Verification. In J.M. Bernardo, J.O. Berger, A.P. Dawid, 

and A.F.M. Smith, eds., Bayesian Statistics 6, pp. 53-82. Oxford Uni­

versity Press.

Bayarri, M.J. and Berger, J.O. (2000). P Values for Composite Null 

Models. Journal of the American Statistical Association, 95(452): pp. 

1127-1142.

Bayarri, M.J. and Castellanos, M.E. (2007). Bayesian Checking of the 

Second Levels of Hierarchical Models. Statistical Science, 22(3): pp. 

322-343.

Bayarri, M.J. and Garcia-Donato, G. (2007). Extending Conventional 

Priors for Testing General Hypotheses in Linear Models. Biometrika, 
94(1): pp. 135-152.

169



Bibliography

Bayarri, M.J. and Garci'a-Donato, G. (2008). Generalization of Jeffreys 

Divergence-Based Priors for Bayesian Hypothesis Testing. Journal of 

the Royal Statistical Society: Series B , 70(5): pp. 981-1003.

Bayarri, M.J. and Morales, J. (2003). Bayesian Measures of Surprise 

for Outlier Detection. Journal of Statistical Planning and Inference, 
111(1-2): pp. 3 -  22.

Berger, J.O. (1976). Admissible Minimax Estimation of a Multivariate 

Normal Mean with Arbitrary Quadratic Loss. The Annals of Statistics, 
4(1): pp. 223-226.

Berger, J.O. (1980). A Robust Generalized Bayes Estimator and Confi­

dence Region for a Multivariate Normal Mean. The Annals of Statis­
tics, 8(4): pp. 716-761.

Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. 
Springer, 2nd edition.

Berger, J.O. (2006). The Case for Objective Bayesian Analysis. Bayesian 

Analysis, 1(3): pp. 385-402.

Berger, J.O., Bayarri, M.J., and et al. (2010a). Generalization of BIC. 

Working Document, Statistical and Applied Mathematical Sciences In­

stitute (SAMSI).

Berger, J.O., Bayarri, M.J., and Pericchi, L.R. (2010b). The Effective 

Sample Size. Working Document, Statistical and Applied M athemati­

cal Sciences Institute (SAMSI).

Berger, J.O., Bernardo, J.M., and Sun, D. (2009). The Formal Definition 

of Reference Priors. The Annals of Statistics, 37(2): pp. 905-938.

Berger, J.O., Ghosh, J.K., and Mukhopadhyay, N. (2003). Approxima­

tions and Consistency of Bayes Factors as Model Dimension Grows. 

Journal o f Statistical Planning and Inference, 112(1-2): pp. 241 -  258.

170



Bibliography

Berger, J.O. and Molina, G. (2005). Posterior Model Probabilities Via 

Path-Based Pairwise Priors. Statistica Neerlandica, 59(1): pp. 3-15.

Berger, J.O. and Pericchi, L.R. (1996). The Intrinsic Bayes Factor for 

Model Selection and Prediction. Journal of the American Statistical 

Association, 94: pp. 542-554.

Berger, J.O. and Pericchi, L.R. (2001). Objective Bayesian Methods 

for Model Selection: Introduction and Comparison. Lecture Notes- 

Monograph Series, 38(3): pp. 135-207.

Berger, J.O., Pericchi, L.R., and Varshavsky, J.A. (1998). Bayes Fac­

tors and Marginal Distributions in Invariant Situations. Sankhya: The 

Indian Journal of Statistics, Series A, 60(3): pp. 307-321.

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. John Wiley 

and Sons, ltd.

Breiman, L. and Friedman, J.H. (1985). Estimating Optimal Transforma­

tions for Multiple Regression and Correlation. Journal of the American 

Statistical Association, 80(391): pp. 580-598.

Carlin, B.P. and Chib, S. (1995). Bayesian Model Choice via Markov 

Chain Monte Carlo Methods. Journal of the Royal Statistical Society. 

