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1
Introduction

1.1 The Cosmological framework

The modern developments on the knowledge of the Universe are based on one

single assumption, i. e. that the Universe is, on a sufficiently large scale, isotropic

and homogeneous. This assumption has also been confirmed by a number of

observations.

The standard model of cosmology directly comes from the application of gen-

eral relativity to the matter (and energy) content of the Universe. The corre-

sponding Einstein field equation then allows to describe the dynamical state of

the Universe as a whole:

Rµν − 1

2
gµνR− gµνΛ =

8πG

c4
Tµν (1.1)

with Rµν the Ricci tensor, describing the local curvature of the space-time, gµν

the metric, R the curvature scalar, Λ the cosmological constant and Tµν the

energy-momentum tensor (see e.g. Mo, van den Bosch, & White 2010).

In the case of a homogeneous and isotropic universe, the metric assumes a

simple form, known also as the Friedmann-Lemaitre-Robertson-Walker metric,

and which can be regarded as the generalization of spherical coordinates (r, θ,φ)

embedded in a 4 dimensional space:

ds2 = c2dt2 − a2(t)

�
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

�
(1.2)
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1.1. The Cosmological framework

The above equation allows to express the proper distance element ds in terms

of comoving coordinates (r, θ,φ), of the curvature K, of time t and of the scale

factor a(t).

Together with the above metric, the field equation, for the case of an isotropic

and homogenous universe, leads to the Friedmann equation:

H2(t) ≡
�
ȧ

a

�2

=
8πG

2
ρ− Kc2

a2
+

Λc2

3
(1.3)

where ρ is the energy density in units of c2.

Under the hipothesys that the Universe is an adiabatic ideal gas, it is also

straightforward to obtain an expression for the evolution of any given equation of

state P = P (ρ) :
dρ

da
+ 3

�
ρ+ P/c2

a

�
= 0 (1.4)

with P the pressure.

The two relations Eq. 1.3 and Eq. 1.4 allow then to determine the evolution

with time of the fundamental parameters a, ρ and P , once a set of initial condi-

tions is established.

Although Eq. 1.2 contains all the ingredients to compute the proper distance

ds, it is of limited utility when coming to the observational side as the quantity it

defines is not directly measurable. From the analogy to the everyday experience

that an object (e.g. a candle) appears smaller and fainter when located at a given

distance from us than is it at a shorter distance, astronomers have introduced

two distinct ways of expressing the distance of cosmological objects: the angular

distance dA and the luminosity distance dL. If D is the transversal proper size of

an object and θ is its apparent angular size, the angular distance dA is the term

allowing to satisfy the relation:

θ =
D

dA
(1.5)

Analogously, the luminosity distance dL is defined by the relation between the

2



1. Introduction

intrinsic luminosity L and the flux F measured on the Earth:

F =
L

4πd2L
(1.6)

The dA and dL in the above two relations Eq. 1.5 and Eq. 1.6 can be expressed

in terms of observable quantities. We first introduce the dimensionless density

parameters Ω = ρ/ρcrit:

Ωm ≡ 8πG

3H2
0

ρ0 (1.7)

ΩΛ ≡ Λc2

3H2
0

(1.8)

ΩK = 1− Ωm − ΩΛ (1.9)

where H0, the Hubble constant, corresponds to H(t = t0), with t0 indicating the

present time. We can then define the quantity E(z) as:

E(z) =
�
Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ (1.10)

Here z denotes the redshift:

1 + z ≡ a(t0)

a(t)
=

λ0

λe
(1.11)

The last equality allows to directly compute the redshift of a source from the

measure of the rest-frame (or laboratory) wavelength value λe of some selected

spectral line and its measure as from the Earth λ0.

Using the above relations, the angular size distance dA and luminosity distance

dL can finally be computed, for a ΩK = 0 Universe, as:

dA = (1 + z)−1 c

H0

� z

0

dz�

E(z�)
(1.12)

dL = (1 + z)2dA (1.13)

For the present work, we adopted a concordance cosmology with parameters

ΩK = 0, ΩΛ = 0.7, Ωm = 0.3 and H0 = 70Km/s/Mpc.

3



1.2. The ΛCDM model

1.2 The ΛCDM model

The fundamental assumption of a homogenous Universe in the Friedmann-Lemaitre-

Robertson-Walker (FLRW) model has a natural antagonist: on smaller scales the

Universe is evidently highly non-homogenous, manifesting this phenomenon in a

beautiful variety of structures, ranging from large clusters of galaxies many Mpc

wide to stars, planets and life. This requires that small perturbations in the

density of matter were already present since the very first instants after the Big-

Bang, perturbations which have then grown with time. The collisionless (cold)

purely gravitational growth of these instabilities in the density field of a kind of

matter still undetected by our instruments (hence dark) gave rise to large haloes

which governed the assembly of ordinary (baryonic) matter in the formation of

stars and galaxies - the so called Cold Dark Matter (CDM) model (Peebles, 1982;

Blumenthal et al., 1984; Davis et al., 1985).

This model has its most convincing support from the Cosmic Microwave Back-

ground radiation (CMB). The distribution of the hot and cold spots, initially mea-

sured by COBE (Smoot et al., 1992) and more recently by WMAP (Bennett et

al., 2003), can be related to the anisotropies in the distribution of matter when

the Universe was only a few hundred thousand years old. Additional support to

the CDM model has been brought by the analysis of the large scale structure in

the local Universe using the two widest optical surveys available to date, i.e. the 2

Degree Field Galaxy Redshift Survey (2dF GRS Colless et al. 2001) and the Sloan

Digital Sky Survey (SDSS - York et al. 2000). The wealth of information on the

local Universe from the two surveys has allowed the most accurate measurement

of the power spectrum of galaxy clustering, revealing also the acoustic oscillations

on the baryonic matter power spectrum (BAOs) (Cole et al., 2005; Eisenstein et

al., 2005).

The baryonic matter accumulates in the dark matter haloes, forming a corre-

sponding halo of gas. Under the gravitational potential, the halo contracts and

heats. However, while compressing, the gas can also cool through Compton scat-

tering, excitation of rotational and vibrational energy levels through collisions

and emission of photons from transitions between energy levels. When a critical

density is reached, the nuclear reactions can start, originating a new star.

4



1. Introduction

There is another fundamental, yet still not understood, ingredient in the cur-

rent concordance cosmology : the dark energy. Observations of distant (z ≈ 1)

supernovae, used as standard candles, have revealed that the expansion rate of

the Universe is increasing with cosmic time (Riess et al., 1998; Perlmutter et

al., 1999). In order to effectively take into account this effect, the cosmological

constant (Λ - see Eq. 1.3) was re-introduced in the FRW model, leading to the

definition of the ΛCDM framework currently adopted as the standard cosmolog-

ical model. The values of parameters characterizing the model are known today

with a precision of ≈ 5%, thanks to the combination of results from a number of

different projects, like the measurement of the Hubble constant (Freedman et al.,

2001), clustering measurements on nearby galaxies (Verde, Haiman, & Spergel,

2002) and WMAP CMB anisotropies (Spergel et al., 2003; Spergel, 2005; Komatsu

et al., 2009).

1.2.1 The observational picture

One of the most remarkable aspects of the galaxy population is that galaxies can

be classified into a small number of sequences. The first classification, purely

based on morphological characteristics, was already proposed by Hubble (1926)

and it is still in use today. Simply put, there are two broad classes of galaxies:

ellipticals, systems with a rounded shape in the three axes, and spirals, showing

a disk-like structure.

The analysis of data on the local universe, like the SDSS and 2dFGRS surveys,

has confirmed and in some cases shown for the first time, that this dichotomy

extends to a number of fundamental characteristics of galaxies.

The color-magnitude diagram (CMD) shows two well separated groups of

galaxies, a red cloud and a blue sequence, with elliptical galaxies populating

the red region, while spiral galaxies reside in the blue part (Strateva et al., 2001;

Blanton et al., 2003). This characteristic is directly linked to another important

difference between the two classes. In fact, bluer spectra are the footprint of an

ongoing star formation, while redder spectra reflect an older stellar population,

which is passively evolving (Kauffmann et al., 2003; Wyder et al., 2007). More-

over, the objects of each class are characterized by different masses: red/elliptical

galaxies are massive systems, while blue/spiral galaxies have lower masses, with

a quite clear boundary between the two classes falling at 3×1010M⊙ (Kauffmann

5



1.2. The ΛCDM model

et al., 2004; Blanton et al., 2005).

This bi-modality in the galaxy distribution is observed also at higher redshift

(see for instance Bell et al. 2004; Brammer et al. 2009). Several studies using

deep surveys have shown that the stellar mass of red galaxies has grown by a

factor of 2 since z � 2. On the contrary, the mass distribution of blue galaxies

has remained almost constant, suggesting a possible transition from the blue

sequence to the red cloud with cosmic time (Bell et al., 2004; Faber et al., 2007).

In this scenario, elliptical galaxies are the result of early mass assembly and star

formation, which would cause the galaxy to initially move along the blue cloud of

the CMD, followed by quenching, moving the galaxy to the red sequence, and later

by dry merging, with the result of displacing the galaxy along the red sequence

towards higher masses/luminosities, with the details of these processes still not

completely known. In particular, as pointed out in Renzini (2006), the most

recent measurements of the merging rates still suffer from large uncertainties: on

one side estimates show that 35% of early type galaxies showing a major merging

event since z=0.1 (van Dokkum, 2005), while on the other side there is less than

1% probability of a dry merger per Gyr since z=0.36 (Masjedi et al., 2006).

To further complicate the framework, high redshift galaxies can appear red

not only because they are the result of old and passively evolving stars. It has

been shown, in fact, that the dust in star-forming galaxies can absorb the ultra-

violet (UV) light of the young stars and re-emit it to longer wavelengths, typically

in the infra-red region (IR) (Stiavelli et al., 2001; Franx et al., 2003). This class

of objects, named Distant Red Galaxies - DRGs - would then escape from the

classical dropout selection of Lyman Break Galaxies - LBG (Steidel et al., 1996,

1998). Furthermore, the DRGs revealed to be more massive, older and dustier

than the LBG (van Dokkum et al., 2004; Labbé et al., 2005), providing evidence

for the existence of a number of massive and evolved galaxies when the universe

was still as young as 2-3Gyr.

It is a well known fact that galaxies do not reside in isolated environments,

but that their locations constitute what is called the large scale structure of the

Universe (see e.g. Springel, Frenk, & White 2006). When considering galaxies in

their environment, there exists another important correlation between the intrin-

sic properties of the galaxy population, which is the so called morphology-density

6



1. Introduction

relation. The pioneering works by Oemler (1974) and Dressler (1980) showed

that star-forming galaxies preferentially reside in low-density environments, while

inactive elliptical galaxies are found in higher density regions. The physical ori-

gin of this segregation is still unclear; in particular it is still unknown if the

morphology-density relation generates at the time of formation of the galaxy (the

so-called nature hypothesis) or if it is the result of an evolution driven by the

density field (the nurture hypothesis). There are three main processes identified

for the raise of this relation (Kauffmann et al., 2004). First, mergers or tidal in-

teractions can destroy galactic disks, thus converting spiral star forming galaxies

into bulge-dominated quiescent elliptical galaxies. A second factor is the interac-

tion of galaxies with the dense intra-cluster gas, which can remove the interstellar

medium of the galaxy, reducing thus the star formation. Finally, gas cooling pro-

cesses strongly depend on the environment (White & Frenk, 1991; Birnboim &

Dekel, 2003).

Recently Peng et al. (2010) have shown that the red sequence in the CMD

could be the result of two independent quenching mechanisms, one dependent on

the mass and the other on the environment, at least up to z � 1. While the effect

of the environment would be to act only once, mass quenching would rather be a

continuous mechanism. The observed shape of the Schechter mass function then

would imply a proportionality between the star formation rate (SFR) and the

quenching rate of star-forming galaxies. This, in turn, would explain the double

Schechter shape in the mass function of early type galaxies; in particular the mass

quenching mechanism would be the responsible for the exponential cut-off at high

mass, while the environment would be responsible for the lower mass component.

This mechanism could be active since earlier times, as other determinations of

the mass functions for z � 4 show that it can be well described by the Schechter

form (Fontana et al., 2006; Marchesini et al., 2009).

The stellar mass function (SMF) and its proxy, the luminosity function (LF),

together with the star formation rate (SFR) as a function of mass, are a primer

test bench for the current knowledge on galaxy formation. The availability of

wide area surveys of the local universe and of deep surveys have allowed to draw

the star formation history (SFH) up to z � 7 (Madau et al., 1996; Hopkins, 2004;

Hopkins & Beacom, 2006), showing that the SFR is characterized by an increase

7



1.2. The ΛCDM model

to z = 1, followed by a stationary period extending to z = 3 and a subsequent

rapid decrease to z = 7.

Direct SFR measurements are quite challenging at high redshift, particularly

at the faint end of the galaxy luminosity function (Wang et al., 2009). On the

other hand, individual stellar cataclysms as those seen in long-duration gamma-

ray bursts (GRBs) triggered by the death of massive stars (Hjorth et al., 2003;

Stanek et al., 2003), provide a complementary technique for measuring the SFR.

The high intrinsic luminosities of GRBs (Ciardi & Loeb, 2000; Lamb & Reichart,

2000; Bromm & Loeb, 2002; Gou et al., 2004) make them good candidates as

high-redshift universe probes (the farthest GRB to date is GRB 090429B at z =

9.4 Cucchiara et al. 2011), in particular for the SFH (Totani, 1997; Wijers et al.,

1998), potentially to higher redshifts than allowed by galaxies alone. Furthermore,

GRBs are starting to become a tool to study the metallicity and dust content of

normal galaxies at high-z (Campana et al., 2007), and to probe the small-scale

power spectrum of density fluctuations (Mesinger, Perna, & Haiman, 2005).

1.2.2 Modelling

An orthogonal approach for the understanding of the mechanisms of galaxy for-

mation and evolution are the results from the Semi-Analytic Models (SAMS -

see Baugh 2006 for a review). This approach consists in using the results from

the well known N-body simulations of structure formation in dark matter halos -

driven only by the gravitational potential and combining them with observational

(analytic) relations describing the physical processes which govern the baryonic

matter, attempting to reproduce the evolution of the statistical properties of the

galaxy population with cosmic time by refining the values for a minimal set of

fundamental parameters. As such, it can probably not be considered as a pure

theoretical framework, but rather a tool allowing to fine tune the assumptions on

the set of processes involved (Croton et al., 2006; Somerville et al., 2008). How-

ever, SAMs allow to describe (and predict) the complete star formation history of

a galaxy, taking into account all mergers between the progenitors of the galaxy,

star formation in bursts triggered by mergers and quiescent star formation in

galactic disk. The star formation history of each galaxy is then supplemented by

stellar population synthesis models, allowing to generate the stellar population

8
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for the whole galaxy and, finally its spectral energy distribution (Bruzual A. &

Charlot, 1993; Bruzual & Charlot, 2003; Fioc & Rocca-Volmerange, 1999).

Currently the semi-analytic models can reproduce quite well the faint-end

slope of the SMF and LF in the optical bands with inclusion of feedback mech-

anisms like supernova winds and the photo-inonizing background (Somerville &

Primack, 1999; Croton et al., 2006). Today the problem has shifted to the repro-

duction of the break and the bright-end of the SMF and LF.

