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Abstract. The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS
detector at the LHC in proton-proton collision data at a centre-of-mass energy of

√
s= 7 TeV corresponding to an

integrated luminosity of 38 pb−1. Jets are reconstructed with the anti-kt algorithm with distance parametersR= 0.4 or
R= 0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse
momentapT ≥ 20 GeV and pseudorapidities|η| < 4.5. The JES systematic uncertainty is estimated using the single
isolated hadron response measuredin situ and in test-beams, exploiting the transverse momentum balance between
central and forward jets in events with dijet topologies andstudying systematic variations in Monte Carlo simulations.
The JES uncertainty is less than 2.5% in the central calorimeter region (|η| < 0.8) for jets with 60≤ pT < 800 GeV,
and is maximally 14% forpT < 30 GeV in the most forward region 3.2 ≤ |η| < 4.5. The uncertainty for additional
energy from multiple proton-proton collisions in the same bunch crossing is less than 1.5% per additional collision
for jets with pT > 50 GeV after a dedicated correction for this effect. The JES is validated for jet transverse momenta
up to 1 TeV to the level of a few percent using severalin situ techniques by comparing a well-known reference such
as the recoiling photonpT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT
jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell
energy density weighting or hadronic properties of jets, providing an improved jet energy resolution and a reduced
flavour dependence of the jet response. The JES systematic uncertainty determined from a combination ofin situ
techniques are consistent with the one derived from single hadron response measurements over a wide kinematic range.
The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special
cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating
from light quarks, heavy quarks or gluons are also discussedand the corresponding uncertainties are determined.
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1 Introduction

Collimated sprays of energetic hadrons, called jets, are the dom-
inant feature of high energy proton-proton interactions atthe
Large Hadron Collider (LHC) at CERN. In Quantum Chro-
modynamics (QCD) jets are produced via the fragmentation of
quarks and gluons. They are key ingredients for many physics
measurements and for searches for new phenomena.

During the year 2010 the ATLAS detector collected proton-
proton collision data at a centre-of-mass energy of

√
s= 7 TeV

corresponding to an integrated luminosity of 38 pb−1. The un-
certainty in the jet energy measurement is the dominant exper-
imental uncertainty for numerous physics results, for example
the cross-section measurement of inclusive jets, dijets ormulti-
jets [1–4], as well as of vector bosons accompanied by jets [5],
and new physics searches with jets in the final state [6].

Jets are observed as groups of topologically related energy
deposits in the ATLAS calorimeters. They are reconstructed
with the anti-kt algorithm [7].

Using a Monte Carlo (MC) simulation the observed jets are
calibrated such that, on average, the jet energy corresponds to
that of the associated stable particles in the ATLAS detector.
The calibration of the jet energy scale (JES) should ensure the
correct measurement of the average energy across the whole
detector and needs to be independent of additional events pro-
duced in proton-protoncollisions at high luminosity compound-
ing on the event of interest.

In this document, the jet calibration strategies adopted by
the ATLAS experiment are outlined and studies to evaluate the
uncertainties in the jet energy measurement are presented.A
first estimate of the JES uncertainty, described in Ref. [1], was
based on information available before the first LHC collisions.
It also exploited transverse momentum balance in events with
only two jets at high transverse momenta (pT). A reduced un-
certainty with respect to Ref. [1] is presented that is based on
the increased knowledge of the detector performance obtained
during the analysis of the first year of ATLAS data taking.

ATLAS has developed several jet calibration schemes [8]
with different levels of complexity and different sensitivity to
systematic effects, which are complementary in their contribu-
tion to the jet energy measurement. Each calibration scheme
starts from the measured calorimeter energy at the electromag-
netic (EM) energy scale, which correctly measures the energy
deposited by electromagnetic showers. In the simplest scheme
(EM+JES) the jet calibration is derived as a simple correc-
tion relating the calorimeter’s response to the true jet energy.
More sophisticated schemes exploit the topology of the ca-
lorimeter energy depositions to correct for calorimeter non-
compensation (nuclear energy losses, etc.) and other jet recon-
struction effects.

For the simple EM+JES calibration scheme based only on
the JES correction, the JES uncertainty can be determined from
the single hadron response measurements in small data sets col-
lectedin situ or in test-beams. With a large data set available
the JES uncertainty can also be determined using the ratio of
the jet transverse momentum to the momentum of a reference
object and by a comparison of the data to the Monte Carlo sim-
ulation.

Several techniques have been developed to directly deter-
mine the uncertainty on the jet energy measurementin situ. The

JES uncertainty can be obtained by comparing the jet energy
to a well calibrated reference object. A standard techniqueto
probe the absolute jet energy scale, used also in earlier hadron
collider experiments, is to measure thepT balance between the
jet and a well-measured object: a photon or aZ boson. How-
ever, the currently limited data statistics imposes a limiton the
pT range that can be tested with this technique. The JES un-
certainty on higher jet transverse momenta up to the TeV-scale
can be assessed using the multijet balance technique where a
recoil system of well-calibrated jets at lowerpT is balanced
against a single jet at higherpT. A complementary technique
uses the total momentum of the tracks associated to the jets as
reference objects. While the resolution of the jet energy mea-
surement using tracks in jets is rather poor, the mean jet energy
can be determined to the precision of a few percent.

The standard jet calibration and the corresponding uncer-
tainty on the energy measurement are determined for isolated
jets in an inclusive jet data sample. Additional uncertainties
are evaluated for differences in the response of jets induced by
quarks or gluons and for special topologies with close-by jets.

The outline of the paper is as follows.

First the ATLAS detector (Section2) is described. An over-
view of the jet calibration procedures and the various calibra-
tion schemes is given in Section3. The Monte Carlo simulation
framework is introduced in Section4. The data samples, data
quality assessment and event selection are described in Sec-
tion 5. Then, the reconstruction (Section6), and the selection
(Section7) of jets are discussed. The jet calibration method is
outlined in Section8 which includes a prescription to correct
for the extra energy due to multiple proton-proton interactions
(pile-up).

Section9 describes the sources of systematic uncertain-
ties for the jet energy measurement and their estimation us-
ing Monte Carlo simulations and collision data. Section10de-
scribes severalin situ techniques used to validate these sys-
tematic uncertainties. Section11 presents a technique to im-
prove the resolution of the energy measurements and to re-
duce the flavour response differences by exploiting the topol-
ogy of the jets. The systematic uncertainties associated with
this technique are described in Section12. The jet calibration
schemes based on calorimeter cell energy weighting in jets are
introduced in Section13, and the associated JES uncertainties
are estimated from thein situ techniques as described in Sec-
tion 14. Section15summarises the systematic uncertainties for
all studied jet calibration schemes.

The jet reconstruction efficiency and its uncertainty is dis-
cussed in Section16. The response uncertainty of non-isolated
jets is investigated in Section17, while Section18 and Sec-
tion 19 discuss response difference for jets originating from
light quarks or gluons and presents a method to determine, on
average, the jet flavour content in a given data sample. In Sec-
tion 20JES uncertainties for jets where a heavy quark is identi-
fied are investigated. Finally, possible effects from lack of full
calorimeter containment of jets with high transverse momen-
tum are studied in Section21. The overall conclusion is given
in Section22.
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Fig. 1: Display of the central part of the ATLAS detector in the x-z view showing the highest mass central dijet event collected
during the 2010 data taking period. The two leading jets havepjet

T = 1.3 TeV with y= −0.68 andpjet
T = 1.2 TeV with y= 0.64,

respectively. The two leading jets have an invariant mass ofapproximately 3.1 TeV. The missing transverse energy in the event is
46 GeV. The lines in the inner detector indicate the reconstructed particle trajectories. The energy deposition in the calorimeter
cells are displayed as light rectangles. The size of the rectangles is proportional to the energy deposits. The histograms attached
to theLAr and theTile calorimeter illustrate the amount of deposited energy.

2 The ATLAS detector

The ATLAS detector is a multi-purpose detector designed to
observe particles produced in proton-proton and heavy ion col-
lisions. A detailed description can be found in Ref. [9]. The de-
tector consists of an inner detector, sampling electromagnetic
and hadronic calorimeters and muon chambers. Figure1 shows
a sketch of the detector outline together with an event with two
jets at high transverse momenta.

The inner detector (ID) is a tracking system immersed in a
magnetic field of 2 T provided by a solenoid and covers a pseu-
dorapidity1 |η |. 2.5. TheID barrel region|η |. 2 consists of
three layers of pixel detectors (Pixel) close to the beam-pipe,
four layers of double-sided silicon micro-strip detectors(SCT)

1 The ATLAS coordinate system is a right-handed system with the
x-axis pointing to the centre of the LHC ring and they-axis point-
ing upwards. The polar angleθ is measured with respect to the LHC
beam-line. The azimuthal angleφ is measured with respect to the
x-axis. The pseudorapidityη is an approximation for rapidityy in
the high energy limit, and it is related to the polar angleθ as η =
− ln tanθ

2 . The rapidity is defined asy= 0.5× ln[(E+ pz)/(E− pz)],
whereE denotes the energy andpz is the component of the momen-
tum along the beam direction. Transverse momentum and energy are
defined aspT = p×sinθ andET = E×sinθ , respectively.

providing eight hits per track at intermediate radii, and a tran-
sition radiation tracker (TRT) composed of straw tubes in the
outer part providing 35 hits per track. At|η | > 1 theID end-
cap regions each provide threePixel discs and nineSCT discs
perpendicular to the beam direction.

The liquid argon (LAr) calorimeter is composed of sam-
pling detectors with full azimuthal symmetry, housed in one
barrel and two endcap cryostats. A highly granular electromag-
netic (EM) calorimeter with accordion-shaped electrodes and
lead absorbers in liquid argon covers the pseudorapidity range
|η | < 3.2. It contains a barrel part (EMB, |η | < 1.475) and an
endcap part (EMEC, 1.375≤ |η | < 3.2) each with three layers
in depth (from innermost to outermostEMB1, EMB2, EMB3 and
EMEC1, EMEC2, EMEC3). The middle layer has a 0.025×0.025
granularity inη×φ space. The innermost layer (strips) consists
of cells with eight times finer granularity in theη-direction and
with 3-times coarser granularity in theφ direction.

For |η | < 1.8, a presampler (Presampler), consisting of
an activeLAr layer is installed directly in front of the EM
calorimeters, and provides a measurement of the energy lost
before the calorimeter.

A copper-liquid argon hadronic endcap calorimeter (HEC,
1.5≤ |η |< 3.2) is located behind theEMEC. A copper/tungsten-
liquid argon forward calorimeter (FCal) covers the region clos-
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Fig. 2: Zoom of thex-y view of the ATLAS detector show-
ing one of the high-pT jets of the event shown in Figure1.
The energy depositions in the calorimeter cells are displayed
as light rectangles. The size of the rectangles is proportional to
the energy deposits. The dark histograms attached to theLAr

(Tile) calorimeter illustrates the amount of deposited energy.
The lines in theID display the reconstructed tracks originating
from the interaction vertex.

est to the beam at 3.1≤ |η |< 4.9. TheHEC has four layers and
theFCAL has three layers. From innermost to outermost these
are:HEC0, HEC1, HEC2, HEC3 andFCal0, FCal1,FCal2. Alto-
gether, theLAr calorimeters correspond to a total of 182,468
readout cells, i.e. 97.2% of the full ATLAS calorimeter readout.

The hadronicTile calorimeter (|η |< 1.7) surrounding the
LAr cryostats completes the ATLAS calorimetry. It consists of
plastic scintillator tiles and steel absorbers covering|η | < 0.8
for the barrel and 0.8≤ |η | < 1.7 for the extended barrel. Ra-
dially, the hadronicTile calorimeter is segmented into three
layers, approximately 1.4, 3.9 and 1.8 interaction lengths thick
at η = 0; the∆η ×∆φ segmentation is 0.1×0.1 (0.2×0.1 in
the last radial layer). The last layer is used to catch the tails of
the longitudinal shower development. The three radial layers
of theTile calorimeter will be referred to (from innermost to
outermost) asTile0,Tile1,Tile2 2.

Between the barrel and the extended barrels there is a gap of
about 60 cm, which is needed for theID and theLAr services.
Gap scintillators (Gap) covering the region 1.0≤ |η |< 1.2 are
installed on the inner radial surface of the extended barrelmod-
ules in the region between theTile barrel and the extended
barrel. Crack scintillators (Scint) are located on the front of
theLAr endcap and cover the region 1.2≤ |η |< 1.6.

The muon spectrometer surrounds the ATLAS calorimeter.
A system of three large air-core toroids, a barrel and two end-
caps, generates a magnetic field in the pseudorapidity rangeof

2 In the barrel, theTile layers will be calledTileBar0,TileBar1,
TileBar2 and in the extended barrelTileExt0, TileExt1 and
TileExt2.

|η |< 2.7. The muon spectrometer measures muon tracks with
three layers of precision tracking chambers and is instrumented
with separate trigger chambers.

The trigger system for the ATLAS detector consists of a
hardware-based Level 1 (L1) and a software-based higher level
trigger (HLT) [10]. Jets are first identified at L1 using a sliding
window algorithm from coarse granularity calorimeter towers.
This is refined using jets reconstructed from calorimeter cells
in the HLT. The lowest threshold inclusive jet trigger is fully
efficient for jets withpT & 60 GeV. Events with lowerpT jets
are triggered by the minimum bias trigger scintillators (MBTS)
mounted at each end of the detector in front of theLAr endcap
calorimeter cryostats at|z|=±3.56 m.

3 Introduction to jet energy calibration
methods

Hadronic jets used for ATLAS physics analyses are reconstruct-
ed by a jet algorithm starting from the energy depositions of
electromagnetic and hadronic showers in the calorimeters.An
example of a jet recorded by the ATLAS detector and displayed
in the plane transverse to the beam line is shown in Figure2.

The jet Lorentz four-momentum is reconstructed from the
corrected energy and angles with respect to the primary event
vertex. For systematic studies and calibration purposestrack
jetsare built from charged particles using their momenta mea-
sured in the inner detector. Reference jets in Monte Carlo sim-
ulations (truth jets) are formed from simulated stable particles
using the same jet algorithm.

The jet energy calibration relates the jet energy measured
with the ATLAS calorimeter to the true energy of the corre-
sponding jet of stable particles entering the ATLAS detector.

The jet calibration corrects for the following detector ef-
fects that affect the jet energy measurement:

1. Calorimeter non-compensation: partial measurement of
the energy deposited by hadrons.

2. Dead material: energy losses in inactive regions of the de-
tector.

3. Leakage: energy of particles reaching outside the calorime-
ters.

4. Out of calorimeter jet cone: energy deposits of particles
inside the truth jet entering the detector that are not in-
cluded in the reconstructed jet.

5. Noise thresholds and particle reconstruction efficiency:
signal losses in the calorimeter clustering and jet recon-
struction.

Jets reconstructed in the calorimeter system are formed from
calorimeter energy depositions reconstructed at theelectromag-
netic energy scale(EM) or from energy depositions that are
corrected for the lower detector response to hadrons. The EM
scale correctly reconstructs the energy deposited by particles
in an electromagnetic shower in the calorimeter. This energy
scale is established using test-beam measurements for elec-
trons in the barrel [11–14] and the endcap calorimeters [15,
16]. The absolute calorimeter response to energy deposited via
electromagnetic processes was validated in the hadronic calori-
meters using muons, both from test-beams [14, 17] and pro-
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ducedin situby cosmic rays [18]. The energy scale of the elec-
tromagnetic calorimeters is corrected using the invariantmass
of Z bosons produced in proton-proton collisions (Z → e+e−

events) [19]. The correction for the lower response to hadrons
is solely based on the topology of the energy depositions ob-
served in the calorimeter.

In the simplest case the measured jet energy is corrected,
on average, using Monte Carlo simulations, as follows:

Ejet
calib = Ejet

meas/Fcalib(E
jet
meas), with Ejet

meas= Ejet
EM −O(NPV).

(1)
The variableEjet

EM is the calorimeter energy measured at the

electromagnetic scale,Ejet
calib is the calibrated jet energy and

Fcalib is the calibration function that depends on the measured
jet energy and is evaluated in small jet pseudorapidity regions.
The variableO(NPV) denotes the correction for additional en-
ergy from multiple proton-proton interactions depending on the
number of primary vertices (NPV).

The simplest calibration scheme (called EM+JES) applies
the JES corrections to jets reconstructed at the electromagnetic
scale. This calibration scheme allows a simple evaluation of
the systematic uncertainty from single hadron response mea-
surements and systematic Monte Carlo variations. This can be
achieved with small data sets and is therefore suitable for early
physics analyses.

Other calibration schemes use additional cluster-by-cluster
and/or jet-by-jet information to reduce some of the sourcesof
fluctuations in the jet energy response, thereby improving the
jet energy resolution. For these calibration schemes the same
jet calibration procedure is applied as for the EM+JES cal-
ibration scheme, but the energy corrections are numerically
smaller.

The global calorimeter cell weighting (GCW) calibration
exploits the observation that electromagnetic showers in the
calorimeter leave more compact energy depositions than hadr-
onic showers with the same energy. Energy corrections are de-
rived for each calorimeter cell within a jet, with the constraint
that the jet energy resolution is minimised. The cell corrections
account for all energy losses of a jet in the ATLAS detector.
Since these corrections are only applicable to jets and not to
energy depositions in general, they are called “global” correc-
tions.

The local cluster weighting (LCW) calibration method first
clusters together topologically connected calorimeter cells and
classifies these clusters as either electromagnetic or hadronic.
Based on this classification energy corrections are derivedfrom
single pion Monte Carlo simulations. Dedicated corrections are
derived for the effects of non-compensation, signal lossesdue
to noise threshold effects, and energy lost in non-instrumented
regions. They are applied to calorimeter clusters and are de-
fined without reference to a jet definition. They are therefore
called “local” corrections. Jets are then built from these cali-
brated clusters using a jet algorithm.

The final jet energy calibration (see Equation1) can be ap-
plied to EM scale jets, with the resulting calibrated jets referred
to as EM+JES, or to GCW and LCW calibrated jets, with the
resulting jets referred to as GCW+JES and LCW+JES jets.

A further jet calibration scheme, called global sequential
(GS) calibration, starts from jets calibrated with the EM+JES

calibration and exploits the topology of the energy deposits in
the calorimeter to characterise fluctuations in the jet particle
content of the hadronic shower development. Correcting for
such fluctuations can improve the jet energy resolution. The
corrections are applied such that the mean jet energy is left
unchanged. The correction uses several jet properties and each
correction is applied sequentially. In particular, the longitudinal
and transverse structure of the hadronic shower in the calorime-
ter is exploited.

The simple EM+JES jet calibration scheme does not pro-
vide the best performance, but allows in the central detector re-
gion the most direct evaluation of the systematic uncertainties
from the calorimeter response to single isolated hadron mea-
suredin situ and in test-beams and from systematic variations
of the Monte Carlo simulation. For the GS the systematic un-
certainty is obtained by studying the response after applying
the GS calibration with respect to the EM+JES calibration. For
the GCW+JES and LCW+JES calibration schemes the JES un-
certainty is determined fromin situ techniques.

For all calibration schemes the JES uncertainty in the for-
ward detector regions is derived from the uncertainty in the
central region using the transverse momentum balance in events
where only two jets are produced.

In the following, the calibrated calorimeter jet transverse
momentum will be denoted aspjet

T , and the jet pseudorapidity
asη .

4 Monte Carlo simulation

4.1 Event generators

The energy and direction of particles produced in proton-proton
collisions are simulated using various event generators. An over-
view of Monte Carlo event generators for LHC physics can be
found in Ref. [20]. The samples using different event genera-
tors and theoretical models used are described below:

1. PYTHIA with the MC10 or AMBT1 tune: The event gener-
ator PYTHIA [21] simulates non-diffractive proton-proton
collisions using a 2→ 2 matrix element at leading order
in the strong coupling to model the hard subprocess, and
usespT-ordered parton showers to model additional radia-
tion in the leading-logarithmic approximation [22]. Multi-
ple parton interactions [23], as well as fragmentation and
hadronisation based on the Lund string model [24] are also
simulated. The proton parton distribution function (PDF)
set used is the modified leading-order PDF set MRST LO*
[25]. The parameters used for tuning multiple parton inter-
actions include charged particle spectra measured by AT-
LAS in minimum bias collisions [26], and are denoted as
the ATLAS MC10 tune [27].

2. The PERUGIA2010 tune is an independent tune of PYTH-
IA with increased final state radiation to better reproduce
the jet shapes and hadronic event shapes using LEP and
TEVATRON data [28]. In addition, parameters sensitive to
the production of particles with strangeness and related to
jet fragmentation have been adjusted.

3. HERWIG+JIMMY uses a leading order 2→ 2 matrix ele-
ment supplemented with angular-ordered parton showers
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in the leading-logarithm approximation [29]. The cluster
model is used for the hadronisation [30]. Multiple parton
interactions are modelled using JIMMY [31]. The model
parameters of HERWIG/JIMMY have been tuned to ATLAS
data (AUET1 tune) [32]. The MRST LO* PDF set [25] is
used.

4. HERWIG++ [33] is based on the event generator HERWIG,
but redesigned in theC++ programming language. The gen-
erator contains a few modelling improvements. It also uses
angular-ordered parton showers, but with an updated evolu-
tion variable and a better phase space treatment. Hadronisa-
tion is performed using the cluster model. The underlying
event and soft inclusive interactions are described using a
hard and soft multiple partonic interactions model [34]. The
MRST LO* PDF set [25] is used.

5. ALPGEN is a tree level matrix-element generator for hard
multi-parton processes (2→ n) in hadronic collisions [35].
It is interfaced to HERWIG to produce parton showers in
the leading-logarithmic approximation. Parton showers are
matched to the matrix element with the MLM matching
scheme [36]. For the hadronisation, HERWIG is used and
soft multiple parton interactions are modelled using JIMMY

[31] (with the ATLAS MC09 tune [37]). The PDF set used
is CTEQ6L1 [38].

4.2 Simulation of the ATLAS detector

The GEANT4 software toolkit [39] within the ATLAS simula-
tion framework [40] propagates the generated particles through
the ATLAS detector and simulates their interactions with the
detector material. The energy deposited by particles in theac-
tive detector material is converted into detector signals with
the same format as the ATLAS detector read-out. The simu-
lated detector signals are in turn reconstructed with the same
reconstruction software as used for the data.

In GEANT4 the model for the interaction of hadrons with
the detector material can be specified for various particle types
and for various energy ranges. For the simulation of hadronic
interactions in the detector, the GEANT4 set of processes called
QGSP BERT is chosen [41]. In this set of processes, the Quark
Gluon String model [42] is used for the fragmentation of the
nucleus, and the Bertini cascade model [43] for the description
of the interactions of hadrons in the nuclear medium.

The GEANT4 simulation and in particular the hadronic in-
teraction model for pions and protons, has been validated with
test-beam measurements for the barrel [14, 44–46] and end-
cap [15,16,47] calorimeters. Agreement within a few percent is
found between simulation and data for pion momenta between
2 GeV and 350 GeV.

Further tests have been carried outin situ comparing the
single hadron response, measured using isolated tracks andiden-
tified single particles. Agreement within a few percent is found
for the inclusive measurement [48,49] and for identified pions
and protons from the decay products of kaon and lambda par-
ticles produced in proton-proton collisions at 7 TeV [50]. With
this method particle momenta of pions and protons in the range
from a few hundred MeV to 6 GeV can be reached. Good agree-
ment between Monte Carlo simulation and data is found.

4.3 Nominal Monte Carlo simulation samples

The baseline (nominal) Monte Carlo sample used to derive the
jet energy scale and to estimate the sources of its systematic
uncertainty is a sample containing high-pT jets produced via
strong interactions. It is generated with the PYTHIA event gen-
erator with the MC10 tune (see Section4.1), passed through
the full ATLAS detector simulation and is reconstructed as the
data.

The ATLAS detector geometry used in the simulation of the
nominal sample reflects the geometry of the detector as best
known at the time of these studies. Studies of the material of
the inner detector in front of the calorimeters have been per-
formed using secondary hadronic interactions [51]. Additional
information is obtained from studying photon conversions [52]
and the energy flow in minimum bias events [53].

4.4 Simulated pile-up samples

For the study of multiple proton-proton interactions, two sam-
ples have been used, one for in-time and one for out-of-time
pile-up. The first simulates additional proton-proton interac-
tions per bunch crossing, while the second one also contains
pile-up arising from bunches before or after the bunch where
the event of interest was triggered (for more details see Sec-
tion 5 and Section8.1). The bunch configuration of LHC (or-
ganised in bunch trains) is also simulated. The additional num-
ber of primary vertices in the in-time (bunch-train) pile-up sam-
ple is 1.7 (1.9) on average.

5 Data sample and event selection

5.1 Data taking period and LHC conditions

Proton-proton collisions at a centre-of-mass energy of
√

s=
7 TeV, recorded from March to October 2010 are analysed.
Only data with a fully functioning calorimeter and inner de-
tector are used. The data set corresponds to an integrated lumi-
nosity of 38 pb−1. Due to different data quality requirements
the integrated luminosity can differ for the various selections
used in thein situ technique analyses.

Several distinct periods of machine configuration and de-
tector operation were present during the 2010 data taking. As
the LHC commissioning progressed, changes in the beam op-
tics and proton bunch parameters resulted in changes in the
number of pile-up interactions per bunch crossing. The spac-
ing between the bunches was no less than 150 ns.

Figure3 shows the evolution of the maximum of the dis-
tribution of the number of interactions (peak) derived fromthe
online luminosity measurement and assuming an inelastic proton-
proton scattering cross section of 71.5 mb [54].

The very first data were essentially devoid of multiple proton-
proton interactions until the optics of the accelerator beam (specif-
ically β ∗) were changed in order to decrease the transverse size
of the beam and increase the luminosity3. This change alone

3 The parameterβ ∗ is the value of theβ -function (the envelope of
all trajectories of the beam particles) at the collision point and smaller
values ofβ ∗ imply a smaller physical size of the beams and thus a
higher instantaneous luminosity.
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Fig. 3: The peak number of interactions per bunch crossing
(“BX”) as measured online by the ATLAS luminosity detec-
tors [54].

raised the fraction of events with at least two observed inter-
actions from less than 2% to between 8% and 10% (May-June
2010).

A further increase in the number of interactions occurred
when the number of protons per bunch (ppb) was increased
from approximately 5− 9 · 1010 to 1.15· 1011 ppb. Since the
number of proton-proton collisions per bunch crossing is pro-
portional to the square of the bunch intensity, the fractionof
events with pile-up increased to more than 50% for runs be-
tween June and September 2010.

Finally, further increasing the beam intensity slowly raised
the average number of interactions per bunch crossing to more
than three by the end of the proton-proton run in November
2010.

5.2 Event selection

Different triggers are used to select the data samples, in order
to be maximally efficient over the entire jetpT-range of in-
terest. The dijet sample is selected using the hardware-based
calorimeter jet triggers [10, 55], which are fully efficient for
jets with pjet

T > 60 GeV. For lowerpjet
T a trigger based on the

minimum bias trigger scintillators is used.
The multijet sample uses either the inclusive jet trigger ora

trigger that requires at least two, three or more jets withpT >
10 GeV at the EM scale. These triggers are fully efficient for
jets with pjet

T > 80 GeV.
Each event is required to have a primary hard scattering

vertex. A primary vertex is required to have at least five tracks
(Ntracks

pp ) with a transverse momentum ofptrack
T > 150 MeV.

The primary vertex associated to the event of interest (hard
scattering vertex) is the one with the highest associated trans-
verse track momentum squared used in the vertex fitΣ(ptrack

T )2,
where the sum runs over all tracks used in the vertex fit. This
renders the contribution from fake vertices due to beam back-
grounds to be negligible.

The γ-jet sample is selected using a photon trigger [10]
that is fully efficient for photons passing offline selections. The
higher threshold for the photonpT is 40 GeV and this trigger
was not pre-scaled; the lower threshold is 20 GeV and this trig-
ger was pre-scaled at high luminosity.

5.3 Data quality assessment

The ATLAS data quality (DQ) selection is based upon inspec-
tion of a standard set of distributions that leads to a data quality
assessment for each subdetector, usually segmented into bar-
rel, forward and endcap regions, as well as for the trigger and
for each type of reconstructed physics object (jets, electrons,
muons, etc.). Each subsystem sets its own DQ flags, which are
recorded in a conditions database. Each analysis applies DQ
selection criteria, and defines a set of luminosity blocks (each
corresponds to approximately two minutes of data taking). The
good luminosity blocks used are those not flagged for having
issues affecting a relevant subdetector.

Events with minimum bias and calorimeter triggers were
required to belong to specific runs and run periods in which the
detector, trigger and reconstructed physics objects have passed
a data quality assessment and are deemed suitable for physics
analysis.

The primary systems of interest for this study are the elec-
tromagnetic and hadronic calorimeters, and the inner tracking
detector for studies of the properties of tracks associatedwith
jets.

6 Jet reconstruction

In data and Monte Carlo simulation jets are reconstructed using
the anti-kt algorithm [7] with distance parametersR= 0.4 or
R= 0.6 using the FASTJET software [56]. The four-momentum
recombination scheme is used. Jet finding is done iny-φ coor-
dinates, while jet corrections and performance studies areoften
done inη-φ coordinates. The jetpT reconstruction threshold is
pjet

T > 7 GeV.
In the following, only anti-kt jets with distance parameter

R= 0.6 are discussed in detail. The results for jets withR= 0.4
are similar, if not stated otherwise.

6.1 Reconstructed calorimeter jets

The input tocalorimeter jetscan be topological calorimeter
clusters (topo-clusters) [16,57] or calorimeter towers. Only topo-
clusters or towers with a positive energy are considered as input
to jet finding.

6.1.1 Topological calorimeter clusters

Topological clusters are groups of calorimeter cells that are de-
signed to follow the shower development taking advantage of
the fine segmentation of the ATLAS calorimeters. The topo-
cluster formation algorithm starts from aseedcell, whose signal-
to-noise (S/N) ratio is above a threshold ofS/N= 4. The noise
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Loose Medium
HEC spikes ( fHEC > 0.5 and| fHECquality |> 0.5) Loose or

or | Eneg |> 60 GeV fHEC > 1− | fHECquality |
Coherent fEM > 0.95 andfquality > 0.8 Loose or
EM noise and| η |< 2.8 fEM > 0.9 and fquality > 0.8 and| η |< 2.8

Non-collision | tjet |> 25 ns or Loose or
background ( fEM < 0.05 andfch < 0.05 and| η |< 2) | tjet |> 10 ns

or ( fEM < 0.05 and| η |≥ 2) or ( fEM < 0.05 andfch < 0.1 and| η |< 2)
or ( fmax> 0.99 and| η |< 2) or ( fEM > 0.95 andfch < 0.05 and| η |< 2)

Table 1: Selection criteria used to reject fake jets and non-collision background.

is estimated as the absolute value of the energy deposited inthe
calorimeter cell divided by the RMS of the energy distribution
measured in events triggered at random bunch crossings. Cells
neighbouring the seed (or the cluster being formed) that have
a signal-to-noise ratio of at leastS/N = 2 are included iter-
atively. Finally, all calorimeter cells neighbouring the formed
topo-cluster are added. The topo-cluster algorithm efficiently
suppresses the calorimeter noise.

The topo-cluster algorithm also includes a splitting step
in order to optimise the separation of showers from different
close-by particles: All cells in a topo-cluster are searched for
local maxima in terms of energy content with a threshold of
500 MeV. This means that the selected calorimeter cell has to
be more energetic than any of its neighbours. The local maxima
are then used as seeds for a new iteration of topological clus-
tering, which splits the original cluster into more topo-clusters.

A topo-cluster is defined to have an energy equal to the en-
ergy sum of all the included calorimeter cells, zero mass anda
reconstructed direction calculated from the weighted averages
of the pseudorapidities and azimuthal angles of the constituent
cells. The weight used is the absolute cell energy and the posi-
tions of the cells are relative to the nominal ATLAS coordinate
system.

6.1.2 Calorimeter towers

Calorimeter towersare static,∆η ×∆φ = 0.1×0.1, grid ele-
ments built directly from calorimeter cells4.

ATLAS uses two types of calorimeter towers: with and with-
out noise suppression. Calorimeter towers based on all calorime-
ter cells are callednon-noise-suppressed calorimeter towersin
the following. Noise-suppressed towers make use of the topo-
clusters algorithm, i.e. only calorimeter cells that are included
in topo-clusters are used. Therefore, for a fixed geometrical
area, noise-suppressed towers have the same energy contentas
the topo-clusters.

Both types of calorimeter towers have an energy equal to
the energy sum of all included calorimeter cells. The formed
Lorentz four-momentum has zero mass.

4 For the few calorimeter cells that are larger than the∆η ×∆φ =
0.1× 0.1 (like in the lastTile calorimeter layer and theHEC in-
ner wheel) or have a special geometry (like in theFCAL), projective
tower grid geometrical weights are defined that specify the fraction
of calorimeter cell energy to be attributed to a particular calorimeter
tower.

6.2 Reconstructed track jets

Jets built from charged particle tracks originating from the pri-
mary hard scattering vertex (track jets) are used to define jets
that are insensitive to the effects of pile-up and provide a stable
reference to study close-by jet effects.

Tracks with ptrack
T > 0.5 GeV and|η | < 2.5 are selected.

They are required to have at least one (six) hit(s) in thePixel

(SCT) detector. The transverse (d0) and longitudinal (z0) impact
parameters of the tracks measured with respect to the primary
vertex are also required to be|d0| < 1.5 mm and|z0sinθ | <
1.5 mm, respectively.

The track jets must have at least two constituent tracks and
a total transverse momentum ofptrack jet

T > 3 GeV. Since the
tracking system has a coverage up to|η | = 2.5, the perfor-
mance studies of calorimeter jets is carried out in the range
|η |< 1.9 for R= 0.6 and|η |< 2.1 for R= 0.4.

6.3 Monte Carlo truth jets and flavour association

Monte Carlo simulationtruth jetsare built from stable particles
defined to have proper lifetimes longer than 10 ps excluding
muons and neutrinos.

For certain studies, jets in the Monte Carlo simulation are
additionally identified as jets initiated by light or heavy quarks
or by gluons based on the generator event record. The highest
energy parton that points to the truth jet5 determines the flavour
of the jet. Using this method, only a small fraction of the jets
(< 1% at lowpT and less at highpT) could not be assigned a
partonic flavour. This definition is sufficient to study the flavour
dependence of the jet response. Any theoretical ambiguities of
jet flavour assignment do not need to be addressed in the con-
text of a performance study.

5 With ∆R< 0.6 for jets withR= 0.6 and∆R< 0.4 for jets with
R= 0.4, where∆R=

√

(∆η)2+(∆φ)2.
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7 Jet quality selection

Jets at high transverse momenta produced in proton-proton col-
lisions must be distinguished from background jets not origi-
nating from hard scattering events. The main backgrounds are
the following:

1. Beam-gas events, where one proton of the beam collided
with the residual gas within the beam pipe.

2. Beam-halo events, for example caused by interactions in
the tertiary collimators in the beam-line far away from the
ATLAS detector.

3. Cosmic ray muons overlapping in-time with collision events.
4. Large calorimeter noise.

The criteria to efficiently reject jets arising from background
are only applied to data. They are discussed in the following
sections.

7.1 Criteria to remove non-collision background

7.1.1 Noise in the calorimeters

Two types of calorimeter noise are addressed:

1. Sporadic noise burstsin the hadronic endcap calorime-
ter (HEC), where a single noisy calorimeter cell contributes
almost all of the jet energy. Jets reconstructed from these
problematic cells are characterised by a large energy frac-
tion in theHEC calorimeter (fHEC) as well as a large fraction
of the energy in calorimeter cells with poor signal shape
quality6 ( fHECquality). Due to the capacitive coupling be-
tween channels, the neighbouringcalorimeter cells will have
an apparent negative energy (Eneg).

2. Rare coherent noisein the electromagnetic calorimeter.
Similarly, fake jets arising from this source are characterised
by a large electromagnetic energy fraction (fEM)7, and a
large fraction of calorimeter cells with poor signal shape
quality (fquality).

7.1.2 Cosmic rays or non-collision background

Cosmic rays or non-collision backgrounds can induce events
where the jet candidates are not in-time with the beam colli-
sion. A cut on the jet time (tjet) is applied to reject these back-
grounds. The jet time is reconstructed from the energy deposi-
tion in the calorimeter by weighting the reconstructed timeof
calorimeter cells forming the jet with the square of the cellen-
ergy. The calorimeter time is defined with respect to the event
time recorded by the trigger.

A cut on the fEM is applied to make sure that the jet has
some energy deposited in the calorimeter layer closest to the
interaction region as expected for a jet originating from the
nominal interaction point.

6 The signal shape quality is obtained by comparing the measured
pulse from the calorimeter cell to the expected pulse shape.

7 The EM fraction is defined as the ratio of the energy depositedin
the EM calorimeter to the total energy.

Since a real jet is expected to have tracks, thefEM cut is
applied together with a cut on the minimal jet charged fraction
( fch), defined as the ratio of the scalar sum of thepT of the
tracks associated to the jet divided by the jetpT, for jets within
the tracking acceptance.

A cut on the maximum energy fraction in any single calorime-
ter layer (fmax) is applied to further reject non-collision back-
ground.