Series B  (Methodological), 57(3): pp. 473-484.

Casella, G., Giron, F., Martinez, M., and Moreno, E. (2009). Consistency 

of Bayesian Procedures for Variable Selection. The Annals of Statistics, 

37(3): pp. 1207-1228.

Casella, G. and Moreno, E. (2006). Objective Bayesian Variable Selec­

tion. Journal of the American Statistical Association, 101(473).

Chattamvelli, R. (1995). On the Doubly Non-Central F Distribution. 

Computational Statistics and Data Analysis, 20(5): pp. 481 -  489.

171



Bibliography

Dmochowski, J. (1996). Intrinsic Priors Via Kullbakc-Leibler Geometry. 

In J.M. Bernardo, M. DeGroot, D. Lindley, and A.F.M. Smith, eds., 

Bayesian Statistics 5, pp. 543-549. London: Oxford University Press.

Eaton, M. (1989). Group Invariance Applications in Statistics., volume 1 

of Regional Conference Series in Probability and Statistics. Institute 

of Mathematical Statistics, Hayward, Ca.

Ehrlich, I. (1973). Participation in Illegitimate Activities: a Theoretical 

and Empirical Investigation. Journal of Political Economics, 81(3).

Fernandez, C., Ley, E., and Steel, M. (2001). Benchmark Priors for 

Bayesian Model Averaging. Journal of Political Economics, 100: pp.

381-427.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Aiken, P., 

Booth, M., and Rossi, F. (2009). GNU Scientific Library Reference 

Manual, 3rd edition.
URL h ttp ://w w w .g n u .o rg /so ftw are /g s l

Garcfa-Donato, G. (2003). Factores Bayes y Factores Bayes Conven- 
cionales: Algunos Aspectos Relevantes. Ph.D. thesis, Universidad de 

Valencia.

Garcia-Donato, G. and Martmez-Beneyto, M. (2010). Variable Selection 

with Gibbs Samplers and Zellner-Siow Priors. Working Document, 

Centro Superior de Investigaciones en Salud Publica (CSISP).

Garthwaite, P.H., Kadane, J.B., and O’Hagan, A. (2005). Statistical 

Methods for Eliciting Probablity Distributions. Journal o f the Am eri­

can Statistical Association, 100(470): pp. 680-701.

Gelfand, A.E. and Ghosh, S.K. (1998). Model Choice: A Minimum 

Posterior Predictive Loss Approach. Biometrika, 85(1): pp. 1-11.

George, E.I. (2000). The Variable Selection Problem. Journal of the 

American Statistical Association, 95(452): pp. 1304-1308.

172

http://www.gnu.org/software/gsl


Bibliography

George, E.I. and McCulloch, R.E. (1993). Variable Selection Via Gibbs 

Sampling. Journal of the American Statistical Association, 88(423): 

pp. 881-889.

George, E.I. and McCulloch, R.E. (1997). Approaches for Bayesian Vari­

able Selection. Statistica Sinica, 7(2): pp. 339-373.

Ghosh, J.K. and Samanta, T. (2002). Nonsubjective Bayes Testing: An 

Overview. Journal of Statistical Planning and Inference, 103(1-2): pp. 

205-223.

Goldstein, M. (2006). Subjective Bayesian Analysis: Principles and Prac­

tice. Bayesian Analysis, 1(3): pp. 403-420.

Goutis, C. and Robert, C.P. (1998). Model Choice in Generalised Lin­

ear Models: A Bayesian Approach Via Kullback-Leibler Projections. 

Biometrika, 85(1): pp. 29-37.

Guo, R. and Speckman, P.L. (2009). Bayes Factors Consistency in Linear 
Models. Presented in O’Bayes 09 conference.

Guttman, I. (1982). Linear Models. An Introduction. Wiley Series in 

Probability and Mathematical Statistics. Wiley, John and Sons inc.

Hald, A. (1952). Statistical Theory with Engineering Applications. New 

York: Wiley.