Additionally, there is still a number of open questions. The prediction of the

number of satellite of galaxies like the Milky Way is still one order of magnitude

higher than what observed (Power et al., 2003; Moore et al., 1999). The zero point

of the Tully-Fisher relation (i.e. the correlation between the rotational speed and

the luminosity of spiral galaxies) has still not been reproduced, as the simulated

galaxies are probably either too compact or contain too much mass. Analogously,

although SAMs can reproduce the local fundamental plane of elliptical galaxies

(Almeida, Baugh, & Lacey, 2007), these models are not able to reproduce the evo-

lution of the zero-point of this plane. Although the abundances of the α-elements

(O, Mg, Si, S, Ca and Ti) are reproduced, the trend of α/Fe ratio as a function of

the velocity dispersion for elliptical galaxies suffers from an incorrect slope sign

respect to the measured quantity (Nagashima et al., 2005). The availability of

high-z data allows now the models to compare their predictions over a wide range

of redshift. While on one side models show that they can reproduce the number

counts of galaxies (including massive ones) at high redshift, it is not clear if the

same models are able to reproduce the local LF and SMF (Baugh, 2006; Granato

et al., 2004; Trenti et al., 2010).

The study of the properties of the Universe as a whole requires observations

of a significant part of the sky, which generally goes under the term survey. The

data acquisition phase is only the beginning. Extracting as much information as

possible, and in the most reliable way, from the images is the following necessary

step. In the following sections we will briefly describe the issues involved in the

detection of objects in astronomical surveys.

9



1.3. Detection limits

1.3 Detection limits

When analyzing any astronomical image, we are faced with the fact that the

signal-to-noise ratio (SNR) of the objects does depend on the total flux we can

recover from it: bright sources will generally have a high SNR, while the fainter the

sources the lower the SNR will be. This leads to the identification of a detection

limit which depends on the flux. However, we might be tempted to think that

this limit is a pure matter of exposure time. If we had increased by a factor

of e. g. 10 or 100 the exposure time, under that nice photometric sky we had

during our last observing run, we could have ended up with much fainter objects

in our images. Unfortunately, this is not exactly the case: for each telescope

and instrument combination there exists a threshold for the exposure time above

which it becomes unsuitable from the time budget point of view to extend the

exposure time, as the SNR will only show very little increase. This threshold can

not univocally be defined once for all, as it depends on several factors. In the

next section we will try to show why such a detection limit exists.

1.3.1 Why a detection limit exists

A convenient parameter useful to express how well a given source has been ob-

served is the signal-to-noise ratio (SNR).

The generalized expression to estimate the SNR as a function of the flux

collected at the telescope, in the case of of a point-like source, can be written as:

SNR =
Robj · t�

Robj · t+ readnoise2 + Pdark · t+ Psky · t+ Pback · t
(1.14)

where Robj is the object count rate, readnoise is the read-out noise associated to

the electronics of the CCD, Pdark is the dark current rate, Psky is the sky count

rate, Pback is the count rate of any other source which may lay in the background

and t is the time.

For our purposes, we will neglect readnoise, Pdark and Pback. Equation 3.4

10
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Figure 1.1: Signal-to-noise ratio for the background limited regime (dashed line)
and for the photon limited regime (solid line).

then becomes:

SNR =

�
Robj · t�
1 + Psky

Robj

(1.15)

We can identify two distinct regimes, depending on the ratio between Robj and

Psky. For Robj � Psky we are in the photon limited regime: the SNR in Eq. 1.15

can be approximated to SNR �
�
Robj · t, i.e. it only depends on the photons

from the source, other than on the exposure time.

For Robj � Psky, instead, we are in the so-called background-limited case,

where the total signal is dominated by the background. Equation 1.15 then be-

comes SNR � Robj ·
�
t/Psky: in this case the SNR no more depends only on the

signal from the source, but there is also an inverse dependency on the background

value, damping the effective SNR.

The two regimes are graphically presented in Figure 1.1. The two curves were
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obtained for a source with the same Robj , but with Psky differing by 4 orders of

magnitude, equivalent then to 10 mag. This is similar to the difference between

observations in the optical region, where the sky brightness is ≈ 25 mag, and

observations in the near infra-red (NIR), where the sky is much brighter, being

≈ 15 mag. In particular this means that, while in the optical the observations

exit from the background limited region quite soon, all NIR observations (with

the exception of the very brightest objects) are always done in the background

limited regime. In order to improve the detection limits in NIR observations,

astronomers have developed a different observing technique, presented in Sect.

6.4.2.

1.4 Observational selection effects

A deep look into the universe, as can be a cosmological survey, can lead to discor-

dant results on the nature of the galaxy population and its evolution with cosmic

time when selection effects presented in this section have not properly been taken

into account.

1.4.1 Flux selection

The relationship between apparent magnitude and absolute magnitude can be

written as:

M = m− 25− 5 logDL(z)− 2.5 log k(z) (1.16)

where M it the absolute magnitude, m is the apparent magnitude, DL(z) is the

luminosity distance expressed in Mpc and k(z) is the K-correction. Equation

1.16 is only correct in the limit where the apparent magnitude, m, is an accurate

measure of the total flux, regardless of redshift or morphological type. More

typically, however, the apparent magnitude that is used is either an isophotal

magnitude (see, e.g. Lilly et al. 1995; Ellis et al. 1996; Lin et al. 1996), a total

magnitude measured within some multiple of the isophotal area (Small, Sargent, &

Hamilton, 1997), a modified Kron (1980) magnitude measured within an aperture

whose size is determined by the first moment radius of the light visible above some

limiting isophote (Yee, Ellingson, & Carlberg, 1996; Lin et al., 1997) or, more

rarely, an aperture magnitude (Gardner et al., 1996; Glazebrook et al., 1994).
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Figure 1.2: Selection effect in a flux-limited sample: this plot shows the absolute
magnitude in the Sloan r

� filter from ALHAMBRA preliminary data as a function
of redshift. The faintest absolute magnitude at a given redshift grows with redshift.

The detection algorithm in galaxy surveys is usually based on a threshold of

surface brightness SL in conjunction with a minimum object area Amin. A galaxy

is then detected when the total area of connected image pixels that lie above SL

is greater than Amin, and integration of surface brightness over the image area

defines its apparent isophotal magnitude.

There is however a mismatch between how the data is taken and the underlying

theoretical framework, mismatch becoming progressively more serious as one goes

to fainter magnitudes. In order to maintain an internal consistency between

observations and theory, it is then necessary to evaluate and apply some kind

of correction. However, since these corrections depend on the cosmology, it needs

a recursive procedure to determine the cosmological parameters from the corrected

data.

The detection and selection effects inherent to faint observations are properly

formulated as a function of three major factors:
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1. observational conditions;

2. intrinsic properties of the objects;

3. cosmological parameters

For an isophotal magnitude measured within a limiting isophote, mlim, some

fraction of the light is lost outside the outer isophote. The fraction of detected

light, f(z), depends upon both intrinsic properties of the galaxy (such as the

intrinsic central surface brightness, µ0, the true absolute magnitude, M, and the

two-dimensional shape of the galaxy in the absence of seeing [i.e., its light profile]),

as well as observational parameters of the survey, such as the limiting isophote,

mlim, and the point-spread function. The fraction of detected light also depends

upon the redshift of the observed galaxy. As a galaxy moves to higher redshifts,

it suffers two effects that rapidly decrease the fraction of light detected within

a fixed isophotal limit. First, at large enough redshifts, it may happen that the

galaxy appears small compared to the point-spread function (PSF) and begins to

lose light beyond the limiting isophote due to the rapid falloff in the PSF with

radius. Second, the apparent surface brightness drops off as (1 + z)4 because of

the difference in the redshift dependences of the angular diameter and luminos-

ity distances. As the drop in apparent surface brightness becomes significant (a

factor of 2 at z =0.2), a larger fraction of the light from the galaxy falls below

the limiting isophote, again increasing the fraction of lost light. The direction of

both of these effects is for the apparent magnitude to drop off more quickly with

distance than predicted by equation 1.16 (Yoshii, 1993).

We can then identify two major consequences from surface brightness selection

effects (see for instance Lilly et al. 1995):

1. Reduce the fraction of light inside an isophote;

2. Reduce the overall number of galaxies detected in the field.

The first effect is crucial not only because it leads to underestimate the to-

tal light emitted by the source, with consequent underestimate of the physical

observable associated to it, as can be the total mass of the galaxy or the lumi-

nosity function of the sample. The dependence of the isophotal boundary on the
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wavelength, and hence of the recovered magnitude, has effects at the time of com-

puting photometric redshifts, as these technique is based on the template fitting

on a series of colors deduced from the photometry.

Additionally, this effect causes diameter- or magnitude-limited catalogs to

mainly contain galaxies with a narrow range in central surface brightnesses. In

other words, they will be biased and incomplete for galaxies with central surface

brightnesses other than the optimum value.

An historical example may be taken from Freeman (1970) who noted that 28

galaxies out of his sample of 36 had disks with central surface brightnesses in

the range µB = 21.65 ± 0.3 mag arcsec−2. Taken at face-value, this result had

important implications for theories of galaxy structure and evolution. Freeman’s

law requires that either all galaxies have identical mass surface densities coupled

with just a small spread in their mass- to-light ratios or that star formation

history, age, angular momentum and mass all conspire to produce a constant

central surface brightness.

Disney (1976) showed that selection effects could cause Freeman’s law and sug-

gested that there might be many galaxies of both high and low surface brightness

hidden in the night sky.

1.4.2 Spatial selection

So far we have considered issues regarding limits in flux. However, it may be also

important to characterize the completeness of the sources as a function of position

on the detector. We will only mention it here, for completeness sake.

Two are the main effects which can prevent from detecting objects whose flux

would otherwise be above the threshold of detectability. On one hand, bright

and/or extended objects (as can be the wing of the light profile of a very bright

star) may hide other more compact sources. On the other hand, physical defects

on the CCD sensor can preclude some regions of the observed area from being

properly imaged.

For spectroscopic observations the main cause of incompleteness arises as con-

sequence either of the limited number of slits which can be created on the mask

or by collisions between the optical fibers when too close to each other. However,

in the recent years, spectrographs capable of recording the spectra of light falling

on each single pixel (integral field units) are being built.
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This kind of selection is especially important for analysis of e.g. the cosmolog-

ical large scale structure, where the two-point correlation function relies on the

fact that the sample used is spatially (other than photometrically) complete.

1.4.3 False detections

One effect that goes in the opposite direction from the photometric and spatial

selection is the one generated by false detections. As the name suggests, this effect

consists in the creation of sources in a photometric catalogue which do not have

a physical counterpart. The probability of generating false sources grows as we

approach the detection limit. In fact, in this case, some of the oscillations which

are produced by the gaussian noise can be interpreted by the software as genuine

sources. The choice of the parameters involved in the object detection phase of

the catalogue generation is then of critical importance in order to minimize such

effects.

Nonetheless, this effect is equally important at the time of estimating the

completeness of the generated catalogues both in space and in flux.

The measurement and correction of such an effect is generally done on a sta-

tistical basis. If deeper data covering at least a section of the whole observed field

exist, these are used to directly compare each object detected in the two catalogs

and identify those sources which appear unphysical. Instead, when no such data

is available, Monte Carlo methods are used.

1.5 Multi-wavelength surveys

The developments in computer science during the last 30 years have put in the

hands of astronomers powerful tools for the analysis of astrophysical and cos-

mological processes. The introduction of CCD devices has allowed not only to

observe fainter objects, but, thanks to the linear response, to do in a more reliable

way and for a high number of objects simultaneously. On the other side, the pos-

sibility to handle the collected data in a digital manner has enormously simplified

some common tasks, like the creation of object catalogues. For example, it has

become easy and fast to match the same object on different frames.

The above framework is well represented by astronomical multi-wavelength

16



1. Introduction

surveys, which consist in imaging a wide region of sky (although wide takes dif-

ferent values depending on the final main scientific aim of the survey and on the

practical limits involved) using a set of photometric filters. The extension of the

observed region is chosen in order to minimize the effects of variance of the dis-

tinct classes of observed objects in the final sample. The choice of the filter set

is generally the result of a trade-off between the accuracy desired to recover the

spectral energy distribution of the sources, or other fundamental parameter, and

the total exposure time required to reach the needed limiting magnitude.

1.5.1 Cosmological Photometric surveys

In cosmology, the development of photometric redshift techniques has increased

the power and, consequently, the diffusion, of the multi-wavelength surveys, as

they allow to recover the redshift and the spectral energy distribution of objects

which would otherwise be inaccessible through standard spectroscopic surveys,

due to the shallower limiting magnitude available with this kind of instrument

and to the fact that it is generally not possible to obtain the spectra of all the

objects in a given field of view.

In Figure 1.3 we show a comparison between the area and the depth of some

cosmological surveys.

In the following section we will review the some among the most important

cosmological photometric surveys.

Hubble Deep Field and EGS

The Hubble Deep Field1 (Williams et al., 1996; Ferguson, Dickinson, & Williams,

2000) is the result of imaging an undistinguished (i.e. avoiding known bright

sources from the X-rays to the radio bands) field at high Galactic latitude (E(B−
V ) < 0.01) in the northern sky, in four bands (F300W, F450W, F606W and

F814W, corresponding approximately to the U, B, R and I filters), using the

Wide Field Planetary Camera 2 onboard the Hubble Space Telescope and cov-

ering a region of about 2.5 × 2.5 arcmin2. The 10σ AB limiting magnitude in

the original catalogue reached 26.98, 27.86, 28.21 and 27.60 respectively in the

four bands, providing photometric data on about 3000 galaxies. The HDF data

1http://www.stsci.edu/ftp/science/hdf/hdf.html
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1. Introduction

Figure 1.3: Covered area vs. depth for cosmological surveys. Asterisks indicate
spectroscopic surveys, circles photometric and squares medium-narrow-band-like
surveys (Moles et al., 2008).

favored the development of photometric redshift techniques, which until then had

been used only occasionally.

Three adjacent fields, located in the southern hemisphere, were observed in

1998 as part of the Hubble Deep Field South. This time, the set of optical

filters was accompanied by deep near-infrared images taken with the NICMOS

instrument and by spectroscopic observations with the Space Telescope Imaging

Spectrograph (STIS).

The HDF-S field was later observed with the Chandra X-ray telescope. Af-

ter these observations, this field, named Chandra Deep Field South (CDF-S) 2

2http://www.eso.org/∼vmainier/cdfs pub/
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has become the center of one the most comprehensive multi-wavelength campaign

ever carried out with ground-based and space observatories.

The Great Observatories Origins Deep Survey (GOODS)3 is a project de-

veloped upon existing or ongoing surveys from space and ground based facilities,

including NASAs Great Observatories (HST, Chandra and Spitzer). The program

targets two fields, each 10� × 16�, around the Hubble Deep Field North (HDFN)

and the Chandra Deep Field South (CDFS).

An evolution of the Hubble Deep Fields is the Extended Groth Strip (EGS)4

program, covering an area of 70 × 10 arcmin2 and with a depth similar to the

HDF, although in a single HST band. This was possible thanks to the increased

sensitivity of the new HST-ACS camera.This region of sky was then observed in

the framework of an international effort with a number of instruments covering a

large region of the electromagnetic spectrum. These instruments include Chandra,

GALEX, Hubble, Keck, CFHT, MMT, Subaru, Palomar, Spitzer and VLA. Figure

1.4 shows the coverage of the EGS by the programs from the major telescopes.

Combo-17

The COMBO-17 survey5 (Wolf et al., 2001, 2003) has imaged one square degree

of sky, including the Chandra Deep Field South (CDFS), in 17 optical filters using

the Wide Field Imager at the MPG/ESO 2.2-m telescope at La Silla, Chile. The

filter set contains five broad-band filters (UBVRI) and 12 medium-band filters

ranging from 400 to 930 nm in wavelength coverage.

The produced catalogue contains ≈ 200000 objects down to R ≈ 25mag at a 5σ

limit, with ≈ 25000 galaxies and ≈ 300 QSOs with redshift errors of ∆z/(1+z) ≈
0.02.

Figure 1.5 shows the efficiencies of the 17 filters adopted for by the Combo-17

survey.