7.1.3 Jet quality selections

Two quality selections are provided:

1. A loose selectionis designed with an efficiency above 99%,
that can be used in most of the ATLAS physics analyses.

2. A medium selectionis designed for analyses that select
jets at high transverse momentum, such as for jet cross-
section measurements [1].

A tight quality selection has been developed for the measure-
ment of the jet quality selection efficiency described in Sec-
tion 7.2, but is not used in physics analyses, since the medium
jet quality selection is sufficient for removing fake jets. The
quality selection criteria used to identify and reject fakejets
are listed in Table1.

7.2 Evaluation of the jet quality selection efficiency

The criteria for the jet quality selection are optimised by study-
ing samples with good and fake jets classified by their amount
of missing transverse momentum significance8:

1. Good jets belong to events where the two leading jets have
pjet

T > 20 GeV, and are back-to-back (∆φj−j > 2.6 radian) in
the plane transverse to the beam, and with a small missing
transverse momentum significanceEmiss

T /
√

ΣET < 1.
2. Fake jets belong to events with a high transverse momen-

tum significanceEmiss
T /

√
ΣET > 3 and with a reconstructed

jet back-to-back to the missing transverse momentum di-
rection (∆φEmiss

T −j > 2.6 radian).

As the jet quality selection criteria are only applied to data
an efficiency correction for data is determined. This efficiency
is measured using a tag-and-probe method in events with two
jets at high transverse momentum. The reference jet (pref

T ) is
required to pass the tightened version of the jet quality selec-
tions, and to be back-to-back and well-balanced with the probe
jet (pprobe

T ):

(|pprobe
T − pref

T |/pavg
T < 0.4),with pavg

T = (pprobe
T + pref

T )/2. (2)

The jet quality selection criteria were then applied to the probe
jets, measuring the fraction of jets passing as a function ofη
andpjet

T .
The resulting efficiencies for jets withR= 0.6 for loose

and medium selections applied to the probe jets are shown in

8 The missing transverse momentum (Emiss
T ) significance is defined

asEmiss
T /

√
ΣET, whereΣET is the scalar sum of the transverse ener-

gies of all energy deposits in the calorimeter.
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Fig. 4: Jet quality selection efficiency for anti-kt jets withR= 0.6 measured with a tag-and-probe technique as a function ofpjet
T

in bins of η , for loose and medium selection criteria (see Table1). Only statistical uncertainties are shown. In (e), (f), (g) the
loose and medium results overlap.
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Figure4. The tight selection of the reference jet was varied to
study the systematic uncertainty. The loose selection criteria
are close to 100% efficient. In the forward region the medium
selection criteria are also close to fully efficient. In the central
region they have an efficiency of 99% forpjet

T > 50 GeV. For
lower pT jets of about 25 GeV an inefficiency of up to 3−4%
is observed.

7.3 Summary of the jet quality selection

Quality selections used to reject fake jets with the ATLAS de-
tector have been developed. Simple variables allow the removal
of fake jets due to sporadic noise in the calorimeter or non-
collision background at the analysis level, with an efficiency
greater than 99% over a wide kinematic range.

8 Jet energy calibration in the EM+JES
scheme

The simple EM+JES calibration scheme applies corrections as
a function of the jet energy and pseudorapidity to jets recon-
structed at the electromagnetic scale.

The additional energy due to multiple proton-proton colli-
sions within the same bunch crossing (pile-up) is correctedbe-
fore the hadronic energy scale is restored, such that the deriva-
tion of the jet energy scale calibration is factorised and does not
depend on the number of additional interactions measured.

The EM+JES calibration scheme consists of three subse-
quent steps as outlined below and detailed in the following sub-
sections:

1. Pile-up correction: The average additional energy due to
additional proton-proton interactions is subtracted fromthe
energy measured in the calorimeters using correction con-
stants obtained fromin situmeasurements.

2. Vertex correction: The direction of the jet is corrected such
that the jet originates from the primary vertex of the inter-
action instead of the geometrical centre of the detector.

3. Jet energy and direction correction: The jet energy and
direction as reconstructed in the calorimeters are corrected
using constants derived from the comparison of the kine-
matic observables of reconstructed jets and those from truth
jets in Monte Carlo simulation.

8.1 Pile-up correction

8.1.1 Correction strategy

The measured energy of reconstructed jets can be affected by
contributions that do not originate from the hard scattering event
of interest, but are instead produced by additional proton-proton
collisions within the same bunch crossing. An offset correction
for pile-up is derived from minimum bias data as a function
of the number of reconstructed primary vertices,NPV, the jet
pseudorapidity,η , and the bunch spacing.
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Fig. 5: Distribution of the number constituent calorimetertow-
ers as a function of the jet pseudorapidity for anti-kt jets with
R= 0.6 andpjet

T > 7 GeV. The black dots indicate the average
number of tower constituents.

This offset correction applied to the jet transverse energy
(ET) at the EM scale as the first step of jet calibration can be
written generically as:

Ecorrected
T = Euncorrected

T −O(η ,NPV,τbunch), (3)

whereO(η ,NPV,τbunch) corrects for the jet offset due to pile-
up.

Due to the varying underlying particle spectrum and the
variation in the calorimeter geometry the jet offset is derived
as a function of the jet pseudorapidity. The amount of in-time
pile-up is parameterised byNPV. The spacing between consec-
utive bunches,τbunch, is considered, because it can impact the
amount by which collisions in previous bunch crossings affect
the jet energy measurement9.

The jet offset correction is proportional to the number of
constituent towers in a jet as a measure of the jet area. For
jets built directly from dynamically-sized topological clusters,
for which no clear geometric definition is available, a model
is used that describes the average area of a jet in terms of the
equivalent number of constituent towers.

8.1.2 Constituent tower multiplicity of jets

The multiplicity of calorimeter towers in jets depends on the
internal jet composition and on the presence of pile-up. The
average tower multiplicity can be measuredin situ.

9 The dependence onτbunch is explicitly allowed for due to the pos-
sibility of pile-up contributions from previous proton-proton bunch
crossings for closely spaced bunches. This will be an important con-
sideration for the 2011-2012 LHC run as the number of bunchesis
increased and the spacing between consecutive bunches is reduced.
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Fig. 6: Tower offset (a) and jet offset (b) at the EM scale as a function of the tower or jet pseudorapidity in bins of the number
of reconstructed primary vertices. The jet offset is shown for anti-kt jets withR= 0.6. Only statistical uncertainties are shown.
They are typically smaller than the marker size.

Figure 5 depicts the distribution of the constituent tower
multiplicity for jets based on towers withpjet

T > 7 GeV as a
function of the jet pseudorapidity. The average number of con-
stituent towers is also indicated. This distribution is governed
by the change in physical size of calorimeter towers for a con-
stant interval in pseudorapidity, as well as by differencesin the
noise spectrum for the various calorimeters and sampling re-
gions.

8.1.3 Pile-up offset for towers and jets

The calorimeter tower offset at the EM scale is derived by mea-
suring the average tower transverse energy for all towers in
events withNPV = 1,2, ...N and comparing directly to events
with NPV = Nref

PV = 1:

Otower(η ,NPV) = 〈Etower
T (η ,NPV)〉− 〈Etower

T (η ,Nref
PV)〉, (4)

where the angled brackets denote a statistical average overall
events. The average is computed for events at each primary ver-
tex multiplicity. For this measurement non-noise-suppressed
calorimeter towers are used (see Section6.1.2) in order to re-
main sensitive to low energy depositions that may not rise above
noise threshold except inside of a jet. The calorimeter tower
offset is shown in Figure6afor 1≤ NPV ≤ 5.

The tower offset can be extrapolated to an EM scale jet
offset using:

Ojet|tower(η ,NPV) = Otower(η ,NPV) · Ajet, (5)

whereAjet is the jet area that, for jets built from calorimeter
towers, can be estimated from the constituent tower multiplic-
ity, Ajet = Njet

towers. For jets built from topo-clusters, the mean
equivalent constituent tower multiplicity (Ajet = 〈Njet

towers〉) is
used10. The small dependencies of the constituent multiplicity
on pjet

T andNPV are neglected in the correction, but incorporated
as systematic uncertainties (see Section9.7).

The jet offset for jets withR= 0.6 is shown in Figure6b.

8.1.4 Track jet based validation and offset correction

Track jets constructed from charged particles originatingfrom
the primary hard-scattering vertex matched to the calorimeter
jets provide a stable reference that can be used to measure the
variation of the calorimeterEjet

T as a function ofNPV. It is there-
fore possible to validate the tower-based offset correction and
also to directly estimate the pile-up energy contribution to jets.

As this method is only applicable to jets within the inner
detector acceptance, it serves primarily as a cross-check for the
tower-based method discussed above. It can also be used, how-
ever, to derive a dedicated offset correction that can be applied
to jets at energy scales other than the electromagnetic energy

10 The equivalent constituent tower multiplicity for jets based on
topo-clusters is calculated from the location of the calorimeter cells of
the constituent topo-clusters in the jet.
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Fig. 7: Transverse jet energyEjet
T for calorimeter jets associated to track jets measured at the EM scale using a Landau-Gauss fit

as a function of the reconstructed vertex multiplicity,NPV, in bins ofptrack jet
T . Calorimeter jets are reconstructed at the EM scale

with calorimeter towers (a) and topo-clusters (b) as inputs. Systematic uncertainties are not shown. The statistical uncertainties
from the fit results are smaller than the marker size.

scale. Studying the variation of the offset correction as a func-
tion of ptrack jet

T can establish the systematic uncertainty of the
pile-up correction.

The criterion to match a track jet to a calorimeter jet with
R= 0.6 is

∆R(jet, trackjet)< 0.4, (6)

where∆R=
√

(∆η)2+(∆φ)2. The offset is calculated by mea-

suring the average calorimeter jetEjet
T as a function ofNPV and

the transverse momentum of the matched track jet,ptrack jet
T :

Otrack jet= 〈Ejet
T (NPV|ptrack jet

T )〉− 〈Ejet
T (Nref

PV|ptrack jet
T )〉. (7)

The referenceNref
PV = 1 is used.

Figure7 shows the jetET as a function ofNPV for several
bins in ptrack jet

T . Both tower and topo-cluster jets at the electro-
magnetic scale are used. The most probable value (MPV) of the
calorimeter jetET is determined from a fit using a Landau dis-
tribution convolved with a Gaussian for each range ofptrack jet

T .
A consistent offset of nearlyO = 0.5 GeV per vertex is found
for |η |< 1.9. No systematic trend of the offset as a function of
ptrack jet

T is observed.
Figure8 presents the jet-based offset correction as a func-

tion of NPV derived with respect toNref
PV = 1 for tower and

topo-cluster based jet using the EM and the EM+JES scale. As
expected, the magnitude of the offset is higher after EM+JES

calibration (see Figure8cand Figure8d), and the increase cor-
responds to the average jet energy correction (see Section8.3).

8.2 Jet origin correction

Calorimeter jets are reconstructed using the geometrical cen-
tre of the ATLAS detector as reference to calculate the direc-
tion of jets and their constituents (see Section6). The jet four-
momentum is corrected for each event such that the direction
of each topo-cluster points back to the primary hard-scattering
vertex. The kinematic observables of each topo-cluster arere-
calculated using the vector from the primary hard-scattering
vertex to the topo-cluster centroid as its direction. The raw jet
four-momentum is thereafter redefined as the vector sum of the
topo-cluster four-momenta. The origin-corrected pseudorapid-
ity is calledηorigin. This correction improves the angular reso-
lution and results in a small improvement (< 1%) in the jetpT
response. The jet energy is unaffected.

8.3 Jet energy correction

The final step of the EM+JES jet calibration restores the re-
constructed jet energy to the energy of the Monte Carlo truth
jet. Since pile-up effects have already been corrected for,the
Monte Carlo samples used to derive the calibration do not in-
clude multiple proton-proton interactions.
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Fig. 8: Jet offset as a function of the number of primary vertices for several ranges ofptrack jet
T values. The track jet offset is

derived for calorimeter tower jets at the EM scale (a), topo-cluster jets at the EM scale (b), calorimeter tower jets at the EM+JES
scale (c), and topo-cluster jets at the EM+JES scale (d). Only statistical uncertainties from the fit results are shown.
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The calibration is derived using all isolated calorimeter jets
that have a matching isolated truth jet within∆R= 0.3. Here,
an isolated jet is defined as a jet having no other jet withpjet

T >
7 GeV within∆R= 2.5R, whereR is the distance parameter of
the jet algorithm. A jet is defined to be isolated, if it is isolated
with respect to the same jet type, i.e. either a calorimeter or a
truth jet.

The final jet energy scale calibration is first parametrised as
a function of uncalibrated jet energy andη . Here the detector
pseudorapidity is used rather than the origin-correctedη (used
by default in physics analyses), since it more directly corre-
spond to a region of the calorimeter. Energy is used rather than
pT, since the calorimeter responds to energy, and the response
curves can be directly compared to expectation and betweenη
bins. The method to derive this calibration is detailed below.

The EM-scale jet energy response

R
jet
EM = Ejet

EM/Ejet
truth (8)

for each pair of calorimeter and truth jets is measured in bins of
the truth jet energyEjet

truth and the calorimeter jet detector pseu-

dorapidityηdet
11. For each(Ejet

truth,ηdet)-bin, the averaged jet

response
〈

R
jet
EM

〉

is defined as the peak position of a Gaussian

fit to theEjet
EM/Ejet

truth distribution. In the same(Ejet
truth,ηdet)-bin,

in addition, the average jet energy response (
〈

Ejet
EM

〉

) is derived

from the mean of theEjet
EM distribution. For a givenηdet-bin k,

the jet response calibration functionFcalib,k(E
jet
EM) is obtained

using a fit of the(
〈

Ejet
EM

〉

j
,
〈

R
jet
EM

〉

j
) values for eachEjet

truth-bin

j.

11 Here, pseudorapidity refers to the original reconstructedjet before
the origin correction.
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bins of the calorimeter jet energy calibrated with the EM+JES
scheme as a function of the detector pseudorapidity|ηdet|.

The fitting function is parameterised as:

Fcalib,k(E
jet
EM) =

Nmax

∑
i=0

ai

(

lnEjet
EM

)i
, (9)

whereai are free parameters, andNmax is chosen between 1 and
6 depending on the goodness of the fit.

The final jet energy scale correction that relates the mea-
sured calorimeter jet energy to the true energy is then defined
as 1/Fcalib(Ecalo

EM ) in the following:

Ejet
EM+JES=

Ejet
EM

Fcalib(E
jet
EM)|ηdet

, (10)
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whereFcalib(E
jet
EM)|ηdet is the jet response calibration function

for the relevantηdet-bin k.
The average jet energy scale correction

〈

1/Fcalib,k(EEM
calo)

〉

is shown as a function of calibrated jet transverse momentum
for three jetη-intervals in Figure9. In this and the following
figures the correction is only shown over the accessible kine-
matic range, i.e. values for jets above the kinematic limit are
not shown.

The calorimeter jet responseRjet
EM is shown for various en-

ergy- andηdet-bins in Figure10. The values of the jet energy
correction factors range from about 2.1 at low jet energies in
the central region to less than 1.2 for high energy jets in the
most forward region.

8.4 Jet pseudorapdity correction

After the jet origin and energy corrections the origin-corrected
jet η is further corrected for a bias due to poorly instrumented
regions of the calorimeter. In these regions topo-clustersare
reconstructed with a lower energy with respect to better instru-
mented regions (see Figure10). This causes the jet direction to
be biased towards the better instrumented calorimeter regions.

Theη-correction is derived as the average difference∆η =
ηtruth− ηorigin in (Etruth,ηdet)-bins, and is parameterised as a
function of the calibrated jet energyEcalo

EM+JES and the uncor-
rectedηdet. The correction is very small (∆η < 0.01) for most
regions of the calorimeter but larger in the transition regions.
The size of the bias is illustrated as a function of the detec-
tor pseudorapidity|ηdet| and EM+JES calibrated jet energy in
Figure11.

9 Jet energy scale uncertainties for the
EM+JES scheme

The JES systematic uncertainty is derived combining informa-
tion from the single hadron response measuredin situ and sin-
gle pion test-beam measurements, uncertainties on the amount
of material of the ATLAS detector, the description of the elec-
tronic noise, and the Monte Carlo modelling used in the event
generation. Dedicated Monte Carlo simulation test samplesare
generated with different conditions with respect to the nominal
Monte Carlo sample described in Section4.3. These variations
are expected to provide an estimate of the systematic effects
contributing to the JES uncertainty.

The pseudorapidity bins used for the estimate of the JES
uncertainty divide the ATLAS detector in the eightη-regions
specified in Table2 and Figure10.

The JES systematic uncertainty for all jets with pseudora-
pidity |η |> 0.8 is determined using the JES uncertainty for the
central barrel region (0.3≤ |η |< 0.8) as a baseline, with a con-
tribution from the relative calibration of the jets with respect to
the central barrel region. This choice is motivated by the good
knowledge of the detector geometry in the central region, and
by the use of pion response measurements in the ATLAS com-
bined test-beam, which used a full slice of the ATLAS barrel
detector, for the estimate of the calorimeter response uncertain-
ties. The region 0.3≤ |η |< 0.8 is the largest fully instrumented

η region ATLAS detector regions
|η|< 0.3 Central Barrel

0.3≤ |η|< 0.8
0.8≤ |η|< 1.2 Barrel-Endcap Transition
1.2≤ |η|< 2.1
2.1≤ |η|< 2.8 Endcap
2.8≤ |η|< 3.2 Endcap-Forward Transition
3.2≤ |η|< 3.6
3.6≤ |η|< 4.5 Forward

Table 2: Detector regions used for the JES uncertainty estimate.

|η | region considered where combined test-beam results, used
to estimate the calorimeter uncertainty, are available forthe en-
tire pseudorapidity range.

This section describes the sources of systematic uncertain-
ties and their effect on the response of EM+JES calibrated jets.
In Section9.1, the selection of jets used to derive Monte Carlo
based components of the JES systematic uncertainty is dis-
cussed. The contributions to the JES systematics due to the
following effects are then described:

1. JES calibration method (Section9.2).
2. Calorimeter response (Section9.3).
3. Detector simulation (Section9.4).
4. Physics model and parameters employed in the Monte Carlo

event generator (Section9.5).
5. Relative calibration for jets with|η |> 0.8 (Section9.6).
6. Additional proton-proton collisions (pile-up) (Section 9.7).

Section9.8discusses how the final uncertainties are calcu-
lated. Additional uncertainties such as those for close-byjets
are mentioned in Section9.9 and discussed in more detail in
Section17.

9.1 Jet response definition for the JES uncertainty
evaluation

The components of the JES uncertainty derived from Monte
Carlo samples are obtained by studying the average calorimeter
energy response of calibrated jets. The average energy orpT
response, defined as
〈

R
jet
〉

=
〈

Ejet/Etruth
〉

or
〈

R(pjet
T )
〉

=
〈

pjet
T /ptruth

T

〉

, (11)

is obtained as the peak position from a Gaussian fit to the distri-
bution of the ratio of the kinematic quantities for reconstructed
and truth jets by matching isolated calorimeter jets to Monte
Carlo truth jets as described in Section8.3, but without the
isolation cut for truth jets12. This is done separately for the
nominal and each of the alternative Monte Carlo samples. Only
MC truth jets withptruth

T > 15 GeV, and calorimeter jets with

pjet
T > 7 GeV after calibration, are considered. The calibrated

12 The isolation cut for truth jets on the average jet response has a
negligible impact on the average jet response given that truth jets are
matched to isolated reconstructed jets.
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response
〈

Rjet
〉

is studied in bins of the truth jet transverse mo-
mentumptruth

T . For eachptruth
T -bin, an associated calibratedpT

value is calculated by multiplying the bin centre with the aver-
age response.

The shifts between the Monte Carlo truth levelptruth
T bin

centres and the reconstructedpjet
T bin centres are negligible

with respect to the chosenpT bin widths. Hence the average jet
response can be obtained to a good approximation as a function
of pjet

T .

9.2 Uncertainty in the JES calibration

After the jets in the nominal jet Monte Carlo simulation sample
are calibrated (see Section8), the jet energy andpT response
still show slight deviations from unity at lowpT (non-closure).
This can be seen in Figure12, showing the jet response forpT

and energy as a function ofpjet
T for the nominal Monte Carlo

sample in the barrel (a) and endcap (b) and the most forward
(c) regions for anti-kt jets withR= 0.6.

Any deviation from unity in the jet energy orpT response
after the application of the JES to the nominal Monte Carlo
sample implies that the kinematic observables of the calibrated
calorimeter jet are not restored to that of the corresponding
truth jet (non-closure). Besides approximations made whende-
riving the calibration (fit quality, parametrisation of calibration
curve), the non-closure is due to the application of the same
correction factor for energy and transverse momentum. Closure
can therefore only be achieved if the reconstructed jet massis
close to the true jet mass. If this is not the case, such as for
low pT jets, restoring only the jet energy and pseudorapidity
will lead to a bias in thepT calibration. The non-closure is
also affected by jet resolution and by details how the Monte
Carlo samples are produced in order to cover the large kine-
matic range in jet transverse momentum.

The systematic uncertainty due to the non-closure of the
nominal JES calibration is taken as the larger deviation of the
response in either energy orpT from unity. In the barrel region
(0.3≤ |η |< 0.8) this contribution amounts to about 2% at low
pjet

T and less than 1% forpjet
T > 30 GeV. In the endcap and

forward regions, the closure is less than 1% forpjet
T > 20 GeV,

and the energy response is within 1% for jets with transverse
momentum above 30 GeV. The deviation of the jet response
from unity after calibration is taken as a source of systematic
uncertainty.

For physics analysis the non-closure uncertainty only needs
to be considered when an absolute jet energy or transverse mo-
mentum is needed. For analyses where only the description of
the data by the Monte Carlo simulation is important, this un-
certainty does not need to be considered.

9.3 Uncertainty on the calorimeter response

The response and corresponding uncertainties for single parti-
cles interacting in the ATLAS calorimeters can be used to de-
rive the jet energy scale uncertainty in the central calorimeter
region as detailed in Ref. [49,58].
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Fig. 12: Average simulated jetpT response (open squares) after
the EM+JES calibration and jet energy response (full circles) as
a function ofpjet

T for the nominal Monte Carlo sample for jets
in the central (a), endcap (b) and most forward (c) calorime-
ter regions. Systematic uncertainties are not shown. Statistical
uncertainties are smaller than the marker size.
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(a) Energy response
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(b) Transverse momentum response

Fig. 13: Average simulated jet response in energy (a) and inpT

(b) as a function ofpjet
T in the central region (0.3≤ |η |< 0.8) in

the case of additional dead material in the inner detector (full
triangles) and in both the inner detector and the calorimeters
(open squares). The response within the nominal Monte Carlo
sample is shown for comparison (full circles). Only statistical
uncertainties are shown.

In the ATLAS simulation infrastructure the true calorime-
ter energy deposits in each calorimeter cell can be traced to
the particles generated in the collision. The uncertainty in the
calorimeter response to jets can then be obtained from the re-
sponse uncertainty in the individual particles constituting the
jet. Thein situ measurement of the single particle response de-
tailed in Ref. [49] significantly reduces the uncertainty due to
the limited knowledge of the exact detector geometry, in par-
ticular that due to the presence of additional dead material, and
the modelling of the exact way particles interact in the detector.

The following single particle response measurements are
used:

1. The single hadron energy measured in a cone around an
isolated track with respect to the track momentum (E/p) in
the momentum range from 0.5≤ ptrack< 20 GeV.

2. The pion response measurements performed in the 2004
combined test-beam, where a full slice of the ATLAS de-
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Fig. 14: Average simulated response in energy (a) and inpT (b)
as a function ofpjet

T in the central region (0.3 ≤ |η | < 0.8) for
ALPGEN+HERWIG+JIMMY (open squares) and PYTHIA with
the PERUGIA2010 tune (full triangles). The response of the
nominal Monte Carlo simulation sample is shown for compar-
ison (full circles). Only statistical uncertainties are shown.

tector was exposed to pion beams with momenta between
20 GeV and 350 GeV [45].

Uncertainties for charged hadrons are estimated from thesemea-
surements as detailed in Ref. [49]. Additional uncertainties are
related to:

1. The calorimeter acceptance for lowpT particles that do not
reach the calorimeter or are not reconstructed in a topo-
cluster due to the noise thresholds.

2. Calorimeter response to particles withp > 400 GeV for
which the uncertainty is conservatively estimated as 10%,
to account for possible calorimeter non-linearities and lon-
gitudinal leakage.

3. The baseline absolute electromagnetic scale for the hadronic
and electromagnetic calorimeters for particles in the kine-
matic range not measuredin situ.

4. The calorimeter response to neutral hadrons is estimated
by comparing various models in GEANT4. An uncertainty
of 10% for particles with an energyE < 3 GeV and 5% for
higher energies is obtained.
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At high transverse momentum, the dominant contribution
to the calorimeter response uncertainties is due to particles with
momenta covered by the test-beam. In the pseudorapidity range
0≤ |η |< 0.8 the shift of the relative jet energy scale expected
from the single hadron response measurements in the test-beam
is up to≈ 1%, and the uncertainty on the shift is from 1% to
3%. The total envelope (the shift added linearly to the uncer-
tainty) of about 1.5−4%, depending on the jet transverse mo-
mentum, is taken as the relative JES calorimeter uncertainty.
The calorimeter uncertainty is shown in Figure23.

9.4 Uncertainties due to the detector simulation

9.4.1 Calorimeter cell noise thresholds

As described in Section6.1.1, topo-clusters are constructed
based on the signal-to-noise ratio of calorimeter cells, where
the noiseis defined as the RMS of the measured cell energy
distribution in events with no energy depositions from collision
events. Discrepancies between the simulated noise and the real
noise in data can lead to differences in the cluster shapes and
to the presence of fake topo-clusters. For data, the noise can
change over time13, while the noise RMS used in the simula-
tion is fixed at the time of the production of the simulated data
sets. These effects can lead to biases in the jet reconstruction
and calibration, if the electronic noise injected in the Monte
Carlo simulation does not reflect that data.

The effect of the calorimeter cell noise mis-modelling on
the jet response is estimated by reconstructing topo-clusters,
and thereafter jets, in Monte Carlo using the noise RMS mea-
sured from data. The actual energy and noise simulated in the
Monte Carlo are left unchanged, but the values of the thresh-
olds used to include a given calorimeter cell in a topo-cluster
are shifted according to the cell noise RMS measured in data.
The response for jets reconstructed with the modified noise
thresholds are compared with the response for jets reconstructed
in exactly the same sample using the default Monte Carlo noise
thresholds.

To further understand the effect of the noise thresholds on
the jet response, the noise thresholds were shifted. An increase
of each calorimeter cell threshold by 7% in the Monte Carlo
simulation is found to give a similar shift in the jet response as
using the noise RMS from data. Raising and lowering the cell
thresholds by 7% shows that the effect on the jet response from
varying the cell noise thresholds is symmetric. This allowsthe
use of the calorimeter cell noise thresholds derived from data
as a representative sample to determine the jet energy scaleun-
certainty and covers the cases when the data have either more
or less noise than the simulation.

The maximal observed change in jet response is used to
estimate the uncertainty on the jet energy measurement due to
the calorimeter cell noise modelling. It is found to be below3%
for the whole pseudorapidity range, and negligible for jetswith
transverse momenta above 45 GeV. The uncertainties assigned
to jets with transverse momenta below 45 GeV are:

13 Time-dependent noise changes for single cells in data are ac-
counted for using regular measurements.

– 1% and 2% for 20≤ pjet
T < 30 GeV for anti-kt jets with

R= 0.4 andR= 0.6 jets, respectively,
– 1% for 30≤ pjet

T < 45 GeV for bothR values.

9.4.2 Additional detector material

The jet energy scale is affected by possible deviations in the
material description as the jet energy scale calibration has been
derived to restore the energy lost assuming a geometry as sim-
ulated in the nominal Monte Carlo sample. Simulated detector
geometries that include systematic variations of the amount of
material have been designed using test-beam measurements [12],
in addition to 900 GeV and 7 TeV data [52,53,59]. The possi-
ble additional material amount is estimated from thesein situ
measurements and thea priori knowledge of the detector con-
struction. Specific Monte Carlo simulation samples have been
produced using these distorted geometries.

In the case of uncertainties derived within situ techniques,
such as those coming from the single hadron response mea-
surements detailed in Section9.3, most of the effects on the jet
response due to additional dead material do not apply, because
in situ measurements do not rely on any simulation where the
material could be misrepresented. However, the quality criteria
of the track selection for the single hadron response measure-
ment effectively only allow particles that have not interacted in
thePixel andSCT layers of the inner detector to be included
in the measurement.

Therefore the effect of dead material in these inner detector
layers on the jet response needs to be taken into account for
particles in the momentum range of the single hadron response
measurement. This is achieved using a specific Monte Carlo
sample where the amount of material is systematically varied
by adding 5% of material to the existing inner detector services
[19]. The jet response in the two cases is shown in Figure13.

Electrons, photons, and hadrons with momentap> 20 GeV
are not included in the single hadron response measurements
and therefore there is no estimate based onin situ techniques
for the effect of any additional material in front of the calorime-
ters. This uncertainty is estimated using a dedicated Monte
Carlo simulation sample where the overall detector material is
systematically varied within the current uncertainties [19] on
the detector geometry. The overall changes in the detector ge-
ometry include:
1. The increase in the inner detector material mentioned above.
2. An extra 0.1 radiation length (X0) in the cryostat in front of

the barrel of the electromagnetic calorimeter (|η |< 1.5).
3. An extra 0.05X0 between the presampler and the first layer

of the electromagnetic calorimeter.
4. An extra 0.1 X0 in the cryostat after the barrel of the elec-

tromagnetic calorimeter.
5. Extra material in the barrel-endcap transition region inthe

electromagnetic calorimeter (1.37< |η |< 1.52).
The uncertainty contribution due to the overall additional

detector material is estimated by comparing the EM+JES jet
response in the nominal Monte Carlo simulation sample with
the jet response in a Monte Carlo simulation sample with a
distorted geometry (see Figure13), and scaled by the average
energy fraction of electrons, photons and high transverse mo-
mentum hadrons within a jet as a function ofpT.
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9.5 Uncertainties due to the event modelling in
Monte Carlo generators

The contributions to the JES uncertainty from the modelling
of the fragmentation, the underlying event and other choices
in the event modelling of the Monte Carlo event generator are
obtained from samples based on ALPGEN+HERWIG+JIMMY

and the PYTHIA PERUGIA2010 tune discussed in Section4.
By comparing the baseline PYTHIA Monte Carlo sample

to the PYTHIA PERUGIA2010 tune, the effects of soft physics
modelling are tested. The PERUGIA2010 tune provides, in par-
ticular, a better description of the internal jet structurerecently
measured with ATLAS [3]. The ALPGEN Monte Carlo uses
different theoretical models for all steps of the event genera-
tion and therefore gives a reasonable estimate of the systematic
variations. However, the possible compensation of modelling
effects that shift the jet response in opposite directions cannot
be excluded.

Figure14 shows the calibrated jet kinematic response for
the two Monte Carlo generators and tunes used to estimate the
effect of the Monte Carlo theoretical model on the jet energy
scale uncertainty. The kinematic response for the nominal sam-
ple is shown for comparison. The ratio of the nominal response
to that for each of the two samples is used to estimate the sys-
tematic uncertainty to the jet energy scale, and the procedure is
further detailed in Section9.8.

9.6 In situ intercalibration using events with dijet
topologies

The response of the ATLAS calorimeters to jets depends on
the jet direction, due to the different calorimeter technology
and to the varying amounts of dead material in front of the
calorimeters. A calibration is therefore needed to ensure auni-
form calorimeter response to jets. This can be achieved by ap-
plying correction factors derived from Monte Carlo simula-
tions. Such corrections need to be validatedin situ given the
non-compensatingnature of the calorimeters in conjunction with
the complex calorimeter geometry and material distribution.

The relative jet calorimeter response and its uncertainty is
studied by comparing the transverse momenta of a well-calib-
rated central jet and a jet in the forward region in events with
only two jets at high transverse momenta (dijets). Such tech-
niques have been applied in previous hadron collider experi-
ments [60,61].

9.6.1 Intercalibration method using a fixed central
reference region

The traditional approach forη-intercalibration with dijet events
is to use a fixed central region of the calorimeters as the refer-
ence region. The relative calorimeter response to jets in other
calorimeter regions is then quantified by thepT balance be-
tween the reference jet and the probe jet, exploiting the fact
that these jets are expected to have equalpT due to transverse
momentum conservation. ThepT balance can be characterised

by the asymmetryA, defined as

A=
pprobe

T − pref
T

pavg
T

, (12)

with pavg
T = (pprobe

T + pref
T )/2. The reference region is chosen as

the central region of the barrel:|η | < 0.8. If both jets fall into
the reference region, each jet is used, in turn, as the reference
jet. As a consequence, the average asymmetry in the reference
region will be zero by construction.

The asymmetry is then used to measure anη-intercalibration
factorc for the probe jet, or its response relative to the reference
jet 1/c, using the relation

pprobe
T

pref
T

=
2+A

2−A
= 1/c. (13)

The asymmetry distribution is calculated in bins of jetηdet and
pavg

T : The bins are labeledi for each probe jetηdet andk for
eachpavg

T -bin. Intercalibration factors are calculated for each
bin according to Equation (13):

cik =
2−〈Aik〉
2+ 〈Aik〉

, (14)

where the〈Aik〉 is the mean value of the asymmetry distribu-
tion in each bin. The uncertainty on〈Aik〉 is taken to be the
RMS/

√
N of each distribution, whereN is the number of events

per bin.

9.6.2 Intercalibration using the matrix method

A disadvantage with the method outlined above is that all events
are required to have a jet in the central reference region. This
results in a significant loss of event statistics, especially in the
forward region, where the dijet cross section drops steeplyas
the rapidity interval between the jets increases. In order to use
the full event statistics, the default method can be extended by
replacing the “probe” and “reference” jets by “left” and “right”
jets defined asη left < η right. Equations (12) and (13) then be-
come:

A=
pleft

T − pright
T

pavg
T

andRlr =
pleft

T

pright
T

=
cright

cleft =
2+A

2−A
, (15)

where the termR denotes the ratio of the responses, andcleft

andcright are theη-intercalibration factors for the left and right
jets, respectively.

In this approach there is a response ratio distribution,Ri jk ,
whose average value

〈

Ri jk
〉

is evaluated for eachη left-bin i,
η right-bin j andpavg

T -bin k. The relative correction factorcik for
a given jetη-bin i and for a fixedpavg

T -bin k, is obtained by
minimising a matrix of linear equations:

S(c1k, ...,cNk) =

N

∑
j=1

j−1

∑
i=1

(

1

∆
〈

Ri jk
〉

(

cik
〈

Ri jk
〉

− c jk
)

)2

+X(cik), (16)
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whereN denotes the number ofη-bins, ∆
〈

Ri jk
〉

is the sta-
tistical uncertainty of

〈

Ri jk
〉

and the functionX(cik) is used to
quadratically suppress deviations from unity of the average cor-
rections14. Note that if the jet response does not vary withη ,
then the relative response will be unity for each(ηleft,ηright)-
bin combination (see Equation15). A perfect minimizationS=
0 is achieved when all correction factors equal unity.

The minimisation of Equation16 is done separately for
eachpavg

T -bin k, and the resulting calibration factorscik (for
each jetη-bin i) are scaled such that the average calibration
factor in the reference region|η |< 0.8 equals unity.

9.6.3 Selection of dijet events

Events are retained if there were at least two jets above the jet
reconstruction threshold ofpjet

T > 7 GeV. The event is rejected
if either of the two leading jets did not satisfy the standardjet
selection criteria (see Section7).

Events are required to satisfy a specific logic using one cen-
tral and one forward jet trigger, which select events based on
jet activity in the central (|η | < 3.2) and forward (|η | > 3.2)
trigger regions, respectively [10]. The requirements are chosen
such that the trigger efficiency, for a specific region ofpavg

T ,
was greater than 99% and approximately flat as a function of
the pseudorapidity of the probe jet.

To cover the regionpavg
T < 45 GeV, events triggered by

the minimum bias trigger scintillators were used. To enhance
events which have only two jets at highpT, the following se-
lection criteria are applied;

pavg
T > 20 GeV, ∆φ(j1, j2)> 2.6 rad, (17)

pT(j3)< max(0.15pavg
T ,7 GeV), (18)

where ji denotes theith highestpT jet in the event and∆φ(j1, j2)
is the azimuthal angle between the two leading jets.

The lowestpavg
T -bins are likely to suffer from biases. At

very low pavg
T , it is expected that this technique may not mea-

sure accurately the relative response to jets, because the as-
sumption of dijet balance at hadron level may start to fail. First,
there are residual low-pT jet effects since the selection criterion
on the third jet, which is used to suppress the unbalancing ef-
fects of soft QCD radiation, is not as efficient due to the jet
reconstruction threshold of 7 GeV. Second, the jet reconstruc-
tion efficiency is worse for low-pT jets.