Hoeting, J.A., Madigan, D., Raftery, A.E., and Volinsky, C.T. (1999). 

Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4): pp.

382-401.

Hsiao, C.K. (1997). Approximate Bayes Factors When a Mode Occurs 

on the Boundary. Journal of the American Statistical Association, 

92(438): pp. 656-663.

Ibrahim, J.G., Chen, M.H., and Sinha, D. (2001). Criterion-Based Meth­

ods for Bayesian Model Assessment. Statistica Sinica, 11(2): pp. 419- 

443.



Bibliography

Ibrahim, J.G. and Laud, P.W. (1994). A Predictive Approach to  the 

Analysis of Designed Experiments. Journal of the American Statistical 

Association, 89(425): pp. 309-319.

Jeffreys, H. (1961). Theory o f Probability. Oxford University Press, 3rd 

edition.

Kadane, J.B., Dickey, J.M., Winkler, R.L., Smith, W.S., and Peters, S.C. 

(1980). Interactive Elicitation of Opinion for a Normal Linear Model. 

Journal of the American Statistical Association, 75(372): pp. 845-854.

Kass, R.E. (1993). Bayes Factors in Practice. Journal of the Royal 
Statistical Society: Series D , 42: pp. 551-560.

Kass, R.E. and Greenhouse, J. (1989). Comment on Investigating Ther­

apies of Potentially Great Benefit: ECMO by Ware(1989). Statistical 
Science, 4: pp. 310-317.

Kass, R.E. and Raftery, A.E. (1995). Bayes Factors. Journal of the 

American Statistical Association, 90(430): pp. 773-795.

Kass, R.E. and Vaidyanathan, S.K. (1992). Approximate Bayes Factors 

and Orthogonal Parameters, with Application to Testing Equality of 

Two Binomial Proportions. Journal of the Royal Statistical Society. 

Series B  (Methodological), 54(1): pp. 129-144.

Kullback, S. (1999). Information Theory and Statistics. New York: 

Dover.

Kuo, L. and Mallick, B. (1998). Variable Selection for Regression Models. 

Sankhya: The Indian Journal of Statistics, 60(1): pp. 65-81.

Laud, P.W. and Ibrahim, J.G. (1995). Predictive Model Selection. Jour­

nal o f the Royal Statistical Society. Series B  (Methodological), 57(1): 

pp. 247-262.

Learner, E.E. (1978). Specification Searches: ad hoc Inference with Non- 
experimental Data. New York: Wiley.

174



Bibliography

Liang, F., Paulo, R., Molina, G., Clyde, M.A., and Berger, J.O. (2008). 

Mixtures of g Priors for Bayesian Variable Selection. Journal o f the 

American Statistical Association, 103(481): pp. 410-423.

Miller, A. (2001). Subset Selection in Regression. New York: Chapman 

and Hall.

Moreno, E., Giron, F., and Casella, G. (2009). Consistency of Objective 

Bayes Tests as the Model Dimensions Increases. Presented in O ’Bayes 

09 conference.

O ’Hagan, A. (1988). Probability: Methods and Measurements. Chapman 

and Hall.

O ’Hagan, A. (1994). Kendall’s Advanced Theory of Statistics. Volume 

2B: Bayesian Inference. London: Edward Arnold.

O’Hagan, A. (1995). Fractional Bayes Factors for Model Comparison. 

Journal o f the Royal Statistical Society. Series B  (Methodological), 
57(1): pp. 99-138.

O’Hagan, A. (2003). HSSS Model Criticism (with discussion). In 

P.J. Green, N.L. Hjort, and S.T. Richardson, eds., Highly Structured 

Stochastic Systems, pp. 423-453. Oxford University Press, Oxford, UK.

Perez, J.M. (1998). Development o f Expected Posterior Prior Dstribu- 

tions for Model Comparisons. Ph.D. thesis, Purdue University.

Press, S.J. (2003). Subjective and Objective Bayesian Statistics: Princi­

ples, Models and Applications. Wiley, 2nd edition.