3http://www.stsci.edu/science/goods/
4http://aegis.ucolick.org/
5http://www.mpia.de/COMBO/combo index.html
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Figure 1.4: Coverage of the Extended Groth Strip (EGS) at various wavelengths.
On the lower-left corner the size of the moon and of the original HDF (magenta
shape) are shown for comparison (image credits: All-wavelength Extended Groth
strip International Survey (AEGIS) team).

SDSS

The Sloan Digital Sky Survey6 (SDSS - York et al. 2000; Abazajian et al. 2003 and

references therein) is a photometric and spectroscopic survey, using a dedicated

2.5 m telescope at Apache Point Observatory in New Mexico, covering more than

a quarter of the sky at high Galactic latitude. The telescope uses two instruments.

6http://www.sdss.org/
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1.5. Multi-wavelength surveys

Figure 1.5: COMBO-17 filter set: total system efficiencies are shown in the
COMBO-17 passbands, including two telecope mirrors, WFI instrument, CCD de-
tector and average La Silla atmosphere (Wolf et al., 2003).

The first is a wide-field imager with 24 2048×2048 CCDs on the focal plane with

a scale of 0.396 arcsec/pixel that covers the sky in drift-scan mode in five filters

in the order r, i, u, z, g. The imaging is done with the telescope tracking great

circles at the sidereal rate, allowing to image 18.75 deg2 per hour in each of the

five filters. The 95% completeness limits of the images are u, g, r, i, z = 22.0,

22.2, 22.2, 21.3, 20.5 respectively.

The photometric catalogs of detected objects are used to identify objects for

spectroscopy with the second of the instruments on the telescope: a 640-fiber-

fed pair of multi-object double spectrographs, giving coverage from 3800Å to

9200Å at a resolution of λ/∆λ = 2000. The latest release (DR7 - Abazajian et

al. 2009) includes photometry for more than 350 million objects over an area of

≈ 12000deg2, and spectroscopy for ≈ 1.5 million objects distributed on an area

of ≈ 10000deg2.

ALHAMBRA

The aim of the Advanced Large Homogeneous Area Medium Band Redshift As-

tronomical (ALHAMBRA) Survey7 (Moles et al., 2008) is to cover a large-area (4

square degrees) with 20 contiguous, equal width, medium band optical filters from

3500Å to 9700Å, plus the three standard broad bands, JHKs, in the NIR. The

corresponding resolution (R ≈ 20), the width of the covered field and the limiting

7http://alhambra.iaa.es:8080/alhambra/
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Figure 1.6: Transmission curves for one of the optical filter sets for the ALHAM-
BRA survey as measured in the laboratory. The effective total transmission (lower
curve), after taking into account the quantum efciency of the CCD detector, the
atmosphere transmission (at air mass = 1.3), and the reflectivity of the primary
mirror of the Calar Alto 3.5 m telescope is also shown (Moles et al., 2008).

magnitude (see Figure 1.3), place the ALHAMBRA Survey halfway in between

the traditional imaging and spectroscopic surveys. By design, the ALHAMBRA-

Survey will provide precise (∆z/(1+z) < 0.03) photometric redshifts and spectral

energy distribution (SED) classification for ≥ 6× 105 galaxies and AGNs.

Filter system The ALHAMBRA optical photometric system was designed to

include 20 contiguous, medium-band, FWHM = 310 Å, square-like shaped filters

with marginal overlapping in λ, covering the complete optical range from 3500

to 9700 Å. With this configuration it is possible to accurately determine the

SED and z even for faint objects and to detect rather faint emission lines. The

ALHAMBRA 3σ rest-frame detection limits for a typical AB ≈ 23 galaxy are
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EW(Hα) > 28 Å out to z ≈ 0.45, and EW(OII) > 16 Å out to z ≈ 1.55.

Furthermore, ALHAMBRA expects to detect ≈ 50% of the Hα emitters at z ≈
0.25 and ≈ 80% of the OII objects at z ≈ 1.2 (Beńıtez et al., 2009).

Figure 1.6 shows the transmission curves of the filters both as measured in

the laboratory and after taking into account the CCD quantum efficiency, atmo-

spheric transmission and reflectivity of the telescope main mirror.

Field selection Although the Universe is in principle homogeneous and isotropic

on large scales, astronomical objects are clustered on the sky on different scales.

The clustering signature contains a wealth of information about the structure

formation process. A survey wanting to study clustering needs to probe as many

scales as possible. In particular, searching contiguous areas is important to cover

smoothly the smallest scales where the signal is stronger and obtain an optimally-

shaped window function. On the other hand, measuring a population of a certain

volume density is a Poissonian process with an associated variance; in order to

reduce that variance, it is necessary to sample independent volumes of space.

This means that a compromise is necessary between probing contiguous areas,

which assure a wide enough field, and independent areas, necessary to reduce the

Poisson variance.

The final selection of the fields was based on the following points:

• low extinction;

• no (or few) known bright sources;

• high galactic latitude;

• overlap with other surveys and/or observations in other wavelengths

The selected fields are presented in table 1.2.

The cameras The twenty optical filters are onboard the LAICA camera, in-

stalled at prime focus of the 3.5m telescope in Calar Alto - Spain.

This camera uses 4 CCDs with 4096 × 4096 pixels each with a pixel size of 15

microns. The arrangement of the four CCDs is shown in Figure 1.7, while Table

1.3 gives the main parameters of this camera. The spacing between the CCDs is
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Field RA (J2000) Dec (J2000)

ALHAMBRA-1 00 29 46.0 +05 25 28
ALHAMBRA-2 01 30 16.0 +04 15 40
ALHAMBRA-3/SDSS 09 16 20.0 +46 02 20
ALHAMBRA-4/COSMOS 10 00 28.6 +02 12 21
ALHAMBRA-5/HDF-N 12 35 00.0 +61 57 00
ALHAMBRA-6/GROTH 14 16 38.0 +52 25 05
ALHAMBRA-7/ELAIS-N1 16 12 10.0 +54 30 00
ALHAMBRA-8/SDSS 23 45 50.0 +15 34 50

Table 1.2: ALHAMBRA Survey selected fields.

Telescope 3.5m Calar Alto
Field 4 × 15’ × 15’
Detector 4 × 4096 × 4096 CCDs
Scale 0.225 pixel/arcsec

Table 1.3: LAICA optical camera main properties.

equal to the size of a single CCD minus an overlap of about 100 arcsecs which

can be useful for astrometric and photometric calibration purposes.

The design of the camera with 4 independent CCDs has the advantage of

allowing to use 4 small filters instead of a big one, with subsequent cost benefits;

however, the use of different optical elements gives raise to an increased optical

distorsion. This problem needs to be accounted for during the reduction process.

Given the actual LAICA field of view, in order to obtain the desired 2 ×
1 deg×0.25 deg, two contiguous exposures are necessary.

For the NIR images, Omega2000 has been adopted. Similarly to LAICA, also

this camera is installed at the prime focus of the 3.5m telescope in Calar Alto.

The Omega2000 camera contains a focal plane array of type HAWAII-2 with

2048 × 2048 pixels, each 18 µm wide (see Table 1.4 for its basic properties). Given

that its field of view is the same as LAICA, this means that with one pointing it

is possible to cover in the IR the same field of one CCD of the optical frames. It

is sensitive from about 850 to 2500 nm.

Considering the main goal of the project, the mean sky conditions of the
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Figure 1.7: Layout of the 4 CCDs in LAICA.

Telescope 3.5m Calar Alto
Field 15.4’ × 15.4’
Detector 2048 × 2048 HAWAII-2 array
Scale 0.45 pixel/arcsec

Table 1.4: Ω2000 optical camera main properties.

observing site and the characteristics of the adopted instruments, the requirement

for the seeing has been fixed to 1.2 arcsec for LAICA and 1.4 arcsec for the NIR.

1.6 Aim of this thesis

In this work we explored the faint end region of a cosmological survey, both on

the photometric and on the spectroscopic point of view. On the photometric side,

in fact, we implemented two independent methods to estimate the completeness

limits of galaxies as a function of intrinsic properties like the absolute magnitude,

the spectral energy distribution and the redshift, applying it to the ALHAMBRA
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Figure 1.8: Estimates of bias due to incompleteness in the computation of the
LF using different methods to measure the LF on the mock catalogue represented
by the dotted line (Ilbert et al., 2004). In the upper panel the SWML and STYML
measurement refer to the case of object classes whose LF have an intrinsic similar
slope, while in the lower panel the case for a population from a LF with a flatter
slope than the global LF is presented. The dotted line represents the input global
LF, result of the contribution of a late-type population LF (long-dashed line) and
an early-type population LF (short-dashed line), while the solid line marks the LF
recovered using the STY method. Vertical long and short dashed lines mark the
input limiting magnitude for the late and early type respectively.

survey.

When dealing with flux limited catalogues one has to face the selection ef-
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fect produced by the non uniformity of detection of objects in a given observing

band and for a given redshift. This selection is due to two reasons. First, the

k-corrections needed to compute the absolute magnitudes depend on the galaxy

spectral type, so that at a given redshift and for the same limit in apparent mag-

nitude we will have, in general, different luminosity limits. The second source

of selection is the difference in brightness profile and physical size of galaxies as

a function of their spectral class. This translates to different apparent limiting

magnitudes for different classes of objects on survey frames. A possible approach

to overcome this selection problem would be to estimate this bias through sim-

ulations (see Ilbert et al. 2004). Another possibility would instead be to derive

accurate completeness limits of the different galaxy populations as a function of

their morphological type and redshift (acting both on the K-corrections and on

the apparent size of the galaxy), and introducing them when computing the LF.

As shown by Ilbert et al. (2004), ignoring the completeness limits of a catalogue

introduces a bias at the time of measuring the global LF which depends of the

method adopted to compute the LF itself. For example, when using the Vmax

method, the faint end of the LF will coincide with the LF of those classes whose

data is complete in the chosen absolute magnitude and redshift range, leading to

an under-estimate of the global LF. When using the methods explicitly based on

maximum likelihood (like the SWML or the STYML) the goodness of the recovery

depends on the shapes of the LF of each class. When the shapes are similar, then

the computed global LF will match the real underlying distribution. Otherwise,

the faint end will be either over- or under- estimated, depending on wether the

slope of the LF of the types of objects is steeper or flatter than the LF of the

incomplete populations (see Figure 1.8).

The large number of filters used to observe the same field and the method

adopted by ALHAMBRA to detect objects makes the definition and determina-

tion of completeness an even more delicate task.

Our results on the completeness of the LF will finally be applied to a pre-

liminary catalogue from the ALHAMBRA Survey to compute the global and

type-dependent LF of field galaxies.

In the spectroscopic branch, we developed a novel technique for the determina-

tion of basic intrinsic observables from very low signal-to-noise data, which make
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difficult not only the measurement of the value itself, but also to derive a robust

estimate of the associated errors. Our method was implemented on the mea-

surement of the redshift, one of the most basic parameters for an extra-galactic

object, for the most distant Gamma-Ray Burst (GRB) known at the time of the

implementation of the method.

1.6.1 Existing methods for the detection completeness mea-

surement

As already discussed in the previous section, cosmological surveys can be classified

in a first instance into two main groups, photometric and spectroscopic, depending

on wether the main output is a set of photometric points for each object in the set

of filters characterizing the survey, or if a spectrum is observed for each object.

This classification reflects also on the methods adopted for measuring the frac-

tion of objects which actually have undergone the measurement procedure. In the

following, we will describe them in the context of their parent surveys in which

were first developed.

As a general standpoint, spectroscopic surveys being less deep than a photo-

metric surveys with the same amount of exposure time, usually adopt an indirect

procedure for estimating the completeness. In these cases, in fact, the complete-

ness is computed by comparing the faintest objects whose spectrum has been

acquired to the objects in a photometric catalogue covering the same area. The

2 degree Field Galaxy Redshift Survey (2dFGRS - Colless et al. 2001) was de-

signed to obtain a spectrum of all objects brighter than bJ = 19.5, based on the

photometric plates by Maddox et al. (1990). Similarly, its twin survey, the Sloan

Digital Sky Survey (SDSS), took spectra of objects down to r = 17.77 for the

main sample, and r = 19.5 for the Luminous Red Galaxies sample, based on

photometric data previously acquired by the same telescope (York et al., 2000).

When the spectroscopy is instead deeper than the existing photometric catalogues

of the covered region of sky, the solution is to perform deep imaging of the same

area (or of a consistent sub-region), as done for the VVDS project (McCracken

et al., 2003), so that to fall into the previous case.
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Given the usual higher depth, photometric surveys can seldom rely on deeper

data (and, in any case, there would always be the problem for the deepest survey),

so that a different procedure is needed. Nevertheless, surveys like the SDSS and

2MASS obtain their completeness levels by comparing with the existing photo-

metric surveys COMBO17 (Abazajian et al., 2003) and SDSS itself (McIntosh et

al., 2006), respectively. The case for 2MASS is actually more detailed. For ex-

tended sourced the results from the comparison with SDSS data is complemented

by the magnitude limit obtained from number counts. The weak point of this

approach is that it is difficult to disentangle the effects of an intrinsic drop of the

population from those of the selection effects from the magnitude limited sample.

Completeness for point-like sources, instead, was measured from the analysis of

the repeated observations of 2MASS calibration fields, linking the percentage of

detection of each object to its magnitude (Cutri et al., 2003).

However, comparison with existing catalogues generally does not allow to prop-

erly recover the completeness measurement as a function of 2 or more intrinsic

parameters (like e.g. luminosity and distance). In fact, the selections on the cat-

alogue implied by such method do not guarantee the existence of a sufficiently

populated sample for reliably measuring the limit. The proper way appears then

to develop an auto-consistent method, based only on the survey images and on

the tools adopted for the source detection.

The simplest auto-consistent solution consists in adding to a typical image

from the survey a number of artificial stars which are then recovered using the

same procedure adopted for the reduction of the whole set of frames (e.g. MUSYC

- Quadri et al. 2007). This approach however tends to over-estimate the limiting

magnitude in the case of diffuse sources, since their surface brightness will be lower

than the surface brightness of stars. A more refined approach is then to simulate

objects with representative morphologies and magnitudes, inserting them into

the images and allowing the reduction pipeline to recover them, as in the case of

COSMOS (Capak et al., 2007) and COMBO17(Wolf et al., 2003).

An even more realistic approach, studied for the first time in this thesis, would

adopt real images of objects to be used as templates. The adoption of real images,

in comparison to the simulated objects, would then allow to naturally take into

account all the problematics linked to the brightness profile of faint objects, which

are very complex when fully reproduced by a purely algorithmic approach (e.g.
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GALFIT - Peng et al. 2002 or GIM2D Simard et al. 2002).

A completely different approach has been proposed by Rauzy (2001) and later

studied by Johnston, Teodoro, & Hendry (2007). This method is based on the

statistical analysis of the count of objects in the absolute magnitude-distance

modulus (M-Z) plane. Although it has been shown that this method provides

completeness limits in agreement with those already published for SDSS, 2dF-

GRS and MGC (Johnston, Teodoro, & Hendry, 2007), it has a couple of issues

which may limit its applicability. The first is that the computed magnitude limit

may present a dependence on the arbitrary width of the box used to compute the

statistics in the M-Z plane, although some work has recently been done in this

direction (Teodoro, Johnston, & Hendry, 2010). The second point is that this

method does not provide any information on the completeness levels around the

limit it provides. This fact denies the possibility of applying statistical corrections

which would instead allow to reliably use objects with a deeper magnitude limit,

as instead done with the Monte Carlo method developed in this thesis.
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White S. D. M., Frenk C. S., 1991, ApJ, 379, 52

Wijers R. A. M. J., Bloom J. S., Bagla J. S., Natarajan P., 1998, MNRAS, 294,

L13

37



BIBLIOGRAPHY

Williams R. E., et al., 1996, AJ, 112, 1335

Wolf C., Dye S., Kleinheinrich M., Meisenheimer K., Rix H.-W., Wisotzki L.,

2001, A&A, 377, 442

Wolf C., Meisenheimer K., Rix H.-W., Borch A., Dye S., Kleinheinrich M., 2003,

A&A, 401, 73

Wyder T. K., et al., 2007, ApJS, 173, 293

Yee H. K. C., Ellingson E., Carlberg R. G., 1996, ApJS, 102, 269

York D. G., et al., 2000, AJ, 120, 1579

Yoshii Y., 1993, ApJ, 403, 552

38



2
Absolute Magnitudes Measurement

2.1 Introduction

The distribution of distances to astronomical objects makes the analysis of the

quantities directly measured by the telescopes (called apparent quantities) of lim-

ited interest to understand the physics of the Universe. Nonetheless, number

counts of objects (i.e. the number of objects per unit flux and unit area) is

not only the predecessor of todays statistical tools like the Luminosity Function

(Schechter, 1976; Sandage, Tammann, & Yahil, 1979), but it is still often used

as a basic tool to test the goodness and the apparent flux limits of survey data.