9.6.4 Comparison of intercalibration methods

The relative jet response obtained with the matrix method is
compared to the relative jet response obtained using the method
with a fixed reference region. Figure15shows the jet response
relative to central jets (1/c) for two pavg

T -bins, 30≤ pavg
T <

14 X(cik) = K
(

N−1
bins∑Nbins

i=1 cik −1
)2

is defined withK being a con-

stant andNbins being the number ofη-bins (number of indicesi). This
term prevents the minimisation from choosing the trivial solution: all
cik equal to zero. The value of the constantK does not impact the
solution as long as it is sufficiently large (K ≈ 106).
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Fig. 15: Relative response of anti-kt jets withR= 0.6 calibrated
with the EM+JES scheme, 1/c, as a function of the pseudora-
pidity measured using the matrix and fixed central reference
region η-intercalibration methods. Results are presented for
two bins of pavg

T : 30≤ pavg
T < 40 GeV measured in minimum

bias data (a), and 60≤ pavg
T < 80 GeV measured in data col-

lected using jet triggers (b). The lower part of the figures shows
the ratio of the two methods. The central reference region is
0.1≤ |η |< 0.6. Only statistical uncertainties are shown.

40 GeV and 60≤ pavg
T < 80 GeV. These results are obtained

for a reference region 0.1≤ |η |< 0.6 and therefore not directly
comparable to the results discussed below where 0.1 ≤ |η | <
0.8 is used.

The response observed using the fixed reference region meth-
od is compatible with those obtained using the matrix meth-
od15. These results are representative of all the phase space re-
gions studied in this analysis and the matrix method is therefore

15 As discussed in Section9.6.3, even for an ideal detector the asym-
metry, and hence the relative response, is not expected to beexactly
flat due to the effects of soft QCD radiation and other soft particle
activities.
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Fig. 16: Relative jet response, 1/c, of anti-kt jets withR= 0.6 as a function of the jet pseudorapidity measured using the matrix
η-intercalibration method in bins of the averagepT of the two leading jets (a) 20≤ pavg

T < 30 GeV, (b) 30≤ pavg
T < 45 GeV, (c)

60≤ pavg
T < 80 GeV and 80≤ pavg

T < 110 GeV. The lower part of each figure shows the ratio of Monte Carlo simulation to data.
Only statistical uncertainties are shown.

used to give the final uncertainty on thein situη-intercalibration
due to its higher statistical precision.

9.6.5 Comparison of data with Monte Carlo simulation

Figure16 shows the relative response obtained with the ma-
trix method as a function of the jet pseudorapidity for data and
Monte Carlo simulations in fourpavg

T regions.
The response in data is reasonably well reproduced by the

Monte Carlo simulations forpjet
T > 60 GeV, with the Monte

Carlo simulation and data agreeing typically better than 2%in
the central region (|η |< 2.8) and 5−10% (depending onpavg

T )
in the forward region (|η | > 2.8). At lower values ofpT, the
data do not agree as well with the Monte Carlo simulations and
the Monte Carlo simulations themselves show a large spread
around the data. For 20≤ pavg

T < 30 GeV, the Monte Carlo sim-

ulation deviates from the data by about 10% for|η |> 2.8, with
the different Monte Carlo simulations predicting both higher
and lower relative responses than that observed in the data.

The main differences, due to residual low-pT jet effects (see
Section9.6.3), occur between PYTHIA with the MC10 or the
PERUGIA tune on one side and ALPGEN/HERWIG++ on the
other. The differences therefore apparently reflect a difference
in physics modelling between the event generators.

Figure17shows the relative response as a function ofpavg
T .

The distributions are shown for jets in the region 1.2≤ |η | <
2.1 and also for those in the region 3.6 ≤ |η | < 4.5. Again,
the response is reasonably well described by the Monte Carlo
simulation for all calorimeter regions at highpT and the more
central region at lowpT.
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Fig. 17: Relative jet response, 1/c, of anti-kt jets with R= 0.6 as a function ofpavg
T found using the matrixη-intercalibration

method for (a) 1.2≤ |η |< 2.1 and (b) 3.6≤ |η |< 4.5. Forpavg
T < 45 GeV, the data are collected using the minimum bias trigger

stream. Forpavg
T > 45 GeV, the data are collected using the calorimeter triggerstream. The lower part of each figure shows the

ratio of Monte Carlo simulation to data. Only statistical uncertainties are shown.

9.6.6 Total uncertainties in the forward region

The Monte Carlo simulation predictions for the relative jetre-
sponse diverge at low values ofpavg

T . The data themselves lie
between the different predictions. The uncertainty on the rela-
tive jet response must reflect this disagreement because there
is noa priori reason to believe one theoretical prediction over
another.

The uncertainty on the relative response is taken to be the
RMS deviation of the Monte Carlo predictions from the data.
At high pT, where the spread of Monte Carlo simulation pre-
dictions is small, the uncertainty mainly reflects the true dif-
ference between the response in data and simulation. At low
pT and large|η |, the uncertainty mainly reflects the physics
modelling uncertainty, although the detector-based differences
between data and simulation are also accounted for. Other un-
certainty sources, such as trigger selection or the QCD radi-
ation suppression using the third jet, are either negligible, or
included in the total uncertainty assigned from the spread of
Monte Carlo predictions around the data.

Figure18shows the uncertainty in the jet response, relative
to jets in the central region|η | < 0.8, as a function of the jet
pT and|η |. The JES uncertainty, determined in the central de-
tector region using the single particle response and systematic
variations of the Monte Carlo simulations, is transferred to the
forward regions using the results from the dijet balance. These
uncertainties are included in the final uncertainty as follows:

1. The total JES uncertainty in the central region 0.3≤ |η | <
0.8 is kept as a baseline.

2. The uncertainty from the relative intercalibration is taken
as the RMS deviation of the MC predictions from the data
and is added in quadrature to the baseline uncertainty.

The measurements are performed for transverse momenta in
the range 20≤ pavg

T < 110 GeV. The uncertainty for jets with

pT > 100 GeV is taken as the uncertainty of the last available
pT-bin16. The uncertainties are evaluated separately for jets re-
constructed with distance parametersR= 0.4 andR= 0.6, and
are in general found to be slightly larger forR= 0.4.

Figure19shows the relative jet response, and the associated
intercalibration uncertainty calculated as detailed above, as a
function of jet|η | for two representativepavg

T -bins.

9.7 Uncertainties due to multiple proton-proton
collisions

The offset to the jet transverse energy due to pile-up interac-
tions can be measured at the EM scale from the average energy
in calorimeter towers in minimum bias events. The uncertainty
in the pile-up corrections can be obtained by varying certain
analysis choices and by studying the jet response with respect
to the transverse momentum of track jets as a function of the
number of primary vertices.

9.7.1 Tower-based offset closure test using track jets

The systematic uncertainty in the jet offset correction canbe
evaluated using track jets. Figure8 shows the variation of the
offset among the various ranges ofptrack jet

T . The result indi-
cates a systematic uncertainty on the correction of approxi-
matelyδ (OEM

track jet)< 100 MeV per additional vertex at the EM

scale andδ (OEM+JES
track jet ) < 200 MeV per additional vertex at the

EM+JES scale. Since the jet pile-up offset was about 500 MeV

16 This is justified by the decrease of the intercalibration uncertainty
with pT, but cannot completely exclude the presence of calorimeter
non-linearities for jet energies above those used for the intercalibra-
tion.
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Fig. 18: Fractional response uncertainty for anti-kt jets withR= 0.6 calibrated with the EM+JES scheme as obtained from the
dijet balancein situ technique as a function ofpjet

T for various|η |-regions of the calorimeter (a) and as a function of|η | in various

pjet
T bins (b).
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Fig. 19: Average jet response for anti-kt jets with R= 0.6 calibrated with the EM+JES scheme measured relative to a central
reference jet within|η | < 0.8 in data and various Monte Carlo generator samples as a function of |η | for pavg

T in the ranges
30−45 GeV (a) and 80−110 GeV (b). The resulting systematic uncertainty component is shown as a shaded band around the
data points. The errors bars on the data points only show the statistical uncertainties.

Systematic Tower-based offset Jet-based offset Comments
Trigger selection 16% 16% MBTS vs Jet triggers
Tower multiplicity variation – 20% 〈Njet

towers〉 vs ptrack jet
T andNPV

ptrack jet
T variation 21% 22% Variation of 100 MeV/vertex

Total (quadrature sum) 26% 34% Assumes uncorrelated errors
Result from closure test 2% 35% Determined from average

Table 3: Summary of systematic uncertainties associated with the offset correction for both the tower-based offset applied jet-by-
jet to tower jets and the jet-level offset applied to topo-cluster jets. The uncertainty is expressed as a percentage of the average
offset correction, shown in Table4.
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Fig. 20: Jet residual offset measured at the EM scale after pile-up correction using the most probable valueEjet
T obtained from a

fit to a Landau+Gauss distribution for various bins in track jet transverse momentum (ptrack jet
T ) as a function of the primary vertex

multiplicity: tower jets corrected with tower-based offset correction (using the actual number constituent towers) (a), tower jets
corrected with the jet-based offset correction (using the average number of constituent towers) (b) and topo-cluster jets corrected
with the jet-based offset correction (using the average number of equivalent constituent towers) (c). The axis ranges are identical
to Figure8 for ease of comparison. The jet offset is given for anti-kt jets at the EM scale withR= 0.6. Only the statistical
uncertainties of the fit results are shown.
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Track jetpT
Tower jets [GeV/vertex] Topo-cluster jets [GeV/vertex]
Before After Before After

20 - 25 GeV 0.55±0.02 0.06±0.02 0.50±0.02 0.19±0.02
25 - 30 GeV 0.47±0.02 0.00±0.02 0.47±0.02 0.16±0.02
30 - 35 GeV 0.49±0.03 0.01±0.03 0.47±0.03 0.17±0.03
35 - 40 GeV 0.42±0.03 −0.08±0.03 0.41±0.03 0.12±0.03
40 - 45 GeV 0.51±0.05 0.01±0.05 0.48±0.05 0.18±0.05
45 - 50 GeV 0.42±0.06 −0.07±0.06 0.41±0.06 0.12±0.06

Average 0.48±0.02 −0.01±0.02 0.46±0.02 0.16±0.02

Table 4: Variation of the calorimeterEjet
T with pile-up for several bins in track jetpT. Slopes are given in GeV/vertex at the

electromagnetic scale for each primary vertex from additional proton-proton collisions in the event, and represent the slope of
the jet offset before and after the tower-based offset correction. Tower-based corrections are applied to tower jets and jet-based
corrections are applied to topo-cluster jets. The reporteduncertainties are purely statistical.
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Fig. 21: Relative JES uncertainty from pile-up for anti-kt jets
with R= 0.6 in the case of two measured primary vertices,
NPV = 2, for central (0.3≤ |η |< 0.8, full circles), endcap (2.1
≤ |η | < 2.8, open squares) and forward (3.6 ≤ |η | < 4.5, full
triangles) jets as a function of jetpjet

T .

before correction, even with this conservative estimate the ap-
plication of the offset correction represents an improvement of
a factor of five obtained over the systematic bias associated
with pile-up effects on the calorimeter jet transverse momen-
tum.

The full offset correction shows reasonable closure when
using the actual constituent tower multiplicity directly (tower-
based) and a slight under-correction using the average con-
stituent multiplicity in the jet (jet-based). Figure20ashows the
tower-based correction applied to tower jets at the EM scaleas
a function of the reconstructed vertex multiplicity. The tower-
based correction exhibits a closure consistent with zero slope
in Ejet

T as a function ofNPV. Figure20band Figure20cshow
the jet-based correction applied to both tower jets and topo-
cluster jets, respectively. The use of the jet-based offsetcor-
rection slightly under-corrects for the effect of pile-up for jets
constructed frombothtowersand topo-clusters.

The implication of this observation is two-fold:

1. There is no significant difference in the sensitivity of topo-
cluster jets to pile-up as compared to tower jets.

2. There is a systematic underestimation of the average tower
multiplicity in jets due to the effect of pile-up or due to
differences in the jet transverse energy distribution in the
derivation and the validation of the pile-up correction.

9.7.2 Jet offset correction uncertainties

The contributions to the jet offset correction uncertaintyare
estimated from studies that account for:

1. The effect of variations of the trigger selection on the mea-
sured non-noise-suppressed tower energy distribution that
is input to the offset correction.

2. The variation withpjet
T andNPV of the tower multiplicity in

jets based on topo-clusters17.
3. The variation of the offset correction derived from trackjets

as a function of the number of primary vertices for various
values of track jetpT.

4. The non-closure of the tower-based offset correction as eval-
uated by the dependence of the corrected calorimeter jet en-
ergy for calorimeter jets matched to track jets as a function
of the number of primary vertices.

The JES uncertainty is estimated by adding all uncertain-
ties in quadrature, including the one from the non-closure of
the correction. The track jet method can be used only up to
|η | = 1.9, if a full coverage of the jet area by the tracking ac-
ceptance is needed. Beyond|η |= 1.9, the dijet balance method
detailed in Section9.6is used. This approach compares the rel-
ative jet response in events with only one reconstructed ver-
tex with the response measured in events with several recon-
structed vertices. The dijet balance method yields uncertain-
ties similar to those intrinsic to the method also in the caseof
|η |< 1.9.

Each source of systematic uncertainty is summarised in Ta-
ble 3 and the resulting effects expressed as a percentage of the
average offset correction, shown in Table4.

For jets based on towers the total systematic uncertainty is
significantly larger than the validation of the correction using

17 This is determined from the variation in tower multiplicityfor
NPV = 1 in jets matched to track jets with 25≤ pT < 30 GeV as com-
pared toNPV = 4 in track jets with 35≤ pT < 40 GeV.
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track jets indicate. The larger of the two individual uncertain-
ties (21%) is therefore adopted. This results inδ (Otower−based)=
100 MeV per vertex18. The resulting total uncertainty is a factor
of five smaller than the bias attributable to pile-up (≈ 500 MeV
per vertex) even with this conservative systematic uncertainty
estimation.

The offset correction for jets based on topo-clusters receives
an additional uncertainty due to the average tower multiplic-
ity approximation. This contribution is estimated to introduce
a 20% uncertainty in the constituent tower multiplicity by com-
paring jets in events withNPV = 1−3 and for the five highest
ptrack jet

T -bins. This estimation translates directly into a 20% un-
certainty on the jet-based offset. The resulting systematic un-
certainty on jets corrected by the offset correction is estimated
to be δ (Ojet−based) ≈ 160 MeV per vertex; a factor of three
smaller than the bias due to pile-up.

Figure21 shows the relative uncertainty due to pile-up in
the case of two measured primary vertices. In this case, the
uncertainty due to pile-up for central jets withpT = 20 GeV
and pseudorapidity|η | ≤ 0.8 is about 1%, while it amounts to
about 2% for jets with pseudorapidity 2.1 ≤ |η | < 2.8 and to
less than 2.5% for all jets with|η | ≤ 4.5. In the case of three
primary vertices,NPV = 3, the pile-up uncertainty is approxi-
mately twice that ofNPV = 2, and with four primary vertices
the uncertainty for central, endcap and forward jets is lessthan
3%, 6% and 8%, respectively. The relative uncertainty due to
pile-up for events with up to five additional collisions becomes
less than 1% for all jets withpjet

T > 200 GeV. The pile-up un-
certainty needs to be added separately to the estimate of the
total jet energy scale uncertainty detailed in Section9.8.

9.7.3 Out-of-time pile-up

The effect of additional proton-proton collisions from previous
bunch crossings within trains of consecutive bunches (out-of-
time pile-up) has been studied separately. The effect is found
to be negligible in the 2010 data.

9.7.4 Pile-up corrections applied to jet shape
measurements

The measurement of internal jet properties like the energy flow
inside jets can be made considerably more difficult in the pres-
ence of additional proton-proton collisions. The applicability
of the tower-based offset presented in Section9.7 to correct
the mean jet energy can also be tested on the internal jet shape
measurements.

The offset correction is applied to the measurement of the
differential jet shape forR= 0.6 tower jets, as described in
Ref. [3].

The jet shape variable used,ρa(r), is defined as:

ρa(r)=
1

π
[

(r + δ r/2)2− (r − δ r/2)2
] ·
〈

pT

(

r − δ r
2 , r + δ r

2

)

pT(0,0.7)

〉

,

(19)

18 Using twice the RMS of the variation in the closure test yields a
similar value.
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Fig. 22: Measured sumpT in annuli around the jet axis, divided
by the totalpT around the jet within∆R= 0.7 of the jet axis
and normalised by the area of each annulus as a function of the
distance of the jet constituent to the jet axis. The shapes ofjets
in the rapidity range 1.2≤ |y|< 2.1 are compared, before and
after the offset corrections, in events with one and two recon-
structed vertices (a), and one and three reconstructed vertices
(b). The corrected distribution is also shown (full triangles).
Note that the single vertex data (full circles) are partially hid-
den behind the corrected multi-vertex data. Anti-kt jets with
R= 0.6 reconstructed from calorimeter towers are used and
calibrated with the EM+JES scheme.

wherer =
√

(dη)2+(dφ)2 is the distance of the jet constituents
to the jet four-momentum vector and the angled brackets de-
note an average over all jets,pT (b,c) is the sum of thepT of all
towers with an opening angleb≤ ∆R< c with respect to the
jet axis, andδ r = 0.1.

This definition differs from the canonical jet shape variable
ρ (r) in two important ways. First, by normalising to area, the
variable measures an energy density. Therefore,ρa (r) will ap-
proach an asymptotic value far from the jet axis. The level of
the asymptote is related to the energy density in the calorime-
ter and is measurably higher in events with pile-up. Second,all
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towers are included in the definition. This allows an examina-
tion of energy outside of the jet cone, in some sense measuring
“energy flow” around the jet axis.

Figure22 depictsρa (r) with and without a correction of
the tower constituent energy for the mean energy induced by
pile-up interactions. In events with two (three) reconstructed
vertices, differences in this particular jet shape variable of up
to 35% (70%) just outside the jet (r > 0.6) and 20% (40%)
near the nominal jet radius (r = 0.6) are observed. The bulk of
the shape (0.1≤ r < 0.6) is restored to that observed in events
with only a single interaction, in both the core (r < 0.1) and the
periphery (r > 0.6) of the jet.

The results demonstrate that the tower-based offset correc-
tion can be applied on a fine scale granularity and is valid both
inside andnear jets.

9.8 Summary of jet energy scale systematic
uncertainties

The total jet energy scale uncertainty is derived by considering
all the individual contributions described in the previoussec-
tions. In the central region (|η | < 0.8), the estimate proceeds
as follows:

1. For eachpjet
T andη bin, the uncertainty due to the calibra-

tion procedure is calculated as described in Section9.2 for
both jet energy andpT response. For each bin, the maxi-
mum deviation from unity between the energy andpT re-
sponse is taken as the final non-closure uncertainty.

2. The calorimeter response uncertainty is estimated as a func-
tion of jet η andpT from the propagation of single particle
uncertainties to the jets, as detailed in Section9.3.

3. Sources of uncertainties estimated using Monte Carlo sam-
ples with a systematic variation are accounted as follows:
(a) the response in the test sampleRvar and the response

in the nominal sampleRnom is considered as a starting
point for the estimate of the JES uncertainty. The devi-
ation of this ratio from unity is defined as:

∆JES(p
jet
T ,η) =

∣

∣

∣

∣

∣

∣

1− Rvar(p
jet
T ,η)

Rnom(p
jet
T ,η)

∣

∣

∣

∣

∣

∣

. (20)

This deviation is calculated from both the energy and

pT response, leading to∆E
JES(p

jet
T ,η) for the deviation

in the energy response, and to∆ pT
JES(p

jet
T ,η) for the de-

viation in the transverse momentum response.
(b) The larger∆JES in each bin derived from the jet energy

or transverse momentum response is considered as the
contribution to the final JES systematic uncertainty due
to the specific systematic effect:

∆JES(p
jet
T , |η |) = max(∆E

JES(p
jet
T ,η),∆ pT

JES(p
jet
T ,η)).

(21)
4. The estimate of the uncertainty contributions due to addi-

tional material in the inner detector and overall additional
dead material are estimated as described in the previous
step. These uncertainties are then scaled by the average
fraction of particles forming the jet that havep < 20 GeV

(for the inner detector distorted geometry) and by the aver-
age fraction of particles outside the kinematic range of the
single hadron responsein situ measurements (for the over-
all distorted geometry).

For each (pjet
T , η)-bin, the uncertainty contributions from

the calorimeter, the jet calibration non-closure, and systematic
Monte Carlo simulation variations are added in quadrature.

For pseudorapidities beyond|η | > 0.8, theη-intercalibra-
tion contribution is estimated for each pseudorapidity binin the
endcap region as detailed in Section9.6.6. The pseudorapidity
intercalibration contribution is added in quadrature to the to-
tal JES uncertainty determined in the 0.3 ≤ |η | < 0.8 region
to estimate the JES uncertainty for jets with|η | > 0.8, with
the exception of the non-closure term that is taken from the
specificη-region. For lowpjet

T , this choice leads to partially
double counting the contribution from the dead material uncer-
tainty, but it leads to a conservative estimate in a region where it
is difficult to estimate the accuracy of the material description.

The contribution to the uncertainty due to additional proton-
proton interactions described in Section9.7is added separately,
depending on the number of primary vertices in the event. In
the remainder of the section only the uncertainty for a single
proton-proton interaction is shown in detail.

Figure23shows the final fractional jet energy scale system-
atic uncertainty and its individual contributions as a function of
pjet

T for three selectedη regions. The fractional JES uncertainty

in the central region amounts to 2% to 4% forpjet
T < 60 GeV,

and it is between 2% and 2.5% for 60≤ pjet
T < 800 GeV. For

jets with pjet
T > 800 GeV, the uncertainty ranges from 2.5%

to 4%. The uncertainty amounts to up to 7% and 3%, respec-
tively, for pjet

T < 60 GeV andpjet
T > 60 GeV in the endcap re-

gion, where the central uncertainty is taken as a baseline and
the uncertainty due to the intercalibration is added. In thefor-
ward region, a 13% uncertainty is assigned forpjet

T = 20 GeV.
The increase in the uncertainty is dominated by the modelling
of the soft physics in the forward region that is accounted for
in theη-intercalibration contribution. This uncertainty contri-
bution is estimated conservatively.

Table5 presents a summary of the maximum uncertainties
in the differentη regions for anti-kt jets withR= 0.6 and with
pjet

T of 20 GeV, 200 GeV and 1.5 TeV as examples.
The same study has been repeated for anti-kt jets with dis-

tance parameterR= 0.4, and the estimate of the JES uncer-
tainty is comparable to that obtained for anti-kt jets with R=
0.6. The JES uncertainty for anti-kt jets withR= 0.4 is between
≈ 4% (8%, 14%) at lowpjet

T and≈ 2.5%−3% (2.5%−3.5%,
5%) for jets withpT > 60 GeV in the central (endcap, forward)
region, and is summarised in Table6.

9.9 Discussion of special cases

The jet energy scale is derived using the simulated sample ofin-
clusive jets described in Section4.3, with a particular mixture
of quark and gluon initiated jets and with a particular selec-
tion of isolated jets. The differences in fragmentation between
quark and gluon initiated jets and the effect of close-by jets give
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Fig. 23: Fractional jet energy scale systematic uncertainty as
a function of pjet

T for jets in the pseudorapidity region 0.3 ≤
|η | < 0.8 in the calorimeter barrel (a), 2.1≤ |η | < 2.8 in the
calorimeter endcap (b), and in the forward pseudorapidity re-
gion 3.6≤ |η |< 4.5. The total uncertainty is shown as the solid
light shaded area. The individual sources are also shown to-
gether with uncertainties from the fitting procedure if applica-
ble.

η region Maximum fractional JES Uncertainty

pjet
T =20 GeV 200 GeV 1.5 TeV

0≤ |η|< 0.3 4.6% 2.3% 3.1%
0.3≤ |η|< 0.8 4.5% 2.2% 3.3%
0.8≤ |η|< 1.2 4.4% 2.3% 3.3%
1.2≤ |η|< 2.1 5.4% 2.4% 3.4%
2.1≤ |η|< 2.8 6.5% 2.5%
2.8≤ |η|< 3.2 7.9% 3.0%
3.2≤ |η|< 3.6 8.1% 3.0%
3.6≤ |η|< 4.5 10.9% 2.9%

Table 5: Summary of the maximum EM+JES jet energy scale
systematic uncertainties for differentpjet

T andη regions from
Monte Carlo simulation based study for anti-kt jets with R=
0.6.

η region Maximum fractional JES Uncertainty

pjet
T = 20 GeV 200 GeV 1.5 TeV

0≤ |η|< 0.3 4.1% 2.3% 3.1%
0.3≤ |η|< 0.8 4.3% 2.4% 3.3%
0.8≤ |η|< 1.2 4.4% 2.5% 3.4%
1.2≤ |η|< 2.1 5.3% 2.6% 3.5%
2.1≤ |η|< 2.8 7.4% 2.7%
2.8≤ |η|< 3.2 9.0% 3.3%
3.2≤ |η|< 3.6 9.3% 3.5%
3.6≤ |η|< 4.5 13.4% 4.9%

Table 6: Summary of the maximum EM+JES jet energy scale
systematic uncertainties for differentpjet

T andη regions from
Monte Carlo simulation based study for anti-kt jets with R=
0.4.

rise to a topology and flavour dependence of the energy scale.
Since the event topology and flavour composition (quark and
gluon fractions) may be different in final states other than the
considered inclusive jet sample, the dependence of the jet en-
ergy response on jet flavour and topology has to be accounted
for in physics analyses. The flavour dependence is discussedin
more detail in Section18and an additional uncertainty specific
to jets with heavy quark components is discussed in Section20.

The JES systematic uncertainty is derived for isolated jets19.
The response of jets as a function of the distance to the clos-
est reconstructed jet needs to be studied and corrected for sepa-
rately if the measurement relies on the absolute jet energy scale.
The contribution to the JES uncertainty from close-by jets also
needs to be estimated separately, since the jet response depends
on the angular distance to the closest jet. This additional un-
certainty can be estimated from the Monte Carlo simulation to
data comparison of thepT-ratio between calorimeter jets and
matched track jets in inclusive jet events as a function of the
isolation radius. This is discussed in more detail in Section 17.

19 This choice is motivated by the minor differences observed in the
average kinematic jet response of isolated and non-isolated jets in the
nominal inclusive jet Monte Carlo sample and by the need to factorise
the topology dependence of the close-by jet energy scale uncertainty
for final states other than the inclusive jets considered.
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10 Jet energy scale uncertainties validation
with in situ techniques for the EM+JES
scheme

The jet energy calibration can be testedin situ using a well-
calibrated object as reference and comparing data to the nom-
inal PYTHIA Monte Carlo simulation. The followingin situ
techniques have been used by ATLAS:

1. Comparison to the momentum carried by tracks asso-
ciated to a jet: The mean transverse momentum sum of
tracks that are within a cone with sizeR provides an in-
dependent test of the calorimeter energy scale over the en-
tire measuredpjet

T range within the tracking acceptance. The
comparison is done in the jetη range 0≤ |η |< 2.1.

2. Direct pT balance between a photon and a jet:Events
with a photon and one jet at high transverse momentum are
used to compare the transverse momentum of the jet to that
of the photon. To account for effects like soft QCD radia-
tion and energy migrating out of the jet area the data are
compared to the Monte Carlo simulation. The comparison
is done in the jetη range|η | < 1.2 and for photon trans-
verse momenta 25≤ pγ

T < 250 GeV.
3. Photon pT balance to hadronic recoil:The photon trans-

verse momentum is balanced against the full hadronic re-
coil using the projection of the missing transverse momen-
tum onto the photon direction (MPF). This method does not
explicitly involve a jet algorithm. The comparison is done
in the same kinematic region as the direct photon balance
method.

4. Balance between a high-pT jet and low-pT jet system:If
jets at low transverse momentum are well-calibrated, jets
at high transverse momentum can be balanced against a re-
coil system of low transverse momentum jets. This method
can probe the jet energy scale up to the TeV-regime. Theη
range used for the comparison is|η |< 2.8.

All methods are applied to data and Monte Carlo simula-
tion.

The in situ techniques usually rely on assumptions that are
only approximately fulfilled. An example is the assumption
that the jet to be calibrated and the reference object are bal-
anced in transverse momentum. This balance can be altered by
the presence of additional high-pT particles. For the determi-
nation of the JES uncertainties the modelling of physics effects
has to be disentangled from detector effects. This can be stud-
ied by systematically varying the event selection criteria. The
ability of the Monte Carlo simulation to describe extreme vari-
ations of the selection criteria determines the systematicun-
certainty in thein situ methods, since physics effects can be
suppressed or amplified by these variations.

So far thein situ techniques are used to validate the sys-
tematic uncertainty in the jet energy measurement. However,
they can also be used to obtain jet energy corrections. This is
an interesting possibility when the statistical and systematic
uncertainties in the samples studied become smaller than the
standard JES uncertainty from the single hadron response. The
results of thein situ techniques are discussed in the following
sections.

10.1 Comparison of transverse momentum balance
of jets from calorimeter and tracking

The transverse momentum of each jet can be compared with
the total transverse momentum of tracks associated with thejet
by means of a geometrical selection and the charged-to-total-
momentum ratio:

rtrk =
∑ p track

T

pjet
T

(22)

can be used to test the jet calibration. If all produced particles
were pions, the symmetry of QCD under isospin transforma-
tion would require that this ratio be 2/3 once the energy is high
enough so that the total particle multiplicity is large and the
initial isospin of the proton-proton system can be ignored.Pro-
duction of other particles such as kaons,η mesons, and baryons
gives different fractions, but their contributions can be calcu-
lated using a properly tuned event generator.

Since the tracking system provides a measurement that is
independent of the calorimeter, the ratiortrk can be used to de-
termine the calorimeter jet energy scale. Thertrk distribution is
broad but a meaningful calibration does not require very many
events, since the statistical uncertainty on the mean scales as
1/

√
N. This calibration can be used for jets confined within the

tracking detector coverage. Dominant systematic uncertainties
result from the knowledge of the tracking efficiency, variations
in the predicted value ofrtrk for various generator tunes and
loss of tracking efficiency in the dense core of high-pT jets.

To test thepjet
T dependence of the jet energy measurement,

the double ratio of charged-to-total momentum observed in data
to that obtained in Monte Carlo simulation is studied:

Rrtrk ≡
[〈rtrk〉]Data

[〈rtrk〉]MC
. (23)

10.1.1 Jet and track selection

To ensure that the majority of tracks associated with the jets
found in the calorimeter are within the inner detector fiducial
volume, jets are required to have|η |< 2.120 andpjet

T > 20 GeV.
To reduce the influence of nearby jets on the measurement, if
two jets are separated by a distance∆R< 2R then the softer of
these two jets is rejected from the analysis.

Tracks withptrack
T > 1 GeV are selected using the criteria

detailed in Section6.2. The ptrack
T > 1 GeV requirement is in-

tended to select mainly tracks from fragmentation rather than
those arising from soft and diffuse interactions.

Tracks are associated with jets using a geometric algorithm.
If the distance∆Rtrack,jet between the track and the jet is less
than the distance parameter used in the jet reconstruction (R=
0.4 or R= 0.6), the track is associated to the jet. Track param-
eters are evaluated at the distance of closest approach to the

20 Section9.7 discusses “track jets” obtained by running the anti-
kt jet algorithm using tracks as input. Those studies are restricted to
|η| < 1.9 to avoid bias in the position of the centre of the jet due
to tracking inefficiencies. Since the jets in this section are found us-
ing calorimeter information, no such bias is present and it is therefore
possible to extend the pseudorapidity coverage to|η|< 2.1.
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Fig. 24: The distribution of the charged-to-total momentumratio rtrk for 40 ≤ pjet
T < 60 GeV (a) and for 600≤ pjet

T < 800 GeV

(b), the average charged-to-total momentum ratio〈rtrk〉 for data and Monte Carlo simulation as a function ofpjet
T (c) and the ratio

of 〈rtrk〉 for data and Monte Carlo simulation (Rrtrk) as a function ofpjet
T for the pseudorapidity range|η |< 1.2 (d) for anti-kt jets

with R= 0.6 calibrated using the EM+JES scheme. The data measured withthe jet (minimum bias) trigger are shown as closed
(open) circles. Only statistical uncertainties are shown.
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primary hard-scattering vertex and arenot extrapolated to the
calorimeter. This simple association algorithm facilitates com-
parison with charged particles from truth jets whose parameters
correspond to those measured at the origin.

10.1.2 Comparison of data and Monte Carlo simulation

The jet response validation using the total momentum mea-
sured in tracks depends on a comparison of the mean value of
rtrk observed in the data to that predicted in the Monte Carlo
simulation. It is therefore important to demonstrate that the
baseline Monte Carlo generator and simulation provide a rea-
sonable description of the data.

ATLAS has measured the charged particle fragmentation
function for jets with 25≤ pjet

T < 500 GeV and|η | < 1.2 and
has compared the measurement with the predictions of several
Monte Carlo generators and generator tunes [62].

The jet fragmentation function and the transverse jet pro-
file are compared to various Monte Carlo event generators and
tunes. The jet fragmentation function is measured using charged
particles with momentum fractionz with respect to the jet mo-
mentumF(z, pjet

T ) = 1/Njet dNch/dz.
The growth of the mean charged particle multiplicity with

pjet
T is well modelled by the Monte Carlo simulation. The mea-

sured jet fragmentation function agrees well with the PYTHIA

MC10 and the PERUGIA2010 tunes within the measurement
uncertainties. The jet fragmentation function is described by
the PYTHIA tunes. The HERWIG++ Monte Carlo generator is
not consistent with the data.

For observables related to jet properties in the direction
transverse to the jet axis the Monte Carlo generators (HER-
WIG and the various PYTHIA tunes) show reasonable agree-
ment with data, but none of the generators agrees within the
experimental uncertainties over the full kinematic range.For
instance, the PYTHIA MC10 tune shows an excess of about
10% in the transverse charged particle distributions closeto the
jet axis.

These measurements indicate that the PYTHIA MC10 and
PERUGIA2010 tunes span the range of fragmentation functions
that are consistent with the data. The studies presented here
use the MC10 tune to obtain the central values of the Monte
Carlo predictions. Systematic uncertainties are assessedfrom
the difference between the MC10 and PERUGIA2010 PYTHIA

tunes.
Thertrk distributions used to validate the JES are shown for

data and simulation for two typical bins of jetpT in Figure24a
and Figure24b. Agreement between data and simulation is
good, although the data distribution is somewhat wider than
the Monte Carlo simulation. Figure24c and Figure24d show
〈rtrk〉 for data and simulation and the average double ratioRrtrk ,

respectively, as a function ofpjet
T . Figure24d demonstrates that

the measured JES calibration agrees with that predicted by the
Monte Carlo simulation to better than 2% forpjet

T > 25 GeV.
Measurements using the minimum bias and jet triggers are con-
sistent for thosepjet

T bins where both triggers are accessible.

10.1.3 Systematic uncertainties

The systematic uncertainties associated with the method using
the total track momentum to test the JES are discussed below.

Generator model dependence While basic isospin argu-
ments constrain the mean fraction of the jet momentum ob-
served in charged tracks, the prediction forrtrk does depend on
details of the physics model used in the Monte Carlo generator.
Systematic uncertainties arise from:

1. The parametrisation of the fragmentation function and of
the underlying event (which mainly affect the fraction of
the momentum carried by particles below thepT = 1 GeV
cut used for this analysis).

2. The model of colour reconnection (which can change the
distribution of particles with low momenta).

3. The probability of producing strange quarks and baryons
(which are iso-doublets rather than iso-triplets like the pion)
and of producing iso-scalars such as theη .

The size of these uncertainties has been estimated by studying
a wide range of PYTHIA tunes21. A list of the PYTHIA tunes
studied is given in Table7.

These studies have been done at the generator level and
have been cross-checked using simulated samples when the ap-
propriate tunes were available with full simulation.

The data have also been compared to default tunes of HER-
WIG++ and HERWIG+JIMMY . PYTHIA tune 117, and the de-
fault HERWIG++ and HERWIG+JIMMY tunes are not consis-
tent with the measuredf (z) distributions.Since these genera-
tors do not described the fragmentation functions measuredby
ATLAS [62] they are excluded from consideration when deter-
mining the systematic uncertainty on the JES measurement.

At low pjet
T , the variations between tunes arise mainly from

differences in the hardness of the jet fragmentation, whichaf-
fects the fraction of charged particles falling below the 1 GeV
cut onptrack

T . In general, PYTHIA tunes that include the “colour
annealing” model of colour reconnection exhibit harder frag-
mentation than similar tunes without colour annealing. At high
pjet

T , differences among tunes are primarily associated with the
strangeness and baryon content of the truth jets. Versions of
PYTHIA tuned to LEP data (including flavour-dependent frag-
mentation measurements) using the tuning software PROFES-
SOR [63] in general show a charged fraction about 1% higher
than the other tunes considered here. Using a conservative ap-
proach, the value of systematic uncertainty has been symmetris-
ed around the baseline tune using the absolute value of the
largest deviation of the tunes considered from the baseline.