Raftery, A.E., Madigan, D., and Hoeting, J.A. (1997). Bayesian Model 

Averaging for Linear Regression Models. Journal of American Statis­

tical Association, 92: pp. 179-191.

Rao, C. (1965). Linear Statistical Inference and its Applications. New 

York: Wiley.

175



Bibliography

Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods. 

New York: Springer-Verlag.

Scott, J.G. and Berger, J.O. (2010). Bayes and Empirical-Bayes Multi­

plicity Adjustment in the Variable-Selection Problem. The Annals of 

Statistics, 38(5): pp. 2587-2619.

Spiegelhalter, D.J. and Smith, A.F.M. (1982). Bayes Factors for Linear 

and Log-Linear Models with Vague Prior Information. Journal of the 

Royal Statistical Society. Series B  (Methodological), 44(3): pp. 377- 

387.

Strawderman, W.E. (1971). Proper Bayes Minimax Estimators of the 

Multivariate Normal Mean. The Annals of Mathematical Statistics, 
42(1): pp. 385-388.

Strawderman, W.E. (1973). Proper Bayes Minimax Estimators of the 
Multivariate Normal Mean Vector for the Case of Common Unknown 

Variances. The Annals of Statistics, 1(6): pp. 1189-1194.

Suzuki, Y. (1983). On Bayesian Approach to Model Selection. In Proceed­
ings of the International Statistical Institute, pp. 288-291. Voorburg, 

ISI Publications.

Tierney, L., Rossini, A.J., and Li, N. (2007). Simple Parallel Statistical 

Computing in R. Journal o f Computational and Graphical Statistics, 

16(2): pp. 399-420.

Vandaele, W. (1978). Participation in Illegitimate Activities: Ehrlich 

Revisited. In Deterrence and Incapacitation, pp. 270-335. US National 

Academy of Sciences.

Wasserman, L. (2000). Bayesian Model Selection and Model Averaging. 

Journal Mathematical Psychology, 44(1): pp. 92-107.

Wolfram (2010a).

URL h t t p : / / f u n c t io n s .w olfram . com /H ypergeom etricFunctions/ 

A p p e llF l/

176

http://functions.wolfram.com/HypergeometricFunctions/


Bibliography

Wolfram (2010b).
URL h t t p : / / f u n c t io n s . wolfram. com /H ypergeom etricFunctions/ 

H ypergeom etric2Fl/

Woods, H., Steinour, H., and Starke, H. (1932). Effect of Composition of 

Porland Cement on Heat Evolved During Hardening. Industrial and 

Engineering Chemistry Research, 24: pp. 1207-1214.

Zellner, A. (1986). On Assessing Prior Distributions and Bayesian Re­

gression Analysis with g-prior Distributions. In A. Zellner, ed., Bayes­
ian Inference and Decision techniques: Essays in Honor of Bruno de 

Finetti, pp. 389-399. Edward Elgar Publishing Limited.

Zellner, A. and Siow, A. (1980). Posterior Odds Ratio for Selected Re­

gression Hypotheses. In J.M. Bernardo, M. DeGroot, D. Lindley, and 

A.F.M. Smith, eds., Bayesian Statistics 1, pp. 585-603. Valencia: Uni- 
veristy Press.

Zellner, A. and Siow, A. (1984). Basic Issues in Econometrics. Chicago: 

University of Chicago Press.

177

http://functions.wolfram.com/HypergeometricFunctions/






UNIVERSITAT P E  VALENCIA 
FACULTAT DE iMATEMATIOUES

reunido el tribunal que suscribe, en el dia de la fecha, 
acordo otorgar a e s ta  Tesis Doctoral de  D ......................
.. a n m  e t .. eqrt£  pcLte ....................
la calificacion d e  .. ex.ce.v? U n* cv n .. .u.fw £ .E

Valencia, a .. .Z .^ .. .de .  |£VX.€<TQ........... 2 .0 .1 k . . .

©  El Presidente/a , El Secretario/a,