The Hubble test, i. e. the plot of the apparent flux as a function of distance,

has been used in the past for z < 0.2 to directly measure the value of the Hubble

constant H0; recently the Hubble diagram with type Ia supernovae up to z � 1

(Perlmutter et al., 1999; Schmidt et al., 1998), in conjunction with data from the

WMAP satellite, has allowed to assess the acceleration of the expansion of the

Universe.

The key parameter which allows to convert apparent quantities (and our

two-dimensional perception of the Universe) to intrinsic ones (and to full four-

dimensional representation of them) is the distance the object is from the Earth.

In cosmological surveys, the distance measurement of the major fraction of

the detected objects can not be done using the methods generally known as the

distance scale ladder. In fact, these methods rely on the identification of individual
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objects which reflect well-defined physical processes of light emission, such as

Cepheids or Type Ia Supernovae (SN). This would imply that at least one object

per class would need to be identified in each single galaxy whose distance has to

be computed, and its flux followed during a sufficiently large amount of time in

order to allow reconstructing the light curve. This is unfeasible either because such

objects would be too faint to be detected (like Cepheids at distances greater than

few tens of Mpc) or because they would need an excessive amount of observation

time for their discovery (like SN, if ever) or follow-up, generally not available in

point-and-shoot surveys, whose aim instead is to cover the largest possible area

to the deepest photometric limits (or highest signal to noise ratio).

The only viable alternative is then to directly measure the redshift of the

object. This is usually done comparing the measured (or recovered) spectral

energy distribution (SED) of the source to templates.

Once the distance to the object is known, it is possible to compute intrinsic ob-

servables like the absolute magnitude, which can then be used to make statistical

estimates of the galaxy population properties, such as the luminosity function.

In the next section, we will describe the methods we developed and imple-

mented in order to compute the absolute magnitude of an object either using

spectra templates approximating the real spectrum of the object or by appro-

priate recombination of measurements in a set of filters. Section 2 is instead

dedicated to the description of three among the most widely adopted methods to

compute the Luminosity Function of galaxies.

2.2 Absolute magnitudes and K-correction

One of the most basic and fundamental observables for celestial objects is the

absolute magnitude, and it is defined as the magnitude the object would have if

it were located at a fixed distance of 10 parsec1.

An almost equivalent observable is the absolute luminosity, defined as the

energy per unit of time and frequency emitted by the source over the full 4π solid

angle around it. The immediate application of this definition to astronomical

objects is clearly unfeasible, so that it is necessary to rely on models for the

1Parsec is the contraction of parallax of 1 arcsecond, i.e. is the distance from which the Earth
major orbital axis is seen under an angle of 1 arcsecond. This corresponds to a distance of 3.26
light years, or 3.1× 1016m.
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emission of radiation. In the most simple case of isotropic radiation, the relation

between absolute magnitude M and luminosity L can be written as:

L = 10−0.4(M−M0) · 4πD2
10 (2.1)

where M0 is the absolute magnitude of a reference luminosity object, and D10 is

the luminosity distance corresponding to 10 parsec.

The apparent magnitude of the source mo is related to the spectral energy

distribution by:

mo = −2.5 log

��
dν0
ν0

fν(ν0)R(ν0)�
dν0
ν0

gν(ν0)R(ν0)

�
(2.2)

with fν the spectral energy distribution, R the filter efficiency and gν the spectral

density of flux for the standard source. For the Vega system, gν is the spectrum

of Vega, while for the AB system gν assumes a constant value, corresponding to

a hypothetical constant source with gν = 3631 Jy, i.e. the flux of Vega in the V

band.

When we need to compute the absolute magnitude of extra-galactic objects, we

must take into account the effects of the metric describing the Universe geometry:

on one side the expansion of the Universe makes the light emitted from a source to

displace toward longer (redder) wavelengths, as discussed in the previous section;

on the other side, the metric allows to obtain an exact expression for the concept

of distance.

In mathematical terms, the absolute magnitude is related to the apparent

magnitude by the following relation:

Me = mo − 5 log(DL)− 25−Ko→e(z, SED) (2.3)

where Me is the absolute magnitude in the object rest-frame, mo is the apparent

magnitude in the observer frame, DL is the luminosity distance expressed in

Megaparsec and Ko→e is the so called K-correction.

The latter term in eq. 2.3 (Ko→e) is responsible for converting a flux measured

in a filter at the observer frame to the same quantity, but in the reference frame

of the object which emitted it.

An analytic expression for the K-correction was first derived by Oke & Sandage

(1968) which allowed to convert from the apparent magnitude in the filter of
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observation to the absolute magnitude in the same rest-frame band. At the time

that study was published, the horizon available for extra-galactic analysis was

mostly limited to the Local Group; the derived expression for the K−correction,

a polynomial form, was then a valid approximation to the real one. This formula

was later generalized (Kim, Goobar, & Perlmutter 1996 and Hogg et al. 2002)

allowing for different rest-frame and the observer-frame filters. In its more general

expression, its exact expression can be written as (Hogg et al., 2002):

Ko→e = −2.5 log10



(1 + z)

�
dνo
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fν(νo)R(νo)
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 (2.4)

with νe and νo respectively the rest-frame and observer-frame frequency; fν

is the SED in units of energy per unit time per unit area and unit of frequency;

Q and R represent the filters efficiencies in the rest-frame and observer-frame

respectively, while gν is the spectral density of flux for the standard source.

Expression 2.4 gives the exact correction to apply, but its reliability strongly

depends on the accuracy with which the object SED is known. The determination

of the SED of an object is in fact a non-trivial process which depends on several

factors. The outcome of photometric surveys is the measurement of the apparent

flux the selected object has in a set of filters. This translates into a discretized

determination of the underlying SED. The width and effective wavelength of the

adopted filter system will then determine the resolution of the SED. Typical fil-

ters adopted in cosmological surveys are broad-band filters, like the Sloan or the

Johnson-Cousin systems; however we can also find ad-hoc filters, like those for

the Combo-17 (Wolf et al., 2001) and ALHAMBRA (Moles et al., 2008) or NEW-

FIRM (van Dokkum et al., 2009) projects. In these latter cases, they are generally

medium-band filters, with typical band width of few hundreds of Angstroms for

the optical to around half a micron for the NIR. This means that typical reso-

lutions of photometric SED lie between few units and ≈ 30. Resolutions of the

order of few units are clearly insufficient to allow for the direct recovery of the

intrinsic SED using the photometric data alone. For this purpose, the photomet-

ric points are usually employed as a base for an analysis via χ2 techniques with a

proper set of templates. The goodness of the resulting SED then depends both on
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the selection of templates and on the algorithm used to perform the fitting. The

reliability of the templates depends on the models of star formation and evolution

used for their construction. Fitting algorithms can be organized into two classes:

• Single SED fitting

• Multiple SED fitting

The photometric redshift codes falling in the first category rely on the choice

from the initial set of SEDs of the template with the best χ2 value with the pho-

tometric data as a function of redshift, while the second class encompasses linear

combination of SEDs and Principal Component Analysis.

The observational errors associated to the photometric points play a critical

role in the χ2 fitting. In fact, bright galaxies will generally present small photo-

metric errors leading to apparently poor χ2 values. On the contrary, faint objects

with large photometric errors will more easily show good agreements with tem-

plates.

One way (see for example Blanton et al. 2003) for minimizing the effects of the

uncertainties is to compute the absolute magnitude in the rest-frame filter which

most closely matches the one in which observations were done. The counter-

effect is that it is more difficult to compare results at different redshifts, since

the effective rest-frame wavelength and FWHM of rest-frame filter are redshift-

dependent.

A different possibility arises when the rest-frame wave band is observed by

a large number of contiguous non-overlapping filters. In fact, in this case it is

possible to adopt the filter set as a geometrical orthogonal base which allows to

reconstruct any filter whose wavelength range is covered by the base. This is for

example possible for the case of the ALHAMBRA survey and will be presented

in section 2.2.2.

In the following section we present the results of our implementation of the

computation of absolute magnitudes using the K correction.

Another important aspect to be accounted for when dealing with extra-galactic

objects is the absorption effect of the inter-galactic medium (IGM) on the light
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2.2. Absolute magnitudes and K-correction

Figure 2.1: The distinct points show the flux decrement from Lyα as a function
of redshift recovered from different quasar surveys, while the solid line indicates the
fitting function adopted throughout our work (J. Webb unpublished).

emitted by galaxies. The IGM is composed by baryonic matter, most of which is

the hydrogen ionized after z ≈ 10− 20, when the first stars appeared and started

to emit UV light, during what is known as the re-ionization Era.

Even though the bulk of the Hydrogen in the universe is fairly ionized at all

redshifts z � 5, the residual neutral hydrogen still present in the Lyα forest clouds

and Lyman limit systems significantly attenuates the ionizing flux from cosmo-

logical distant sources. The quantitative effect of this process can be formalized

introducing the concept of an effective continuum optical depth τeff along the

line of sight to redshift z:

�e−τ � = e−τeff (2.5)
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2. Absolute Magnitudes Measurement

where the average �..� is taken along all lines of sight.

Any contribution to the far-UV background at observed wavelength λe emitted

originally at a wavelength below the Lyman limit (λH = 912Å), at a redshift ze

will be subject to photoelectric absorption by neutral hydrogen encountered along

at least part of its path.

From an operational point of view, we can then define a flux decrement DA

and DB as in Oke & Korycansky (1982):

DA =

� Lyα

Lyβ

fcont − fobs
fcont

dλ (2.6)

DB =

� Lyβ

Lylim

fcont − fobs
fcont

dλ (2.7)

where Lyα and Lyβ are respectively the wavelength corresponding to the Lyman α

(1216 Å) and Lymanβ (1025 Å), Lylim is the Lyman limit (912 Å) and fcont and

fobs are the rest-frame emitted and observed fluxes respectively.

These effects can be taken into account when computing the K-correction by

applying the absorption as a multiplicative factor, corresponding to the redshift

and as a function of wavelength. One of the most widely used estimates of the IGM

absorption is obtained following the prescription from Madau (1995) as follows:

�DA� = 1− 1

∆λA

� 1170(1+zem)

1050(1+zem)
exp

�
−A2

�
λobs

λα

�3.46
�
dλobs (2.8)

�DB� = 1− 1

∆λB

� 1015(1+zem)

920(1+zem)
exp



−
11�

j=3

Aj

�
λobs

λj

�3.46


dλobs (2.9)

where ∆λA = 120(1 + zem)Å, ∆λB = 95(1 + zem)Å. The term A2 relative to the

Lyα forest contribution is equal to 3.6 × 10−3, while the first three coefficients

Aj relative to the DB computation are A3 = 1.7 × 10−3, A4 = 1.3 × 10−3 and

A5 = 9.4× 10−4.

In our work, instead, we used a different computation proposed by J. Webb,

based on the fitting of an ad-hoc function on data from several quasar surveys.

In Figure 2.1 we show a simple mathematical model (John Webb, unpublished)

for the average opacity of the Lyman-alpha forest at different redshifts, that has

been adopted in our work. The same Figure shows a compilation of opacity values
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2.2. Absolute magnitudes and K-correction

measured in quasars from different samples, at different redshifts. It is clear (and

is a well-known fact in this kind of analysis) that the scatter around the model is

larger at intermediate redshifts (z ≈ 3) because at higher redshift the absorption

is almost complete, with very low variance, and at low redshift almost all lines of

sight are clean, due to the very low density of Lyman-alpha absorbers.

2.2.1 K-correction with SED

As already presented in the previous paragraph, the computation of the absolute

magnitude of an extragalactic object is a straightforward operation once the exact

SED and redshift z have been determined. In the framework of the ALHAMBRA

survey, photometric redshifts are computed using the BPZ (Beńıtez, 2000) code

and adopting six SED templates. These SED templates represent average El-

liptical, S0, Sa, Sb types galaxies plus two starburst templates, and showed to

produce more reliable photometric redshifts with BPZ. and are shown in Figure

2.2. The templates were constructed extending the Coleman, Wu, & Weedman

(1980) stellar evolution library in the UV by means of extrapolation, and in the

NIR adding the Bruzual A. & Charlot (1993) templates (CWW hereafter).

It is easy to see from Equation 2.4 that the total K-correction can be con-

sidered as the sum of two distinct terms, a pure cosmological (neutral- as it does

not depend on the intrinsic properties of the objects nor on the filters selected for

the observation, but only on the value of z) term, plus a color term, Kc, respon-

sible for relating the observed quantities (SED and filter) to the corresponding

rest-frame ones:

Ko→e = −2.5 log(1 + z) +Kc (2.10)

with Kc given by:

Kc = −2.5 log10




�

dνo

νo
fν(νo)R(νo)

�
dνe

νe
gQν (νe)Q(νe)

�
dνo

νo
gRν (νo)R(νo)

�
dνe

νe
fν

�
νe

(1+z)

�
Q(νe)



 (2.11)

Figure 2.3 shows the K-correction obtained directly from eq. 2.4, for the six

different Spectral Energy Distributions (SED) in the redshift range z ∈ [0.0, 6.0],

computed for observations done in the Ks filter and for the SDSS r� rest-frame
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2. Absolute Magnitudes Measurement

Figure 2.2: Spectral Energy Distribution (SED) adopted for the estimation of the
photometric redshifts. Red: Elliptical template; Magenta: S0, Green: Sa, Yellow:
Sb, Blue: SB1, Cyan: SB2

filter. Superimposed is the neutral term given by −2.5 log(1 + z).

The high number of contiguous filters together with their medium waveband

amplitude in the case of the ALHAMBRA filter system allow us to explore a finer

computation of the pure SED-based K-correction.

Suppose that we are interested in computing the absolute magnitude in the

rest-frame filter F (λ) whose effective wavelength is λeff. Then we can choose

from the set of ALHAMBRA filters {bi(λ)} that one whose blue-shifted effective

wavelength at the redshift z of interest best matches the effective wavelength of

the rest-frame filter F (λ), i.e.:

λeff,F = λeff,bi
/(1 + z) (2.12)

In this way we will be computing the K-correction (in the redshift range al-
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2.2. Absolute magnitudes and K-correction

Figure 2.3: K-correction relative to the six SED templates adopted for the recov-
ery of ph-z to compute absolute r

� magnitudes from observations in the Ks band.
Elliptical, S0, S1, S2, SB1 and SB2 galaxy types correspond respectively to red,
magenta, yellow, green cyan and blue lines. The black dashed line indicates the
cosmological term Kz = −2.5 log(1 + z).

lowed by the observing filter set) in a more favorable case, i.e. relying more on

observational data and minimizing the contribution of the SED template. This

translates into values of the K-correction oscillating around zero, as shown in Fig-

ure 2.4. The drawback of this method is that it introduces an upper limit to the

redshift range where this method can be applied, and given by:

zmax ≈ λred/λem − 1 (2.13)

where λem is the effective wavelength of the rest-frame band in which we want

to compute the absolute magnitude and λred is the effective wavelength of the

reddest filter in which observations are available.