Inner detector material description The dominant sys-
tematic uncertainty on the reconstruction efficiency for isolated
tracks is derived from the uncertainty on the simulation’s de-
scription of material in the inner detector. The systematicun-
certainty on the efficiency is independent ofptrack

T for tracks
with ptrack

T > 500 MeV but isη-dependent, ranging from 2%

21 Additional information about the PYTHIA tunes can be found in
Ref. [28].
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Fig. 25: Relative systematic uncertainty on the JES obtained by comparing the total momentum of tracks associated to jets to the
calorimeter measurements for differentη regions for anti-kt jets withR= 0.6 calibrated with the EM+JES scheme as a function
of pjet

T . The total and the individual systematic uncertainties, asevaluated from the inclusive jet Monte Carlo simulation, are
shown.
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Tune Name PYTUNE Value Comments
MC10 − ATLAS default (pT ordered showering)
MC09 − ATLAS default for Summer 2010 (pT ordered showering)
RFTA 100 Rick Field Tune AQ2 ordered showering

107 Tune A with “colour annealing” colour reconnection
110 Tune A with LEP tune from Professor
117 Tune 110 with “colour annealing” colour reconnection
129 Tune ofQ2 ordered showering and UE with Professor
320 PERUGIA0 (pT ordered showering)

PERUGIA2010 327 PERUGIA0 with updated fragmentation and more parton radiation

Table 7: PYTHIA generator tunes used to study the systematic uncertainty onthe prediction forrtrk. Tunes specified by number
(e.g. 100) refer to the value of thePYTUNE parameter [28]. A dash in the table indicates that the particular tune has no PYTUNE

value.

for |η track|< 1.3 to 7% for 2.3≤ |η track|< 2.5 [64]. Convolv-
ing these uncertainties with the appropriateη track distributions
results in systematic uncertainties onrtrk that range from 2%
for jet pseudorapidities|η |< 1.2 to 3.5% for pseudorapidities
1.7≤ |η |< 2.1.

Uncertainties in the material distributions also affect the
probability that photon conversions produce charged particles
that can be included in thertrk measurement. The track selec-
tion used here requires at least onePixel hit and most of the
material in theID is at a larger radius than thePixel detec-
tor, resulting in a small systematic uncertainties associated with
rate of conversions.

Tracking efficiency in the jet core There are several ef-
fects that change the tracking efficiency and resolution inside a
jet compared to those for isolated tracks:

1. When two tracks are close together, their hits may over-
lap. While the pattern recognition software allows tracks
to share hits, the resolution is degraded since the calcu-
lated position of the hit is affected by the presence of the
other track. The probability of not assigning hits to tracks
increases.

2. When the hit density becomes high in the core of the jet,
failures in the pattern recognition may result in the creation
of tracks by combining hits that in fact came from several
particles. Such tracks are calledfake tracks.

3. When two high-pT tracks are close together in space, they
will share hits over many layers. In this case, one of the
two tracks may be lost. This effect, referred to asloss of
efficiency, becomes more important as thepjet

T increases.

The reliability of the simulation to predict the size of these ef-
fects depends on whether the software properly models merg-
ing of ID hits. Detailed comparisons of the data and Monte
Carlo simulation indicate that the simulation accurately repro-
duces the degradation of response in the jet core and models
the degradation in resolution well. Comparison of the fraction
of tracks withz> 1 in data and Monte Carlo simulation con-
strains the size of the non-Gaussian tails in the track resolution.
Any residual difference in resolution between data and simula-
tion is absorbed in the quoted uncertainty due toID alignment.

Fake tracks and loss of efficiency are studied in the sim-
ulation using a hit-based matching algorithm using truth jets.

These studies indicate that the rate for reconstructing fake tracks
remains at 0.1% for the fullpjet

T range considered here, but that
there is loss of tracking efficiency near the core of high-pT jets.
This effect has a negligible effect onrtrk for jets with pjet

T <

500 GeV, but increases withpjet
T such that on average∼ 7.5%

of the charged track momentum is lost for jets in the range
800≤ pjet

T < 1000 GeV. A relative uncertainty of 50% is as-
signed to the value of the inefficiency that is caused by merged
hits. While this effect gives the largest systematic uncertainty
on the JES forpjet

T ∼> 600 GeV (1.9% for 600≤ pjet
T < 800 GeV

and 3.7% for 800≤ pjet
T < 1000 GeV), it is still smaller than

the present statistical uncertainty at these values ofpjet
T .

Inner detector alignment For highpT tracks, the momen-
tum resolution achieved in theID is worse than that of the sim-
ulation. This degradation in resolution is attributed to animper-
fect alignment of theID. The systematic uncertainty onrtrk is
obtained by degrading the tracking resolution in the simulation.
The size of this additional resolution smearing is determined
by studying the width of the measured mass distribution for
Z-decaysZ → µ+µ−. This procedure results in a systematic
uncertainty of less than 0.2% for all pjet

T andη .

Calorimeter jet pT resolution The systematic uncertainty
due to jet transverse momentum resolution [65] is determined
by smearing the jet four-momentum (without changingη or φ )
in Monte Carlo simulation. The relative uncertainty on thepjet

T
resolution is 5% for 0≤ |η |< 0.8 and 10% for 0.8≤ |η |< 2.1.
The effect of this variation is largest for low values ofpjet

T and

high values ofη ; for pjet
T < 40 GeV and 0.8 < |η | < 2.1 the

uncertainty onRrtrk is∼ 2%.

Combined systematic uncertainty The above uncertain-
ties are assumed to be uncorrelated and are combined in quadra-
ture. The resulting total uncertainties are shown in Figure25as
a function ofpjet

T for several regions ofη .
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Fig. 26: Double ratio of the mean track to calorimeter response ratio in data and Monte Carlo simulationRrtrk = [rtrk]Data/[rtrk]MC

for anti-kt jets with R= 0.6 calibrated with the EM+JES scheme as a function ofpjet
T for variousη bins. Systematic (total)

uncertainties are shown as a light (dark) band.
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10.1.4 Summary of JES uncertainty from tracks

Final results for anti-kt jets withR= 0.6 and EM+JES correc-
tions are shown in Figure26for five bins inη with the derived
systematic uncertainties. To facilitate comparisons at high pjet

T ,
where the statistical uncertainties are large, the combined data
from the three bins with|η | < 1.2 are also displayed. Averag-
ing all data withpjet

T > 25 GeV and|η | < 1.2 yields a value
of rtrk that agrees with the simulation to better than 1%. This
small discrepancy is well within the quoted systematic uncer-
tainty, which is highly correlated between bins inpjet

T . No sig-

nificant variation ofRrtrk with pjet
T is observed. For|η | > 1.2,

the statistical uncertainties are large forpjet
T > 500 GeV. For

pjet
T < 500 GeV, the level of agreement between data and sim-

ulation is similar to that obtained at lowη .
In summary,rtrk, the ratio of track to calorimeter trans-

verse momentum, is used to validate the JES for anti-kt jets
with R= 0.4 andR= 0.6 calibrated with the EM+JES calibra-
tion scheme. Systematic uncertainties associated with jetmod-
elling and track reconstruction are assessed and the methodis
shown to provide a JES uncertainty evaluation independent of
the modelling of the calorimeter response. Systematic uncer-
tainties are below 3% for 0≤ |η | < 0.8 and rise to∼ 4% for
1.7 ≤ |η | < 2.1 for 40≤ pjet

T < 800 GeV. The results agree
within systematic uncertainties with those predicted using the
ATLAS calorimeter simulation and provide an independent es-
timate of the overall jet energy scale and its uncertainty.

10.2 Photon-jet transverse momentum balance

In γ-jet events, a jet recoils against a photon at high transverse
momentum. The photon energy, being accurately measured in

the electromagnetic calorimeter, is used as a reference. Such a
topology can be used to validate the jet energy measurement.
Any discrepancy between data and simulation may be taken as
an uncertainty on the jet energy calibration.

Two methods of balancing the photon and the recoiling
jet transverse momentum with different sensitivities and sys-
tematic uncertainties are used: the directpT balance technique
and the missing transverse momentum projection fraction tech-
nique.

10.2.1 Direct transverse jet momentum balance
technique

The directpT balance technique exploits the approximate trans-
verse momentum balance in events with only one photon and
one jet with highpT. The ratio of the jetpT to the photonpT

(pjet
T /pγ

T) is used to estimate the jet response. Since the photon
pT is well-measured and well-described by the simulation, the
quality of the jetpT calibration can be assessed by comparing
data and Monte Carlo simulation using the ratiopjet

T /pγ
T. This

technique was used at the CDF experiment [61].

10.2.2 Missing transverse momentum projection fraction
technique

The missing transverse momentum (Emiss
T ) projection fraction

(MPF) technique exploits the momentum balance, in the trans-
verse plane, of the photon and the hadronic recoil to derive the
detector response to jets. This technique has been used in the
past for the D0 experiment [60].

The missing transverse momentum vector (Emiss
T ) is defined

as the opposite of the vector sum of the transverse projections
of calorimeter energy deposits. The missing transverse momen-
tum is calculated from the energy deposits in the calorimeter
cells that are included in topo-clusters. The calorimeter cell en-
ergy is computed using the same calibration as the one used
in the jet calibration scheme to be tested. The missing trans-
verse momentum is corrected for the photon four-momentum.
The reconstructed jet four-momentum is not directly used in
the missing transverse momentum calculation.

The MPF technique is based on the assumption that the
only missing transverse momentum in aγ-jet event arises from
calorimeter non-compensation, signal losses due to noise sup-
pression and energy losses in the non-active regions of the de-
tector by the hadronic jet. The transverse momentum balance
can be written as:

pγ
T + pjet

T = 0, (24)

wherepγ
T andpjet

T is the photon and jet transverse momentum
vector. The particles produced by the hard scatter and theirin-
teraction in the calorimeter can be expressed in terms of the
observables:

R
γ pγ

T +R
jetpjet

T =−Emiss
T , (25)

whereRγ is the calorimeter response to photons. Since the
calorimeter is well calibrated for photons,Rγ = 1. The vari-
ableRjet denotes the calorimeter response to jets. By using the
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Fig. 28: Average jet response measured at the EM scale as a function of pγ
T as determined by the directpT balance technique for

anti-kt jets withR= 0.6 (a) and by the MPF technique (b) forγ-jet events and dijet events where one jet has been reconstructed as
a photon, as derived in the Monte Carlo simulation. The lowerpart of the figures shows the absolute response difference between
the dijet andγ-jet events with respect to the response ofγ-jet events. Only statistical uncertainties are shown.

Variable Threshold
|η| < 1.2
pγ

T > 25 GeV
|ηγ | < 1.37

Eγ Isolation
T < 3 GeV

∆φjet-γ > π −0.2 rad

pjet2
T /pγ

T < 10%

Table 8: Criteria used to select events with a photon and a jet
with high transverse momentum.

above two equations and projecting theEmiss
T in the direction

of the photon the response can be written as:

RMPF = 1+
pγ

T ·Emiss
T

|pγ
T|2

, (26)

which is defined as the MPF response.
Note that the MPF technique measures the calorimeter re-

sponse by relying only on the photon andEmiss
T quantities and

does not use the jet energy directly. Therefore the MPF re-
sponse is independent of the jet algorithm.

10.2.3 Photon-jet Monte Carlo simulation sample

Theγ-jet sample is simulated with the event generator PYTHIA

using the ATLAS MC10 tune [27].
The systematic uncertainty from jets which are identified

as photons (fakes) are studied with an inclusive PYTHIA jet

sample using the MC09 tune [37]22. To efficiently produce this
sample a generated event is only fully simulated if it contains
at least one generated particle jet withpT > 17 GeV. These jets
are computed from the sum of the four-momenta of all stable
generated particles within a 0.18×0.18 region inη ×φ . Events
in the dijet sample with prompt photons, e.g. that are produced
by radiation are removed.

10.2.4 Selection of the photon-jet data sample

The leading photon in each event must havepγ
T > 25 GeV

and lie in the pseudorapidity range|ηγ | < 1.37. In this range
the photon is fully contained within the electromagnetic barrel
calorimeter. Furthermore, events in which the leading photon
is in a calorimeter region where an accurate energy measure-
ment is not possible are rejected. In each event only the leading
photon is considered.

The leading photon candidate must also satisfy strict pho-
ton identification criteria [66], meaning that the pattern of en-
ergy deposition in the calorimeter is consistent with the ex-
pected photon showering behaviour. The photon candidate must
be isolated from other activity in the calorimeter(Eγ Isolation

T )
with an isolation cone of sizeR= 0.4. If the leading photon
does not meet all of these criteria, the event is rejected.

Only events are retained that fired an online trigger requir-
ing a photon candidate withpγ

T > 20 GeV orpγ
T > 40 GeV. At

the trigger level the photon identification requirements are less
strict than those of the off-line selection.

22 Since a large event statistics is needed for this sample, only a sam-
ple with an older tune was available.
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Fig. 29: The values of radiation-suppressing cut thresholds (points) used to probe the soft QCD radiation systematic uncertainty,
as a function of∆φjet-γ andpjet2

T /pγ
T overlaid with the number of events observed in data (a). The nominal selection is the bottom-

rightmost point labelled “Point 1”. Relative change in the MPF response between data and Monte Carlo simulation (b), defined
asD = [RMPF]Data/ [RMPF]MC from the point given on thex-axis to point 1, when relaxing the soft QCD radiation suppression as
indicated in (a). Only statistical uncertainties are shown.

The pT distribution of photons in events selected with the
above criteria is shown in Figure27. The small discrepancies
between thepγ

T spectrum in data and Monte Carlo simulation
do not affect the comparison of the jet response in data and
Monte Carlo simulation.

The leading jet must be in the fiducial region|η | < 1.2.
Soft QCD radiation can affect thepT balance between the jet
and photon. The following two selection cuts are applied to
suppress this effect. To select events in which the photon and
the leading jet are back-to-back,∆φjet-γ > π − 0.2 radians is
required. The presence of sub-leading jets is suppressed byre-
quiring that the sub-leading jet haspT less than 10% of the
pT of the leading photon23. A summary of the event selection
criteria can be found in Table8.

10.2.5 Systematic uncertainties of the photon-jet in situ
validation technique

Uncertainties due to background from jets identified as photons
(fakes), soft QCD radiation, in-time pile-up, non-functional cal-
orimeter read-out regions and the photon energy scale are stud-
ied.

Background in the photon-jet sample The systematic
uncertainty from jets which are identified as photons (fakes)

23 This cut is not applied, if it would be below the jetpT reconstruc-
tion threshold ofpjet

T = 7 GeV. If in this case a sub-leading jet with

pjet
T ≥ 7 GeV is present, the event is rejected.

Direct pT balance [%] MPF [%]
pγ

T range [GeV] 45−60 110−160 45−60 110−160
Background ±1.0 ±0.4 ±0.6 ±0.1
Soft QCD radiation ±0.8 ±0.9 ±0.7 ±0.4
In-time pile-up ±0.8 ±0.8 ±0 ±0
Photon scale +0.5

−0.3
+0.5
−0.3

+0.2
−0.5

+0.3
−0.5

Total systematics +1.6
−1.5

+1.4
−1.3

+0.9
−1.0

+0.5
−0.6

Table 9: Individual systematic uncertainties in the jet energy
scale from both the directpT balance and the MPF techniques
at two values ofpγ

T.

are studied with the inclusive jet Monte Carlo simulation sam-
ple described in Section10.2.3. Dijet events in which one of
the jets is misidentified as a photon contribute to the data sam-
ple but not to Monte Carlo simulation signal sample. The rate
of dijet events faking photons is sensitive to the detailed mod-
elling of the jet fragmentation and the detector simulation, and
is therefore subject to large uncertainties.

The systematic uncertainty from this background is deter-
mined in two steps. First the difference in the detector response
between theγ-jet (Rγ-jet) and the filtered dijet sample (Rdijet) is
determined in the Monte Carlo simulation as seen in Figure28.
Also shown is the absolute response difference|Rdijet−Rγ-jet|
relative to the response of theγ-jet sample-. A response differ-
ence of maximally 3−5% is estimated.

To estimate the contribution from background in the sig-
nal region the distribution of photon candidates observed in
the sidebands of a two-dimensional distribution is used. The
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Fig. 30: Average jet response as determined by the directpT
balance technique with the nominal selection (Point 1) and with
a set of relaxed radiation suppression cuts (Point 13), for anti-kt
jets withR= 0.6 calibrated with the EM+JES scheme as a func-
tion of the photon transverse momentum for data and Monte
Carlo simulation. Only statistical uncertainties are shown.

transverse isolation energy,EγIsolation
T , and the photon identifi-

cation of the photon candidate are used for this estimate. On
the isolation axis, the signal region contains photon candidates
with EγIsolation

T < 3 GeV, while the sideband contains photon

candidates withEγIsolation
T > 5 GeV. On the other axis, photon

candidates passing the identification criteria belong to the sig-
nal region, while those that fail the tight identification criteria
but pass a background-enriching selection belong to the photon
identification sideband. Further details are found in Ref. [66].

The purityP measured in the signal sample is about 0.6
at pT = 25 GeV and rises to about 0.95 at higherpT

24. The
systematic uncertainty is then calculated as

ε =

(

Rdijet−Rγ-jet

Rγ-jet

)

· (1−P). (27)

The systematic uncertainty is below 1% for the direct balance
technique and below 0.6% for the MPF technique. The effect of
background contamination in theγ-jet sample has been further
validated by relaxing the photon identification criteria. Both
data and Monte Carlo simulation show a 3% variation in re-
sponse for the directpT balance technique, mostly at lowpT.
This is consistent with the systematic uncertainty computed
with the purity method using Equation27, e.g. for the lowest
pT bin 40% of the events are expected to be dijet background
giving a response that is 5% higher than the response ofγ-jet
events.

24 This is similar to the purity measured in Ref. [66] and small dif-
ferences are due to the different data samples.
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Fig. 31: The missing transverse momentum fraction (MTF) dis-
tribution for data with exactly one reconstructed primary ver-
texNPV, and with more than one reconstructed primary vertex.
Only statistical uncertainties are shown.

Soft QCD radiation suppression cuts The stability of
the jet response ratio of the data to the Monte Carlo simula-
tion is explored by varying the radiation suppression cuts.Fig-
ure29a shows the thresholds for thepjet2

T /pγ
T and∆φjet-γ cuts

for 13 sets of cuts. Figure29b illustrates the change in the ratio
of the data to the Monte Carlo simulation of the MPF response
for each of these 13 sets of cuts, for one typicalpγ

T bin. The
result demonstrates that the ratio of the data response to the
Monte Carlo response is not sensitive to the exact values of
the radiation cuts, within the 1% level. The systematic uncer-
tainty is taken as the difference in the data to Monte Carlo ratio
between the nominal cuts defining the signal sample, and the
loosest cuts in allpT-bins, labelled as “Point 13” in Figure29a.

The MPF-determined response changes slightly between
the data and the Monte Carlo simulation, the systematic un-
certainty is 0.7% at pγ

T = 50 GeV and falls to 0.4% at pγ
T =

135 GeV. The quoted values are determined from linear fits to
the points analogous to those shown in Figure29b.

The stability of the ratio of the data to the Monte Carlo
simulation for the response measured with the directpT bal-
ance technique is shown in Figure30. The response measured
in either data or in Monte Carlo simulation varies by up to 10%
due to differing radiation suppression cuts. However, the data
to Monte Carlo ratio with and without the radiation suppression
cuts is stable within∼ 1%.

In-time pile-up The average number of proton-proton col-
lisions in each bunch crossing grew significantly during the
data-taking period. Thus, there is a non-negligible fraction of
events containing in-time pile-up (see Section8.1). The addi-
tional collisions produce extra particles which can overlap with



ATLAS collaboration: Jet measurement with the ATLAS detector 41

 [GeV]
T

γp

γ T
/p

je
t

Tp

0.5

0.6

0.7

0.8

0.9  R=0.6, EMtanti-k
 1≥Data NPV

 1≥PYTHIA NPV
Data NPV =1
PYTHIA N

PV
=1

ATLAS

-1 = 38 pbdt L

Data 2010
  ∫

 = 7 TeVs

 [GeV]
T

γp

100 200

D
at

a 
/ M

C

0.90
0.95
1.00
1.05
1.10

Fig. 32: Average jet response for anti-kt jets withR= 0.6 at the
EM scale as determined by the directpT balance technique in
events with any number of reconstructed primary vertices and
in events with exactly one reconstructed vertex as a function
of the photon transverse momentum for both data and Monte
Carlo simulation. The lower part of the figure shows the data to
Monte Carlo simulation ratio. Only statistical uncertainties are
shown.

the hard interaction of interest in the ATLAS detector. The in-
creased energy is about 0.5 GeV per additional reconstructed
primary vertex (see Section8.1.4).

The MPF technique is expected to be insensitive to in-time
pile-up events. Because in-time pile-up is random and symmet-
ric in φ , the mean of the quantitypγ

T ×Emiss
T should be robust

against in-time pile-up. The missing transverse fraction (MTF)
is defined as:

MTF =
(pγ

T ×Emiss
T )z

| pγ
T |2

=
| Emiss

T |
| pγ

T |
sin(φEmiss

T
−φpγ

T
), (28)

where(pγ
T ×Emiss

T )z is thez-component of the vector resulting
from the cross product. The MTF measures the activity in the
plane perpendicular to the photonpT. The mean of the MTF is
zero, if there is no bias due to in-time pile-up.

Figure 31 shows the MTF distribution for data with and
without in-time pile-up. For both these distributions the means
are compatible with zero.

From the study of the MTF distribution and other checks,
such as the dependence of the MPF onNPV, it can be justified
that in-time pile-up can be neglected and no systematic uncer-
tainty is attributed to the MPF method. In the case of the direct
pT balance technique the impact of in-time pile-up is explored
by comparing thepT balance between events with exactly one
identified primary vertex and events with any number of ver-
tices. As seen in Figure32 the ratio of the response in data to
the response in Monte Carlo simulation for events with exactly

one vertex and for events with more than one vertex is con-
sistent with a variation of 0.8%. This is taken as a systematic
uncertainty.

No effect due to the offset correction for in-time pile-up
is seen (see Section8.1), and no systematic uncertainty is at-
tributed to the offset correction for in-time pile-up.

Impact of missing calorimeter read-out regions For a
small subset of the calorimeter channels the calorimeter read-
out is not functioning properly. The energy of these calorime-
ter cells is evaluated using the trigger tower information,which
has larger granularity and less accurate resolution. Whilepho-
tons reconstructed in or near such a region are not considered
in the analysis, there is no such rejection applied to jets. Asub-
sample of events with no jet containing such a cell has been
used to evaluate a possible systematic uncertainty betweendata
and simulation. Within the statistical uncertainty, no bias is ob-
served for the MPFγ-jet technique or the directpT balance
technique, therefore no systematic uncertainty is assigned.

Photon energy scale Both the directpT balance and the
MPF techniques are sensitive to the photon energy scale. The
absolute electron energy scale has been measuredin situ using
the invariant mass constraint inZ → e+e− for electrons. The
uncertainty on the photon energy scale results in a systematic
uncertainty smaller than 1%, depending onpjet

T andη .
The directpT balance technique and the MPF technique

find a systematic uncertainty which is approximately opposite
in sign. This sign difference is caused by the upwards shift
in photon energy leading to an equivalent downwards shift in
Emiss

T , and vice versa.
The response measured with both the MPF and the direct

pT balance techniques has been studied for converted and non-
converted photons. The results of both samples agree withinthe
statistical uncertainties. No additional systematic uncertainty
has been considered for this effect, which is already accounted
for in the photon energy scale and the photon background sys-
tematic uncertainty.

Total systematic uncertainty Table9 shows a summary
of the systematic uncertainties studied for the directpT bal-
ance and MPF techniques. The total systematic uncertainties
for each method are similar, although each method is sensitive
to different effects. Total systematic uncertainties are found on
the data to Monte Carlo simulation jet response ratio of smaller
than 1% for the MPF method and of smaller than 1.6% for di-
rect balance method.

10.2.6 Results from the photon-jet balance

The directpT balance and MPF techniques are used to validate
the jet responsein situ by comparing data and Monte Carlo
simulation. The response in data and Monte Carlo simulation
for the EM scale energy is shown in Figure33. The jet response
in data and Monte Carlo simulation agrees within uncertainties
in the rangepγ

T > 45 GeV. In the range 25≤ pγ
T < 45 GeV there
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Fig. 33: Average jet response as determined by the directpT balance for anti-kt jets withR= 0.6 (a) and the MPF technique (b)
using the EM scale for both data and Monte Carlo simulation asa function of the photon transverse momentum. The lower part
of the figure shows the data to Monte Carlo simulation ratio. Only statistical uncertainties are shown.
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Fig. 34: Average jet response as determined by the directpT
balance technique for anti-kt jets withR= 0.6 calibrated with
the EM+JES scheme as a function of the photon transverse mo-
mentum for both data and Monte Carlo simulation. The lower
part of the figure shows the data to Monte Carlo simulation ra-
tio. Only statistical uncertainties are shown.

is a shift in the data to Monte Carlo ratio of 5% for the direct
pT balance technique and 3% for the MPF technique.

Since the EM+JES calibration depends only on thepT and
η of the jet, it is possible to validate the EM+JES calibration
scheme by using the EM scale as a function ofpγ

T andη . Fig-
ure34shows the jet response measured in both data and Monte
Carlo simulation using the directpT balance technique with
the anti-kt jet algorithm withR= 0.6 for the EM+JES calibra-
tion scheme. The data to Monte Carlo simulation agreement is
within ±5%.

Figure35shows the ratio ofpjet
T /pγ

T between data and Monte
Carlo simulation together with the total uncertainty on thede-
termination of the data to Monte Carlo simulation ratio, for
anti-kt jets with R= 0.6. Similarly, Figure36 shows the re-
sponse ratio of data to Monte Carlo simulation, as determined
using the MPF technique together with the total uncertaintyon
the determination of the data to Monte Carlo simulation ratio.

For pγ
T > 45 GeV, the response in data and Monte Carlo

simulation agree to within 3% for both MPF and direct bal-
ance techniques up to about 210 GeV. In the range 25≤ pγ

T <
45 GeV there is an observed shift of 5% for the directpT bal-
ance technique and 3% for the MPF technique. The lower re-
sponse at the highestpγ

T is further discussed in Section10.5.2.
The size of these shifts is consistent with the systematic un-

certainty on the EM+JES jet energy calibration (see Section9).
At high pγ

T the dominant uncertainty is statistical while the sys-
tematic uncertainty dominates at lowpγ

T.

10.2.7 Summary of the photon-jet balance

The validation of the EM+JES calibration scheme for jets with
the anti-kt jet algorithm reconstructed from topo-clusters using
in situ methods is presented. Agreement between the response
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Fig. 35: Average jet response ratio of data to Monte Carlo simulation using the directpT balance technique for each input energy
scale, EM (a) and EM+JES (b), as a function of the photon transverse momentum. Statistical and systematic uncertainties(light
band) are included with the total uncertainty shown as the dark band.
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Fig. 36: Average jet response ratio of data to Monte Carlo sim-
ulation using the MPF method at the EM scale as a function
of the photon transverse momentum. Statistical and systematic
uncertainties (light band) are included. The total uncertainty is
shown as the dark band.

in data and Monte Carlo simulation is found to be within sta-
tistical uncertainties for 45≤ pγ

T < 210 GeV. Both techniques
observe a shift in the data to Monte Carlo simulation ratio for
25≤ pγ

T < 45 GeV. The total systematic uncertainties of the

γ-jet in situ technique is estimated to be less than 1.6% for
45≤ pγ

T < 240 GeV.

10.3 Multijet transverse momentum balance

The pT reach in theγ-jet transverse momentum balance tech-
nique is limited by the available event statistics. The multijet
balance technique where a recoil system of low-pT jets bal-
ances several jets at lowerpjet

T can be used to assess the jet
calibration at higherpT. Jet transverse momenta up to the TeV
region can be probed. The same method can also be used to ob-
tain correction factors for possible non-linearities at very high
pjet

T . Here, the method is only used to assess the JES uncer-
tainty.

10.3.1 The multijet balance technique

The method exploits thepT balance in events where the highest
pT jet (leading jet) is produced back-to-back inφ to a multijet
system. The leading jet is required to have significantly larger
transverse momentum than other jets in the event. In this way
the leading jet is at a higherpjet

T scale compared to other re-
constructed jets, called non-leading jets. The ensemble ofthe
non-leading jets passing the selection cuts is referred to as the
recoil system.

The event topology used in this analysis is sketched in Fig-
ure37. The vectorial sum of the transverse momenta of all non-
leading jets defines the transverse momentum of the recoil sys-
tem (pRecoil

T ), which is expected to approximately balance the

transverse momentum of the leading jet (pLeading
T ). Thus a cor-

relation between the momentum scale of the leading jet and the
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Fig. 37: Sketch of the event topology used for the multijet bal-
ance technique in thex− y-plane.

scale of the non-leading jets can be established. If the absolute
JES is well-known for all non-leading jets, the JES of the lead-
ing jet can be verified by studying the multijet balance (MJB)
that is defined as the ratio:

MJB=
|pLeading

T |
|pRecoil

T | . (29)

Moreover, thepRecoil
T is a good estimator of the true leading

jet pT, and it is therefore interesting to study MJB as a func-
tion of pRecoil

T . In the ideal case MJB should be equal to one;
however, various effects such as the presence of close-by jets,
soft gluon emission, pile-up or the selection criteria themselves
may introduce a bias.

The comparison between the balance measured in the sim-
ulation ([MJB]MC) and the data ([MJB]Data) can be interpreted
as a source of systematic uncertainty and therefore the ratio

r = [MJB]Data/ [MJB]MC (30)

can be used to assess the highpT JES uncertainty.
The jets belonging to the recoil system must be confined to

a lower jet energy scale with respect to the leading jet in order
to ensure that the multijet balance is testing the absolute high
pT scale and not only the intercalibration between jets. There
are various analysis methods to constrain the leading jet toa
higher pT scale with respect to the jets in the recoil system.
In this analysis it is done by setting an upper limit on the ra-
tio between the transverse momentum of the second highestpT
jet (pJet2

T ) and thepRecoil
T . This cut is very efficient in select-

ing multijet events while minimising the bias on the transverse
momentum of the leading jet.

Variable Cut value
JetpT > 20 GeV
Jet rapidity |y|< 2.8
Number of good jets ≥ 3
pRecoil

T > 80 GeV
α < 0.3 radian
β > 1 radian
pJet2

T /pRecoil
T < 0.6

Table 10: Selection criteria to define the event sample for the
multijet balance analysis.

10.3.2 Selection of multijet events

Two jet trigger selections have been used to cover a widepT
range with large enough statistics. The first trigger selection
requires at least one jet withpT > 15 GeV at the EM scale
in the level-1 calorimeter trigger. The data collected withthis
trigger are used to cover the region ofpRecoil

T < 260 GeV. The
second trigger selection, which requires at least one jet with
pT > 95 GeV for the level-1 trigger, is used to populate the
region ofpjet

T ≥ 260 GeV. The two trigger thresholds are fully

efficient for jets withpRecoil
T > 80 GeV andpjet

T > 250 GeV. To
avoid a trigger bias, the multijet balance is studied in events
containing a recoil system with transverse momentum larger
than 80 GeV.

In order to select events with one jet being produced against
a well-defined recoil system, a selection is applied using two
angular variables (α andβ as depicted in Figure37):

1. α = |∆φ − π |, where∆φ is the azimuthal opening angle
between the highestpT jet and the recoil system.

2. β is the azimuthal opening angle of the non-leading jet that
is closest to the leading jet inφ , measured with respect to
the leading jet.

Events are selected by requiring:

1. α = |∆φ −π |< 0.3 radian.
2. β > 1 radian, i.e. no jets within|∆φ |= 1 radian around the

leading jet.

The cuts applied toα andβ retain the bulk of the events.
A further selection is applied to ensure that the leading jet

is at a higher scale with respect to the jets composing the recoil
system. This is done by requiring that the asymmetry ratioA of
pJet2

T to the transverse momentum of the recoil system satisfies
the following inequality:

A=
pJet2

T

pRecoil
T

< 0.6. (31)

This cut enables the efficient suppression of events with topolo-
gies very close to those of dijet events. This can be seen from
the distributions of the ratio of thepJet2

T to the leading jetpT
shown in Figure38 before and after the cut is applied. Events
are weighted according to the pre-scale values applied at the
trigger level.

This selection therefore ensures that the leading jet is at a
higher scale with respect to the jets forming the recoil system.



ATLAS collaboration: Jet measurement with the ATLAS detector 45

E
ve

nt
s

0

500

1000

310×

ATLAS

∫ L dt -1= 38 pb
 = 7 TeVs

 R=0.6tanti-k
EM+JES

Data 2010
PYTHIA MC10
ALPGEN
HERWIG++

Jet1
T

/pJet2
T

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a/
M

C

0.5
1

1.5
2

2.5

(a) Before asymmetry cut

E
ve

nt
s

0

100

200

300

400

310×

ATLAS

∫ L dt -1= 38 pb
 = 7 TeVs

 R=0.6tanti-k
EM+JES

Data 2010
PYTHIA MC10
ALPGEN
HERWIG++

Jet1
T

/pJet2
T

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a/
M

C

0.5
1

1.5
2

2.5

(b) After asymmetry cut

Fig. 38: Distribution of the ratio of the sub-leading to the leading jetpT for anti-kt jets with R= 0.6 before (a) and after (b)
the asymmetry cut, see Equation31, has been applied for data (full circles) and for simulation(lines). All the distributions in
the simulation are normalised to the number of data events. Events selected by pre-scaled triggers have entered the histogram
weighted by the pre-scale value. Only statistical uncertainties are shown.

At the same time this cut does not bias either the leading jetpT
or the recoil systempT. This has been confirmed using Monte
Carlo simulation by checking that the average response of the
leading jet and recoil systempT is not significantly shifted from
one after the asymmetry cut is applied. A summary of the se-
lection criteria used in the analysis is given in Table10.

10.3.3 Measurement of the multijet balance

The multijet balance is studied as a function of the transverse
momentum of the recoil system,pRecoil

T , which is a good esti-
mator of the true leading jetpT as shown in Figure39 for vari-
ous Monte Carlo simulations. The ratio of reconstructedpRecoil

T
to the true leading jetpT as a function of the true leading jetpT
is, on average, consistent with unity to better than 1%.

The multijet balance obtained from the selected events for
the anti-kt jet algorithm withR= 0.6 is shown in Figure40for
data and Monte Carlo simulation. The transverse momentum
of the recoil system ranges from 80 GeV up to 1.0 TeV for the
anti-kt jets withR= 0.6.

The multijet balance at lowpRecoil
T values shows a bias to-

wards values lower than one. This is a due to effects which
broaden the leading jet and thepRecoil

T , and is a direct conse-
quence of binning inpRecoil

T . This effect is observed already for
truth jets and is, after reconstruction, correctly reproduced by
the Monte Carlo simulation.

The data to Monte Carlo simulation ratio obtained from the
multijet balance distributions are shown in the lower part of
Figure40. The average value of the data to Monte Carlo sim-
ulation ratio is within 3% for transverse jet momenta up to the
TeV-region. The data to Monte Carlo simulation ratio provides
an estimate of the uncertainty on the leading jetpT scale.
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10.3.4 Estimate of the systematic uncertainty on the
multijet balance

Two main categories of systematic uncertainty have been con-
sidered:

1. The referencepjet
T of the recoil system.
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dots) with statistical uncertainties for anti-kt jets withR= 0.6.
The three bands are defined by the maximum shift of MJB
when the jets that compose the recoil system are shifted up and
down by the standard JES uncertainty, close-by jet and flavour
uncertainties. The black lines show the total uncertainty ob-
tained by adding in quadrature the individual uncertainties. The
lower part of the figure shows the relative uncertainty due tothe
scale uncertainty of the jets that compose the recoil system, de-
fined as the maximum relative shift with respect to the nominal
value, as a function ofpRecoil

T .

2. The MJB used to probe the leading jetpT, due to selection
criteria or an imperfect Monte Carlo simulation modelling
of the event.

The standard JES uncertainty has been obtained for isolated
jets. In the case of multijet events the additional uncertainty
due to close-by jets (see Section17) and the different flavour
composition (see Section18) should be taken into account.

The systematic uncertainty on the recoil system has been
calculated taking into account the following effects:

1. JES uncertainty: The JES uncertainty described in Sec-
tion 9 is applied to each jet composing the recoil system.

2. Close-by jet: Jets belonging to the recoil system are of-
ten produced with another jet nearby in the multijet envi-
ronment, and the jet response is dependent on the angu-
lar distance to the closest jet. The close-by jet uncertainty
has been estimated by studying thepT ratio between the
calorimeter jets and matched track jets as a function of
the jet transverse momentum for different jet isolation cuts.
This uncertainty is discussed in more detail in Section17.

3. Flavour composition of the recoil system:The JES un-
certainty is estimated for the average jet composition of the
inclusive jet sample. A discrepancy in the specific flavour
composition between data and Monte Carlo simulation may
result in an additional JES uncertainty. The procedure de-
scribed in Section18 is used to estimate this uncertainty.
It requires as input the average jet response and the flavour
composition uncertainty as a function of the jetpT. In the
samples used, the uncertainty on the jetpT due to flavour
composition is about 1%.

The systematic uncertainty on MJB due to the uncertainty
on pRecoil

T is estimated by calculating the multijet balance after
shifting thepT of all jets in the recoil system up and down by
the systematic uncertainties. The total systematic uncertainty
is obtained by summing in quadrature the contribution of each
source and is shown in Figure41 for anti-kt jets withR= 0.6.
The contributions of each single source are also shown sepa-
rately. The standard JES uncertainty is the dominant sourceof
uncertainty over the entirepjet

T range.
The second category of systematic uncertainties includes

sources that affect MJB used to probe the jet energy scale at
high pjet

T . These are discussed below.