48



2. Absolute Magnitudes Measurement

Figure 2.4: K-correction computed considering as observation filter the ALHAM-
BRA filter closest to the red-shifted rest-frame filter Sloan r

�.

2.2.2 Linear combination of a base filter set

As already discussed in the previous section, the accuracy of the computation

of the absolute magnitude following Eq. 2.4 largely relies on the correct choice

of the SED template for the source of interest. A more accurate and reliable

result would be obtained if the spectrum of the galaxy for which we want to

compute its absolute magnitude were available. In this case, it could be blue-

shifted by the (1+ z) amount and convolved with the rest-frame filter of interest,

obtaining the desired quantity. Unfortunately, this is generally not the case for

deep cosmological surveys like ALHAMBRA, which are based on photometric

rather than spectroscopic measurements.

However, the observation of a given object in a set of different wavebands

can be considered to all practical effects as very low resolution spectroscopy: the

higher the number of non-overlapping filters covering a fixed wavelength range,

the higher is resolution. To this respect, the ALHAMBRA survey can be seen as
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2.2. Absolute magnitudes and K-correction

Figure 2.5: The vertical dashed line indicate the equivalent width of the 20
ALHAMBRA optical filters; blue, red, green, magenta and black solid transversal
lines indicate the rest-frame position of the u, g, r, i, z filters as a function of
redshift. The corresponding filter widths at the indicated fiducial limiting redshift
are represented by the horizontal colored bars.

the equivalent of a spectroscopic survey with resolution R = λ/∆λ ≈ 20†

We can then think about using the photometric observations in each filter

to construct a new filter, obtained as an appropriate linear combination of the

available data. In this way we could obtain absolute magnitudes directly from

the observed photometry and in a way which does not make any assumption on

the SED of the object. As an example, in Figure 2.5 the equivalent width of

the 20 ALHAMBRA filters are shown as vertical lines, while the transversal lines

indicate the location of the five Sloan filters as a function of redshift. As it can be

seen, the u� rest-frame filter is fully covered by ALHAMBRA observations down

to z ≈ 1.5, g� to z ≈ 0.8, r� to z ≈ 0.3, i� to z ≈ 0.2 and z� to z ≈ 0.1.

†Typical values for resolution on Amici-prism based spectrographs range from 50 (as for the
SPHERE at VLT) to 100 (as for the NICS instrument at TNG or the NIRMOS spectrograph
at VLT).
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Given a filter φ(λ) and a set of N filters bi(λ) to be used as a base, we can

write the relation:

φ(λ) =
N�

i=1

aibi(λ), 0 ≤ ai ≤ 1 (2.14)

where ai are the coefficient to be computed. In our work, we investigated two

different methods to compute theses coefficients.

In the first method, the N -dimensional space of the ai is explored through a

best fitting algorithm. For each set of ãi, the following quantity is evaluated:

ρ =

�

λ

�
F (λ)−

N�

i=1

ãibi(λ)

�2

dλ (2.15)

with F (λ) being the filter efficiency which one wants to reproduce. It should

be noted, however, that the ALHAMBRA filters overlap a bit. This generates

spikes in the reconstructed filter efficiency with the peak in correspondence of the

point of intersection between the two contiguous filters, given the symmetry of

the shapes of the efficiencies. The region of superposition is limited to ≈ 80Å for

each couple of base filters, which however makes the final contribution of minor

importance.

The results of this procedure are presented in figure 2.6 for the Bessel B filter.

The ALHAMBRA filters are shown as alternating blue/red efficiencies for the

sole purpose of clarity. The reference Bessel B filter and its best reconstruction

are shown as black solid lines, while the red line shows the difference between

the Bessel filter and its reconstruction. The spikes due to the superposition of

the efficiencies of contiguous filters are well visible. Figure 2.7 shows the plot

corresponding to the SDSS g� filter.

The second method we implemented is based on a more geometrical approach

and, for some aspects, can be considered a natural evolution of the first one.

As already done with the previous method, we consider the set of ALHAMBRA

filters bi(λ) as a base B:
B =

�

i

bi(λ) (2.16)
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2.2. Absolute magnitudes and K-correction

Figure 2.6: Result of the filter efficiency reconstruction algorithm presented in
this section, for the Bessel B filter. The alternating blue and red lines mark the
efficiency of those ALHAMBRA filters whose wavelength range covers that of the
broad band filter, represented by the dotted line. The black solid line indicates the
total efficiency of the reconstructed filter, while efficiency residuals are shown by
the green solid line.

We now introduce the scalar product between two filters f1(λ) and f2(λ) as

follows:

f1(λ) · f2(λ) ≡
�

λ
f1(λ)f2(λ)dλ (2.17)

It is now easy to check whether the ALHAMBRA filter set is actually an
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2. Absolute Magnitudes Measurement

Figure 2.7: Similar to figure 2.6, but for the g
� filer.

orthogonal base. In fact, given any two filters bi(λ) and bj(λ) belonging to the

base, the integrand in Eq. (2.17), for the scalar product between bi(λ) · bj(λ),
is zero everywhere except for the small region where two adjacent filters overlap.

Strictly speaking we could not take the ALHAMBRA filter set as an orthogonal

base; however, considering that the scalar product of two non-adjacent filters is

zero and that the integral 2.17 for two adjacent filters assumes small values, we

will consider the elements in B to be a valid orthogonal base.

The coefficients ai can now be obtained by just taking the scalar product
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2.2. Absolute magnitudes and K-correction

Filter Fitting range (mag) Offset Slope

u’ [15, 21] 0.39± 0.34 0.001± 0.012
g’ [13, 22] 0.15± 0.23 −0.002± 0.030
r’ [12, 21] 0.18± 0.35 −0.005± 0.018
i’ [14, 20] 0.01± 0.12 −0.008± 0.012
z’ [14, 20] −0.01± 0.08 −0.010± 0.010

Table 2.1: Fitting parameters for the magnitude differences in Figure 2.8.

between the base filter set bi(λ) and the filter F (λ) we want to reconstruct:

ai = bi · F =

�

λ
bi(λ)F (λ)dλ (2.18)

We tested the goodness of this approach by comparison with both real and

synthetic data. At first, we computed the coefficients necessary to obtain the five

Sloan filters u�, g�, r�, i� and z� from the ALHAMBRA filters. We then transformed

the magnitudes of all the objects detected in the ALHAMBRA f08 p01 1 field to

the magnitudes in the five Sloan bands, using Eq. 2.18, and matched the celestial

coordinates of the objects to those contained in the SDSS catalogue of the same

region. The plot of the difference between the apparent magnitudes reconstructed

from ALHAMBRA observations and the magnitudes originally measured by the

SDSS pipeline is shown in Figure 2.8. They show a similar behavior in all the

filters with the exception of the u� filter, which shows both a larger scatter and a

larger offset. This could be due to the non complete coverage of the ALHAMBRA

filters to the u� filter. For the remaining filters, there is very little offset between

the two magnitudes. This was also confirmed by both looking at the histogram of

the difference between the two magnitudes, shown in Figure 2.9 for the r�filter,

and by performing a best fit of a line on the magnitude difference in a range

appropriately selected in order to exclude the faintest objects, higher in number

but with higher uncertainties and which could introduce spurious effects. The

results of the fitting procedure are summarized in Table 2.1.

As a second test, we generated the full set of apparent magnitudes in the 20

ALHAMBRA filters from the CWW templates, renormalized to Mr = −20, and

in the redshift interval z ∈ [0, 6]. The fluxes in the 20 filters were then combined

following eq. 2.14 to recover the absolute magnitude in the Sloan filter so that
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2. Absolute Magnitudes Measurement

Figure 2.8: Difference between direct SDSS photometry and the one reconstructed
with our method, in the five Sloan bands.
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2.2. Absolute magnitudes and K-correction

Figure 2.9: Histogram of the difference between the magnitudes from the SDSS
pipeline and the values recovered by our procedure.

it was possible to compare the input with the reconstructed absolute magnitude.

The difference between the input absolute magnitude and the recovered absolute

magnitude for the Sloan u� and r� as a function of redshift z and for the six SED

templates are shown in figure 2.10 and 2.11.

For the u� filter, we can see a very high difference at low redshifts. Similarly to

the comparison with SDSS magnitudes, also in this case this difference can be due

to the fact that the bluest ALHAMBRA filters do not fully cover the blue part of

the u� filter, so that there is a loss of flux in the reconstructed magnitudes at low

z for this filter. With the increase of z, the observer frame ALHAMBRA filters

involved in the reconstruction of the rest-frame filter shift to the red so that the
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2. Absolute Magnitudes Measurement

Figure 2.10: Difference between absolute u
� magnitudes (bottom-up from Ellip-

ticals to SB2). The differences have been offset by an arbitrary amount of 0.05mag
from one to another for clarity. The corresponding zero level is represented as a
dashed line.

rest-frame u� filter is fully covered by ALHAMBRA filters and the difference tends

to decrease. In support to this assumption, we can see from the equivalent plot for

the r� filter that this abrupt peak is absent at low redshifts, although the difference

ranges between ∆Mr ∈ [−0.05, 0.05], for z < 0.5. At higher redshift, the plot for

the r� filter shows the contribution from the NIR filters whose weight passes from

0 to 1 and vice-versa as the red-shifted r� filter lies at those wavelengths (see also
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2.2. Absolute magnitudes and K-correction

Figure 2.11: Difference between absolute r� magnitudes for the six SED templates.
Red: Ellipticals; magenta: S0; green: S1; cyan: S2; blue: SB1; black: SB2.

Figure 2.5).

Another effect visible from figure 2.10 is that while for the reddest SEDs the

magnitude difference is always positive, meaning that there is a slight over esti-

mation of the recovered flux with respect to the input one, this offset gradually

goes to zero as the templates become bluer, i.e. as we pass from Elliptical to SB

galaxy classes. One possible explanation would be that the SED of SB galaxies

is flatter than the SED of Ellipticals and spiral galaxies, resulting in a smaller

sensitivity to filter position.
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The major strength of this method relies on its fully observational base. How-

ever, as explained in the previous section, the reconstruction seems to suffer some

kind of bias as a function of the intrinsic SED. An attempt that could be done

in order to take full profit from this method and, on the other side, to try to

minimize the spurious effects, is to join the reconstruction and the K-correction

methods: in a first step, we reconstruct the filter whose effective wavelength best

matches the redshifted effective wavelength of the rest-frame filter, as explained

in Section 2.2.1. The obtained filter will then be used as the observer frame filter

in Eq. 2.4.

2.2.3 Discussion

In order to evaluate the impact of the uncertainties introduced by the methods

described in the previous sections to the error budget of the estimation of the

absolute magnitude, we could compare them to the stochastic errors of redshift

determination and to the uncertainties in the SED reconstruction.

For what concerns redshift errors, we should make a distinction between spec-

troscopic and photometric redshift. For the first class, in fact, errors are usually

very small, since the evaluation of the redshift is done comparing the wavelength of

known emission or absorption lines to their rest-frame values. In these cases, the

uncertainties in the determination of the redshift will directly depend on the error

associated to the peak determination of the line, which ultimately depends on the

on the signal-to-noise ratio of the data and on resolution of the spectrograph.

Typical errors are of the order of ∆z/(1 + z) � 10−4 − 10−3, making the redshift

estimated via spectroscopic techniques the reference for the other methods. For

completeness, however, and as noted for example by Fernández-Soto et al. (2001),

the strength of spectroscopic redshift can also reveal as its weakness point, since

the identification of lines can be a subjective process. The mis-identification of

lines, especially in low SNR spectra can then lead to completely wrong values of

redshift. However, the rate of the misidentifications can nowadays be strongly

decreased by applying techniques like Principal Component Analysis.

On the other side, errors associated to photometric redshifts are usually larger

than the spectroscopic counterparts. In this case, the most common way of esti-

mating errors is to compare the photometric to the spectroscopic redshift values,
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Figure 2.12: Preliminary estimates of photometric redshift errors (Moles et al.,
2008). The two top panels refer to photometric redshifts computed excluding (left
panel) or including (right panel) photometry from the NIR bands. The two bottom
panels are a z ∈ [0, 2] zoomed version of the corresponding top panels. Inside each
panel, each single plot represents a particular combination of input and output
SEDs, so that panels in the diagonal are those where the output SED corresponds
to the correct one. Inside each panel the usual zphot vs zspec diagram is plotted, with
redshifts running from z = 0 to z = 8 in both axes. Under perfect circumstances,
all the points should fall in the diagonal line (zphot = zspec) of the diagonal panels
(SEDoutput = SEDinput).

defining the quantity ∆z/(1+z) ≡ (zphot−zspec)/(1+zspec). On the basis of this

parameter, errors are generally divided into two regimes: a Gaussian distribution,

characterized by a mean value µ∆z and a dispersion σz, and a catastrophic error
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Figure 2.13: Effect of the propagation of the error on the photo-z to the absolute
magnitude computation, for the cases of E (red line), S0 (magenta), S1 (green),
S2 (yellow), SB1 (cyan) and SB2 (blue), in the case of absolute magnitude in the
r rest-frame band and with observations in the Ks filter. The black dashed line
represents the case of suppressing the effects of photo-z errors on the K-correction
(K-correction = 0).

region, defined by those points with ∆z/(1 + z) > nσ, where n is an appropriate

factor allowing for a robust selection, i.e. n � 3.

Since the ALHAMBRA Survey is a photometric cartography, we will need

to take into account uncertainties from the photometric redshifts. Figure 2.12

shows a preliminary distribution of the photometric redshift errors for the AL-

HAMBRA Survey. Since the fraction of catastrophic error is about 3% and it

can in principle be minimized using the odds parameter, we will consider only

the normal-distributed errors. In particular, for our comparison, we will take a

fixed value for the relative redshift error equal to ∆z/(1 + z) = 0.05. This is a

conservative value for the photo-z errors for the ALHAMBRA Survey, since its

forecasted average error is ∆z/(1 + z) ≈ 0.03 (Moles et al., 2008).
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Figure 2.13 shows the effects of propagating the error ∆z/(1 + z) = 0.05 to

the computation of the absolute magnitude. The black dashed line represents

the contribution from the distance modulus alone, while the solid colored lines

show the overall contribution, i.e. taking into account also the effects of the K-

correction. For this particular plot, the rest-frame and the observer frame filters

are Ks and r respectively. The choice of different bands influences to a first order

the position of the features along the redshift axis, and, to a second order only,

the local differences with the pure contribution of the distance modulus.

An average value of that error, with the exclusion of the lowest region of

redshift, where the impact of the error on photo-z is as high as 1-2 magnitudes,

is about δM � 0.2mag, meaning that uncertainties from the photo-z errors are

of the same order of magnitude of the flux uncertainties (Aparicio Villegas et al.,

2010). Moreover, the comparison between Figure 2.13 and Figure 2.10 shows that

the errors due to the uncertainties in the filter reconstruction methods are one

order of magnitude smaller than uncertainties from photometric redshifts.

In the following paragraphs we compare the uncertainties in absolute magni-

tude from the filter reconstruction methods with an estimation of those introduced

with the SED modelling.

As a conservative reference, we consider for the error of the SED modelling the

difference between the K-correction from two contiguous SED templates, shown

in Figure 2.14. In this way we are trying to mimic the possible effects of incorrect

identification of the intrinsic SED of an object.

Form the plot we can see that the systematic error due to the mis-identification

of the spectral class of an object can reach about 0.5 mag. If we limit our analysis

to the 0 < z < 1.5 range, which corresponds to the range where we can apply

the methods we developed in the previous sections, we can see that except for

the difference between the K-correcion of the two star burst galaxies (blue line),

the other differences are at least of 0.1 mag, and generally also assume larger

than this value, reaching a maximum of about 0.5 mag. This, compared to the

uncertainties discussed for our methods, reveals as a dominant uncertainty, of the

same entity as the errors on flux or those due to the photo-z. However, the low

frequency with which this occurs, renders this kind of errors negligible.
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Figure 2.14: Difference between the K-correction of E and S0 (red), S0 and S1
(magenta), S1 and S2 (green), S2 and SB1 (cyan) and SB1 and SB2 (blue) galaxy
SED, with rest-frame filter Ks and observed in the r filter.

2.3 Luminosity Function

One of the most direct statistical descriptors of the galaxy population is the

number density of galaxies per unit of absolute magnitude (or, equivalently, lu-

minosity), also called the Luminosity Function (LF) of galaxies.

When trying to estimate the LF from observational data, one has to deal

with the fact that this kind of catalogues are flux limited. This means that the

maximum distance for the objects in the catalogue will not be uniform, but will

depend as a first instance on the absolute magnitude of the object itself and in a

second instance on the class the object belongs to. For example, large and bright

elliptical galaxies will be detected down to larger distances than irregular dwarf

galaxies. From this example it is clear that when evaluating the LF, it is not

sufficient to merely compute the mathematical division of the number of galaxies

by the total volume occupied by them.
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In order to circumvent this problem, a number of methods have been developed

which allow to reliably obtain the LF values.

All the methods developed so far are based on the concept of introducing a

weight function, which depends on the range each galaxy can span in the space of

intrinsic observables. As an example, taking the redshift z as parameter for the

intrinsic observable space, we can associate the comoving volume defined by the

range in z as the inverse weight, obtaining the core of 1/Vmax LF method. On

the other side, the adoption of the absolute magnitude as the parameter leads to

the step-wise maximum likelihood method to compute the LF.

In this work, we implemented three among the most frequently used methods

to compute the LF. Their mutual independence allows to obtain three independent

estimations of the LF. The three methods are: the 1/Vmax, Step-Wise Maximum

likelihood (SWML) and the Sandage, Tammann and Yahil Maximum Likelihood

(STYML). In the following sections we will describe them.

2.3.1 1/Vmax

The first description of the 1/Vmax method was given by Schmidt (1968), and

successively by Felten (1976).

The expression for the LF Φk(M) for the k-th bin of absolute magnitude M

can be written as:

Φk(M)dM =

Ngal�

i=1

1

Vi
(2.19)

where Ngal is the number of galaxies in the catalogue and Vi is the correspond-

ing comoving volume in which the i-th galaxy can lie while remaining within the

observational limits of the catalogue:

Vi = Ω

� zmax

zmin

dV

dz
dz (2.20)

where Ω is the apparent area in steradians of the survey, dV/dz is the comoving

volume element, zmin and zmax are respectively the minimum and maximum

values of redshift for which the galaxy is still within the observational limits of

the catalogue; in particular, for zmax the minimum between the redshift upper

limit of the catalogue and the galaxy maximum redshift is taken.
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The major advantages of this method are that it directly provides the normal-

ization of the LF, it does not rely on any parameterization and that it does not

make any assumption on the spatial distribution of the galaxies. However, this

last characteristic can also reveal problematic, in those cases where a clustering

is present in the data, affecting the faint end slope of the LF.

Avni & Bahcall (1980) implemented a generalization which allows to evalu-

ate the 1/Vmax simultaneously on catalogues with different photometric depths

(coherent analysis). Suppose we have n catalogues, each one with its limiting

apparent magnitude mi, i = 1 . . . n. We can consider the galaxy as belonging

to the catalogue given by the union of the original catalogues; in this case, the

volume Vi in expression 2.20 becomes:

Vi =
n�

j=1

Ωj

� zmax,j

zmin,j

dV

dz
dz (2.21)

where Ωj is the apparent area corresponding to the j-th catalogue, and zmin,j

and zmax,j the redshift limits that would allow the i-th galaxy to remain within

the j-th catalogue limits.

The computation of uncertainties is generally based on Poisson statistics. In

this case, the uncertainty corresponding to the bin k is given by:

σk =

��

i

1

V 2
tot,i

(2.22)

where Vtot,i denotes the total volume given by expression 2.21 and the sum extends

to all the galaxies falling in the absolute magnitude bin k.

2.3.2 Step-Wise Maximum Likelihood

This method, first introduced by Efstathiou, Ellis, & Peterson (1988), is based on

a discrete, non-parametric representation of the LF.

The LF Φ(M) is written as N independent steps:

Φ(M) = φk, M −∆M/2 < M ≤ M +∆M/2, k = 1 . . . N (2.23)
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where ∆M is the magnitude interval of each step.

The probability that a galaxy with redshift zi and absolute magnitude Mi is

seen in a flux limited sample is:

pi ∝
Φ(Mi)�Mmax

−∞ Φ(M)dM
(2.24)

A likelihood L can then be introduced:

L =
�

i

pi (2.25)

which, for the case of eq. 2.23 can be re-written as:

lnL =

Ngal�

i=1

W (Mk −Mi) lnφk −
Ngal�

i=1

ln






N�

j=1

φj∆MH(Mmax(zi) −Mj)




+ c

(2.26)

with Ngal the total number of galaxies in the sample, c a constant, W (x) a window

function given by:

W (x) =

�
1 if −∆M/2 < x ≤ ∆M/2

0 otherwise
(2.27)

and H(x):

H(x) =






1 if x ≤ −∆M/2

1/2− x/∆M if −∆M/2 < x ≤ ∆M/2

0 otherwise

(2.28)

Since the likelihood function involves ratios of the φk, the normalization is lost;

a constraint is then necessary. The constraint is then introduced using the La-

grangian multiplier formalism:

lnL� = lnL+ λg(φk) (2.29)

where the maximization is carried over the multiplier λ and the function g(φk).
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A convenient choice for the g(φk) is usually:

g =
�

k

φk10
−0.4β(Mk/Mf ) − 1 = 0 (2.30)

where Mf is a fiducial absolute magnitude and β is a constant, with common

values between 1 and 1.5

The likelihood equation then yields:

φk∆M =

�Ngal

i=1 W (Mk −Mi)
�Ngal

i=1

�
H(Mk −Mf )/

�Ngal

j=1 φj∆MH(Mj −Mf )
� (2.31)

The parameters φk can then be recovered by iteration of eq. 2.31.

The most common (and native) way of estimating the associated errors is based

on the assumption that the φk obtained with the maximum likelihood method are

asymptotically normally distributed with covariance matrix:

cov(φk) = I−1(φk) (2.32)

with I(φk) the information matrix given by:

I(φk) =

�
∂2 lnL/∂φiφj + (∂g/∂φi)(∂g/∂φj) ∂g/∂φj

∂g/∂φi 0

�

φ=φk

(2.33)

The dimension of matrix I and, as a consequence, also of the covariance ma-

trix, is N + 1. The effective error estimates are the first N diagonal elements of

the covariance matrix.

So far we have not taken into account the possibility of the union of catalogues

with different photometric depth. Expression 2.31 can be easily generalized in

this context (see for instance Hill et al. 2010). Suppose we have ncat different

catalogues, each one with its limiting absolute magnitude as a function of redshift.

We can then associate to each galaxy the value of the limiting absolute magnitude

Mf,k corresponding to the catalogue the galaxy belongs to, obtaining the following
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new expression for eq. 2.31:

φi∆M =

�Ngal

k=1 W (Mi −Mk)
�Ngal

k=1

�
H(Mi −Mf,k)/

�Ngal

j=1 φj∆MH(Mj −Mf,k)
� (2.34)

2.3.3 The STY maximum likelihood method

This method is based on a parameterization for the expression of the LF. The

expression which is commonly adopted to describe the LF Φ(M) is the Schechter

(1976) function:

φ(M)dM = 0.4 ln(10)φ∗

�
10−0.4(M−M∗)

�(1+α)
exp

�
−10−0.4(M−M∗)

�
(2.35)

where φ∗ is the normalization of the LF, α describes the slope of the faint end

and M∗ define the position of the knee where the exponential regime is replaced

by the power law.

Similarly to the SWML method presented in the previous section, also the

STY-ML is based on the computation of the probability pi that a galaxy with

redshift zi and absolute magnitude Mi is seen in a magnitude limited catalogue:

pi ∝
Φ(Mi)�Mmax

−∞ Φ(M)dM
(2.36)

Again, we can define the likelihood L as:

L =
�

i

pi (2.37)

The free parameters α and M∗ can then be determined by maximizing the

likelihood. Since also in this method the likelihood is constructed as the ratio of

quantities proportional to the normalization φ∗, this last parameter can not be

recovered at the same time of the other two and an independent way of estimating

the normalization factor should be applied.

The errors on parameters are generally estimated through the ellipsoid in the
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parameter space defined by:

lnL = lnLmax − 1

2
χ2
β(n) (2.38)

where χ2
β(n) is the β point of the χ2 distribution with n degrees of freedom.

The generalization of this method to a set of catalogues with different photo-

metric depth can be reached in a way similar to the one adopted for the SWML

method. In fact, the different limiting magnitude appears as an explicit parame-

ter in the definition of probability (see eq. 2.36). There the absolute magnitude

Mmax can be replaced with the absolute magnitude limit of the catalogue k the

galaxy belongs to, i.e. Mmax, k, so that the final expression for the probability

2.36 becomes:

pi ∝
Φ(Mi)�Mmax,k

−∞ Φ(M)dM
(2.39)

This expression, as the corresponding for the SWML method eq. 2.34, can be used

in a more general way. In fact, we can in principle associate a limiting absolute

magnitude different for each galaxy, i.e. a limit which would depend not only on

the distance of the object but also on its intrinsic properties like its SED or its

surface brightness.

2.3.4 Comparison among the three methods

The reliability of the above methods in recovering the intrinsic LF has been an-

alyzed by Willmer (1997) and Takeuchi, Yoshikawa, & Ishii (2000) using Monte

Carlo simulations. They are somehow complementary, as the work by Willmer

(1997) analyzes the ability to recover the LF as a function of the Schechter pa-

rameters, while Takeuchi, Yoshikawa, & Ishii (2000) introduced the dependence

on the the spatial distribution of galaxies.

Overall, despite being the only method providing the normalization, 1/Vmax

estimator is the one showing the largest bias in α or M∗, while the STYML

method provides the best results. The SWML algorithm is generally reliable,

except when the faint-end region of the LF is under-sampled, in which case the

faint-end slope can deviate by more than 25% from the intrinsic value. Despite

this, the STYML method tends to be a little biased against flatter faint-end
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slopes, effect that becomes more important for steeper slopes and smaller popu-

lations. However, these results are not confirmed by Takeuchi, Yoshikawa, & Ishii

(2000), who instead found consistent results for all the estimators when galaxies

are homogeneously distributed in space.

When galaxies are not homogeneously spread in space, the 1/Vmax estimator

becomes severely affected in measuring the LF, while the SWML is insensitive

(as it should by design) to this effect. In addition, all methods are sensitive to

the shot-noise, producing fluctuations at the faint-end, with larger deviations for

flatter fain end slopes.

The behaviors of the LF estimators described above thus suggest that the best

practice to adopt at the time of measuring a reliable LF would be to adopt more

than one method, in order to take advantage of the strengths of each one and to

also be able to identify the possible inconsistencies.

2.3.5 Normalization of the LF

With the exception of the 1/Vmax, both the SWML and the STYML methods do

not allow to recover the normalization which has to be estimated in some other

way.

This quantity is related to the mean density n̄ of the sample through:

φ∗ =
n̄

�Mfaint

Mbright

φ̃(M)dM
(2.40)

where Mbright and Mfaint are the brightest and faintest absolute magnitude in the

survey and φ̃(M) is the LF whose normalization is set to 1, i.e. φ(M) = φ∗φ̃(M).

The problem then shifts to the determination of the mean density.

The probability s(zi) that a galaxy at redshift zi is included in the sample,

or, equivalently, the fraction of objects at distances greater than zi falling in the

sample, is:

s(zi) =

�Mfaint

Mbright

φ(M)dM
�min(Mfaint,M(zi))
Mbright

φ(M)dM
(2.41)

where M(zi) is the faintest absolute magnitude visible at redshift zi.

The mean density can then be written as the ratio between the number of

objects counted in the sample NT and the number expected in a homogenous
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universe:

n =
NT�

s(z)dVdz dz
(2.42)

This expression can be generalized, weighting each galaxy with a function w(zi),

leading to:

n =




Ng�

i=1

Ni(zi)w(zi)



 /

�� zmax

0
s(z)w(z)

dV

dz
dz

�
(2.43)

with Ni(zi) is the number of galaxies at redshift zi. One of the expressions most

commonly adopted for the weight w(z) is the reciprocal of the second moment

of the two-point correlation function ξ(r), which represents the mean number of

galaxies in excess of a random distribution around each galaxy out to a distance

r:

w(zi) =
1

1 + n̄J3s(z)
, J3 =

� r

0
r2ξ(r)dr (2.44)

which can be solved by iteration, as the mean density n̄ also appears on the right

side. Davis et al. (1980) also proposed for the estimator of the mean density,

the ratio between the number of galaxies N(z) bright enough to be counted in

the shell at distance z and the fraction of objects falling in the sample and with

redshifts greater than z, s(z), in the total survey volume:

n̄ =

�� zmax

0

N(z)

s(z)dz

�
/

� zmax

0

dV

dz
dz (2.45)

Another estimator, proposed by Efstathiou, Ellis, & Peterson (1988), is the

normalization by means of the observed number counts. The expected number of

galaxies with apparent magnitude brighter than m is given by:

N(m) =

� ∞

0
dz

dV

dz

� Mmax(z,m)

−∞
φ(M)dM = φ∗I(m) (2.46)

The normalization φ∗ can then be obtained minimizing with respect to φ∗ the

expression:

χ2 =
�

n

[dN(m)− φ∗dI(m)]2

φ∗dI(m)
(2.47)
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obtaining thus:

φ∗ =

��
n dN(m)2/dI(m)�

n dI(m)

�1/2
(2.48)
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3
Determination of Detection Completeness

3.1 Introduction

Every time data is collected through a telescope, the observer has to live with

the fact that the data will not contain all the information, in the wavelength of

interest, of every object that physically exist in that region of the sky. This is

the result of many reasons, which we can organize into three categories: practical

difficulties of magnitude limits, color dependence and redshift dependence.

The first category includes all those effects related to the way observations

are done. Some of the objects will emit too few photons to be collected by the

detection system (usually telescope coupled to a camera), effect increased by the

general glow of the sky and by the fact that the transmission efficiency of the

detection system is generally a fraction of the nominal one. The electronics will

also produce its own noise which will further limit the ability to collect useful

information. When this is the case, the sampling of objects is usually denoted as

flux-limited.

Further selection is produced when analysing the data, in particular during the

generation of the catalogue of the objects present in each image. In fact, whatever

algorithm is used to detect the objects, there will always be a fraction of objects

which will not be detected, despite the minimum flux passed as threshold to the

algorithm. In addition, when dealing with regions crowded with many objects (as

may be the case, for example, of deep extra-galactic images), it is not uncommon
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3.1. Introduction

to find overlapping objects, which render even more challenging the detection

(and flux measurement) of such objects by the algorithm. A third cause for non-

detection is the proximity of the object to the border of the frame (border-effect):

on one side objects too close (for example up to 3-4 FWHM) are skipped by the

detection algorithm because it would not be possible to obtain the integral flux

measurement, as the object profile is not entirely contained in the frame. On the

other side, the final frames are usually the result of the combination of several

frames, each one taken with a small offset with respect to the others (dithering).

In particular this means that the objects close to the border will not be in all the

frames, resulting in a lower signal-to-noise level.

The second class of effects is related to the observed colors of the objects.

Usually an object catalogue is built from an image taken in a given band, so that

sources with high absolute colors relative to the selection band will most probably

be missed. For example, if the detection is made in the Ks band, very blue objects

will be missed.