Variable Nominal Range
JetpT 20 GeV 15-35 GeV

α 0.3 radian 0.1-0.4 radian
β 1.0 radian 0.5-1.5 radian

pJet2
T /pRecoil

T 0.6 0.4-0.7

Table 11: Nominal cut values and the range of variation used
to evaluate the systematic uncertainty on the selection criteria
for the multijet balance technique. Events below the valuesare
rejected.

In the following the various sources considered are dis-
cussed:

1. Selection criteria: The imperfect description given by the
Monte Carlo simulation for the variables used to select the
events might induce a systematic uncertainty on the multi-
jet balance. In order to evaluate this systematic uncertainty,
all relevant selection criteria are varied in a range where the
corresponding kinematic variables are not strongly biased
and can be examined with small enough statistical fluctua-
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Fig. 42: a) Single contributions as a function ofpRecoil
T to the relative uncertainty on MJB due to the sources considered in the

selection criteria and event modelling for anti-kt jets withR= 0.6 (various lines) and the total uncertainty (full line) obtained as
the squared sum of all uncertainties. b) Ratio of data to Monte Carlo simulation for the multijet balance (MJB) as a function of
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Source uncertainty
Jet energy scale of the recoil system 4%
Flavour composition ≃ 1%
Close-by jets 2%
JetpT threshold < 2%
α cut < 1%
β cut < 1%
pJet2

T /pRecoil
T cut 3%

Underlying event modelling 2%
Fragmentation modelling 1.5%
Pile-up < 1%

Table 12: Maximum values of the systematic uncertainties in
the wholepRecoil

T range for anti-kt jets withR= 0.4 orR= 0.6,
for all effects considered in the multijet balance analysis.

tions. The nominal values and the range of variations of the
selection criteria are listed in Table11.
The systematic uncertainty on MJB originating from these
sources is evaluated by calculating the multijet balance af-
ter varying the cut for each variable in the range mentioned
above. For each value of the selection criteria the ratio (r)
between the MJB values calculated from data and Monte
Carlo simulation is evaluated as a function of the recoil sys-
tem pT. The maximum deviation of ther with varied cuts
(rvaried) with respect to the nominal ratio (rnominal), being
expressed in the double ratio

rvaried/rnominal (32)

is assumed to represent the systematic uncertainty for the
source. A quadratic sum of the systematic uncertainties for
all sources is taken as the total systematic uncertainty.

2. Jet rapidity acceptance:The analysis uses only jets with
|y| < 2.8 to have a smaller jet energy scale uncertainty on
the recoil system. This selection, however, could cause an
additional systematic uncertainty, if the fraction of jetspro-
duced outside the rapidity range differs in the data and Monte
Carlo simulation. This effect is evaluated by studying MJB
(calculated as usual from only jets with|y|< 2.8) for events
with pRecoil

T > 80 GeV, as a function of the total transverse
energy (∑ET) summed over all jets with|y| < 4.5, in the
data and Monte Carlo simulation. The agreement between
the data and Monte Carlo simulation is satisfactory, and
MJB is stable over the entire∑ET range with the largest
deviations up to 3% with the largest deviations at relatively
high ∑ET. Since the majority of events have a very small
∑ET, this effect is considered to be negligible.

3. Soft physics modelling:Imperfect modelling of multiple
parton interactions, of fragmentation and of parton shower
radiation may affect the multijet balance in two ways. Firstly
the selection criteria may act differently on samples with
different modelling of the event topology. Secondly MJB
itself can be directly affected, since the modelling variation
acts differently on the leading jet and the recoil system.
The systematic uncertainty for each of these sources is es-
timated by evaluating the ratio between the MJB measured
using the nominal Monte Carlo simulation and an alterna-
tive Monte Carlo simulation sample where the particular



48 ATLAS collaboration: Jet measurement with the ATLAS detector

source of uncertainty is varied. As alternative Monte Carlo
simulation samples HERWIG++ and PYTHIA with the PE-
RUGIA tune are used.
In addition, the parameter controlling the centre-of-mass
energy dependence of the cut-off parameter determining
whether an event is produced via a matrix element or by
the underlying event model (PARP(90)) is lowered from
PYTHIA PARP(90)= 0.25 to PYTHIA PARP(90)= 0.16.
This change increases the energy in the forward region. The
systematic uncertainty introduced by these variations is at
most 2%.

4. Pile-up: Imperfect description of the pile-up may introduce
a systematic uncertainty. This effect is estimated by evalu-
ating the ratio

MJBpile−up/MJBnominal, (33)

where the nominal sample is simulated without pile-up col-
lisions. The systematic uncertainty due to pile-up is smaller
than 1% for the wholepjet

T range considered.

All systematic uncertainties due to the selection criteria,
event modelling and pile-up, and the total uncertainty obtained
by summing them in quadrature are shown as a function of
pRecoil

T in Figure42 for anti-kt jets withR= 0.6.
The final systematic uncertainty resulting from the uncer-

tainties of the recoil reference system and from the multijet
balance variable added in quadrature is presented in Figure42b
for anti-kt jets with R= 0.6. The total systematic uncertainty
amounts to about 4% for jets ofpjet

T = 1 TeV. At high trans-
verse momentum the main contribution to the systematic un-
certainty is due to the standard JES uncertainty of the EM+JES
scheme. The maximum values of the uncertainties in thepjet

T
range considered for each source are summarised in Table12.

10.3.5 Summary of the multijet balance results

The data sample collected in 2010 allows the validation of the
high-pT jet energy scale to within 5% up to 1 TeV for anti-kt
jets withR= 0.6 and up to 800 GeV for jets withR= 0.4 cal-
ibrated with the EM+JES scheme. In this range the statistical
uncertainty is roughly equivalent to, or smaller than, the sys-
tematic uncertainty.

10.4 Summary of JES validation using in situ
techniques

The jet energy calibration can be testedin situ using a well-
calibrated object as reference and comparing data to the PYTH-
IA Monte Carlo simulation tuned to ATLAS data [26]. The in
situ techniques have been discussed in the previous sections,
i.e. the comparison of jet calorimeter energy to the momen-
tum carried by tracks associated to a jet (Section10.1), the di-
rect transverse momentum balance between a jet and a photon
and the photon balance using the missing transverse momen-
tum projection technique (Section10.2) as well aspT balance
between a high-pT jet recoiling against a system of lowerpT
jets (Section10.3)

The comparison of data to Monte Carlo simulation for allin
situ techniques for the pseudorapidity range|η |< 1.2 is shown
in Figure43 together with the JES uncertainty region as esti-
mated from the single hadron response measurements and sys-
tematic variations of the Monte Carlo simulations. The results
of the in situ techniques support the estimate of the JES un-
certainty obtained using the independent method describedin
Section9.
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10.5 JES uncertainty from combination of in situ
techniques

The JES uncertainty can also be obtained by combining the re-
sults of thein situ techniques described in the previous sections.
In this combination the ability of the Monte Carlo simulation
to describe the data, the individual uncertainties of thein situ
techniques and their compatibility are considered.

10.5.1 Combination technique

The requirements for combining the uncertainties from the in-
dividual in situ techniques are:

1. Propagate all uncertainties of the individualin situ tech-
niques to the final uncertainty.

2. Minimise biases on the shapes of the measured distribu-
tions, i.e. on thepT dependence of the data to Monte Carlo
simulation ratio.

3. Optimise the uncertainties on the average while respecting
the two previous requirements. This is equivalent to min-
imise theχ2 between the average and the individual mea-
surements.
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The combination proceeds in the following steps:

1. Toy Monte Carlo method: Monte Carlo pseudo-experi-
ments are created that represent the ensemble of measure-
ments and contain the full data treatment chain including
interpolation and averaging (as described in the following
steps). These pseudo-experiments are used to consistently
propagate all uncertainties into the evaluation of the aver-
age. The pseudo-experiments represent the full list of avail-
able measurements and take into account all known corre-
lations.

2. Interpolation method: A linear interpolation is used to ob-
tain the nominal values25. The final interpolation function
per measurement, within thepT range, is discretised into
small (1 GeV) bins for the purpose of averaging.

3. Averaging: The data are averaged taking into account all
known correlations to minimise the spread in the average
measured from the Monte Carlo pseudo-experiments.

The combination of thein situcalibration data is performed
using the software package HVPTools [67]. The systematic un-
certainties are introduced in HVPTools for each component as
an algebraic function ofpT or as a numerical value for each
data point. The systematic uncertainties belonging to the same
source are taken to be fully correlated throughout all measure-
ments affected.

The HVPTools package transforms thein situ data and as-
sociated statistical and systematic covariance matrices into fine-
grainedpT bins, taking into account the best knowledge of
the correlations between the points within eachin situ mea-
surement. Statistical and systematic correlations between the
measurements could also be included, but as the different mea-
surements use independent events, these correlations are ne-
glected26. The covariance matrices are obtained by assuming
systematic uncertainties corresponding to the same sourceare
fully correlated. Statistical uncertainties, taken as independent
between the data points, are added in quadrature to these ma-
trices.

The interpolated measurements from differentin situmeth-
ods contributing to a given momentum bin are averaged tak-
ing correlations between measurement points into account.The
measurements are performed at differentpjet

T values and use
different binning (point densities)27.

To derive properaveraging weightsfor eachin situmethod,
wider averaging regions28 are defined. These regions are con-
structed such that allin situmethod covering the corresponding

25 A second order polynomial interpolation provides in principle a
better shape description. However, due to the smooth variations in the
results of eachin situ measurement, the differences between the re-
sults obtained with the two interpolation procedures are found to be
negligible.
26 Care was taken to avoid an overlap of the multijet balance and

γ-jet result. Allowing for an overlap would have required taking into
account the (strong) correlations, without a potential gain in precision.
27 The method avoids replacing missing information in case of a

lower point density (wider binning) by extrapolating information from
the polynomial interpolation.
28 For example, when averaging two measurements with unequal

point spacing, a useful averaging region would be defined by the mea-
surement of thein situ method with the larger point spacing, and the

pT range have at least one measurement inside. The averaging
regions are used to compute weights for thein situ methods,
which are later applied in the bin-wise average in fine 1 GeV
bins.

The averaging weights for eachin situ method are com-
puted as follows:

1. The generation of pseudo-experiments fluctuates the data
points around the original measurements taking into ac-
count all known correlations. The polynomial interpolation
is redone for each pseudo-experiment for eachin situmethod.

2. For eachin situmeasurement and each Monte Carlo pseudo-
experiment the new bin content for each wider region is cal-
culated from the integral of the interpolating polynomials.

3. The contents of the wide bins are treated as new measure-
ments and are again interpolated with polynomials. The in-
terpolation function is used to obtain new measurements in
small (1 GeV) bins for eachin situ method in thepjet

T range
covered by it.

4. In each small bin a covariance matrix (diagonal here) be-
tween the measurements of eachin situ method is com-
puted. Using this matrix the averaging weights are obtained
by χ2 minimisation.

For the averaging weights the procedure using the large av-
eraging regions as an intermediate step is important in order to
perform a meaningful comparison of the precision of the dif-
ferentin situmethods. The average is computed avoiding shape
biases which would come from the use of large bins. Therefore
at this next step the fine 1 GeV bins are obtained directly from
the interpolation of the original bins.

The bin-wise average between measurements is computed
as follows:

1. The generation of Monte Carlo pseudo-experiments fluc-
tuates the data points around the original measurements
taking into account all known correlations. The polyno-
mial interpolation is redone for each generated Monte Carlo
pseudo-experiment for eachin situmethod.

2. For each generated pseudo-experiment, small (1 GeV) bins
are filled for each measurement in the momentum intervals
covered by thatin situ method, using the polynomial inter-
polation.

3. The average and its uncertainty are computed in each small
bin using the weights previously obtained. This will be dis-
played as a band with the central value given by the average
while the total uncertainty on the average is represent by the
band width.

4. The covariance matrix among the measurements is com-
puted in each small bin.

5. χ2 rescaling corrections are computed for each bin as fol-
lows: if the χ2 value of a bin-wise average exceeds the
number of degrees of freedom (ndof), the uncertainty on the
average is rescaled by

√

χ2/ndof to account for inconsis-
tencies29.

points of the other measurement would be statistically merged before
computing the averaging weights.
29 Such (small) inconsistencies are seen in the comparison of theγ-

jet and track jet results in onepjet
T bin.
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The final systematic uncertainty for a given jet momentum
is (conservatively) estimated by the maximum deviation be-
tween the average band and unity. The central value (measured
bias) and the uncertainty on the average measurement are hence
taken into account. If a correction for the measured bias were
performed, only the relative uncertainty on the average would
affect the final JES calibration.

A smoothing procedure, using a variable-size sliding inter-
val with a Gaussian kernel, is applied to the systematic uncer-
tainty. It removes spikes due to statistical fluctuations inthe
measurements, as well as discontinuities at the first and/orlast
point in a given measurement.
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Fig. 44: Average jet response ratio of the data to the Monte
Carlo simulation for jets with|η | < 1.2 as a function of the
transverse jet momentumpT for threein situ techniques. The
error displays the statistical and systematic uncertainties added
in quadrature. Shown are the results for anti-kt jets withR= 0.6
calibrated with the EM+JES scheme. The light band indicates
the total uncertainty from the combination of thein situ tech-
niques. The inner dark band indicates the statistical component.

10.5.2 Combination results

Following the method described in the previous section the JES
uncertainty for jets with|η |< 1.2 can be obtained. The multijet
balance analysis is repeated for jets with|η | < 1.2. and the
uncertainty for low-pT jets is taken from theγ-jet analysis. The
resulting uncertainty is larger than the one in Section10.3.

Figure44 shows the ratio of the jet response in data and
Monte Carlo simulation as a function of the transverse jet mo-
mentum for the threein situ techniques using as reference ob-
jects photons (γ-jet), a system of low-energetic jets (multijet) or
the transverse momentum of all tracks associated to jets (track
jet). The errors shown for eachin situ technique are the statis-
tical and systematic uncertainties added in quadrature.

The results from the track jets cover the widestpjet
T range

from the lowest to the highestpjet
T values. Compared to theγ-jet
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Fig. 45: Weight carried by eachin situ technique in the combi-
nation to derive the jet energy scale uncertainty as a function of
the jet transverse momentumpjet

T for anti-kt jets with R= 0.6
calibrated with the EM+JES scheme.
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Fig. 46: Jet energy scale uncertainty from the combination of
in situ techniques (solid line) as a function of the jet trans-
verse momentumpT for anti-kt jets with R= 0.6 calibrated
with the EM+JES scheme for|η |< 1.2. The dashed line shows
the JES uncertainty that could have been achieved, ifin situ
techniques had been used to recalibrate the jets. For compari-
son, the shaded band indicates the JES uncertainties as derived
from the single hadron response measurements and systematic
Monte Carlo variations for|η |< 0.3.

results they have a relatively large systematic uncertainty. The
γ-jet results cover apjet

T range up to about 300 GeV. From this
point onwards the multijet balance method helps to constrain
the JES uncertainty.

Figure45 shows the contribution of eachin situ technique
to the total JES uncertainty in form of their weight. In the re-
gion 30. pjet

T . 300 GeV theγ-jet results make the highest
contribution to the overall JES uncertainty determination. The
contribution is about 80% atpjet

T = 30 GeV and decreases to
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about 60% atpjet
T = 300 GeV. At the lowestpjet

T the method

based on tracks determines the JES uncertainty. At aboutpjet
T =

300 GeV theγ-jet results and the ones based on tracks have
an about equal contribution. Abovepjet

T = 300 GeV the results
based on tracks have the highest contribution to the JES uncer-
tainty. In this region the multijet balance contributes to the JES
uncertainty to about 20%. For the highestpjet

T only the multijet
balance is used to determine the JES uncertainty.

The final JES uncertainty obtained from the combination
of the in situ techniques is shown in Figure46. The JES un-
certainty is about 9% atpjet

T = 20 GeV and decreases to about

2− 3% for 50≤ pjet
T < 200 GeV. At the lowestpjet

T the sys-
tematic uncertainty is determined by thein situ method based
on tracks, for which the data have a higher central value than
the Monte Carlo simulation. At 250 GeV, the uncertainty in-
creases because theγ-jet results are 5% below unity and there-
fore pull the central value of the average down as shown in Fig-
ure44. Moreover, theγ-jet and the track methods give differ-
ent results. While for all otherpjet

T values theχ2/ndof is within
0.2≤ χ2/ndof < 0.8, it rises toχ2/ndof = 2 at 250 GeV.

For pjet
T > 350 GeV the multijet balance contributes to the

uncertainty and the resulting uncertainty is about 4− 5% up
to 700 GeV. At the highest reachablepjet

T the JES uncertainty
increases to 10%.

Figure46also compares the JES uncertainty obtained from
a combination ofin situ techniques to the one derived from
the single hadron response measurements and the systematic
Monte Carlo simulation variations (see Section9). The in situ
JES uncertainty is larger than the standard JES uncertaintyin
mostpjet

T regions. It is similar in the region 30. pjet
T . 150 GeV.

Figure46also shows the JES uncertainty, that could have been
achieved, if thein situ techniques had been used to correct the
jet energy scale. In this case the JES uncertainty obtained from
a combination ofin situ techniques would be slightly smaller
than the standard JES uncertainty over a widepjet

T range of
30−700 GeV.

11 Jet energy calibration based on global
jet properties

11.1 Global sequential technique

The global sequential calibration (GS) technique is a multi-
variate extension of the EM+JES calibration. Any variablex
that is correlated with the detector response to the jet can be
used. A multiplicative correction to the jet energy measurement
is derived by inverting the calibrated jet responseR as a func-
tion of this variable:

C(x) = R
−1(x)/〈R−1(x)〉, (34)

where〈R−1(x)〉 denotes the average inverse jet response. After
this correction, the remaining dependence of the response on
the variablex is removed without changing the average energy,
resulting in a reduction of the spread of the reconstructed jet
energy and, thus, an improvement in resolution.

Several variables can be used sequentially to achieve the
optimal resolution. This procedure requires that the correction
for a given variablexi (Ci) is calculated using jets to which
the correction for the previous variablexi−1 (Ci−1) has already
been applied. The jet transverse momentum after correction
numberi is given by :

pi
T =Ci(xi)× pi−1

T =Ci(xi)×Ci−1(xi−1)× pi−2
T = ... (35)

11.2 Properties derived from the internal jet
structure

The jet properties used in the GS calibration characterise the
longitudinal and transverse topology of the energy deposited by
the jet. A large energy deposit in the hadronic layers indicates,
for example, a larger hadronic component of the jet implying
an on average lower detector response in the non-compensating
ATLAS calorimeter. Close to a crack region, the transverse ex-
tent of the jet is correlated to how many particles of the jet hit
the poorly instrumented transition region.

Each of these jet properties may be sensitive to several ef-
fects: energy deposited in the dead material, non-compensation
of the calorimeter, or unmeasured energy due to the noise sup-
pression. In the GS calibration, no attempt is made to separate
these effects. The jet properties help to significantly improve
the jet energy resolution, and implicitly correct on average for
these effects.

The longitudinal structure of the jet30 is characterised by
the fractional energy deposited in the different layers of the
calorimeters before any jet calibration is applied (“layerfrac-
tions”) :

flayer=
Elayer

EM

Ejet
EM

, (36)

whereEjet
EM is the jet energy at the EM scale andElayer

EM the en-
ergy deposited in the layer of interest, also defined at the EM
scale. The transverse jet structure can be characterised bythe
jet width defined as:

width=

∑
i

pi
T ∆Ri,jet

∑
i

pi
T

, (37)

where the sums are over the jet constituents (i) and pT is the
transverse constituent momentum.∆Ri,jet is the distance inη ×
φ -space between the jet constituents and the jet axis. In the
following study topo-clusters are used as jet constituents.

11.3 Derivation of the global sequential correction

The GS corrections are determined in jet|η | bins of width 0.1
from |η | = 0 to |η | = 4.5. In each bin, the jet properties that
provide the largest improvement in jet energy resolution have
been selected in an empirical way. The chosen jet properties
and the order in which they are applied are summarised in Ta-
ble 13. The improvement in resolution obtained is found to be
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|η| region Corr 1 Corr 2 Corr 3 Corr 4
|η|< 1.2 fTile0 fLAr3 fPS width

1.2≤ |η|< 1.4 fTile0 width
1.4≤ |η|< 1.7 fTile0 fHEC0 width
1.7≤ |η|< 3.0 fHEC0 width
3.0≤ |η|< 3.2 fLAr3 width
3.2≤ |η|< 3.4 fLAr3
3.4≤ |η|< 3.5 fLAr3 width
3.5≤ |η|< 3.8 fFCal1 width
3.8≤ |η|< 4.5 fFCal1

Table 13: Sequence of corrections in the GS calibration scheme
in each|η | region.

independent of which property is used first to derive a correc-
tion.

In the following section, “GSL” refers to the calibration ap-
plied up to the third correction (containing only the calorimeter
layer fraction corrections) and “GS” to the calibration applied
up to the last correction (including the width correction).

12 Jet energy scale uncertainties for jet
calibrations based on global jet properties

The JES uncertainties in the global sequential jet calibration
scheme are evaluated using the transverse momentum balance
in events with only two jets at high transverse momentum.

By construction the GS calibration scheme preserves the
energy scale of the EM+JES calibration scheme for the event
sample from which the corrections have been derived. Possible
changes of the JES in event samples with different topologies
or jet flavours are studied in Section19.

12.1 Validation of the global sequential calibration
using dijet events

12.1.1 Dijet balance method

The GS corrections can be derived from dijet events using the
dijet balance method. This method is a tag-and-probe technique
exploiting thepT imbalance between two back-to-back jets. In
contrast to the method presented in Section9.6, a correction for
a truth jet imbalance is applied.

Dijet events are selected by requiring that the two highest
pT jets are back-to-back (∆φ > 2.8 radian). The two jets are
required to be in the same pseudorapidity region.

The jet whose response dependence on the layer fractions
or width is studied, is referred to as the probe jet, while the
other is referred to as the reference jet. The average transverse
momentum of the probe and the reference jet is defined as

pavg
T = (pprobe

T + pref
T )/2. (38)

Since the choice of the reference jet and the probe jet is arbi-
trary, events are always used twice, inverting the roles of refer-
ence and probe.

30 Here, longitudinal refers to the direction along the jet axis.

The GS corrections are measured through the asymmetry
variable defined as:

A(x) =
pprobe

T (x)− pref
T

pavg
T (x)

, (39)

wherex is any of the properties used in the GS calibration (see
Table13). Both pprobe

T andpref
T depend onx, but the dependence

is explicitly written only for the probe jet, because the jetprop-
erty used to build the correction belongs to the probe jet.

The probe and the reference jet transverse momenta are de-
fined with the same calibration. When computing correction
factor i, they are both corrected up to the(i − 1)th correction
(see Section11.1). The mean response as a function ofx is
given by:

〈R(x)〉= 1+ 〈A(x)〉/2
1−〈A(x)〉/2

. (40)

The measurement of the response through the asymmetry
defined in Equation39 assumes that the asymmetry is zero.
This is true on average, but not when computed in bins ofx. The
measured asymmetryA(x) is therefore a mixture of detector
effects and imbalance at the level of the generated particles. In
order to remove the effect of imbalance at the level of generated
particles, a new asymmetry is defined:

A′(x) = A(x)−Atrue(x), (41)

whereA(x) is given by Equation39andAtrue(x) is:

Atrue(x) =
pprobe

T,true(x)− pref
T,true

pavg
T,true(x)

, (42)

where pavg
T,true(x) = (pprobe

T,true(x) + pref
T,true)/2. The variableAtrue

denotes the asymmetry for truth jets (or true asymmetry) and
is calculated by matching reconstructed jets to truth jets.The
asymmetryAtrue is determined in the Monte Carlo simulation.
When usingA′(x) instead ofA(x) in Equation40, the effects of
imbalance at the level of generated particles are removed and
the resulting response depends only on detector effects. Ac-
counting for the truth jet imbalance is particularly important
for the corrections that depend on the energy in the presampler
and the jet width.

12.1.2 Validation of the dijet balance method in the
Monte Carlo simulation

The dijet balance method can be checked in two different ways.
The first uses the default PYTHIA event sample with the

MC10 tune and compares the response calculated using Equa-
tion 40to the response calculated using the truth jets. Figure47
shows this comparison for jets after the EM+JES calibrationfor
80≤ pjet

T < 110 GeV and|η |< 0.6. The results obtained using
the asymmetry defined as in Equation39and when incorporat-
ing the true asymmetry are shown. If the true asymmetry were
ignored, the calculated response would be different from the the
true jet response by up to 4% for high values of the jet width
and the presampler fraction in this particularpjet

T bin. This dif-

ference increases with decreasingpjet
T reaching 8% for jets of
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Fig. 47: Average jet response calculated using truth jets (full circles), using the reconstructed asymmetryA (open circles), and
usingA−Atrue (triangles) as a function of the calorimeter layer energy fraction fPS (a), fLAr3 (b), fTile0 (c) and the lateral jet
width (d) in the PYTHIA MC10 sample. The lower part of each figure shows the differences between the response calculated
using the truth jet and the one calculated with the dijet balance method withoutAtrue (full triangles) and withAtrue (open circles).
Anti-kt jets withR= 0.6 calibrated with the EM+JES scheme are used and have 80≤ pjet

T < 110 GeV and|η |< 0.6.

pjet
T ≈ 20 GeV. These differences are reduced to less than 2%

when a correction forAtrue is used. Similar results are found in
the otherpjet

T and|η | bins.
The second test compares the true asymmetry between dif-

ferent simulated samples. Figure48shows the true asymmetry
as a function offPS, fLAr3, fTile0 and the jet width in the cen-
tral region for 40≤ pjet

T < 60 GeV for various event samples:
the reference PYTHIA sample with the MC10 tune, the PYTH-
IA sample with the PERUGIA2010 tune and the HERWIG++
sample. The last two samples test the sensitivity to the descrip-
tion of soft physics or the specifics of the hadronisation process
that could cause differences in the truth jet imbalance. Thetrue

asymmetry differs by no more than 5% in this particularpjet
T

andη bin. Forpjet
T > 60 GeV and other|η | bins, the true asym-

metries differ by less than 2%. At lowpjet
T (below 40 GeV in

the barrel), the∆φ cut, in particular combined with the small
PERUGIA2010 and HERWIG++ samples yield statistical uncer-
tainties of the order of 5%.

In summary, the dijet balance method allows the determina-
tion of the response as a function of the layer fractions and the
jet width over the entire transverse jet momentum and pseudo-
rapidity ranges. This method can therefore be applied to data to
validate the corrections derived in the Monte Carlo simulation.
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Fig. 48: Average asymmetry for truth jets obtained from various Monte Carlo event generators and tunes (PYTHIA with the
MC10 and the PERUGIA2010 tune and HERWIG++) as a function of the calorimeter layer fractionfPS (a), fLAr3 (b), fTile0
(c) and the lateral jet width (d) of the probe jet. Anti-kt jets withR= 0.6 calibrated with the EM+JES scheme are used and have
40≤ pavg

T < 60 GeV and|η | < 0.6. The distributions of the jet properties are superimposedon each figure. The lower part of
each figure shows the differences between PYTHIA MC10 and the other Monte Carlo generators.

12.1.3 Differences between data based and Monte Carlo
based corrections

Figure49shows the difference between the reconstructed asym-
metry and the true asymmetry for the PYTHIA MC10 sample
as a function offPS, fLAr3, fTile0 and width for jets with
80≤ pjet

T < 110 GeV and|η | < 0.6. The reconstructed asym-
metries in data and the PYTHIA MC10 sample are compatible
within statistical uncertainties. Similar agreement is found in
the otherη andpjet

T regions.
The asymmetries as shown in Figure49 are used to derive

data based corrections. The difference between data and Monte

Carlo simulation provides a quantitative measure of the addi-
tional jet energy scale uncertainty introduced by the GS cali-
bration. After the first two corrections in Table13 the response
changes by less than 1% for data based and Monte Carlo based
corrections. The response changes by an additional 1% to 2%
after the third (Presampler) and the fourth (width) corrections
are applied in the barrel. The agreement in the endcap is within
2% (4%) forptruth

T > 60 GeV (< 60 GeV).

Data based corrections are also derived with true asymme-
tries coming from the PERUGIA2010 and HERWIG++ samples.
These corrections are then applied to the reference PYTHIA

MC10 sample and the response yielded is compared to the re-
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Fig. 49: Difference between the average reconstructed asymmetry and the average true asymmetry in data (open circles) and
in the reference PYTHIA MC10 sample (full circles) as a function of the calorimeter layer fractionsfPS (a), fLAr3 (b), fTile0
(c) and the lateral jet width (d). The lower part of each figureshows the differences between data and Monte Carlo simulation.
Anti-kt jets withR= 0.6 calibrated with the EM+JES scheme are used and have 80≤ pjet

T < 110 GeV and|η |< 0.6.

sponse obtained after applying the reference data based cor-
rections using the true asymmetry from the reference PYTHIA

MC10 sample. The difference in response is found to be lower
than 0.5% in all thepjet

T and|η | bins where the statistical un-
certainty is small enough.

As a further cross-check the same GS corrections (here the
Monte Carlo based ones) are applied to both data and Monte
Carlo simulation samples. The difference between data and sim-
ulation reflects differences in the jet properties used as input to
the GS calibration in the inclusive samples.

Figure50shows the mean value offPS, fLAr3, fTile0 and
width as a function ofpjet

T in the barrel for data and various
Monte Carlo simulation samples: the nominal PYTHIA MC10,

PYTHIA PERUGIA2010 and HERWIG++. The agreement for
fTile0 and fPS between data and PYTHIA with the MC10 tune
is within 5% over the entirepjet

T range. ForfLAr3, this agree-

ment is also within 5% except for 20≤ pjet
T < 30 GeV where

a disagreement of 7.5% is observed. A larger disagreement is
found for the jet width. Jets are 5% (10%) wider in data than in
Monte Carlo simulation at 200 GeV (600 GeV).

The standard deviations of thefLAr3 and thefPS distribu-
tions show also agreement within 5% between data and PYTH-
IA MC10 simulation for fLAr3 and fPS over the entirepjet

T
range. ForfTile0 and width, disagreements of 10% are ob-
served in somepjet

T bins. Similar results are found in the other
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Fig. 50: Mean value of the jet calorimeter layer fractionsfPS (a), fLAr3 (b), fTile0 (c) and the jet width (d) as a function ofpjet
T

for |η | < 0.6 for data and various Monte Carlo simulations. Anti-kt jets withR= 0.6 calibrated with the EM+JES scheme are
used. The ratio of data to Monte Carlo simulation is shown in the lower part of each figure.

|η | bins for the calorimeter layer fractions and the jet width,
except for 2.1≤ |η | < 2.8, where the agreement for the width
is slightly worse than in the other eta ranges.

Figure50shows that PYTHIA with the MC10 and the PYTH-
IA PERUGIA2010 tunes agree to within a few per cent. The
agreement of the HERWIG sample with data is as good as for
the other samples forfLAr3 and fTile0, except for 20≤ pjet

T <
30 GeV. ForfPS and the width, disagreements of 5−10% are
observed between HERWIG++ and the other samples forpjet

T <

60 GeV. Forpjet
T > 160 GeV, HERWIG++ is found to describe

the width observed in data better than the other samples.

The systematic uncertainty can be quantitatively estimated
by comparing how the correction coefficientsEjet

GS/Ejet
EM+JES

differ between data and Monte Carlo simulation. The correc-
tion coefficient as a function ofpjet

T in the barrel calorimeter in
data and in the PYTHIA MC10 sample after GSL and GS cor-
rections are shown in Figure51a and Figure51b. The ratios of
data to Monte Carlo simulation are shown in the lower part of
each figure. Figure51c and Figure51d show the same quantity,
but as a function ofη for 80≤ pjet

T < 110 GeV.

Deviations from unity in the ratios between data and Monte
Carlo simulation as shown in Figure51 represent the system-
atic uncertainty associated to the GS corrections. This uncer-
tainty is added in quadrature to the EM+JES uncertainty. The
results for all thepjet

T andη ranges are the following:
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Fig. 51: Average jet energy after GSL (a,c) and GS (b,d) corrections divided by the average jet energy after the EM+JES calibra-
tion as a function ofpjet

T (a,b) in the calorimeter barrel and as a function ofη for 80≤ pjet
T < 100 GeV (c,d) in data and the Monte

Carlo simulation. Anti-kt jets withR= 0.6 are used. The double ratio[EGS(GSL)/EEM+JES]Data/[EGS(GSL)/EEM+JES]MC is shown
in the lower part of each figure.

For 20≤ pjet
T <30 GeV and 0≤ |η |< 2.1, the data to Monte

Carlo ratio varies from 0.5% to 0.7% depending on the|η | re-
gion. Forpjet

T > 30 GeV and 0≤ |η | < 2.1, the uncertainty is
lower than 0.5%. For 2.1 ≤ |η | < 2.8, the the data to Monte
Carlo ratio varies from 0.4% to 1% depending on thepjet

T bin.

For a givenpjet
T , the uncertainty is higher for 2.1≤ |η | < 2.8

than for 0≤ |η |< 2.1, because of the poorer description of the
jet width. For 2.1≤ |η | < 2.8 the GSL scheme shows slightly
larger difference than the GS scheme. In general, the uncer-
tainty on the data to Monte Carlo ratio is lower than 1% for
20≤ pjet

T < 800 GeV and 0≤ |η |< 2.8.

The uncertainty coming from the imperfect description of
the jet properties and the differences between data based and
Monte Carlo simulation based corrections presented in Sec-
tion 12.1are not independent. The average jet response after
the GS calibration in eachpjet

T andη bin, which depends on
both the distribution of the properties and the GS corrections,
is close to the response after the EM+JES calibration.

A change in the distribution of a jet property therefore trans-
lates into a change in the GS correction as a function of this
property such that the average jet response stays the same inthe
sample used to derive the correction. The differences described
in Section12.1are therefore partly caused by differences in the
jet properties.
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12.2 Sensitivity of the global sequential calibration
to pile-up

An important feature of the GS calibration is its robustness
when applied in the presence of pile-up interactions, which
translates into small variations in the size of each of the correc-
tions and the distributions of the jet properties. The corrections
derived in the sample without pile-up are directly applicable to
the sample with pile-up with only a small additional effect on
the jet energy scale.

The difference between the response after each GS cor-
rection and the response after the EM+JES calibration in the
Monte Carlo simulation samples, after the offset correction as
described in Section8.1 is applied, changed by less than 1%
for ptruth

T > 30 GeV after each of the GS corrections, and by
2% for lowerptruth

T , when samples with and without pile-up are
compared. These variations are smaller than the uncertainty on
the jet energy in the absence of pile-up over the entirepT range,
thus demonstrating the robustness of the additional corrections
with respect to pile-up.

12.3 Summary on the JES uncertainty for the global
sequential calibration

The systematic uncertainty on the global sequential calibration
in the inclusive jet sample has been evaluated. It is found to
be lower than 1% for 0≤ |η | < 2.8 and 20≤ pjet

T < 800 GeV.
This uncertainty is added in quadrature to the JES based on the
EM+JES calibration scheme.

13 Jet calibration schemes based on cell
energy weighting

Besides the simple EM+JES calibration scheme, ATLAS has
developed several calibration schemes [8] with different lev-
els of complexity and different sensitivity to systematic effects.
The EM+JES calibration facilitates the evaluation of system-
atic uncertainties for the early analyses, but the energy resolu-
tion is rather poor and it exhibits a rather high sensitivityof the
jet response to the flavour of the parton inducing the jet. These
aspects can be improved using more sophisticated calibrations.

The ATLAS calorimeters are non-compensating and give a
lower response to hadrons than to electrons or photons. Fur-
thermore reconstruction inefficiencies and energy deposits out-
side the calorimeters lower the response to both electromag-
netic and hadronic particles, but in different ways. The main
motivation for calibration schemes based on cell energy density
is to improve the jet energy resolution by weighting differently
energy deposits from electromagnetic and hadronic showers.
The calorimeter cell energy density is a good indicator, since
the radiation lengthX0 is much smaller than the hadronic inter-
action lengthλI .

Two calibration schemes implementing this idea have been
developed:

1. For the global calorimeter cell energy density calibration
(GCW) the weights depend on the cell energy density and
are obtained from Monte Carlo simulation by optimising

Calorimeter Layer
Nb. E/V Poly. Degree

bins on E/V
PresamplerB 1 1
PresamplerE 1 1

EMB1 1 1
EME1 1 1

EMB2 andEMB3 with |η|< 0.8 16 4
EMB2 andEMB3 with |η| ≥ 0.8 16 4
EME2 andEME3 with |η|< 2.5 16 4
EME2 andEME3 with |η| ≥ 2.5 16 4

TileBar0, TileBar1 andTileBar2 16 4
TileExt0, TileExt1 andTileExt2 16 4

HEC0-3 with |η|< 2.5 16 4
HEC0-3 with |η| ≥ 2.5 16 4

FCAL0 16 3
FCAL1 andFCAL2 16 3

Cryo term 1 1
Gap 1 1
Scint 1 1

Table 14: Number of energy density bins per calorimeter layer
used in the GCW jet calibration scheme and the degree of the
polynomial function used in the weight parametrisation.

the reconstructed jet energy resolution with respect to the
true jet energy. This calibration is called “global” because
the jet is calibrated as a whole and, furthermore, the weights
that depend on the calorimeter cell energy density are de-
rived such that fluctuations in the measurement of the jet
energy are minimised and this minimisation corrects for all
effects at once.