For extra-galactic objects, there is a third category: the dependence on red-

shift. Given a rest-frame SED, when observed this will appear as a SED whose

wavelengths have been increased by a factor (1 + z). The colors of an object will

then also depend on the redshift at which the source is. In this case then, the

selection operated by the detection image will also depend on the redshift of each

object.

The determination of all the physical properties which require a statistical

analysis is thus strongly affected by such effects, and more importantly, by the

selection effects as a function of the spectral type and distance of the objects.

This renders fundamental the estimation of the selection effects acting on a given

catalogue.

One of the key features of the ALHAMBRA Survey is the adoption of 20

medium band, contiguous filters covering the range of the optical wavelength,

from 3500 Å to 9700 Å plus the three standard J,H and Ks near-infrared filters,

allowing to obtain what can be considered as a low resolution (R ≈ 15−30) spec-

trum. As a counterpart, this strategy makes the definition of the object detection

more complex. The fields characterizing the ALHAMBRA Survey lays all at high

galactic latitude, allowing to observe the regions outside our own Galaxy without

being strongly affected by the interstellar gas extinction and avoiding an excessive
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3. Determination of Detection Completeness

crowding by stars. However, since the survey has been intended for both galactic

and extra-galactic studies, the procedure for the detection of objects must comply

to its philosophy. Hence, in terms of detection, any bias against any particular

class of object should be avoided. This excludes, for example, making a selection

of the reddest filters, which would of course benefit high-z objects, but would cut

blue galactic objects.

The strategy defined for the detection of objects was then to build for each

CCD a so called deep image obtained as the sum of all those frames taken when

the atmospheric transparency was better than 50% and with the seeing better

than 1.2 arcseconds. This latter constraint is relaxed to 1.3 arcseconds for those

cases where there are no enough frames satisfying the original value. In order

to avoid any prior-selection on object types, the set of filters used to this aim

should then uniformly span the whole range of wavelength. However, given the

filter efficiency (see Fig. 1.6), it was decided to discard the low-efficiency ones and

to take into account only those covering the filter whose λeff falls in the range

4585 Å to 8305 Å included. As we will discuss in the following sections, this deep

image was used to detect objects. An example of the filters used is given in Figure

3.1.

In the following sections we will describe the methods developed to obtain an

as much realistic and accurate as possible estimation of the selection effects present

in the flux limited ALHAMBRA catalogue, commonly referred to as completeness;

the results obtained from these methods will be exposed and discussed in Sect.

3.2.7.

3.2 Description of the methods

The aim of our algorithm was to implement a procedure able to directly estimate

the completeness through the data acquisition and object detection phases, as a

direct function of the intrinsic physical properties of the different classes of objects.

In particular, as the main topic of this thesis is the study of the luminosity function

of galaxies, we will concentrate on galaxies.

The intrinsic properties of galaxies we took into account are:

• Redshift
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• Spectral/morphological type

• Absolute magnitude in a given rest-frame band

In the following paragraphs we will explain the effects of each property.

The effects of the redshift on the physical properties of an object we are

interested in replicating are twofold. On one side, there is a dimming of the

object flux related to its distance following the inverse square law. In addition,

the observational effects of redshift is to shift by a factor (1 + z) any restframe

wavelength λe to λo = (1 + z)λe. These effects are all present in the well known

formula for the computation of the absolute magnitude from the apparent one,

for extra-galactic objects (see Eq. 2.3), discussed in Sect. 2.2.

This means that, once the observation band has been fixed, the flux falling in it

will not just be dimmed by a factor which depends on the comoving distance from

the object, but the observation band will be projected on a bluer region of the

rest-frame SED. On the other side, the apparent angular dimension of the object

is resized as a function of distance. Figure 3.2 shows how the apparent diameter

of a typical galaxy changes as a function of redshift. Considering a seeing of 1.2

arcseconds (corresponding to the worst value admitted for the construction of the

deep image), it is evident that the observational effects of physical dimensions

should be taken into account at least down to z ≈ 1.0.

In our implementation we did not take into account possible evolution in the

angular dimension and restframe flux of the object due to merging.

As already mentioned in the previous chapter, spectral types behave differently

in the observed band according to the formula 2.3, with respect to a fixed rest-

frame flux.

Morphological types can be associated to the surface brightness profile of the

object as a function of the distance r from the center. In the literature, two are the

profiles which are commonly used: the de Vaucouleurs profile (de Vaucouleurs,

1948) which generally describes well the luminosity profile of elliptical galaxies

and the exponential profile, generally used for disks of spiral galaxies (whereas the

bulge of a spiral galaxy is well approximated by the de Vaucouleurs law). As the

name suggests, the de Vaucouleurs profile was first introduced by de Vaucouleurs
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Figure 3.1: Bottom panel: total exposure time per filter constituting the deep
image. An arbitrary offset of 7000 sec. from one histogram to another has been
added for graphical clarity purposes. Colors refer to respectively from top to bot-
tom: f08p02 1, f08p01 1, f07p03 1, f05p01 1, f04p01 1, f03p01 1 and f02p01 1 AL-
HAMBRA fields. For clarity, histograms have been offset by an arbitrary value.
The reference zero for each histogram is indicated by the dashed line. Top panel
shows the average of all the exposure times (solid line), together with the efficiency
(with arbitrary normalization) of the SDSS i filter (dotted line).

and can be written as:

I(r) = Iee
−7.67

�
( r

re
)(1/4)−1

�

(3.1)

re is the radius of the isophote containing half of the luminosity and Ie the surface

brightness at re.
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Figure 3.2: Apparent dimension in arcseconds of typical galaxies as a function of
redshift z. The red line corresponds to a physical diameter of 60Kpc, the green line
to 20Kpc and the blue line to 4Kpc. The two black lines correspond to 2re = 6Kpc
and 8 Kpc respectively.

The exponential profile is of course of the form:

I(r) = I0e
− r

r0 (3.2)

with I0 the central luminosity and r0 the characteristic radius.

The evaluation of the completeness is a key point in the determination of

physical properties. As such, we were committed to its determination in the most

reliable way. For this purpose we developed and implemented two independent

ways for determining the completeness: one based on an analytic procedure and
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the other on Monte Carlo simulation with real data.

3.2.1 Determination of the weights

As described in the Introduction, the ALHAMBRA source catalog is obtained

on the basis of a deep image, resulting from the combination of single exposures

selected following criteria involving central wavelength of the filter, seeing and

atmospheric transparency during the exposure.

As the conditions under which the images are taken generally change from

exposure to exposure, this means that each deep image will be the result of the

sum of a different set of frames. In other words, each filter will participate with

a different weight to each deep image.

We extracted from the header of the deep images the list of frames used to

build it. As the exposure time of the frames is constant through all the involved

filters to a good approximation, the weight is just the the number of frames of

each filter used to build the deep image. The result of this is shown as histograms

in figure 3.1, in which each color corresponds to a deep image.

As our aim is to estimate the completeness not on every deep image, but

as an average property, we opted to consider for the weight of the single filter

the average value of the weights of each filter for the different deep images, also

shown in figure 3.1, as the black solid line. Furthermore, since the variance in

the distribution of the weights is small, we did not take into account this effect

in our construction of the deep image. As it can be seen, the average deep image

resembles the Sloan i filter with a pronounced wing into the r filter.

3.2.2 The analytic method

The reliability of the detection of an object is generally expressed in terms of

the number of sigmas above the background of the total flux of the object. The

evaluation of the number of sigmas is based on two basic quantities associated to

each object: its flux f and the flux error s.

In the numerical simulation we developed, the flux f of an object is a known

parameter, which is a function of other input parameters, namely of the absolute

magnitude Mφ in the rest-frame filter φ, of the redshift z, the spectral type of the

galaxy (SED) and of the band b in which the photons are collected.
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For simplicity, in the rest of this section we will omit all these dependencies,

and refer to the flux with just the f symbol, i.e. f ≡ f(Mφ, z, SED, b).

The flux error s is computed differentiating the definition of apparent magni-

tude m as a function of flux f :

s ≡ df = 0.4 ln(10)fdm (3.3)

This relation shifts the problem of evaluating the flux uncertainty to the eval-

uation of the error on the apparent magnitude dm.

The magnitude error is generally the result of two components: the Poissonian

noise, coupled to the photon statistics, and the propagation of the uncertainties

associated to the operations involved in the calibration of the flux in an image.

For ALHAMBRA data, the typical errors on the instrumental magnitudes are of

the order of 0.01 mag; since the errors associated to the sources for the calibration

of the flux are generally smaller than this value by at least one order, we consider

this second class of errors negligible, and we will omit them in our estimation of

errors, considering only the Poissonian contribution. However, we introduced a

threshold for the minimum error equal to ∆m = 0.02, allowing a more realistic

error estimation for the brightest objects. Although this value was chosen on

arbitrary basis, it represents a realistic estimation of systematics and uncertainties

from all the calibration steps.

The error on the magnitude can be expressed as a function of the signal-to-

noise ratio (SNR) as follows:

dm = −2.5 log

�
1.0− 1

SNR

�
(3.4)

There are at least two ways of computing the SNR which are of our interest,

one more direct which only needs the knowledge of magnitude zero-points, and

the other more detailed, requiring a precise knowledge of the many parameters

characterizing the efficiency of the light path through the telescope, although they

are both based on the estimation of the number of photons (or, more precisely,

electrons) collected by the detector. Below we briefly present both.

Firstly, and common to both methods, we have to take into account the ab-
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Figure 3.3: Schematic view of the optical path through a telescope (image credits:
Keck telescope).

sorption of photons due to the atmosphere. This is generally known in units of

magnitudes as the extinction and depends on the wavelength and on the frac-

tion of water vapour present in the air. The total amount of absorption of the

atmosphere given by the extinction depends linearly on another parameter, the

airmass, which is the length of the optical path through the atmosphere. The loss

given to the atmosphere can then be written in terms of magnitude as:

∆m = X · E (3.5)

with ∆m the loss in flux expressed in magnitude units, X the airmass and E

the extinction.

The value of E is generally recovered from the observation of standard star

fields and will not be covered here. Instead, we used for it average values. From

now on, when we refer to flux or magnitudes, we will be referring to the value of

the magnitude after applying the atmosphere absorption correction given in eq.

3.5.
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The first method reconstructs the path of the photons starting just after pass-

ing through the dome to the photoelectric effect which converts them into electrons

in the CCD. Figure 3.3 shows a general schematic of the whole path. As it can

be seen, the path involves reflection by at least 2 (although it is also common

to find 3) mirrors, each one with its own reflection efficiency, passing through a

lens system and a filter. Finally the photons collide on the CCD where they are

converted to electrons. Each one of these stages has its own efficiency. The final

value for the flux Φf on the CCD can then be written as:

Φf = Φs ·Qtot (3.6)

with Φs is the airmass-corrected flux and Qtot is the convolution of all the effi-

ciencies. The number of photons nΦ collected by the CCD camera is then:

nΦ = Φf/h ·A · texp · ωfilter (3.7)

where h is the Plank constant, A is the effective area of the telescope1, texp is

the exposure time and ωfilter is the width of the pass-band filter. In the case of

Poisson noise, then for the SNR we have:

SNR =
nΦ√

nΦ + nΣ + e2
(3.8)

where nΣ is the number of photons coming from the same region of the sky

covered by the object and e is the detector read-out noise.

It is worth to note that the determination of the Poisson noise directly relies

on the accuracy with which we know all the contributions to the Qtot term. It

is usually difficult to exactly know for example the percentage of reflectance of a

mirror, which may vary (as time passes) between ≈ 90% to ≈ 60% in the worst

cases.

One way to take into account this problem in an effective way is implemented

in the second method. This method is in some sense symmetric to the previous

one with respect to the CCD, as the computation of the number of photo-electrons

is done starting from the counts (ADU, for Analog to Digital Unit) an object has

1The effective area is the area of the main mirror, freed by obstructions like secondary mirror
and other possible instrumentation.
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3. Determination of Detection Completeness

on the detector.

Continuing to follow the path of the light coming from our source, once the

photons have fallen on the detector, the photoelectric effect converts them to

electrons. When reading the detector, the electronics will assign a unitary digital

value to each fixed bunch of electrons it finds in each pixel. The value of this fixed

bunch is called gain and is expressed in electron/ADU.

The convertion of the number of ADUs to physical magnitudes m is given by:

m = −2.5 log(ADU/ADU0) = −2.5 log(ADU) +mzp (3.9)

where ADU0 is the number of counts corresponding to an object of with magnitude

equal to mzp.

In this way, the number of electrons of a source given its counts can be directly

obtained from the inversion of eq 3.9 and recalling the definition of gain g:

nΦ = g · 10−0.4(m−mzp) (3.10)

The zero-point terms ADU0 and mzp in eq. 3.9 and 3.10 are the transforma-

tion of the Qtot factor in eq 3.6 to the counts dominion and thus require to be

determined somehow. This is done by observing objects whose flux is well known

in advance, allowing to recover the values for mzp as a function of filter, for a

given telescope-detector system. At this point, the SNR can then be computed

following eq. 3.3 and 3.4.

In our work, we implemented both methods. Since we are going to deal with

ALHAMBRA data taken with the LAICA and Omega 2000 instruments at the

3.6m telescope of CAHA Observatory, the mzp adopted were those correspond-

ing to the respective instruments and filters measured though the ALHAMBRA

pipeline.

In the simple case of detecting an object in a single frame, the number of

sigmas Nσ is then given by:

Nσ =
f

s
(3.11)

When summing up several images with no weight (or a constant one), the
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number of sigmas the object will have on the final frame will be given by:

Nσ =

n�

i=1

fi

�
n�

i=1

s2i

�1/2
(3.12)

where n is the total number of frames and fi and si are the flux and the error of

the object in the different frames.

Introducing weights is a quite straightforward step. Indicating with wi the

weight for the i-th filter, and applying the normalization condition so that the

total weight equals 1, we obtain for the total flux F and noise S:

F = n

n�

i=1

wifi

n�

j=1

wj

(3.13)

S =





n2

n�

i=1

(wisi)
2




n�

j=1

wj




2





1/2

(3.14)

which lead to the following expression for the total number of sigma with weighted

images:

NσTot
=

F

S
=

�

i

wifi

�
�

i

(wisi)
2

�1/2
(3.15)

The number of sigmas NσTot
was computed following the above procedure as

a function of redshift z and absolute magnitude Mr in the rest-frame filter r for

an early-type and a spiral SED.
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3. Determination of Detection Completeness

3.2.3 Monte Carlo simulation

The implementation of a Monte Carlo method for the determination of the de-

tection completeness was suggested by the idea that simulations done with real

data would mimic all the observational effects with improved detail respect to the

analytic method. In this section we will describe its implementation.

As explained in section 3.1, our aim was to determine the completeness of

the detection of galaxies, as a function spectral type, redshift z and absolute

magnitude in a desired rest-frame band.

The first step was then to choose on one of the fields, an elliptical and a spiral

galaxy with average apparent profiles and characteristics, in order to be good

representatives of the objects in the fields. As such, the two galaxies were chosen

with the following criteria in mind:

1. be among the brightest object (m < 18 in each one of the 20 filters) in the

field, with a correspondingly high SNR;

2. be as much isolated from close objects as possible;

3. have a low spectroscopic redshift (z = 0.1− 0.2).

Points 1 and 2 together assure that both the statistical error on the apparent

flux is small and the risk of a systematic bias caused by possible contamination

from nearby objects is low. The third point shows its reason as we would like to

take into account the possible flux losses linked to the light profile of a galaxy seen

at different redshift. In fact, the optical resolution on the image is not infinite both

because of natural limitation of the detector and because the telescope used to

obtain the data is placed on the earth, meaning that the light should have passed

through the perturbation of the atmosphere, with a consequent degradation of

the details. The choice of spectroscopic redshift (as opposed to the photometric

redshift) allows to make sure that the computed corrections are accurate. The ap-

pearance in the 20+3 ALHAMBRA filters of the two galaxies chosen as templates

is shown in figure 3.4.