2. For the local cluster calibration (LCW) multiple variables
at the calorimeter cell and the topo-cluster levels are con-
sidered in a modular approach treating the various effects
of non-compensation, dead material deposits and out-of-
cluster deposits independently. The corrections are obtained
from simulations of charged and neutral particles. The topo-
clusters in the calorimeter are calibrated “locally”, without
considering the jet context, and jets are then reconstructed
directly from calibrated topo-clusters.

Final jet energy scale corrections also need to be applied
to the GCW and LCW calibrated jets, but they are numeri-
cally smaller than the ones for the EM+JES calibration scheme.
These corrections are derived with the same procedure as de-
scribed in Section8. The resulting jets are referred to as cali-
brated with GCW+JES and LCW+JES schemes.

13.1 Global cell energy density weighting calibration

This calibration scheme (GCW) attempts to assign a larger cell-
level weight to hadronic energy depositions in order to com-
pensate for the different calorimeter response to hadronicand
electromagnetic energy depositions. The weights also compen-
sate for energy losses in the dead material.

In this scheme, jets are first found from topo-clusters or
calorimeter towers at the EM scale. Secondly the energies of
the calorimeter cells forming jets are weighted according to
their energy density. Finally, a JES correction is derived from
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the sum of the weighted energy in the calorimeter cells associ-
ated to the jet as a function of the jetpT and pseudorapidity.

The weights are derived using Monte Carlo simulation in-
formation. A reconstructed jet is first matched to the nearest
truth jet requiringRmin < 0.3. No second truth jet should be
within a distance of∆R= 1. The nearest truth jet should have
a transverse energyET > 20 GeV. The transverse energy of the
reconstructed jet should beEEM

T > 5 GeV, whereEEM
T is the

transverse energy of the reconstructed jet measured at the elec-
tromagnetic scale.

For each jet, calorimeter cells are identified with an integer
numberi denoting a calorimeter layer or a group of layers in
the ATLAS calorimeters. Afterwards, each cell is classifiedac-
cording to its energy density which is defined as the calorime-
ter cell energy measured at the electromagnetic scale divided
by the geometrical cell volume (E/V).

A weightwi j is introduced for each calorimeter cell within
a layeri at a certain energy density binj. The cells are classified
in up to 16E/V bins according to the following formula:

j =
ln E/ GeV

V/mm3

ln2
+26, (43)

where j is an integer number between 0 and 15. Calorimeter
cells in the presampler, the first layer of the electromagnetic
calorimeter, the gap and crack scintillators (Gap,Scint) are ex-
cluded from this classification. A constant weight is applied to
these cells independent of theirE/V. The cryostat (Cryo) term
is computed as the geometrical average of the energy deposited
in the last layer of the electromagnetic barrelLAr calorimeter
and the first layer of theTile calorimeter. This gives a good
estimate of the energy loss in the material between theLAr and
theTile calorimeters.

In the case of the seven layers without energy density seg-
mentation the weights are denoted byvi . Table14 shows the
number of energy density bins for each calorimeter layer.

The jet energy is then calculated as:

Ejet
GCW =

10

∑
i=1

16

∑
j=1

wi j Ei j +
7

∑
i=1

vi Ei , (44)

wherewi j (vi) are the GCW calibration constants. In order to
reduce the number of degrees of freedom, for a given layeri,
the energy density dependence of each elementwi j is parame-
terised by a common polynomial function of third and fourth
degree depending on the layer (see Table14). In this way the
number of free parameters used to calibrate any jet is reduced
from 167 to 45.

The weights are computed by minimising the following
function:

χ2 =
1

Njet

Njet

∑
jet=1

(

Ejet
GCW

Ejet
truth

−1

)2

, (45)

whereNjet is the total number of jets in the Monte Carlo sam-
ple used. This procedure provides weights that minimise the
jet energy resolution. The mathematical bias on the mean jet
energy that is introduced in particular at low jet energies (see
Ref. [68]) is corrected by an additional jet energy calibration
following the method described in Section8 and discussed in
Section13.3.

13.2 Local cluster weighting calibration

This calibration scheme [16,69] corrects locally the topo-clust-
ers in the calorimeters independent of any jet context. The cal-
ibration starts by classifying topo-clusters as mainly electro-
magnetic or hadronic depending on cluster shape variables [57].
The cluster shape variables characterise the topology of the en-
ergy deposits of electromagnetic or hadronic showers and are
defined as observables derived from calorimeter cells with pos-
itive energy in the cluster and the cluster energy. All weights
depend on this classification and both hadronic and electromag-
netic weights are applied to each cluster.

13.2.1 Barycentre of the longitudinal cluster depth

The barycentre of the longitudinal depth of the topo-cluster
(λcentre) is defined as the distance along the shower axis from
the front of the calorimeter to the shower centre. The shower
centre has coordinates:

〈i〉= ∑k|Ek>0Ek ik

∑k|Ek>0 Ek
, (46)

with i taking values of the spatial coordinatesx,y,z andEk de-
noting the energy in the calorimeter cellk. Only calorimeter
cells with positive energy are used.

The shower axis is determined from the spatial correlation
matrix of all cells in the topo-cluster with positive energies:

Ci j =
∑k|Ek>0E2

k (ik−〈i〉)( jk−〈 j〉)
∑k|Ek>0

E2
k

, (47)

with i, j = x,y,z. The shower axis is the eigenvector of this ma-
trix closest to the direction joining the interaction pointand the
shower centre.

13.2.2 Cluster isolation

The cluster isolation is defined as the ratio of the number of
unclustered calorimeter cells31 that are neighbours of a given
topo-cluster to the number of all neighbouring cells. The neigh-
bourhood relation is defined in two dimensions, i.e. within the
individual calorimeter layer32.

After calculating the cluster isolation for each individual
calorimeter layer, the final cluster isolation variable is obtained
by weighting the individual layer cell ratios by the energy frac-
tions of the topo-cluster in these layers. This assures thatthe
isolation is evaluated where the topo-cluster has most of its en-
ergy.

The cluster isolation is zero for topo-clusters where all neigh-
bouring calorimeter cells in each layer are inside other topo-
clusters and one for topo-clusters with no neighbouring cell in-
side any other topo-cluster.

31 Unclustered calorimeter cells that are not contained in anytopo-
cluster.
32 In general, topo-clusters are formed in a three dimensionalspace

defined byη, φ and the calorimeter depth.
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Fig. 52: Average simulated jet energy response at the GCW (a)and the LCW (b) scale in bins of the GCW+JES and LCW+JES
calibrated jet energy and as a function of the detector pseudorapidity|ηdet|.

13.2.3 Cluster energy correction

All corrections are derived from the Monte Carlo simulations
for single charged and neutral pions. The hadronic shower sim-
ulation model used is QGSPBERT. The detector geometry and
topo-cluster reconstruction is the same as in the nominal Monte
Carlo simulation sample. A flat distribution in the logarithm of
pion energies from 200 MeV to 2 TeV is used.

The corrections are derived with respect to the true de-
posited energy in the active and inactive detector region (“cali-
bration hits”).

True energy depositions are classified in three types by the
ATLAS software:

1. Thevisible energy, like the energy deposited by ionisation.
2. Theinvisible energy, like energy absorbed in nuclear reac-

tions.
3. Theescaped energy, like the energy carried away by neu-

trinos33.

The local cluster calibration proceeds in the following steps:

1. Cluster classification: The expected population in loga-
rithmic bins of the topo-cluster energy, the cluster depth in
the calorimeter, and the average cell energy density are used
to calculate classification weights. The weights are calcu-
lated for small|η | regions by mixing neutral and charged
pions with a ratio of 1 : 2. This assumes that 2/3 of the pions
should be charged. Clusters are classified as mostly elec-
tromagnetic or mostly hadronic. The calculated weight de-
notes the probabilityp for a cluster to stem from a hadronic
interaction.

2. Hadronic weighting: Topo-clusters receive calorimeter cell
correction weights derived from detailed Monte Carlo sim-
ulations of charged pions. Calorimeter cells in topo-clust-
ers are weighted according to the topo-cluster energy and

33 The escaped energy is recorded at the place where the particle
that escapes the detector volume (“world volume” in GEANT4 termi-
nology) is produced.

the calorimeter cell energy density. The hadronic energy
correction weights are calculated from the true energy de-
posits as given by the Monte Carlo simulation (wHAD) mul-
tiplied by a weight to take into account the different nature
of hadronic and electromagnetic showers.
The applied weight is

wHAD · p+wEM · (1− p), (48)

wherewEM = 1 andp is the probability of the topo-clust-
er to be hadronic as determined by the classification step.
Dedicated correction weight tables for each calorimeter layer
in 0.2-wide|η |-bins are used. The correction weight tables
are binned logarithmically in topo-cluster energy and cell
energy density (E/V).

3. Out-of-cluster (OOC) corrections: A correction for iso-
lated energy deposits inside the calorimeter, but outside topo-
clusters is applied. These are energy depositions not pass-
ing the noise thresholds applied during the clustering. These
corrections depend on|η |, the energy measured around the
topo-cluster and the cluster barycentreλcentre. There are
two sets of constants for hadronic and electromagnetic show-
ers and both are used for each cluster with the respective
weights ofp and 1− p. The OOC correction is finally mul-
tiplied with the cluster isolation value discussed in Sec-
tion 13.2.2in order to avoid double counting.

4. Dead material (DM) corrections: Energy deposits in ma-
terials outside the calorimeters are corrected. For energy
deposits in upstream material like the inner wall of the cryo-
stat, the presampler signals are highly correlated to the lost
energy. The corrections are derived from the sum of true
energy depositions in the material in front and behind the
calorimeter and from the presampler signal.
The correction for energy deposited in the outer cryostat
wall between the electromagnetic and the hadronic barrel
calorimeters is based on the geometrical mean of the ener-
gies in the layers just before and just beyond the cryostat
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wall. Corrections for other energy deposits without clear
correlations to topo-cluster observables are obtained from
look-up tables binned in topo-cluster energy, the pseudora-
pidity |η |, and the shower depth. Two sets of DM weights
for hadronic and electromagnetic showers are used. The
weights are applied according to the classification proba-
bility p defined above.

All corrections are defined with respect to the electromag-
netic scale energy of the topo-cluster. Since only calorimetric
information is used, the LCW calibration does not account for
low-energy particles which do not create a topo-cluster in the
calorimeter. This is, for instance, the case when the energyis
absorbed entirely in inactive detector material or particles are
bent outside of the calorimeter acceptance.

13.3 Jet energy calibration for jets with calibrated
constituents

The simulated response to jets at the GCW and LCW energy
scales, i.e. after applying weights to the calorimeter cells in jets
or after the energy corrections to the topo-clusters, are shown
in Figure52 as a function ofηdet for various jet energy bins.
The inverse of the response shown in each bin is equal to the
average jet energy scale correction. The final jet energy correc-
tion needed to restore the reconstructed jet energy to the true
jet energy is much smaller than in the case of the EM+JES cal-
ibration shown in Figure10.

14 Jet energy scale uncertainties for jet
calibrations based on cell weighting

The jet energy scale uncertainty for jets based on cell weight-
ing is obtained using the samein situ techniques as described
in Section10. The results for eachin situ technique together
with the combination of allin situ techniques are discussed in
Section14.3.

In order to build up confidence in the Monte Carlo sim-
ulation the description of the variables used as inputs to the
cell weighting by the Monte Carlo simulation is discussed in
Section14.1for the global cell weighting scheme and in Sec-
tion 14.2for the local cluster weighting scheme.

14.1 Energy density as input to the global cell
weighting calibration

The global cell energy density weighting calibration scheme
(see Section13.1) applies weights to the energy deposited in
each calorimeter cell according to the calorimeter cell energy
density (E/V, whereV is the calorimeter cell volume defined
before). This attempts to compensate for the different calorime-
ter response to hadronic and electromagnetic showers, but it
also compensates for energy losses in the dead material. The
description of the calorimeter cell energy density in the Monte
Carlo simulation is therefore studied to validate this calibration
scheme.

Only calorimeter cells inside jets withpjet
T > 20 GeV and

|y|< 2.8 built of topo-clusters and with a cell energy of at least
two standard deviations above the noise thresholds are consid-
ered for this comparison. Similar results have been obtained us-
ing cells inside jets built from calorimeter towers. The Monte
Carlo simulation reproduces the generic features of the data
over many orders of magnitude. However, the following para-
graphs discusses those differences, all of which are on the order
of a few percent.

Figure53 shows the calorimeter cell energy density distri-
butions in data and Monte Carlo simulation for cells in repre-
sentative longitudinal segments of the barrel and forward ca-
lorimeters. Fewer cells with high energy density are observed
in data than predicted by Monte Carlo simulation in the barrel
presampler (a) and in the second layer of the barrel electromag-
netic calorimeter (b). This behaviour is observed for otherseg-
ments of the barrel electromagnetic calorimeter, but not for the
second layer of theTile barrel calorimeter (c). Here, a good
agreement between data and Monte Carlo simulation is found
over the full energy density spectrum. Only for the lowest en-
ergy densities are slight differences found. Good agreement
is also present in the first layer of theTile extended barrel
calorimeter, while the energy density is on average smallerfor
the second and third layer in the data than in the Monte Carlo
simulation. Such a deficit of high energy density cells in data is
also observed for the second and third layer of the scintillators
placed in the gap between theTile barrel and extended barrel
modules. Better agreement is found between data and Monte
Carlo simulation for the first layer of the scintillators.

The second layer of the endcap electromagnetic calorime-
ter (d) shows a similar behaviour to that observed in the bar-
rel: fewer cells are found at high energy density in the data
than in the Monte Carlo simulation. This effect is present inall
three layers of the endcap electromagnetic calorimeter, yet it
becomes more pronounced with increasing calorimeter depth.
A similar effect, but of even larger magnitude has been ob-
served for cells belonging to the endcap presampler. The first
layer of the endcap hadronic calorimeter (e) shows a better
agreement between data and Monte Carlo simulation. This agree-
ment is also present for other layers of theHEC. In the first
layer of the forward calorimeter more cells with energy densi-
ties in the middle part of the spectrum are found in data than
in Monte Carlo simulation (f). This effect has been observed
in otherFCAL layers, and it becomes slightly more pronounced
with increasingFCAL depth.

14.2 Cluster properties inside jets as input to the
local cluster weighting calibration

The LCW weights are defined with respect to the electromag-
netic scale energy of the topo-clusters and can therefore beap-
plied in any arbitrary order. This allows systematic checksof
the order in which the corrections are applied. There are four
cluster properties used in the LCW calibration scheme:

1. The energy density in cells in topo-clusters.
2. The cluster energy fraction deposited in different calorime-

ter layers.
3. The isolation variable characterising the energy aroundthe

cluster.
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Fig. 53: Calorimeter cell energy density distributions used in the GCW jet calibration scheme in data (points) and MonteCarlo
simulation (shaded area) for calorimeter cells in the barrel presampler (a), the second layer of the barrel electromagnetic calorime-
ter (b), the second layer of the barrel hadronic Tile calorimeter (c), the second layer of the endcap electromagnetic calorimeter
(d), the first layer of the endcap hadronic calorimeter (e) and the first layer of the forward calorimeter (f). Anti-kt jets withR= 0.6
requiringpjet

T > 20 GeVandy < 2.8 calibrated with the GCW+JES scheme are used. Monte Carlo simulation distributions are
normalised to the number of cells in data distributions. Theratio of data to Monte Carlo simulation is shown in the lower part of
each figure. Only statistical uncertainties are shown.

4. The depth of the cluster barycentre in the calorimeter.

In addition, the cluster energy after each correction step and
the cluster location can be compared in data and Monte Carlo
simulation.

14.2.1 Cluster isolation

Figure54 shows the distributions of the cluster isolation vari-
able for all topo-clusters in calibrated jets withpjet

T > 20 GeV

and|y|< 2.8 for topo-clusters classified as electromagnetic (a)
and hadronic (b).

The cluster isolation variable is bounded between 0 and 1,
with higher values corresponding to higher isolation (see Sec-
tion 13.2.2). Most of the topo-clusters in lower energetic jets
have a high degree of isolation. The peaks at 0.25, 0.5 and 0.75
are due to the topo-clusters in boundary regions which are ge-
ometrically difficult to model or regions with a small number
of calorimeter cells. Such topo-clusters contain predominantly
gap scintillator cells or are located at the boundary of theHEC

and theFCAL calorimeters.
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Fig. 54: Distributions of the isolation variable for topo-clusters classified as electromagnetic (a) and as hadronic (b) in data
(points) and Monte Carlo simulation (shaded area). Topo-clusters associated to anti-kt jets withR= 0.6 with pjet

T > 20 GeV and
|y|< 2.8 calibrated with the LCW+JES scheme are used.
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Fig. 55: Mean value of the cluster isolation variable for topo-clusters classified as electromagnetic (a) and as hadronic (b) as a
function of the topo-cluster energy measured at the EM scale, in data (closed circles) and Monte Carlo simulation (open squares).
Topo-clusters associated to anti-kt jets withR= 0.6 with pjet

T > 20 GeV and|y|< 2.8 calibrated with the LCW+JES scheme are
used.
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Fig. 56: Distributions of the longitudinal cluster barycentre λcentre for topo-clusters classified as electromagnetic (a) and as
hadronic (b) in data (points) and Monte Carlo simulation (shaded area). Topo-clusters associated to anti-kt jets withR= 0.6 with
pjet

T > 20 GeV and|y|< 2.8 calibrated with the LCW+JES scheme are used.
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Fig. 57: Mean value of the longitudinal cluster barycentreλcentre as a function of the topo-cluster energy measured at the EM
scale for topo-clusters classified as electromagnetic (a) and as hadronic in data (b) in data (closed circles) and Monte Carlo
simulation (open squares). Topo-clusters associated to anti-kt jets withR= 0.6 with pjet

T > 20 GeV and|y|< 2.8 calibrated with
the LCW+JES scheme are used.
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(b) Hadronic response and out-of-cluster weights
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Fig. 58: Mean calibrated topo-cluster energy divided by theuncalibrated topo-cluster energy in data (points) and Monte Carlo
simulation (shaded area) as a function of the uncalibrated topo-cluster energy (left) and pseudorapidity (right) after hadronic
response weighting (a), adding out-of-cluster corrections (b), and adding dead material corrections (c) applied to topo-clust-
ers in jets. The corrections are sequentially applied. Anti-kt jets with R= 0.6 in the LCW+JES scheme are required to have
pjet

T > 20 GeV. In addition, for the results as a function of the topo-cluster energy (left) the jets have been restricted to|y|< 0.3.
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The features observed are similar for topo-clusters classi-
fied as mostly electromagnetic and those classified as mostly
hadronic. A reasonable agreement between data and Monte
Carlo simulation (see Fig.54) is found. The agreement in the
peaks corresponding to the transition region between calorime-
ters is not as good as in the rest of the distribution.

Figure55 shows the mean value of the topo-cluster isola-
tion variable as a function of the topo-cluster energy for all
topo-clusters in jets withpjet

T > 20 GeV and|y|< 2.8 for topo-
clusters classified as electromagnetic (a) or as hadronic (b).
The Monte Carlo simulation consistently predicts more iso-
lated topo-clusters than observed in the data, particularly at
topo-cluster energiesE < 2 GeV and for both hadronic and
electromagnetic cluster classifications. This feature is present
in all rapidity regions, except for very low energy topo-clusters
classified as mostly electromagnetic in very central jets.

14.2.2 Longitudinal cluster barycentre

Figure56 shows the cluster barycentreλcentredistributions for
all topo-clusters in LCW calibrated jets withpjet

T > 20 GeV and
|y| < 2.8 and for both cluster classifications. Most topo-clust-
ers classified as electromagnetic have their centre in the elec-
tromagnetic calorimeter, as expected. Those topo-clusters clas-
sified as mostly hadronic are very often in the electromagnetic
calorimeter, since these lowpT jets do not penetrate far into
the hadronic calorimeter. However, a structure is observed, re-
lated to the position of the different longitudinal layers in the
hadronic calorimeter. This structure is more prominent when
looking at individual rapidity regions, being smeared where the
geometry is not changing in this inclusive distribution. Good
agreement is observed between data and Monte Carlo simula-
tion.

Figure57 shows the mean value of distributions ofλcentre
as a function of the cluster energy for all topo-clusters in jets
with pjet

T > 20 GeV and|y|< 2.8, again for both types of topo-
clusters. In this case, topo-clusters classified as mostly elec-
tromagnetic have their barycentre deeper in the calorimeter on
average as the cluster energy increases. A different behaviour
is observed for clusters tagged as hadronic, for which the mean
depth in the calorimeter increases until approximately 2 GeV, at
which point the mean depth decreases again. The shape of the
mean depth as a function of energy is different for differentjet
rapidities due to the changing calorimeter geometry. However,
the qualitative features are similar, with a monotonic increase
up to some topo-cluster energy, and a decrease thereafter. This
is likely due to an increased probability of a hadronic shower to
be split into two or more clusters with increased cluster energy.
A good agreement is observed between data and Monte Carlo
simulation.

14.2.3 Cluster energy after LCW corrections

In this section the size of each of the three corrections of the
topo-cluster calibration is studied in data and Monte Carlosim-
ulation. This provides a good measure of how the differences
between data and Monte Carlo simulation observed in previous
sections impact the size of the corrections applied.

Figure 58 shows the mean value of the ratio of the cali-
brated topo-cluster energy to the uncalibrated topo-cluster en-
ergy after each calibration step as a function the topo-cluster
energy and pseudorapidity. Only topo-clusters in LCW cali-
brated jets withpjet

T > 20 GeV are considered. For the results
shown as a function of topo-cluster energy the pseudorapidity
of the jets is, in addition, restricted to|y|< 0.3.

The agreement between data and Monte Carlo simulation
is within 5% for the full pseudorapidity range and is generally
better for lower topo-cluster energies where the correction for
the out-of-cluster energy dominates. As the topo-cluster energy
increases the largest corrections become the hadronic response
and the dead material corrections.

An agreement to about 1% is observed in a wide region
in most of the barrel region after each correction. The agree-
ment between data and Monte Carlo simulation is within 2%
for all topo-cluster pseudorapidities after the hadronic and the
out-of-cluster corrections. Larger differences are observed be-
tween data and Monte Carlo simulation in the transition region
between the barrel and the endcap and in the forward region
once the dead material correction is applied.

14.3 Jet energy scale uncertainty from in situ
techniques for jets based on cell weighting

For the jet calibration schemes based on cell weighting the
JES uncertainty is evaluated usingin situ techniques. The same
techniques as described in Section10 are employed. The final
JES uncertainty is obtained from a combination of allin situ
techniques following the prescription in Section10.5.

14.3.1 Comparison of transverse momentum balance
from calorimeter and tracking

The result of the JES validation using the total transverse mo-
mentum of the tracks associated to jets (see Section10.1) is
shown in Figure59for jets calibrated with the GCW+JES scheme
and in Figure60for jets calibrated with the LCW+JES scheme
in various jet pseudorapidity regions within|η |< 2.1. The bin
|η |< 1.2 is obtained by combining the|η | < 0.3, 0.3≤ |η |<
0.8 and 0.8≤ |η |< 1.2 bins.

Similar results as for the EM+JES scheme are obtained. In
both cases, the agreement between data and simulation is ex-
cellent and within the uncertainties of thein situ method. The
calibration schemes agree to within a few per cent, except for
the bins with very low numbers of events.

14.3.2 Photon-jet transverse momentum balance

The response measured by the directpT balance technique (see
Section10.2.1) for the GCW+JES and LCW+JES calibrations
is shown in Figure61. The agreement of the Monte Carlo sim-
ulation with data is similar for both calibration schemes. The
data to Monte Carlo agreement is 3 to 5%.

Figure62shows the comparison of the response determined
by the MPF technique (see Section10.2.2), measured in data
and Monte Carlo simulation at the GCW and LCW jet energy
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Fig. 59: Double ratio of the track to calorimeter response comparison in data and Monte Carlo simulation,Rrtrk = [< rtrk >

]Data/[< rtrk >]MC, for anti-kt jets withR= 0.6 using the GCW+JES calibration scheme as a function ofpjet
T for variousη bins.

Systematic (total) uncertainties are shown as a light (dark) band.
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Fig. 60: Double ratio of the track to calorimeter response comparison in data and Monte Carlo simulation,Rrtrk = [< rtrk >

]Data/[< rtrk >]MC, for anti-kt jets withR= 0.6 using the LCW+JES calibration scheme as a function ofpjet
T for variousη bins.

Systematic (total) uncertainties are shown as a light (dark) band.
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Fig. 61: Average jet response as determined by the directpT balance technique for anti-kt jets with R= 0.6 calibrated with
the GCW+JES (a) and LCW+JES (b) scheme as a function of photontransverse momentum for both data and Monte Carlo
simulation. The lower part of each figure shows the data to Monte Carlo simulation ratio. Only statistical uncertaintiesare
shown.
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Fig. 62: Average calorimeter response as determined by the MPF technique for the GCW (a) and LCW (b) calibration scheme as
a function of photon transverse momentum for both data and Monte Carlo simulation. The lower part of each figure shows the
data to Monte Carlo simulation ratio. Only statistical uncertainties are shown.
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Fig. 63: Average jet response in data to the response in MonteCarlo simulation using the directpT balance technique of anti-kt
jets withR= 0.6 calibrated with the GCW+JES (a) and LCW+JES (b) scheme as a function of photon transverse momentum.
Statistical and systematic uncertainties (light band) areincluded with the total uncertainty shown as the dark band.
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Fig. 65: Uncertainty in the jet response obtained from the dijet η-intercalibration technique for anti-kt jets with R= 0.6 as a
function of the jetpT for various|η |-regions of the calorimeter. The jets are calibrated with the GCW+JES (a) and the LCW+JES
(b) calibration schemes. Only statistical uncertainties are shown.

scales. To calculate the response using the MPF technique at
these energy scales theEmiss

T is calculated using GCW or LCW
calibrated topo-clusters as an input34. All the JES calibrations
are found to be consistent between data and Monte Carlo sim-
ulation to within 3 to 4%.

The ratios of jet response in data to the response in Monte
Carlo simulation using the directpT balance technique for the
GCW+JES and LCW+JES jet calibration schemes as a func-
tion of the photon transverse momentum are shown in Fig-
ure63. The agreement of data and Monte Carlo simulation is
within 5% and is compatible with unity within the statistical
and systematic uncertainties. A similar result for the MPF tech-
nique is shown in Figure64. Good agreement between data and
Monte Carlo simulation is found.

14.3.3 Intercalibration of forward jets using events with
dijet topologies

The transverse momentum balance in events with only two jets
at high transverse energy can be used to determine the JES un-
certainty for jets in the forward detector region. The matrix
method, described in Section9.6, is used in order to test the
performance of the GCW+JES and LCW+JES calibrations for
jets with |η |> 1.2 and to determine the JES uncertainty in the
forward region based on the well calibrated jet in the central
reference region.

The same selection and method as for the test of the EM+JES
calibration is applied, with two exceptions: the referencere-
gion is defined by|ηdet| < 1.2 instead of|ηdet|< 0.8, and a fit
is applied to smooth out statistical fluctuations. The JES uncer-
tainty in the reference regions is obtained from theγ-jet results

34 For the GCW calibration scheme the cell energies in the topo-
clusters are multiplied by the cell energy weights described in Sec-
tion 13.1.

(see Section14.3.2) and using the sum of track momenta (Sec-
tion 14.3.1).

Figure65shows the resulting uncertainties as a function of
pjet

T for variousη-bins. The uncertainty is taken as the RMS
spread of the relative response from the Monte Carlo predic-
tions around the relative response measured in data (see Sec-
tion 9.6.6). The JES uncertainty introduced by the dijet bal-
ance is largest at lowerpjet

T and smallest at higherpjet
T . For

pjet
T > 100 GeV the JES uncertainty for the GCW+JES scheme

is less than 1% for 1.2≤ |η | < 2.1 and about 2.5% for 2.8≤
|η | < 3.2. For pjet

T = 20 GeV the JES uncertainty is about 2%
for 1.2≤ |η |< 2.1 and about 9.5% for 3.6≤ |η |< 4.5.

The JES uncertainties for the LCW+JES calibration sche-
me are slightly larger than those for GCW+JES scheme.

14.3.4 Multijet transverse momentum balance

The multijet balance (MJB) technique, described in Section10.3,
is used to evaluate the JES uncertainty in the high transverse
momentum region for the GCW+JES and LCW+JES calibra-
tion schemes. The method and selection cuts used are the same
as those for the EM+JES calibrated jets.

Figure66 shows the MJB for anti-kt jets withR= 0.6 ob-
tained using the GCW+JES and LCW+JES calibrations in the
data and Monte Carlo simulation as a function of the recoilpT.
The agreement between the data and MC simulations, evalu-
ated as the data to Monte Carlo simulation ratio, are very simi-
lar to those for the EM+JES calibration.

The systematic uncertainties on the MJB for these cell en-
ergy weighting calibration schemes are evaluated in the same
way as the EM+JES calibration, described in Section10.3.4,
except for the component of the standard JES uncertainty on
the recoil system. The JES uncertainty for jets in the recoil
system is obtained from thein situ γ-jet balance discussed in
Section14.3.2. In this case, the systematic uncertainty on the
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Fig. 66: Multijet balance MJB as a function of the recoil systempT for data and Monte Carlo simulation for the anti-kt algorithm
with R= 0.6 using the GCW+JES (a) and LCW+JES (b) calibration scheme. Only statistical uncertainties are shown.
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Fig. 67: The multijet balance MJBMC as a function of the recoil systempT (full dots) for anti-kt jets with R= 0.6 using the
GCW+JES (a) and LCW+JES (b) calibration schemes. The three bands are defined by the maximum shift of MJB when the jets
that compose the recoil system are shifted up and down by the JES uncertainty determined from theγ-jet balance, close-by jet
and flavour uncertainties. The black lines show the total uncertainty obtained by adding in quadrature the individual uncertainties.
The lower part of the figure shows the relative uncertainty due to the scale uncertainty of the jets that compose the recoilsystem,
defined as the maximum relative shift with respect to the nominal value, as a function ofpRecoil

T .
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Fig. 68: Ratio of the data to MC for the multijet balance as a function of the recoil systempT for anti-kt jets withR= 0.6 using
the GCW+JES (a) and LCW+JES (b) calibration schemes. The various shaded regions show the total uncertainty (dark band)
obtained as the squared sum of the total systematic uncertainty (light band) and of the statistical uncertainty (error bars). Also
displayed are the contributions to the systematic uncertainty due to analysis cuts and event modelling (darkest band) and to the
jet energy scale for jets in the recoil system (hatched band).
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Fig. 69: Jet response ratio of the data to the Monte Carlo simulation as a function ofpjet
T for threein situ techniques using as

reference objects: photons (γ-jet), a system of low energetic jets (multijet) or the transverse momentum of all tracks associated to
jets (tracks in jets). The error bar displays the statistical and systematic uncertainties added in quadrature. Shown are the results
for anti-kt jets withR= 0.6 calibrated with the GCW+JES (a) and LCW+JES (b) calibration schemes. The light band indicates
the combination of thein situ techniques. The inner dark band shows the fraction due to thestatistical uncertainty.
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Fig. 70: Jet energy scale uncertainty (solid line) as a function of pjet
T for anti-kt jets with R= 0.6 for |η | < 1.2 calibrated with

the GCW+JES (a) and the LCW+JES (b) calibration scheme. The dashed line shows the JES uncertainty that could have been
achieved, ifin situ techniques had been used to recalibrate the jets.

MJB due to the recoil system JES uncertainty is then calculated
by shifting thepT of recoil jets up and down by theγ-jet JES
uncertainty. In order to apply theγ-jet JES uncertainty to the
recoil system, the MJB analysis is performed with jets selected
within the range|η | < 1.2, where the JES uncertainty based
on γ-jet events has been derived. The close-by jet and flavour
composition systematic uncertainties are also re-evaluated for
the GCW+JES and LCW+JES jets using the same method (see
Section17).

Figure 67 shows the total and individual JES systematic
uncertainties on the recoil system for anti-kt jets withR= 0.6
calibrated by the GCW+JES and LCW+JES schemes. The in-
crease of the JES uncertainty at highpjet

T above 800 GeV is
caused by a large JES systematic uncertainty due to limited
γ-jet event statistics at highpT.

The systematic uncertainties associated with the analysis
method and event modelling are re-evaluated in the same way
as for the EM+JES calibration scheme and then added to the
recoil system JES systematic uncertainties. The summary ofall
systematic uncertainties and the total uncertainty obtained by
adding the statistical and systematic uncertainties in quadrature
is shown in Figure68 for anti-kt jets withR= 0.6.

14.3.5 Cell weighting JES uncertainty from combination
of in situ techniques

Figure69 shows the jet response ratio of data to Monte Carlo
simulation for the variousin situ techniques as a function of
the jet transverse momentum for the GCW+JES (a) and the
LCW+JES (b) calibration schemes. Statistical and systematic
uncertainties are displayed. The average from the combination
of all in situ techniques is overlaid.

The weight of eachin situ technique contributing to the av-
erage is similar to the one for the EM+JES calibration scheme

shown in Figure45. The contributions are also similar for the
LCW+JES and the GCW+JES calibration schemes.

Figure70shows the final JES uncertainty for the GCW+JES
(a) and the LCW+JES (b) calibration schemes for|η |< 1.2. At
the lowestpT the JES uncertainty is about 9% to 10% and de-
creases for increasingpjet

T . For pjet
T > 50 GeV it is about 2% and

at pjet
T = 250 GeV it is about 3 to 4%. For jets in the TeV-regime

the JES uncertainty is 10 to 12%.
Figure70 also shows the JES uncertainty attainable, if the

in situ techniques had been used to correct the jet energy. Using
the in situ techniques for jet calibration would have resulted in
an improved JES uncertainty for both jet calibration schemes
based on cell energy weighting.

The JES uncertainty obtained in the central reference re-
gion (|η | < 1.2) is used to derive the JES uncertainty in the
forward region using the dijet balance technique. The central
region JES uncertainty is combined with the uncertainties from
the dijet balance shown in Figure65.

15 Summary of jet energy scale
uncertainties of various calibration
schemes

The EM+JES uncertainties are derived from single hadron re-
sponse measurements and from systematic variations of the
Monte Carlo simulation (see Section9).

The JES uncertainty for the GS jet calibration scheme is
given by the sum in quadrature of the EM+JES uncertainty
and the uncertainty associated to the GS corrections. The lat-
ter, derived in Section12, is conservatively taken to be 0.5%
for 30< pT < 800 GeV and|η |< 2.1 and 1% forpT < 30 GeV
and 2.1< |η |< 2.8. These uncertainties are also supported by
in situ techniques.
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Fig. 71: Fractional JES uncertainties as a function ofpjet
T for anti-kt jets withR= 0.6 for the variousη regions for the LCW+JES

(full line) and the GCW+JES (dashed line) schemes. These arederived from a combination of thein situ techniques which are
limited in the number of available events at largepjet

T . The fractional JES uncertainty for EM+JES derived from single hadron
response measurements and systematic Monte Carlo simulation variations is overlaid as shaded area for comparison. Theη-
intercalibration uncertainty is shown as open symbols for|η | > 0.8 for the EM+JES and for|η | > 1.2 for the LCW+JES and
GCW+JES schemes.
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The JES uncertainties in the LCW+JES and GCW+JES jet
calibration schemes are derived from a combination of several
in situ techniques.

Figure71 shows a comparison of the JES uncertainties for
the EM+JES, the LCW+JES and the GCW+JES jet calibra-
tion schemes for variousη-regions. The uncertainties in the
LCW+JES and GCW+JES schemes derived in Section14 are
similar, but the uncertainty for the GCW+JES calibration scheme
is a bit smaller for very low and very largepjet

T .

Over a wide kinematic range, 40. pjet
T . 600 GeV, all

calibration schemes show a similar JES uncertainty. Atpjet
T ≈

250 GeV the uncertainties based on thein situ techniques are
about 2% larger compared to the uncertainty results from the
EM+JES calibration scheme.

For pjet
T < 40 GeV andpjet

T > 600 GeV the EM+JES cali-
bration scheme has a considerably smaller uncertainty. Forthe
high pT regions the JES calibration based onin situ suffers
from the limited number of events in the data samples. At low
pT the systematic uncertainty on thein situ methods leads to a
larger JES uncertainty.

16 Jet reconstruction efficiency

A tag-and-probe method is implemented to measurein situ the
jet reconstruction efficiency relative to track jets. Because track
jets (see Section6.2) and calorimeter jets (see Section6.1) are
reconstructed by independent ATLAS sub-detectors, a good
agreement between data and Monte Carlo simulation for this
matching efficiency means that the absolute jet reconstruction
efficiency can be determined from the simulation.

16.1 Efficiency in the Monte Carlo simulation

The jet reconstruction efficiency is determined in the Monte
Carlo simulation by counting in how many cases a calorimeter
jet can be matched to a truth jet. Reconstructed jets are matched
to truth jets, if their jet axes are within∆R< 0.4.

Figure72a shows the jet reconstruction efficiency for anti-
kt jets with R= 0.6 calibrated with the EM+JES, GCW+JES,
and LCW+JES calibration schemes as a function of the trans-
verse momentum of the truth jet. The efficiency reaches its
maximum value for a truth jet transverse momentum of 20 GeV.
The lower part of the figure shows the ratio of the efficiency in
the GCW+JES and LCW+JES calibration schemes to that ob-
tained from the EM+JES scheme. Similar performance is found
for all calibration schemes.

The small differences at lowpjet
T might be caused by the

slightly better jet energy resolution obtained with the GCW+JES
and the LCW+JES calibration schemes. Moreover, jets based
on the LCW+JES scheme are built from calibrated topo-clust-
ers while the jets calibrated with the EM+JES and the GCW+JES
calibration schemes use topo-clusters at the electromagnetic
scale.

16.2 Efficiency in situ validation

The ability of the Monte Carlo simulation to correctly repro-
duce the jet reconstruction in the data is tested using trackjets
that provide an independent reference.

A tag-and-probe technique is used as described in the fol-
lowing steps:

1. Only track jets withpT > 5 GeV and|η |< 1.9 are consid-
ered.

2. The track jet with the highestpT in the event is defined as
the reference object.

3. The reference object is required to havepT > 15 GeV35.
4. The reference track jet is matched to a calorimeter jet with

pjet
T > 7 GeV, if ∆R(tag,calojet)< 0.636.

5. The probe track jet must be back-to-back to the reference
jet in φ with |∆φ | ≥ 2.8 radian.

6. Events with additional track jets within|∆φ | ≥ 2.8 radian
are rejected.

7. The calorimeter reconstruction efficiency with respect to
track jets is then defined as the fraction of probe jets matched
to a calorimeter jet using∆R(probe,calojet)< R (with R=
0.4 orR= 0.6) with respect to all probe jets.

The jet reconstruction efficiency is measured in a sample
of minimum bias events and is compared to a minimum bias
Monte Carlo simulation. Due to the restriction of|η | < 1.9 on
track jets, the measurement is only valid for calorimeter jets
with |η |< 1.9+R, whereR= 0.4 orR= 0.6.

Figures72b-d show the measured calorimeter reconstruc-
tion efficiency with respect to track jets as a function of the
calorimeter jet transverse momentum for anti-kt jets withR=
0.6 calibrated with the EM+JES, GCW+JES, and LCW+JES
calibration schemes37. The reconstruction efficiency reaches a
plateau close to 100% at a jet transverse calorimeter momen-
tum of about 25 GeV. The matching efficiency in data (εData)
and in Monte Carlo simulation (εMC) shows a good overall
agreement except at lowpjet

T where the efficiency in data is
slightly lower than in the Monte Carlo simulation. Similar per-
formance is found for all calibration schemes.

The systematic uncertainties on the jet reconstruction ef-
ficiency measuredin situ are obtained by varying the follow-
ing event selection requirements for both data and Monte Carlo
simulation: the opening angle|∆φ | between the reference and

35 Reference track jets withpT < 15 GeV are not used, since they
would result in a sample of biased probe track jets. In this case, mostly
events where the probe track jet has fluctuated up in energy (such that
it passes the 5 GeV threshold) would be kept. The 15 GeV cut hasbeen
determined by measuring the jet reconstruction efficiency relative to
track jets as a function of the reference track jetpT. The measured
efficiency for low probe track jetpT was found to be dependent on the
reference track jetpT when the latter is smaller than 15 GeV. The jet
reconstruction efficiency is stable for a reference track jet pT greater
than 15 GeV.
36 The less restrictive matching criterion with respect to previous

sections is motivated by the lowerpT.
37 Technically, the efficiency is first measured as a function ofthe

track jet pT. Using the known relation between the average track jet
and the average calorimeter jetpT, the track jetpT is then converted
to the calorimeter jetpjet

T .
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(d) Efficiency from track jets for LCW+JES

Fig. 72: Calorimeter jet reconstruction efficiency with respect to truth jets (a) and track jets (b,c,d) as a function of the truth jet
(a) or the calorimeter jet (b,c,d)pT for the three calibration schemes: EM+JES (b), GCW+JES (c) and LCW+JES (d). The lower
part of the figure (a) shows ratio of the efficiency of the LCW+JES and the GCW+JES calibration schemes to that of the EM+JES
calibration scheme. The ratio of data to Monte Carlo simulation is also shown in the lower part of the figure for (b), (c) and(d).
The hatched area correspond to the systematic uncertainty obtained by variations in thein situ method.

the probe track jets, the∆R requirement between the tag track
jet and the calorimeter jet and the probe track jet and the calorime-
ter jet.

The sensitivity in both data and Monte Carlo simulation to
the azimuthal opening angle as well as to the∆R(tag,calojet)
variation is small. However, the efficiency shows a sensitiv-
ity with respect to the∆R(probe jet,calo jet). The variation of
εData/εMC for these different parameters is shown in Figure72.
At high pjet

T the statistical uncertainties after the cut variations
lead to an enlarged uncertainty band.

The systematic uncertainty of thein situ determination is
larger than the observed shift between data and Monte Carlo
simulation. Forpjet

T < 30 GeV a systematic uncertainty of 2%
for jets is assigned.

16.3 Summary of jet reconstruction efficiency

The jet reconstruction efficiency is derived using the nominal
inclusive jet Monte Carlo simulation sample. The systematic
uncertainty is evaluated using a tag-and-probe technique using
track jets in both data and Monte Carlo simulation.

The jet reconstruction efficiency is well described by the
Monte Carlo simulation and is within the systematic uncer-
tainty of thein situmethod. A systematic uncertainty of 2% for
jets with pjet

T < 30 GeV is assigned and negligible for higher

pjet
T .

17 Response uncertainty of non-isolated
jets

The standard ATLAS jet calibration and associated JES uncer-
tainty is obtained using only isolated jets (see Section8.3).
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Fig. 73: Average ratio of calorimeter jet (a) and the track jet (b) pT to the matched truth jetpT as a function of truth jetpT for
anti-kt jets withR= 0.6, for differentRmin values. The bottom part of the figure shows the relative response of non-isolated jets
with respect to that of isolated jets, obtained as the calorimeter or track jet response forRmin < 1.0 divided by the jet response
for 1.4≤ Rmin < 1.5.

Jets are, however, often produced with nearby jets in a busy
environment such as found in multijet topologies or in events
where top-quark pairs are produced. Therefore a separate study
is needed to determine the additional JES uncertainty for jets
with nearby jet activity.

Jets withpjet
T > 20 GeV and|y| < 2.8 calibrated with the

EM+JES scheme are used. The close-by JES uncertainty is
evaluated within|y|< 2.0.

17.1 Evaluation of close-by jet effects

The effect due to close-by jets is evaluated in the Monte Carlo
simulation by using truth jets as a reference. Similarly, track
jets are used as a reference in both data and Monte Carlo simu-
lation (see Sections6.2and6.3for comparison). The calorime-
ter jet response relative to these reference jets is examined for
different values ofRmin, the distance from the calorimeter jet to
the closest jet inη-φ space.

The relative calorimeter jet response to the truth jets pro-
vides an absolutepT scale for the calorimeter jets, while the
relative response to the track jets allowsin situ validation of
the calorimeter jet response and the evaluation of the system-
atic uncertainty. For this purpose, the track jet response in data
needs to be established for the non-isolated case and the asso-
ciated systematic uncertainty has to be understood.

In the relative response measurement in the Monte Carlo
simulation, the truth jet is matched to the calorimeter jet or
track jet in η-φ space by requiring∆R< 0.3. Similarly, the
track jet is matched to the calorimeter jet within∆R< 0.3 when
the relative response to the track jet is examined. If two or more
jets are matched within the∆R range, the closest matched jet
is taken.

The calorimeter response to the matched track jet is defined
as the ratio of the calorimeter jetpjet

T to the track jet transverse

momentum (ptrack jet
T )

rcalo/track jet= pjet
T /ptrack jet

T . (49)

This response is examined as a function of the jet transverse
momentumpjet

T and for differentRmin values measured relative
to the closest calorimeter jet withpT > 7 GeV at the EM en-
ergy scale38. The ratio of the calorimeter jet response for non-
isolated (i.e. smallRmin) to the response of isolated (largeRmin)
jets, is given by

rcalo/track jet
non−iso/iso = rcalo/track jet

non−iso /rcalo/track jet
iso . (50)

This ratio is compared between data and Monte Carlo simula-
tions.

Aclose−by =
[

rcalo/track jet
non−iso/iso

]

Data
/
[

rcalo/track jet
non−iso/iso

]

MC
. (51)

The deviation ofAclose−by is assumed to represent the compo-
nent of calorimeter JES uncertainty due to close-by jets. This
uncertainty, convolved with the systematic uncertainty inthe
track jet response due to a nearby jet, provides the total JES
systematic uncertainty due to the close-by jet effect.

17.2 Non-isolated jet response

Events that contain at least two jets withpjet
T > 20 GeV and

absolute rapidity|y| < 2.8 are selected. The response of non-
isolated jets is studied in the Monte Carlo simulation usingthe
calorimeter jet responseRjet = pjet

T /ptruth
T .

38 Unless otherwise stated, calorimeter jets (selected as listed below)
and nearby jets (selected withpT > 7 GeV at the EM scale) are both
used in the jet response measurement, if a matched track jet is found.
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Fig. 74: Average track jetpT as a function of calorimeter jetpT for anti-kt jets with R= 0.6 in data (a) and MC simulations
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Fig. 75: Ratio of data to Monte Carlo simulation of the track
jet ptrack jet

T for non-isolated jets divided by the track jetptrack jet
T

for isolated jets as a function of the jetpjet
T . Only statistical

uncertainties are shown.

Figure73a shows the calorimeter jet response as a function
of ptruth

T for anti-kt jets withR= 0.6. The jet response was mea-
sured for nearby jets in bins ofRmin values. The lower part of
the figure shows the ratio of the non-isolated jet response for
Rmin < 1.0 to the isolated response 1.4≤ Rmin < 1.5,

R
jet
non−iso/R

jet
iso. (52)

The observed behaviour at smallRmin values indicates that
the non-isolated jet response is lower by up to 15% relative to
the isolated jet response forpjet

T > 20 GeV, if the two jets are
within Rmin < R+0.3. The magnitude of this effect depends on
pjet

T and is largest at lowpjet
T .

R= 0.6 R= 0.4

pjet
T [GeV] 20−30 > 30 20−30 > 30

0.4≤ Rmin < 0.5 - - 2.7% 2.8%
0.5≤ Rmin < 0.6 - - 1.7% 2.3%
0.6≤ Rmin < 0.7 3.9% 1.9% 2.5% 2.7%
0.7≤ Rmin < 0.8 5.1% 1.6% -
0.8≤ Rmin < 0.9 2.5% 1.9% -

Table 15: Summary of jet energy scale systematic uncertainty
assigned for non-isolated jets accompanied by a close-by jet
within the denotedRmin ranges. The second row in the table
indicates thepT range of the non-isolated jets. Anti-kt jets with
R= 0.6 andR= 0.4 are used.

The track jet response relative to the matched truth jet is
defined as

R
track jet= ptrack jet

T /ptruth
T . (53)

Figure73b showsRtrack jet as a function ofptruth
T for anti-kt jets

with R= 0.6. The track jet response is more stable against the
presence of close-by jets and has a much weakerRmin depen-
dence than the calorimeter jet response. This results from the
smaller ambiguity in the matching between the truth and track
jets that are both measured from the primary interaction point.
Moreover, track jets are less influenced by magnetic field ef-
fects than calorimeter jets.

17.3 Non-isolated jet energy scale uncertainty

Figure74shows the average track jet transverse momentum as
a function ofpjet

T for anti-kt jets withR= 0.6 in both data and
Monte Carlo simulations for variousRmin values. The lower
part of the figure shows thepT ratio of non-isolated to isolated
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Fig. 76: Ratio of calorimeter jetpjet
T to the matched track jetpT as a function of calorimeter jetpjet

T for anti-kt jets withR= 0.6 in
data (a) and Monte Carlo simulations (b) for differentRmin values. The lower part shows the relative response of non-isolated jets
with respect to that of isolated jets, obtained as the jet response forRmin < 1.0 divided by the jet response for 1.4≤ Rmin < 1.5.
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response of non-isolated jets with respect to that of isolated
jets for anti-kt jets with R= 0.6 calibrated with the EM+JES
scheme. Only statistical uncertainties are shown.

track jets defined as

r track jet
non−iso/iso= ptrack jet

T,non−iso/ptrack jet
T,iso . (54)

The data to MC ratio defined as

Atrack jet
close−by =

[

r track jet
non−iso/iso

]

Data
/
[

r track jet
non−iso/iso

]

MC
(55)

is compared between data and Monte Carlo simulations in Fig-
ure 75. This ratio can be used to assess the potential of track
jets to test close-by effects in the smallRmin range. The agree-
ment between data and Monte Carlo simulation is quite satis-
factory: within 2 to 3% forpjet

T > 30 GeV and slightly worse

for 20≤ pjet
T < 30 GeV.

Therefore, the track jet response systematic uncertainty is
assigned separately for the twopjet

T regions:|1−Atrack jet
close−by| is

used as the uncertainty for 20≤ pjet
T < 30 GeV, while forpjet

T >

30 GeV a standard deviation of theAtrack jet
close−by is calculated and

assigned as the uncertainty. These uncertainties are typically
1.5% (2.0%) for anti-kt jets withR= 0.6 (0.4).

The calorimeter jetpjet
T relative to the matched track jet

ptrack jet
T (rcalo/track jet) is shown in Figure76 as a function of

pjet
T for anti-kt jets withR= 0.6 in data and Monte Carlo simu-

lations. The non-isolated jet response relative to the isolated jet

response,rcalo/track jet
non−iso/iso , shown in the bottom part of Figure76

reproduces within a few per cent the behaviour in the ratio
R

jet
non−iso/R

jet
iso for the Monte Carlo simulation response of calori-

meter to truth jetpT in Figure73.

The rcalo/track jet
non−iso/iso data to Monte Carlo ratioAclose−by (see

Equation51) is shown in Figure77. TheRmin dependence of
the non-isolated jet response in the data is well described by
the Monte Carlo simulation.

Within the statistical uncertainty,Aclose−by differs from unity
by at most∼ 3% depending on theRmin value in the range of
R≤ Rmin < R+ 0.3. No significantpjet

T dependence is found

over the measuredpT range of 20≤ pjet
T < 400 GeV.

The overall JES uncertainty due to nearby jets is taken as
the track jet response systematic uncertainty added in quadra-
ture with the deviation from one of the weighted average of
Aclose−by over the entirepT range, but added separately for each
Rmin range. The final uncertainties are summarised in Table15
for the two jet distance parameters.

TheAclose−by ratio has been examined for each of the two

close-by jets either with the lower or the higherpjet
T , and no

apparent difference is observed with respect to the inclusive
case shown in Figure77. Therefore, both calorimeter jets which
are close to each other are subject to this uncertainty.
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17.4 Summary of close-by jet uncertainty

The uncertainty is estimated by comparing in data and Monte
Carlo simulation the track jet response. They are both exam-
ined as function of the distanceRmin between the jet and the
closest jet in the calorimeter.

The close-by jet systematic uncertainty on the jet energy
scale is 2.5−5.1% (1.7−2.7%) and 1.6−1.9% (2.3−2.8%)
for R= 0.6 (R= 0.4) jets with 20≤ pjet

T < 30 GeV andpjet
T >

30 GeV, respectively, in the range ofR≤Rmin <R+0.3 and jet
rapidity |y| < 2.0. When the two jets are separated in distance
by R+ 0.3 or more, the jet response becomes similar to that
for the isolated jets and hence no additional systematic uncer-
tainty is required. No significant jetpT dependence is observed
at pjet

T > 30 GeV for the close-by jet systematic uncertainty.

18 Light quark and gluon jet response and
sample characterisation

In the previous sections the JES uncertainty for inclusive jets
was determined. However, details of the jet fragmentation and
showering properties can influence the jet response measure-
ment. In this section the JES uncertainties due to jet fragmen-
tation which is correlated to the flavour of the parton initiating
that jet (e.g. see Ref. [70]) are investigated. An additional term
in the JES uncertainty is derived for event samples that havea
different flavour content than the nominal Monte Carlo simula-
tion sample.

The jet energy scale systematic uncertainty due to the dif-
ference in response between gluon and light quark initiated
jets (henceforth gluon jets and light quark jets) can be reduced
by measuring the flavour composition of a sample of jets us-
ing template fits to certain jet properties that are sensitive to
changes in fragmentation. Although these jet properties may
not have sufficient discrimination power to determine the par-
tonic origin of a specific jet, it is possible to determine theav-
erage flavour composition of a sufficiently large sample of jets.
The average flavour compositions can be determined using jet
property templates built in the Monte Carlo simulation for pure
samples.

Templates are constructed in dijet events, which are ex-
pected to comprise mostly gluon jets at low transverse momen-
tum and central rapidities. They are then applied to events with
a high-pT photon balancing a high-pT jet (γ-jet events), which
are expected to comprise mostly light quark jets balancing the
photon. The application of this technique is further demon-
strated with a sample of multijet events, wherein the jets are
initiated mostly by gluons from radiation.

18.1 Data samples for flavour dependence studies

Two data samples in addition to the inclusive jet sample dis-
cussed before are used for the studies of the flavour dependence
of the jet response.

1. γ-jet samplePhotons withpT > 45 GeV are selected in the
barrel calorimeter (with pseudorapidity|η | < 1.37) and a
jet back-to-back (∆φ > π − 0.2 radians) to the photon is

required. The second-leading jet in the event is required to
have apjet

T below 10% of thepjet
T of the leading jet. Anti-

kt jets with R= 0.6 are used.Anti-kt jets with R= 0.6 are
used.

2. Multijet sample Jets withpjet
T > 60 GeV and|η |< 2.8 are

selected and the number of selected jets defines the sample
of at least two, three or four jets.

18.2 Flavour dependence of the calorimeter
response

Jets identified in the Monte Carlo simulation as light quark jets
have significantly different response from those identifiedas
gluon jets (see Section6.3).

The flavour-dependence of the jet response is in part a result
of the differences in particle level properties of the two types
of jets. For a given jetpT jets identified as gluon jets tend to
have more particles, and those particles tend to be softer than
in the case of light quark jets. Additionally, the gluon jetstend
to be wider (i.e. with lower energy density in the core of the jet)
before interacting with the detector. The magnetic field in the
inner detector amplifies the broadness of gluon jets, since their
low-pT charged particles tend to bend more than the higherpT
particles in light quark jets. The harder particles in lightquark
jets additionally tend to penetrate further into the calorimeter.

The difference in calorimeter response between gluon jets
and light quark jets in the Monte Carlo simulation is shown in
Figure78. Jets in the barrel (|η |< 0.8) and in the endcap (2.1≤
|η |< 2.8) calorimeters are shown separately. For jets calibrated
with the EM+JES scheme light quark jets have a 5−6% higher
response than gluon jets at lowpjet

T . This difference decreases

to about 2% at highpjet
T .

Since response differences are correlated with differences
in the jet properties, more complex jet calibration schemesthat
are able to account for jet shower properties variations can
partially compensate for the flavour dependence. At lowpjet

T
the difference in response between light quark jets and gluon
jets is reduced to 4− 5% for the LCW+JES and GCW+JES
schemes and about 3% for the GS scheme. Forpjet

T > 300 GeV
the flavour dependence of the jet response is below 1% for the
LCW+JES and GCW+JES and the GS schemes.

The closer two jets are to one another, the more ambiguous
the flavour assignment becomes. The flavour assignment can
become particularly problematic when one truth jet is matched
to two reconstructed calorimeter jets (“splitting”) or twotruth
jets are matched to one reconstructed calorimeter jet (“merg-
ing”). Several different classes of close-by jets are examined
for changes in the flavour dependence of the jet response. No
significant deviation from the one of isolated jets is found.There-
fore, the cases can be treated separately. The jet energy scale
uncertainty specific to close-by jets is examined further inSec-
tion 17.

18.3 Systematic uncertainties due to flavour
dependence

Each jet energy calibration schemes restore the average jeten-
ergy to better than 2% with small uncertainties in a sample of
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Fig. 82: The jet width template fit in aγ-jet data sample using
templates derived from the inclusive jet Monte Carlo simula-
tion sample created using the PYTHIA MC10 tune. Jets with
|η | < 0.8 and 60≤ pjet

T < 80 GeV are shown. The fraction of
heavy quark jets is taken directly from the MC simulation.

inclusive jets. However, subsamples of jets are not perfectly
calibrated, as in the case of light quark jets and gluon jets.The
divergence from unity is flavour dependent and may be dif-
ferent in Monte Carlo simulation and data, particularly if the
flavour content in the data sample is not well-described by the
Monte Carlo simulation. This results in an additional term in
the systematic uncertainty for any study using an event or jet
selection different from that of the sample in which the jet en-
ergy scale was derived.

18.3.1 Systematic uncertainty from MC variations

In order to test the response uncertainties of exclusive samples
of either gluon or light quark jets, a large number of systematic
variations in the Monte Carlo simulation are investigated (see
Ref. [1] for details on the variations). The response difference
of quark and gluon jets to that of the inclusive jets is found to be
very similar for each of the systematic Monte Carlo variations.
Therefore the additional uncertainty on the response of gluon
jets is neglected.

These conclusions are in good agreement with the stud-
ies which derive the calorimeter jet response using the single
hadron response in Refs. [49, 58], where the uncertainties of
the quark and gluon response are similar within 0.5%.

The results are found to be stable under variations of the
Monte Carlo simulation samples including soft physics effects
like colour reconnections. With more data, a variety of final
states may be tested to investigate more details of the light
quark and gluon jet response.

18.3.2 Systematic uncertainty from average flavour
content

The flavour dependent uncertainty term depends on both the
average flavour content of the sample and on how well the
flavour content is known, e.g. the uncertainty for a generic new
physics search with an unknown jet flavour composition is dif-
ferent from the uncertainty on a new physics model in which
only light quark jets are produced. The response for any sample
of jets,Rs, can be written as39:

Rs = fg×Rg+ fq×Rq+ fb×Rb+ fc×Rc =

1+ fg× (Rg−1)+ fq× (Rq−1)

+ fb× (Rb−1)+ fc× (Rc−1) , (56)

whereRx is the detector response to jets andfx is the fraction of
jets forx= g (gluon jets),q (light quark jets),b (b-quark jets),
andc (c-quark jets) andfg+ fq+ fb+ fc = 1. For simplicity, the
fraction of heavy quark jets is taken to be known. This approxi-
mation will be dealt with in the systematic uncertainty analysis
for heavy quarks in Section18.4.

Since variations in the flavour fractions and the jet flavour
response translate into variations of the jet response for agiven
sample, the uncertainty on the jet response can be approxi-
mately expressed as:

∆Rs = ∆ fg× (Rg−1)+∆ fq× (Rq−1)+

fg×∆Rg+ fq×∆Rq+ fb×∆Rb+ fc×∆Rc, (57)

where∆ denotes the uncertainty on the individual variables.
Since fb and fc are fixed here (i.e. without uncertainty),∆ fg =
−∆ fq. Also, the uncertainties on the response for the exclusive
flavour samples (light quark, gluon,b, andc quarks) are ap-
proximately the same as the inclusive jet response uncertainty
(∆R j ).

The expression can therefore be simplified:

∆Rs ≈−∆ fq× (Rg−1)+∆ fq× (Rq−1)+

fg×∆R j + fq×∆R j + fb×∆R j + fc×∆R j =

∆ fq× (Rq−Rg)+ ( fg+ fq+ fb+ fc)×∆R j

≈ ∆ fq× (Rq−Rg)+∆R j . (58)

The second term is the inclusive jet energy scale systematicun-
certainty, and the first term is the additional flavour dependent
contribution.

Dropping the inclusive jet energy scale systematic uncer-
tainty and rewriting Equation58as a fractional uncertainty, the
flavour dependent contribution becomes:

∆Rs

Rs
= ∆ fq×

(

Rq−Rg

Rs

)

. (59)

The uncertainty on the flavour content (∆ fq) and the inclusive
response of the sample (Rs) depends on the specific analy-
sis. The difference in response between light quark and gluon
jets depends only on the calibration used, as discussed in Sec-
tion 18.2.
39 The following equations are strictly speaking only valid for a

given bin in pT andη or in other variables that influence the flavour
composition.
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Fig. 83: Fitted values of the average light quark and gluon jet fraction in events with three or more jets as a function ofpjet
T

calculated using the number of tracksntrk templates (a) and the jet width templates (b). Non-isolatedanti-kt jets (0.8≤Rmin < 1.0)
with R= 0.6 and with|η |< 0.8 calibrated with the EM+JES scheme are shown. The fraction of heavy quark jets is fixed to that
of the Monte Carlo simulation. The flavour fractions obtained in data are shown with closed markers, while the values obtained
from the Monte Carlo simulation are shown with open markers.The error bars indicate the statistical uncertainty of the fit. Below
each figure the impact of the different systematic effects isshown with markers and the combined systematic uncertaintyis
indicated by a shaded band.

18.4 Average jet flavour determination

One way of investigating the flavour composition of a sam-
ple is to use different MC generators that cover a reasonable
range of flavour compositions. However, these different sam-
ples may suffer from under- or overcoverage of the uncertainty
or from changes in other sample characteristics, e.g. jetpT
spectra, which may result in a poor estimate of the true uncer-
tainty. Another approach, pursued in this section, is to estimate
the flavour composition of the samples by using experimental
observables that are sensitive to different jet flavours.

As described in Section18.2, gluon jets tend to have a
wider transverse profile and have more particles than light quark
jets with the samepT. The jet width, as defined in Equation37,
and the number of tracks associated to the jet (ntrk) are thus ex-
pected to be sensitive to the difference between light quarkjets
and gluon jets. The jet width may have contributions from pile-
up interactions. In the following discussion only events with

exactly one reconstructed primary vertex enter the jet width
distributions40.

The number of tracks associated to a jet is defined by count-
ing the tracks withpT > 1 GeV coming from the primary hard
scattering vertex with an opening angle between the jet and the
track momentum direction∆R< 0.6. Figure79 shows the jet
width andntrk distributions for isolated light quark and gluon
jets with |η |< 0.8 and 80≤ pT < 110 GeV in the inclusive jet
Monte Carlo simulation sample. The gluon jets are broader and
have more tracks than light quark jets. For this study anti-kt jets
with R= 0.6 calibrated with the EM+JES scheme are used.

Templates are built from the inclusive jet Monte Carlo sam-
ple for the jet width andntrk of light quark and gluon jets sep-
arately41, using the flavour tagging algorithm of Section6.3.
The templates are constructed in bins ofpjet

T , η , and isolation

40 Techniques to correct for these additional interactions are being
developed and are discussed in Section9.7.4.
41 Thentrk and jet width templates are dealt with independently, and

the results of their estimates of flavour fraction are not combined.
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Fig. 84: Fitted values of the average light quark and gluon jet fraction in events with four or more jets as a function ofpjet
T for

isolated anti-kt jets withR= 0.6 and with|η |< 0.8 calibrated with the EM+JES scheme. The fraction of heavy quark jets is fixed
from the Monte Carlo simulation. The number of tracksntrk (a) and the jet width (b) template distributions are used in the fits.
The flavour fractions obtained in data are shown with closed markers, while the values obtained from the Monte Carlo simulation
are shown with open markers. The error bars indicate the statistical uncertainty of the fit. Below each figure the systematic
uncertainty is shown as a shaded band.

(∆R to the nearest jet,Rmin). Fits to the data are performed with
these templates to extract the flavour composition.

Comparisons of the inclusive jet width andntrk distributions
in Monte Carlo simulation and data are shown in Figure80
for isolated jets withR= 0.6. The jet width in Monte Carlo
simulation is narrower than in the data for the PYTHIA samples,
in agreement with other ATLAS analyses [3].

The inclusiventrk and jet width Monte Carlo simulation dis-
tributions are reweighted bin-by-bin according to the datadis-
tribution. This accounts for the differences observed between
the data and Monte Carlo simulation. The same reweighting
is applied to the light quark jet and gluon jet distributions.
The reweightedntrk and jet width distributions for the various
Monte Carlo simulation samples are shown in Figure81. Since
the reweighting is applied to all flavours equally the average
flavour content of the sample does not change.

After reweighting, the flavour composition of the dijet sam-
ple extracted from the data is consistent with that of the Monte
Carlo simulation. The extracted values for two representative
jet bins are shown in Table16. This result is an important clo-
sure test and provides some validation of the templates.

18.5 Systematic uncertainties of average flavour
composition

Uncertainties on the MC-based templates used in fits to the data
result in a systematic uncertainty on the extracted flavour com-
position. Systematic effects from the Monte Carlo modelling
of the jet fragmentation, the jet energy scale and resolution as
well as the flavour composition of the sample used to extract
the templates are discussed in the following. Since there isno
single dominant uncertainty, each is individually considered for
the extraction of the flavour composition of a sample of jets.

18.5.1 Monte Carlo modelling of jet width and ntrk
distributions

Monte Carlo simulation samples generated with PYTHIA with
the MC10 and the PERUGIA2010 tunes and HERWIG++ all
show reasonable agreement with data (see Figure80). There-
fore, two separate fits with templates obtained from the lat-
ter two alternative Monte Carlo simulation samples are per-
formed. Reweighting of these alternate samples is performed
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Fig. 85: Fitted values of the average light quark and gluon jet fraction as a function of inclusive jet multiplicity with total
uncertainties on the fit as obtained using the number of tracks ntrk (a) and the jet width (b) distributions. The fraction of heavy
quark jets is fixed from the Monte Carlo simulation. The flavour fractions obtained in data are shown with closed markers, while
the values obtained from the Monte Carlo simulation are shown with open markers. Anti-kt jets with R= 0.6 calibrated with
the EM+JES scheme are used. The error bars indicate the statistical uncertainty of the fit. Below each figure the impact of the
different systematic effects is indicated by markers. and the combined systematic uncertainty is shown at the bottom ofthe figure
as a shaded band.

in the same manner as for the nominal PYTHIA MC10 sam-
ple. The largest of the differences in the flavour fractions with
respect to the nominal fits is taken as the uncertainty due to
Monte Carlo modelling. This estimate should cover physics ef-
fects that may impact light quark and gluon jets differently.

18.5.2 The jet energy scale uncertainty and finite
detector resolution

The uncertainties in the jet measurement combined with the
rapidly falling jet pT spectrum, lead topT bin migrations that
affect the templates. Therefore, the templates are rebuiltwith
all jet momenta scaled up and down according to the inclusive
jet energy scale systematic uncertainty. The difference inthe
flavour content estimated with the modified templates is taken
as a systematic uncertainty.

18.5.3 Flavour composition of the MC simulation

The fraction of heavy quark jets in the data is assumed to be
the same as that predicted by the PYTHIA MC10 Monte Carlo
simulation in the template fits. The uncertainty associatedwith
this assumption is estimated by increasing and decreasing this
Monte Carlo simulation based fraction of heavy quark jets in
the template fits by a factor of two and repeating the fits with
the light quark and gluon jet templates. The factor of two is
taken in order to be conservative in theγ-jet and multijet sam-
ples, due to the lack of knowledge of gluon splitting fraction to
bb̄.

The PYTHIA Monte Carlo simulation was produced using
the modified LO parton distribution functions, which may not
accurately reproduce the true flavour composition. Particularly
in the more forward pseudorapidity bins, this could produce
some inherent biases in the fits. In order to estimate this un-
certainty, the light quark and gluon jet templates from the stan-
dard MC sample are combined according to the flavour content
of a jet sample generated using ALPGEN. This Monte Carlo
generator also uses a leading order PDF, but produces more



88 ATLAS collaboration: Jet measurement with the ATLAS detector

hard partons via multiparton matrix elements. This new com-
bination is then reweighted to match the inclusive distribution
in data, and the reweighted templates are used to extract the
flavour composition of the samples. The difference between
the flavour composition derived in this manner and the flavour
composition derived using the nominal PYTHIA Monte Carlo
simulation is taken as a systematic uncertainty.

18.6 Flavour composition in a photon-jet sample

The validity of the MC-based templates and fitting method is
tested by applying the method to theγ-jet data sample and
comparing the extracted flavour compositions with theγ-jet
Monte Carlo simulation predictions. This sample should con-
tain a considerably higher fraction of light quark jets thanthe
inclusive dijet sample. Figure82 shows the fit to the jet width
in theγ-jet data for jets with|η |< 0.8 and 60≤ pjet

T < 80 GeV.
The heavy quark jet fractions are fixed to those obtained from
the γ-jet Monte Carlo simulation. The extracted light quark
and gluon jet fractions are consistent with the true fractions
in Monte Carlo simulation, though with large uncertainties, as
shown in Table16.

18.7 Flavour composition in a multijet sample

The template fit method is also useful for fits to multijet events
for various jet multiplicities. These events contain additional
jets that mainly result from gluon radiation and hence include
a larger fraction of gluon jets than does theγ-jet sample.

For this particular analysis, the templates built from the in-
clusive jet sample are used to determine the flavour content of
then-jet bin. However, thepT spectrum of the sub-leading jets
is more steeply falling than the leading jetpT. An additional
systematic uncertainty is estimated to account for the differ-
ence inpT spectra. This uncertainty is determined by rederiv-
ing templates built with a flatpT distribution and a significantly
steeperpT distribution than that of the dijet sample. The slope
of the steeply falling distribution is taken from thepT of the
sixth leading jet in Monte Carlo events with six jets, generated
using ALPGEN. The fits are repeated with these modified tem-
plates, and the largest difference is assigned as apjet

T spectrum
shape systematic uncertainty.

Figure83 compares the fractions of light quark and gluon
jets obtained with a fit of the jet width andntrk distributions in
events with three or more jets in data and Monte Carlo simu-
lation as a function ofpjet

T for non-isolated (0.8≤ Rmin < 1.0)
jets with |η |< 0.8. The higher gluon jet fractions predicted by
the Monte Carlo simulation are reproduced by the fit, and the
data and the Monte Carlo simulation are consistent. The total
systematic uncertainty on the measurement is below 10% over
the measuredpjet

T range.
The average flavour fractions obtained from fitting the jet

width andntrk distributions in events with four or more jets are
shown in Figure84. In both cases, the extracted fractions are
consistent with the Monte Carlo predictions within the system-
atic uncertainties, and the total systematic uncertainty is similar
to the one for the three-jet bin.

The extracted light quark and gluon jet fractions, with the
total systematic uncertainty from the width andntrk fits, are
summarised in Figure85 as a function of inclusive jet multi-
plicity. The fractions differ by 10% between the data and the
Monte Carlo simulation, but are consistent within uncertain-
ties. The total systematic uncertainty is around 10% for each
multiplicity bin. Thus, for the four-jet bin, the flavour depen-
dent jet energy scale systematic uncertainty can be reducedby
a factor of∼ 10, from about 6% obtained assuming a 100%
flavour composition uncertainty to less than 1% after having
determined the flavour composition with a 10% accuracy. A
summary of the flavour fit results using the jet width templates
for the different samples is provided in Table16.

18.8 Summary of jet response flavour dependence

The flavour dependence of the jet response has been studied,
and an additional term to the jet energy scale systematic uncer-
tainty has been derived.

A generic template fit method has been developed to reduce
this uncertainty significantly for any given sample of events.
Templates derived in dijet events were applied to bothγ-jet and
multijet events, demonstrating the potential of the methodto
reduce the systematic uncertainty. The flavour dependent jet
energy scale systematic uncertainty can be reduced from∼ 6%
to below 1%.

19 Global sequential calibrated jet response
for a quark sample

In this section, the performance of the GS calibration (see Sec-
tion 11) is tested for aγ-jet sample. The jet energy scale af-
ter each GS correction can be verified using thein situ tech-
niques such as the directpT balance technique inγ-jet events
(see Section10.2), where mainly quark induced jets are tested.
The flavour dependence of the GS calibration is tested for jets
with |η |< 1.2.

The measurement is first made with jets calibrated with
the EM+JES calibration and is repeated after the application
of each of the corrections that form the GS calibration. To
maximise the available statistics one pseudorapidity bin is used
|η |< 1.2. The Monte Carlo based GS corrections are applied to
both data and Monte Carlo simulation. The systematic uncer-
tainty associated with the GS calibration is evaluated by com-
puting the data to Monte Carlo simulation ratio of the response
after the GS calibration relative to that for the EM+JES cali-
bration.

For 25≤ pjet
T < 45 GeV, the agreement between the re-

sponse in data and Monte Carlo simulation is 3.2% after EM+JES
and 4.2% after GS calibration. For 210≤ pjet

T < 260 GeV, the
agreement is 5% after EM+JES and 2.5% after GS calibration.
Therefore systematic uncertainties derived from the agreement
of data and Monte Carlo simulation vary from 1% atpjet

T =

25 GeV to 2.5% for pjet
T = 260 GeV. These results are com-

patible within the statistical uncertainty with the uncertainty
evaluated using inclusive jet events (see Section12.1.3).
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Gluon / light / heavy quark jet fraction
Sample Selection Data MC

Dijet 80≤ pT < 110 GeV,|η|< 0.8, 73 / 22 / 5% 72 / 23 / 5%
1.0≤ Rmin < 1.5 ±2(stat.)±9(syst.)%

Dijet 80≤ pT < 110 GeV, 2.1≤ |η|< 2.8, 45 / 52 / 3% 39 / 58 / 3%
1.0≤ Rmin < 1.5 ±3(stat.)±12(syst.)%

γ-jet 60≤ pT < 80 GeV,|η|< 0.8, 16 / 65 / 19% 6 / 74 / 19%
Isolated ±10(stat.)±19(syst.)%

Multijet 3-jet, 80≤ pT < 110 GeV,|η|< 0.8, 83 / 13 / 4% 84 / 12 / 4%
0.8≤ Rmin < 1.0 ±2(stat.)±7(syst.)%

Multijet 4-jet, 80≤ pT < 110 GeV,|η|< 0.8, 89 / 3 / 8% 81 / 11 / 8%
1.0≤ ∆Rmin < 1.5 ±6(stat.)±8(syst.)%

Table 16: The results of flavour fits using jet width templatesin three data samples: dijet events,γ-jet events, and multijet events.
The Monte Carlo simulation flavour predictions are taken from ALPGEN for the dijet and multijet samples and PYTHIA for the
γ-jet sample. The first uncertainty listed is statistical andthe second uncertainty is systematic, and both apply to the measured
gluon and light quark jet fractions. The heavy quark jet fractions in the data are constrained to be the same as those in theMC
simulation.

The obtained results indicate that the uncertainty in a sam-
ple with a high fraction of light quark jets is about the same as
in the inclusive jet sample.

20 JES uncertainties for jets with identified
heavy quark components

Heavy flavour jets such as jets induced by bottom (b) quarks
(b-jets) play an important role in many physics analyses.

The calorimeter jet response uncertainties forb-jets is eval-
uated using single hadron response measurements in samples
of inclusive dijet andbb̄ dijet events. The JES uncertainty aris-
ing from the modelling of theb-quark production mechanism
and theb-quark fragmentation can be determined from system-
atics variations of the Monte Carlo simulation.

Finally, the calorimeterpjet
T measurement can be compared

to the one from tracks associated to the jets for inclusive jets
and identifiedb-jets. From the comparison of data to Monte
Carlo simulation theb-jet energy scale uncertainty relative to
the inclusive jet sample is estimated.

20.1 Selection of identified heavy quark jets

Jets are reconstructed using the anti-kt jet algorithm withR=

0.4 and calibrated with the EM+JES scheme. Jets withpjet
T >

20 GeV and|η |< 2.5 are selected.
A representative sample of identifiedb-jets is selected by a

track-basedb-tagging algorithm, called the SV0 tagger [8,71].
This algorithm iteratively reconstructs a secondary vertex in
jets and calculates the decay length with respect to the primary
vertex. The decay length significance is assigned to each jetas
a tagging weight. A jet is identified as ab-jet if this weight
exceeds a threshold of 5.85 as explained in Ref. [71]. To ad-
just the Monte Carlo simulation to theb-tagging performance
in data, a dedicatedb-tagging calibration consisting of “scale

factors” [71] is applied to the simulation and systematic uncer-
tainties for the calibration are evaluated. For Monte Carlostud-
ies, a sample ofb-jets is selected using a geometrical matching
of the jet (∆R< 0.4) to atrue B-hadron.

20.2 Calorimeter response uncertainty

The uncertainty of the calorimeter response to identifiedb-jets
has been evaluated using single hadron response measurements
in situand in test-beams [49]. The same method as described in
Section9.3is used to estimate theb-jet response uncertainty in
events with top-quark pairs with respect to the one of inclusive
jets.

For jets within|η | < 0.8 and 20≤ pjet
T < 250 GeV the ex-

pected difference in the calorimeter response uncertaintyof
identifiedb-jets with respect to the one of inclusive jets is less
than 0.5%. It is assumed that this uncertainty extends up to
|η |< 2.5.

Parameter Nominal Professor Bowler-Lund
MSTJ(11) 4 5 4
MSTJ(22) 2 2 2
PARJ(41) 0.3 0.49 0.85
PARJ(42) 0.58 1.2 1.03
PARJ(46) 0.75 1.0 0.85
PARJ(54) −0.07
PARJ(55) −0.006

Table 17: PYTHIA steering parameters for the considered vari-
ations of theb-quark fragmentation functions.

20.3 Uncertainties due to Monte Carlo modelling

The following uncertainties forb-jets are studied using system-
atic variations of the Monte Carlo simulation:
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Fig. 86: Average response forb-jets as a function ofpjet
T obtained with the Monte Carlo event generators PYTHIA with the MC10

and PERUGIA2010 tunes and HERWIG++ (a) and PYTHIA simulations with additional dead detector material. Average response
for b-jets using the PYTHIA Professor tune and the PYTHIA modified Bowler-Lund fragmentation function evaluated with respect
to the nominal PYTHIA inclusive jet sample (b). Only statistical uncertainties are shown.

1. Fragmentation and hadronisation modelling uncertaintyob-
tained by comparing the Monte Carlo generators HERWIG

vs PYTHIA .
2. Soft physics modelling uncertainty obtained by comparing

the PYTHIA MC10 to the PYTHIA PERUGIA2010 tune.
3. Modelling uncertainty of the detector material in front and

in between the calorimeters.
4. Modelling uncertainty of the fragmentation ofb-quarks.

The event generators PYTHIA and HERWIG++ are used to
evaluate the influence of different hadronisation models, dif-
ferent parton showers, as well as differences in the underlying
event model (see Section4). Variations in proton parton density
functions are also included.

The influence of the soft physics modelling is estimated
by replacing the standard PYTHIA MC10 tune by the PYTH-
IA PERUGIA2010 tune. The impact of additional dead material
is tested following the prescription detailed in Section9.

The fragmentation function is used to estimate the momen-
tum carried by theB-hadron with respect to that of theb-quark
after quark fragmentation. The contribution of theb-quark frag-
mentation to the JES uncertainty is estimated using Monte Carlo
samples generated with different sets of tuning parametersof
two fragmentation functions (see Table17).

The fragmentation function included as default in PYTH-
IA originates from a detailed study of theb-quark fragmen-
tation function in comparison with OPAL [72] and SLD [73]
data. The data are better described using the symmetric Bowler
fragmentation function withrQ = 0.75 (PYTHIA PARJ(46)),
assuming the same modification forb- and c-quarks. Thea
(PYTHIA PARJ(41)) andb (PYTHIA PARJ(42)) parameters of
the symmetric Lund function were left with the values shown

in Table17. A more detailed discussion of uncertainties in the
b-quark fragmentation function can be found in Refs. [74].

The choice of the fragmentation function for this study is
based on comparisons to LEP experimental data, mostly from
ALEPH [75] and OPAL [72], as well as from the SLD experi-
ment [73] included in a phenomenological study of theb-quark
fragmentation in top-quark decay [76].

To assess the impact of theb-quark fragmentation, the nom-
inal parameters of the PYTHIA fragmentation function are re-
placed by the values from a recent tune using the Professor
framework [77]. In addition, the nominal fragmentation func-
tion is replaced by the modified Bowler-Lund fragmentation
function [78].

For each effect listed above theb-jet response uncertainty
is evaluated from the ratio between the response ofb-jets in the
Monte Carlo samples with systematic variations to the nominal
PYTHIA MC10 b-jet sample. The deviation from unity of this
ratio is taken as uncertainty:

Uncertainty= 1−
(

R
b-jet
variation

R
b-jet
nominal

)

. (60)

The b-jet response obtained with PYTHIA for the MC10
and the PERUGIA2010 tunes, the HERWIG++ Monte Carlo event
generator and using a simulation with additional dead material
is shown in Figure86a. Figure86b shows the variation with
various fragmentation functions, i.e. the standard one in the
nominal PYTHIA sample versus the ones in the PYTHIA Profes-
sor tune sample and the PYTHIA modified Bowler-Lund frag-
mentation function sample. The response variations are well
within about 2%.
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Shown are systematic Monte Carlo variations using different
modelling of theb-quark fragmentation and physics effects as
well as variations in the detector geometry and the uncertainty
in the calorimeter response tob-jets as evaluated from single
hadron response measurements. Uncertainties on the individ-
ual points are statistical only.

20.4 Final bottom quark JES uncertainty

Theb-jet JES uncertainty is obtained adding the calorimeter re-
sponse uncertainty (see Section20.2for generator details) and
the uncertainties from the systematic Monte Carlo variations
(see Section20.3) in quadrature.

To avoid double counting when combining theb-jet uncer-
tainty with the JES uncertainty of inclusive jets the following
effects need to be considered:

1. The uncertainty component due to the PERUGIA2010 tune
is not added, since the effect onb-jets is similar to the one
on inclusive jets where it is already accounted for.

2. The average uncertainty for inclusive jets due to additional
dead detector material is subtracted from the correspond-
ing b-jet uncertainty component. The JES uncertainty due
to dead material is smaller for inclusive jets, sincein situ
measurements are used.

The resulting additional JES uncertainty forb-jets is shown
in Figure87. It is about 2% up topjet

T ≈ 100 GeV and below 1%

for higher pjet
T . To obtain the overallb-jet uncertainty this un-

certainty needs to be added in quadrature to the JES uncertainty
for inclusive jets described in Section9.

20.5 Validation of the heavy quark energy scale
using tracks

The validation of the identifiedb-jet JES uncertainty uses the
tracks associated to theb-jet as reference object and closely
follows the method described in Section10.1. The transverse
momentum of a jet is compared to the total transverse momen-
tum measured in tracks associated to the jet (see Equation22).

20.5.1 Method

The double ratio of charged-to-total momentum observed in
data to that obtained in Monte Carlo simulation defined in Equa-
tion 23 will be referred to asRrtrk,inclusive. In analogy this ratio
is studied forb-tagged jets:

Rrtrk,b-jet ≡
[〈rtrk b-jet〉]Data

[〈rtrk b-jet〉]MC
. (61)

The rtrk distributions for allpT bins are calculated and the
mean values ofrtrk for data and Monte Carlo simulation are
derived. The relative response tob-jets relative to inclusive jets,
R′, is defined as

R′ ≡ Rrtrk,b-jet

Rrtrk,inclusive
. (62)

20.5.2 Systematic uncertainties

The systematic uncertainties arise from the modelling of the
b-fragmentation,b-tagging calibration, jet resolution and track-
ing efficiency. They are assumed to be uncorrelated. The result-
ing fractional systematic uncertainties are shown on the right
part of Figure88and are determined as follows:

1. MC generator: Thertrk distribution is also calculated from
HERWIG++ samples. The shift in the distribution is fitted
by a constant function. The variations in the data to Monte
Carlo simulation ratio are taken as a systematic uncertainty.

2. b-tagging calibration: The scale factors are varied corre-
lated within their systematic uncertainty in the Monte Carlo
simulation and the ratio is re-evaluated. The resulting shifts
are added in quadrature to the systematic uncertainty.

3. Material description: The knowledge of the tracking effi-
ciency modelling in Monte Carlo simulation was evaluated
in detail in Ref. [64]. The systematic uncertainty on the
tracking efficiency for isolated tracks increases from 2%
(|η track|< 1.3) to 7% (2.3≤ |η track|< 2.5) for tracks with
pT > 500 MeV. The resulting effect onrtrk is 2% for |y|<
1.2, 3.1% for 1.2≤ |y|< 2.1 and 5.5% for 2.1≤ |y|< 2.5.

4. Tracking in jet core: High track densities in the jet core
influence the tracking efficiency due to shared hits between
tracks, fake tracks and lost tracks. The number of shared
hits is well-described in Monte Carlo simulation. ThepT
carried by fake tracks is negligible.
A relative systematic uncertainty of 50% on the loss of ef-
ficiency is assigned. The shift ofrtrk due to this uncertainty
on the loss of efficiency is evaluated in Monte Carlo simu-
lation on generated charged particles. Monte Carlo pseudo-
experiments are generated according to the varied ineffi-
ciency. For each jet the ratio of thepT sum of the associ-
ated generated particles (truth tracks) withptrack

T > 1 GeV
to the pT sum of those associated truth tracks withpT >
1 GeV which also have a matched reconstructed track with
ptrack

T > 1 GeV, is calculated. In this latter sample a truth
track without or with a reconstructed track withptrack

T >
1 GeV is added or respectively discarded according to the
inefficiency uncertainty. The relative shift in the ratiortrk is
added in quadrature to the systematic uncertainty.
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Fig. 88: The ratio of the mean value ofrtrk in data and Monte Carlo (left) and the fractional systematicuncertainty (right) as a
function ofpjet

T for |y|< 1.2 (a), 1.2≤ |y|< 2.1 (b) and 2.1≤ |y|< 2.5 (c). Anti-kt jets withR= 0.4 calibrated with the EM+JES
scheme are used. The dashed lines indicate the estimated uncertainty from the data and Monte Carlo simulation agreement. Note
the changed axis ranges in (c). Only statistical uncertainties are shown on the data points.
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Fig. 89: The ratioR′ (see Equation62) of Rrtrk,b-jet for identifedb-jets andRrtrk,inclusive for inclusive jets (left) and the fractional

systematic uncertainty (right) as a function ofpjet
T for |y|< 1.2 (a), 1.2≤ |y|< 2.1 (b) and 2.1≤ |y|< 2.5 (c). Anti-kt jets with

R= 0.4 calibrated with the EM+JES scheme are used. The dashed lines indicate the estimated uncertainty from the data and
Monte Carlo simulation agreement. Only statistical uncertainties are shown on the data points. Note the changed axis ranges in
(c).
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5. Jet resolution: The jet energy resolution in Monte Carlo
simulation is degraded. A random energy that corresponds
to a resolution smearing of 10% is added to each jet. The
resulting shift of the ratiortrk is evaluated and added in
quadrature to the overall systematic uncertainty.

The two biggest contributions to the systematic uncertainty
are due to the material description and the difference between
thertrk distribution for HERWIG++ and PYTHIA .

20.5.3 Results

Figure88 (left) shows the ratio of data to Monte Carlo simula-
tion. An agreement of the calorimeter to track jetpT measure-
ments is found within 2% in the bin|y| < 1.2, within 4% for
1.2≤ |y|< 2.1 and within 6% for 2.1≤ |y|< 2.5.

The relative responseR′ between identifiedb-jets and in-
clusive jets is shown in Figure89 for all y-bins indicating the
resulting relativeb-jet energy scale uncertainty with respect to
the inclusive jets sample. The uncertainty forb-jets is estimated
to be 2%, 2.5% and 6% in the range|y|< 1.2, 1.2≤ |y| < 2.1
and 2.1≤ |y|< 2.5, respectively. For the calculation of the sys-
tematic uncertainty inR′ it is assumed that at first order the
uncertainty in the denominator and numerator ofR′ from the
tracking, namely tracking efficiency, material description, are
fully correlated and cancel. Thepjet

T resolution for inclusive and
identifiedb-jets is considered to be similar. Both assumptions
are exactly valid for highpT jets; for low pT jets the second
order deviations are estimated to be about 0.2%.

The most significant systematic uncertainties onR′ are due
to the choice of the Monte Carlo generator and theb-tagging
calibration. Those independent uncertainties are added inquadra-
ture. The Monte Carlo generator uncertainties from the inclu-
sive sample and from theb-tagged sample are also added in
quadrature.

20.5.4 Summary

The jet energy scale for identifiedb-jets relative to that of in-
clusive jets is evaluated for anti-kt jets with R= 0.4 for the
EM+JES calibration scheme. The resulting relativeb-jet en-
ergy scale with respect to the inclusive jets sample is derived
within 2%, 2.5% and 6% in the range|y|< 1.2, 1.2≤ |y|< 2.1
and 2.1≤ |y|< 2.5, respectively.

21 Study of jet punch-through

For jets at very high transverse momentum it is possible that
part of the energy is not deposited in the calorimeter, but leaks
out to the detector components beyond the calorimeter. This
leads to a systematic reduction in the measured jet energy.

Jets that deposit energy beyond the hadronicTile calorime-
ter and in the muon system are calledpunch-throughjets. A
graphical representation of a candidate for a punch-through jet
in data is shown in Figure90.

In this section the Monte Carlo simulation of energy de-
posits in the outermost calorimeter layer is tested. Quantitative
estimates of the energy lost beyond the calorimeter are obtained
using a tag-and-probe technique.

21.1 Event selection for punch-through analysis

Anti-kt jets withR= 0.4 calibrated with the EM+JES scheme
are used in this study. Jets in the barrel of theTile calorime-
ter with |η | < 1.2 are used. Events with at least two jets are
retained, if the highestpT jet satisfiesp j1

T > 120 GeV and the

second highestpT jet satisfiesp j2
T > 80 GeV. The two leading

jets are required to be back-to-back requiring∆φ > 170◦.

21.2 Energy depositions in the hadronic calorimeter

The energy deposits in the outermost layer of the barrel of the
Tile calorimeter are a good indicator of the jet energy depo-
sitions beyond the calorimeter. These are shown in Figure91
for the leading and the sub-leading jet. Most jets deposit only
about 3 to 7 GeV energy in the outermost calorimeter layer. The
Monte Carlo simulation gives a good description of the data
for pjet

T < 80 GeV. For higherpjet
T the data distribution is below

the Monte Carlo simulation, but the statistical uncertainties are
large.

Figure92 shows the dependence of the energy deposition
in the outermost layer of theTile calorimeter measured at the
EM scale for the leading and sub-leading jetpT. The energy in
the third layer of theTile calorimeter increases with rising jet
pT. The data are well described by the Monte Carlo simulation
in the low pjet

T region. Starting from about 400 GeV the data
tend to be 5−10% above the Monte Carlo simulation. For high
pjet

T the statistical uncertainties are large.

LAr

Tile

Muon

Fig. 90: Graphical representation in a zoomedx-y view of an
event candidate with one large transverse momentum jet (pjet

T =
176 GeV) having a large activity in the lastTile calorimeter
layer (82 GeV at the EM scale) and in the muon detectors. The
tracks in the inner detector are shown as lines in the top right,
the energy deposits in theLAr andTile calorimeters are shown
as light boxes. The hits in the muon system are shown as points.
There are 128 hits measured in the muon system.
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Fig. 91: Distribution of the deposited energy in the outermost layer of theTile barrel calorimeter measured at the EM-scale for
the leading (a) and the subleading (b) jet. Anti-kt jets with R= 0.4 within |η | < 1.2 and calibrated with the EM+JES scheme
are used. The leading jet is required to be abovepjet

T > 120 GeV the subleading jet is required to be abovepjet
T > 80 GeV. Only

statistical uncertainties are shown.
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Fig. 92: Average energy deposited in the outermost layer of theTile barrel calorimeter at the EM-scale for the leading (a) and
the subleading jet (b) as a function of the jet transverse momentum. Anti-kt jets withR= 0.4 within |η |< 1.2 and calibrated with
the EM+JES scheme are used. The leading jet is required to be abovepjet

T > 120 GeV the subleading jet is required to be above

pjet
T > 80 GeV. Only statistical uncertainties are shown.

21.3 Dijet balance as an indication of punch-through

The relative calorimeter response between the two jets in a di-
jet event can be measured using the dijetpT balance method.
In Section9.6 the reference jet is chosen as a well-measured
object in the central detector region that is used to assess the
JES uncertainty of the probe jet in the forward region. How-
ever, in the context of punch-through such a distinction cannot

be made. Jet punch-through can occur in any detector pseudo-
rapidity region. Fluctuations in the particle compositionor in
the hadronic shower occur with equal probability for both jets
and it is not possible to knowa priori which of the jets will be
affected.

A different approach is therefore employed. The energy lost
beyond the calorimeter will create a component of the missing
transverse energyEmiss

T in the direction of the punch-through



96 ATLAS collaboration: Jet measurement with the ATLAS detector

EM+JES

Data 2010

>

>

(a) Inclusive events

E     >40 GeVT
miss

EM+JES

Data 2010

>
<

(b) Events with largeEmiss
T

Fig. 93: Average relative jet response as a function of the energy deposited in the outermost layer of theTile barrel calorimeter
at the EM-scale divided by the total jet energy. In (a) the standard event selection is employed, whilst in (b) an extra requirement
in placed upon the missing transverse momentum in the event.Anti-kt jets with R= 0.4 within |η | < 1.2 and calibrated with
the EM+JES scheme are used. The leading jet is required to be abovepjet

T > 120 GeV the subleading jet is required to be above

pjet
T > 80 GeV. Only statistical uncertainties are shown (errors bars for data, shaded band for Monte Carlo simulation).

jet. The punch-through jet can therefore be defined as the one
that is closest to theEmiss

T φ -direction. The asymmetry between
the transverse momentum of the reference jet (preference

T ) away
from theEmiss

T direction and the punch-through jet, acting as

probe jet (ppunch−through
T ), can then be measured as a function of

the energy deposition of the jet that is the candidate for punch-
through.

Figure 93a show the average ratio of the transverse mo-
mentum of the punch-through jet to the one of the reference
jet as a function of the energy depositions in the lastTile

calorimeter layer measured at the EM-scale with respect to
the total jet energy. Figure93b show the average jet response
whereEmiss

T > 40 GeV is required. This selection enhances pos-
sible punch-through effects. The transverse momentum of the
punch-through jet is lower than that of the reference jet. This is
a bias due to the selection of the punch-through jet as the one
pointing to the direction of the missing transverse momentum.
There is no dependence on the energy fraction in the outermost
layer, indicating that energy losses due to punch-through are
small for the jetpT range considered in this study. The Monte
Carlo simulation describes the data within the statisticaluncer-
tainties.

21.4 Summary of the jet punch-through study

The energy deposition in the outer layer of theTile calorime-
ter and its dependence on the transverse jet energy is described
by the Monte Carlo simulation. This indicates that the Monte
Carlo simulation is able to describe energy deposited beyond
the calorimeter. For the few jets that are potentially affected by

punch-through no additional uncertainty due to punch-through
effects is assigned.

22 Summary

The jet energy scale (JES) and its systematic uncertainty for
various jet calibration schemes are determined for jets mea-
sured with the ATLAS detector in the 2010 data set correspond-
ing to an integrated luminosity of 38 pb−1. Jets produced in
proton-proton collisions at the LHC with a centre-of-mass en-
ergy of

√
s= 7 TeV are reconstructed with the anti-kt algorithm

with distance parametersR= 0.4 or R= 0.6. The energy and
the direction of the jets are calibrated with simple factorsde-
rived from Monte Carlo simulations for transverse jet momenta
pjet

T ≥ 20 GeV and pseudorapidities|η |< 4.5 using various jet
calibration schemes.

In the simplest calibration scheme (EM+JES), where the
JES correction factor is directly applied to the calorimeter mea-
surement at the electromagnetic scale, the JES systematic un-
certainty is estimated using the single hadron response mea-
suredin situand in test-beams and by studying systematic vari-
ations in Monte Carlo simulations. The transverse momentum
balance between central and forward jets in dijet events is used
to derive the JES uncertainty for forward jets.

In the central region,|η |< 0.8, the EM+JES uncertainty is
lower than 4.6% for all jets withpjet

T > 20 GeV and less than

2.5% for jets with 60≤ pjet
T < 800 GeV. Jets with transverse

momenta in the TeV-regime have a JES uncertainty of 3 to 4%.
Towards the forward region the EM+JES uncertainty increases,
mainly because of differences between the Monte Carlo event
generators PYTHIA and HERWIG when deriving the relative
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η-intercalibration uncertainty. The largest JES uncertainty of
about 14% is found for lowpT jets with 20≤ pjet

T < 30 GeV at
3.6≤ |η |< 4.5. The jet energy scale uncertainty is found to be
similar for jets reconstructed with both jet distance parameters
studied:R= 0.4 andR= 0.6.

The additional energy induced by superimposed events from
multiple proton-proton collisions in the same bunch crossing
(pile-up) is determined to be 0.5 GeV per additional recon-
structed vertex. The JES uncertainty after applying the pile-
up correction is estimated as a function of the number of pri-
mary vertices. In the case of two primary vertices per event,
the uncertainty due to pile-up for jets withpjet

T ≈ 20 GeV and
0.3≤ |η |< 0.8 is about 1%, while it amounts to about 2% for
jets with 2.1≤ |η | < 2.8. For jets with transverse momentum
above 200 GeV, the uncertainty due to pile-up is negligible for
all jets.

The JES and its uncertainty are validated up topjet
T . 1 TeV

to the level of a few per cent using severalin situ techniques
by comparing the highpT jet to a well known reference recoil-
ing against it. These reference objects include the sum of the
transverse track momenta associated to the jet, a system of low
pT jets or the photonpT. The track-based method covers the
full pjet

T range and has the highest statistical precision. How-
ever, the systematic uncertainty of the method is as large as6%
for very low pT jets and about 3-4% for 40≤ pjet

T < 800 GeV

and somewhat higher for jets outside thispjet
T range. Theγ-jet

method has a systematic uncertainty of about 1%, but is still
statistically limited and reaches onlypjet

T . 300 GeV. Balanc-
ing very highpT jets against a recoil system of lowerpT jets
allows the validation of the highpT jets within 5% up to 1 TeV.
In this range the statistical uncertainty is roughly equivalent to,
or smaller than, the systematic uncertainty.

The JES uncertainty derived from a combination ofin situ
techniques is compatible to the one derived from the single
hadron response measurements over a wide kinematic range,
but it is larger for very low and very largepjet

T , where the un-
certainties of thein situ methods are large.

More sophisticated jet energy calibration schemes based
on cell energy density weighting or jet properties are stud-
ied. These provide a better jet energy resolution and a reduced
flavour dependence of the jet response.

The global sequential jet calibration (GS) based on global
properties of the internal jet structure improves the energy res-
olution and reduces flavour dependence of the EM+JES cal-
ibration scheme. The JES uncertainty for the GS jet calibra-
tion scheme is given by the sum in quadrature of the EM+JES
uncertainty and the uncertainty associated to the GS correc-
tions. The latter is conservatively taken to be 0.5% for 30≤
pT < 800 GeV and|η | < 2.1 and 1% forpjet

T < 30 GeV and
2.1 < |η | < 2.8. These uncertainties are also supported byin
situ measurements with theγ-jet and the dijet technique.

The global cell weighting scheme (GCW) derives cell wei-
ghts by optimising the resolution of reconstructed jets rela-
tive to their respective truth jets. The local cluster calibration
(LCW) derives energy corrections for calorimeter clustersus-
ing single hadron Monte Carlo simulations. The JES uncer-
tainty is obtained fromin situ techniques. Over a wide kine-
matic range the JES uncertainties for the various schemes are

similar, except at very low and very highpjet
T where the uncer-

tainty from thein situ techniques are larger. The LCW+JES and
the GCW+JES scheme show similar performance.

For all jet calibration methods additional uncertainties are
derived for close-by jet topologies and for response differences
for jets induced by quarks, gluons or heavy flavour quarks. A
method to reduce the uncertainty due to uncertainties on the
quark and gluon composition in a given event sample is shown.
The uncertainty due to close-by jets is largest for lowpT jets,
but is at most below 2 to 3%. The JES uncertainty of jets con-
tainingB-hadrons is about 2% for low-pT jets and smaller than
1% for jets withpjet

T > 200 GeV.
The jet reconstruction efficiency is derived using the Monte

Carlo simulation and the systematic uncertainty evaluatedwith
a tag-and-probe technique using track jets. The jet reconstruc-
tion efficiency is well-described by the Monte Carlo simula-
tion. The associated systematic uncertainty is below 2% forjets
with pjet

T < 30 GeV and negligible for higherpjet
T .

The Monte Carlo simulation gives a good description of
the main aspects of the data. Detailed studies show that the
calorimeter cell energy densities in jets, the calorimeterenergy
topology induced by jets and track related properties are well-
described. This includes the amount of energy deposited in the
outermost calorimeter layers from which it is inferred thatthe
JES uncertainty due to energy leaking beyond the calorimeter
is small and well-described by the Monte Carlo simulation. No
additional uncertainty for punch-through effects is assigned for
high-pT jets.

In summary, the precision of the jet energy measurement
with the ATLAS detector has been established using various
techniques in the first year of proton-proton collisions at the
LHC. In the central detector the jet energy can be measured
with a precision of about 2 to 3% over a wide transverse mo-
mentum range.

This excellent performance would not have been possible
without a very detailed understanding of the detector and so-
phisticated calorimeter calibration procedures as well asthe
good description of the ATLAS detector in the Monte Carlo
simulation.
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S. Gonzalez172, S. González de la Hoz167, M.L. Gonzalez Silva26, S. Gonzalez-Sevilla49, J.J. Goodson148, L. Goossens29,
P.A. Gorbounov95, H.A. Gordon24, I. Gorelov103, G. Gorfine174, B. Gorini29, E. Gorini72a,72b, A. Gorišek74, E. Gornicki38,
S.A. Gorokhov128, V.N. Goryachev128, B. Gosdzik41, M. Gosselink105, M.I. Gostkin65, I. Gough Eschrich163, M. Gouighri135a,
D. Goujdami135c, M.P. Goulette49, A.G. Goussiou138, C. Goy4, I. Grabowska-Bold163,n, P. Grafström29, C. Grah174,
K-J. Grahn41, F. Grancagnolo72a, S. Grancagnolo15, V. Grassi148, V. Gratchev121, N. Grau34, H.M. Gray29, J.A. Gray148,
E. Graziani134a, O.G. Grebenyuk121, D. Greenfield129, T. Greenshaw73, Z.D. Greenwood24,m, K. Gregersen35, I.M. Gregor41,
P. Grenier143, J. Griffiths138, N. Grigalashvili65, A.A. Grillo137, S. Grinstein11, Y.V. Grishkevich97, J.-F. Grivaz115, M. Groh99,
E. Gross171, J. Grosse-Knetter54, J. Groth-Jensen171, K. Grybel141, V.J. Guarino5, D. Guest175, C. Guicheney33, A. Guida72a,72b,
S. Guindon54, H. Guler85,o, J. Gunther125, B. Guo158, J. Guo34, A. Gupta30, Y. Gusakov65, V.N. Gushchin128, A. Gutierrez93,
P. Gutierrez111, N. Guttman153, O. Gutzwiller172, C. Guyot136, C. Gwenlan118, C.B. Gwilliam73, A. Haas143, S. Haas29,
C. Haber14, R. Hackenburg24, H.K. Hadavand39, D.R. Hadley17, P. Haefner99, F. Hahn29, S. Haider29, Z. Hajduk38,
H. Hakobyan176, J. Haller54, K. Hamacher174, P. Hamal113, A. Hamilton49, S. Hamilton161, H. Han32a, L. Han32b,
K. Hanagaki116, M. Hance14, C. Handel81, P. Hanke58a, J.R. Hansen35, J.B. Hansen35, J.D. Hansen35, P.H. Hansen35,
P. Hansson143, K. Hara160, G.A. Hare137, T. Harenberg174, S. Harkusha90, D. Harper87, R.D. Harrington45, O.M. Harris138,
K. Harrison17, J. Hartert48, F. Hartjes105, T. Haruyama66, A. Harvey56, S. Hasegawa101, Y. Hasegawa140, S. Hassani136,
M. Hatch29, D. Hauff99, S. Haug16, M. Hauschild29, R. Hauser88, M. Havranek20, B.M. Hawes118, C.M. Hawkes17,
R.J. Hawkings29, D. Hawkins163, T. Hayakawa67, T. Hayashi160, D Hayden76, H.S. Hayward73, S.J. Haywood129, E. Hazen21,
M. He32d, S.J. Head17, V. Hedberg79, L. Heelan7, S. Heim88, B. Heinemann14, S. Heisterkamp35, L. Helary4, M. Heller29,
S. Hellman146a,146b, D. Hellmich20, C. Helsens11, R.C.W. Henderson71, M. Henke58a, A. Henrichs54, A.M. Henriques Correia29,
S. Henrot-Versille115, F. Henry-Couannier83, C. Hensel54, T. Henß174, C.M. Hernandez7, Y. Hernández Jiménez167,
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B.P. Kerševan74, S. Kersten174, K. Kessoku155, C. Ketterer48, J. Keung158, M. Khakzad28, F. Khalil-zada10, H. Khandanyan165,
A. Khanov112, D. Kharchenko65, A. Khodinov96, A.G. Kholodenko128, A. Khomich58a, T.J. Khoo27, G. Khoriauli20,
A. Khoroshilov174, N. Khovanskiy65, V. Khovanskiy95, E. Khramov65, J. Khubua51b, H. Kim7, M.S. Kim2, P.C. Kim143,
S.H. Kim160, N. Kimura170, O. Kind15, B.T. King73, M. King67, R.S.B. King118, J. Kirk129, L.E. Kirsch22, A.E. Kiryunin99,
T. Kishimoto67, D. Kisielewska37, T. Kittelmann123, A.M. Kiver128, E. Kladiva144b, J. Klaiber-Lodewigs42, M. Klein73,
U. Klein73, K. Kleinknecht81, M. Klemetti85, A. Klier171, A. Klimentov24, R. Klingenberg42, E.B. Klinkby35,g,
T. Klioutchnikova29, P.F. Klok104, S. Klous105, E.-E. Kluge58a, T. Kluge73, P. Kluit105, S. Kluth99, N.S. Knecht158,
E. Kneringer62, J. Knobloch29, E.B.F.G. Knoops83, A. Knue54, B.R. Ko44, T. Kobayashi155, M. Kobel43, M. Kocian143,



104 ATLAS collaboration: Jet measurement with the ATLAS detector
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I.D. Manjavidze65, A. Mann54, P.M. Manning137, A. Manousakis-Katsikakis8, B. Mansoulie136, A. Manz99, A. Mapelli29,
L. Mapelli29, L. March80, J.F. Marchand29, F. Marchese133a,133b, G. Marchiori78, M. Marcisovsky125,g, A. Marin21,∗,
C.P. Marino169, F. Marroquim23a, R. Marshall82, Z. Marshall29, F.K. Martens158, S. Marti-Garcia167, A.J. Martin175,
B. Martin29, B. Martin88, F.F. Martin120, J.P. Martin93, Ph. Martin55, T.A. Martin17, V.J. Martin45, B. Martin dit Latour49,
S. Martin–Haugh149, M. Martinez11, V. Martinez Outschoorn57, A.C. Martyniuk82, M. Marx82, F. Marzano132a, A. Marzin111,
L. Masetti81, T. Mashimo155, R. Mashinistov94, J. Masik82, A.L. Maslennikov107, I. Massa19a,19b, G. Massaro105, N. Massol4,
P. Mastrandrea132a,132b, A. Mastroberardino36a,36b, T. Masubuchi155, M. Mathes20, P. Matricon115, H. Matsumoto155,
H. Matsunaga155, T. Matsushita67, C. Mattravers118,c, J.M. Maugain29, S.J. Maxfield73, D.A. Maximov107, E.N. May5,
A. Mayne139, R. Mazini151, M. Mazur20, M. Mazzanti89a, E. Mazzoni122a,122b, S.P. Mc Kee87, A. McCarn165,
R.L. McCarthy148, T.G. McCarthy28, N.A. McCubbin129, K.W. McFarlane56, J.A. Mcfayden139, H. McGlone53,
G. Mchedlidze51b, R.A. McLaren29, T. Mclaughlan17, S.J. McMahon129, R.A. McPherson169,k, A. Meade84, J. Mechnich105,
M. Mechtel174, M. Medinnis41, R. Meera-Lebbai111, T. Meguro116, R. Mehdiyev93, S. Mehlhase35, A. Mehta73, K. Meier58a,
J. Meinhardt48, B. Meirose79, C. Melachrinos30, B.R. Mellado Garcia172, L. Mendoza Navas162, Z. Meng151,u,
A. Mengarelli19a,19b, S. Menke99, C. Menot29, E. Meoni11, K.M. Mercurio57, P. Mermod118, L. Merola102a,102b, C. Meroni89a,
F.S. Merritt30, A. Messina29, J. Metcalfe103, A.S. Mete64, C. Meyer81, J-P. Meyer136, J. Meyer173, J. Meyer54, T.C. Meyer29,
W.T. Meyer64, J. Miao32d, S. Michal29, L. Micu25a, R.P. Middleton129, P. Miele29, S. Migas73, L. Mijović41, G. Mikenberg171,
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T.B. Sjursen13, L.A. Skinnari14, H.P. Skottowe57, K. Skovpen107, P. Skubic111, N. Skvorodnev22, M. Slater17, T. Slavicek127,
K. Sliwa161, J. Sloper29, V. Smakhtin171, S.Yu. Smirnov96, L.N. Smirnova97, O. Smirnova79, B.C. Smith57, D. Smith143,
K.M. Smith53, M. Smizanska71, K. Smolek127, A.A. Snesarev94, S.W. Snow82, J. Snow111, J. Snuverink105, S. Snyder24,
M. Soares124a, R. Sobie169,k, J. Sodomka127, A. Soffer153, C.A. Solans167, M. Solar127, E. Soldatov96, U. Soldevila167,
E. Solfaroli Camillocci132a,132b, A.A. Solodkov128, O.V. Solovyanov128, J. Sondericker24, N. Soni2, V. Sopko127, B. Sopko127,
M. Sorbi89a,89b, M. Sosebee7, R. Soualah164a,164c, A. Soukharev107, S. Spagnolo72a,72b, F. Spanò76, R. Spighi19a, G. Spigo29,
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4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Fı́sica d’Altes Energies and Departament de Fı́sica de la Universitat Autònoma de Barcelona and ICREA,
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Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;(b)Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg;(c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität
Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria



ATLAS collaboration: Jet measurement with the ATLAS detector 109

63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Instituto de Fı́sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a)INFN Sezione di Lecce;(b)Dipartimento di Fisica, Università del Salento, Lecce, Italy
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Casablanca;(b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat;(c)Université Cadi Ayyad, Faculté des
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