Although not necessarily linked in principle, the two morphological types of

galaxies chosen as templates were associated each to a spectral energy distribution

(SED), so that the morphological elliptical galaxy had the SED of an early type
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3.2. Description of the methods

(a) (b)

Figure 3.4: Raw images of the templates for elliptical (a) and spiral (b) galaxy
used for the Monte Carlo procedure, in the 20+3 ALHAMBRA filters (left to right,
top to bottom filters are: AL365, AL396, AL427, AL458, AL489, AL520, AL551,
AL582, AL613, AL644, AL675, AL706, AL737, AL768, AL799, AL830, AL861,
AL892, AL923, AL954, J, H, Ks). ADU values are represented by the grey scale,
with black corresponding to -15ADU, and white to 50ADU

galaxy while the morphological spiral galaxy was associated to a late-type SED. In

the following, when talking about elliptical (resp. spiral), galaxy template we will

be referring to indistinctly its morphological profile or its SED, unless otherwise

specified.

The median of the sky value is then computed on two regions (summing to

around 200 pixels) close to each template in order to take into account local varia-

tions of the background, but nevertheless far enough from the template and from

any other object to avoid contamination to its flux. The obtained sky value was

then subtracted from the corresponding template.

The actual process starts with the definition of an absolute magnitude-redshift

(Mi, zi) grid, the same for each template, although this is not a strict requirement.

In our case, the absolute magnitude was chosen to be in the Sloan r filter, and

ranging from -24 to -12; for the redshift, since the median of the redshift of the

objects is ≈ 0.8, a range covering zi ∈ [0.0, 2.0] in steps of 0.2 was judged sufficient

to cover the great majority of the objects in the ALHAMBRA catalogue.
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3. Determination of Detection Completeness

For each point of the grid, the pixel scale corresponding to the considered

redshift zi is computed and the original template image is resized according to

the new pixel scale, under the assumption of conservation of the physical size

of the galaxy in the template. In particular this means that we omitted any

evolutionary effect from our simulation. Supposing that the original template

image refers to a galaxy at z = z0, the pixel scale factor corresponding to z = z1

is:

p(z1) = p(z0)
da(z1)

da(z0)
(3.16)

where p(zi) is the pixel scale at redshift zi and da(zi) is the comoving angular

distance at z = zi.

The apparent magnitude corresponding to (Mi, zi) was computed for each tem-

plate and in each filter from the matching SED, taking into account K-corrections

and IGM absorption following the procedure presented in Section 2.2; the fluxes

of the templates were rescaled accordingly in each filter.

This last step can be divided into two parts. At first it is necessary to apply

the conservation of flux to the resized template, so that it will have the same

counts as in the original scale. This operation can in principle be done by just

multiplying the counts of the rescaled and resized template by the squared ratio

of the original pixel scale to the equivalent pixel scale at the given redshift zi.

We proceeded to verify the accuracy obtained with this method by extracting

with SExtractor the photometry of the template on the original frame and on

the rescaled and flux-conserved template image, for the pixel scale range covering

the redshift range of our choice. Figure 3.5 shows the difference between the

magnitude of the template on the original frame and on the resized frames in

the case of the spiral galaxy template. The associated errors are those associated

to the photometry, as given by SExtraxtor. As it can be seen, the peak-to-peak

variation is of about 0.06 − 0.07 mag, larger than the intrinsic errors from the

photometry. This fact suggested to discard this method for flux conservation and

to instead replace it with the empirical way of computing the flux factor directly

from the photometry on the resized template.

At this point, the magnitude of the template at the desired redshift zi is
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3.2. Description of the methods

Figure 3.5: Magnitude difference as function of pixel scale, for the spiral galaxy
template

obtained multiplying the resized template by the factor A given by:

A = 10−0.4(mz−m0) (3.17)

with mz and m0 the apparent magnitude2 of the template computed for z = zi

and on the original frame respectively.

In order to preserve the same image quality of the original image also on the

rescaled templates (which would otherwise have had a higher resolution when

copied back to the original frames) each template was convolved with a PSF. The

2The magnitudes used in eq. 3.17 are instrumental magnitude. In this case, the full pho-
tometric calibration is not necessary since the filter, CCD and atmospheric absorption are the
same in the two cases.
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3. Determination of Detection Completeness

Figure 3.6: Construction steps for the spiral galaxy template at z = 1.2 in the 644
nm filter. From left to right: selected template on original frame; template after
pixel scale resize corresponding to z = 1.2; final template after gauss convolution.
Images are displayed with the same cuts levels and magnification factor.

shape of this PSF was chosen to be a gaussian, as it generally describes well the

effects of the seeing. The FWHM of the convolving gaussian fc was then set to:

fc = f0 − fr (3.18)

where f0 and fr are respectively the FWHM of the PSF on the original frame and

on the rescaled frame. Figure 3.6 presents the various stages of the construction

of the template for the spiral galaxy at z = 0.6.

At this point we have one template image for each filter and for each point of

the (Mi, zi) grid.

The following step was to add each template for the desired point on the

(Mi, zi) grid to the original frames of each filter in 40 random positions covering

the whole frame, extract the photometry and compare the number of recovered

templates respect to the number of initially injected templates. The above was

repeated 10 times, in order to obtain better statistics. Two distinct routines were

run: one for elliptical galaxies and the other for spiral galaxies.

3.2.4 Detection completeness on the 20 filters

In the course of our work, the above procedure was implemented in two distinct

ways. At first, the set of 40 random positions was generated each time, with

different sets for different filters. The template corresponding to the galaxy at
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(Mi, zi) was then added to the original frame in the corresponding filter at the

generated positions. SExtractor was then run independently on each filter frame

in order to obtain the photometry of the enriched image. The obtained catalogue

was then compared to the original random positions via IRAF task tmatch and

the number of detected templates recovered.

The average of the 10 completeness level was the fitted by a Fermi distribution,

which approximates the step function in a smooth way. The functional used is of

the form:

h(m) =
α

1 + e−2κ(m−µ)
(3.19)

where α,κ and µ are the free parameters related to the overall normalization, to

the slope of the falling region and to the abscissa offset respectively. It is easily

recovered that h(m = µ) = α, i.e so that we can consider µ as the point where

the completeness level starts to decrease. Figure 3.7 shows the completeness as

a function of absolute Mr magnitude for the elliptical template at z = 1.0. The

80% and 50% completeness levels are obtained from the inverse j(c) of eq: 3.19:

j(c) = µ− 1

2κ
ln
�α
c
− 1

�
(3.20)

with c = 0.8 and 0.5 respectively.

The plot shows that, despite the points at the bright end correspond to a

completeness level of 100%, this behavior can not be well reproduced by the

Fermi function fit. In order to minimize this effects, the fitting procedure was

repeated fixing the value for α = 1. Figure 3.8 shows the curve corresponding

to this new case. As it can be noted, the rapid decline of the completeness level

renders the two methods indistinguishable from the completeness point of view.

The absolute magnitudes Mr corresponding to 80% and 50% completeness

level for elliptical and spiral galaxy template as a function of filter and redshift

are shown in figure 3.9. As it can be seen from the plots, the value of the absolute

magnitude corresponding to the 80 and 50 completeness levels can have peak-to-

peak variations of several magnitudes. In order to find a unique value for each

redshift, we decided to consider an object as detected when it appears in at least

three filters. With this criterion, the absolute magnitude corresponding to the

desired completeness level for the redshift value of interest is the third faintest

one among the full filter set.
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3. Determination of Detection Completeness

Figure 3.7: The points represent the fraction of objects recovered by SExtractor,
as a function of absolute Mr magnitude; error bars are the standard deviation of
the average of the 10 samples. The solid line represents the best fitting Fermi
distribution.

3.2.5 Detection completeness on the deep image

This method however is somehow arbitrary and does not take into account the

actual procedure adopted to construct the deep image, used by the ALHAMBRA

pipeline to determine the catalogue of objects of each field.

The above method was modified so that the same random list of positions

was used for all the filters. Each enriched image was then multiplied by the

corresponding weight necessary to create the deep image (see section 4.4) and

the weighted frames, one per filter, were summed up. In this way we obtained

a good approximation of the deep image enriched with synthetic galaxies. The

catalogue of all the objects was then created as usual with SExtractor and the

actual number of recovered templates obtained via the IRAF tmatch task. In

order to keep the simulation as much realistic as possible, SExtractor parameters

were synchronized to those actually adopted by the pipeline. Data were then

averaged and analyzed as with the previous method, fitting a Fermi distribution
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Figure 3.8: Same as for Figure 3.7

and computing from the inverse function the absolute magnitude corresponding

to the completeness level.

3.2.6 Point-source completeness

The fraction of recovered objects was computed also for the case of stellar-like

objects. This has a double aim: on one side, we could compare our results with

already published data (Cristóbal-Hornillos et al., 2009), while on the other side,

we could define a completeness for the limiting case of point-source objects, like

very distant and/or small galaxies may appear on the ALHAMBRA frames.

The procedure adopted for this case was slightly different from the one pre-

sented in the previous sections. In order to allow for a direct comparison with the

literature, the procedure was applied to frames in the J observational-frame filter.

In this case, the image of a star was chosen following the same brightness and

isolation criteria adopted for the galaxy templates, as described in the previous

section, and the background cleaned from the template. At this point, the flux
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3. Determination of Detection Completeness

(a) (b)

Figure 3.9: Left panel: absolute magnitudes corresponding to 80% (blue) and
50% (magenta) completeness levels for elliptical galaxies, as a function of filter.
From top to bottom, data refers to z = 0.1, 0.5, 1.0, 1.5, 2 and 3. Right panel shows
the equivalent of panel (a), but for spiral galaxies.

of the star was rescaled according to a grid of apparent magnitudes. The fraction

of detected objects was recovered in the usual way, adding the star template to

40 random positions, extracting the photometry through SExtractor, matching

the catalogue with the original random positions, repeating the whole process 10

times, in order to improve the statistics, and analyzing the average of recovered

fractions with the Fermi distribution.

The comparison of the completeness curve, visible in figure 3.10, with the

similar curve from Cristóbal-Hornillos et al. (2009), also plotted in the same figure,

shows a good agreement.

The same routine was finally applied to the whole set of filters. In this case, the

apparent magnitude for each filter was computed on the basis of a SED constant

in wavelength, so that at each iteration the apparent magnitudes were the same

on all the filters. In figure 3.11 we show the 80% and 50% completeness level in

terms of apparent magnitude as a function of filter. The shape of the limiting

magnitudes as function of filters is more rectangular with respect to the bell-shape

of the filter efficiencies, and it is a check that the total exposure time in each filter
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Figure 3.10: Black solid line and circles: recovered fraction of point source objects
as a function of apparent magnitude, in the J filter. Blue points: completeness in
the same band from Cristóbal-Hornillos et al. (2009).

was chosen in order to obtain an as much as possible homogeneous photometric

depth.

The apparent magnitude corresponding to the 80% completeness limit was

converted to absolute magnitude in the rest-frame filter Mr, using the same in-

tervals for z and the same SED used for the galaxy templates completeness. This

allowed to obtain a completeness limit for point-like sources wich could directly

be compared with the completeness limits obtained for the galaxy templates.
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3. Determination of Detection Completeness

Figure 3.11: 80% (blue) and 50% (red) completeness levels for the stellar-like
object.

3.2.7 Results

The plots in figure 3.12 show the 80% completeness levels obtained with the

two different Monte Carlo implementations. The two plots show a substantially

similar behaviour from z = 0.2 to z ≈ 0.7 − 0.8. At this value, the two methods

show their differences; in particular, the deep image, which is a more realistic

representation of the procedure adopted by the pipeline for the object detection,

reveals to be more sensitive to the differences in the SED of elliptical and spiral.

This suggests that such differences should be fully taken into account at the time

of performing statistical analysis, as can be for example the computation of the
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luminosity function. The reason for the difference might be found in the way

we defined the magnitudes corresponding to the completeness levels for the first

case. In fact, as it can be seen from figure 3.9, as far as the redshift increases,

the faintest magnitudes move towards the red filters, if not directly to the IR,

especially for the case of elliptical galaxies templates.

Figure 3.13 shows the results from both the Monte Carlo and the analytic

methods. For this latter case, the line is the contour of the Nσ ≡ 3, which, in

our implementation, should correspond to the three sigmas limit imposed by the

pipeline to detect objects.

We can identify two major regimes:

1. For z < 1.0 there is not great agreement between the analytic and the

Monte Carlo method, with differences that reach ≈ 1 magnitude at the

lowest redshift bin. The fact that in the analytic method the effect of the

luminosity profile is not properly taken into account and the only way the

apparent dimension is considered is in a plain way (all the pixels falling

inside the shape of the galaxy have the same weight) together with the fact

that in this redshift range the effect of apparent dimension is not negligible

(see Figure 3.2) could well explain this difference.

2. For z > 1.0 the agreement is quite good, improving as we go to higher

redshifts, especially in the case of spiral galaxy. This fact can also be related

to what exposed in the previous point.

3.3 Conclusions

The availability of a high number of medium band filters covering the whole optical

spectrum makes the definition of detection a critical point. This complication is

of course replicated to the definition of completeness.

We have shown that the apparent sizes of galaxies are non-negligible to at least

z ≈ 1, so that it is important to take into account this effect when determining

the completeness.

We have implemented two distinct methods for the determination of the de-

tection completeness, as a function of spectral and morphological type as well as

of the effects of the redshift on apparent size and observed SED. One is totally
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(a)

(b)

Figure 3.12: (a) 80% and 50% completeness levels for elliptical and spiral galaxy,
recovered with the first Monte Carlo method presented in the previous section. (b)
same as above, but for the second implementation (deep image reconstruction).

99



3.3. Conclusions

Figure 3.13: Solid lines: analytic 3σ detection limits for elliptical (red) and
spiral (blue) galaxies compared to MC 80 % completeness from the deep image for
elliptical (filled diamond) and spiral (filled circles) galaxies.

based on a simulation of the instrumental apparatus (telescope+camera) used for

the observations, while the other is a Monte Carlo analysis based on real data.

Two different Monte Carlo methods were implemented. The first one allows

to derive the completeness from a full filter set basis; the second method, instead,

tries to reproduce the way the deep image is created and how the detection is

done on it.

The two Monte Carlo implementations showed quite different results in par-

ticular starting from z ≈ 0.7. The comparison of the analytic method with the

second of the Monte Carlo methods revealed that the analytic way is a fast and

quite accurate procedure for determining the completeness. However, the differ-

ence with the Monte Carlo method for z < 1 stressed the importance of taking

full consideration of the luminosity profiles of objects linked to the apparent sizes

and morphological type of objects.
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(a)

(b)

Figure 3.14: 90%, 50% and 10% completeness levels for elliptical - panel (a) -
and spiral galaxy - panel (b) - recovered with the Monte Carlo method on the deep
image.
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Figure 3.15: Photometric redshift uncertainties as a function of spectral type and
redshift. The black points mark the completeness detection limits measured via
the Monte Carlo method.

We consider the full MC method on the deep image however to be a more

realistic reconstruction of the process actually implemented by the ALHAMBRA

data reduction pipeline. The results obtained through this method can then be

assumed to be a more robust and reliable estimate of the detection completeness

levels as a function of redshift and spectral class. The final values for the absolute

magnitudes Mr corresponding to corresponding to the 10%, 50% and 90% of de-

tections is presented in Figure 3.14, for elliptical and spiral galaxies, as a function
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of redshift.

So far we were concerned about the completeness in the object detection phase.

However, a full determination of the completeness for extra-galactic objects needs

to take into account also how well we are able to recover the redshift of each

object. This depends in a first instance on the SNR of the photometry which,

as we have seen, depends on the absolute magnitude, on the redshift and on

the morphological/spectral type of the source. In Figure 3.15 the ∆z/(1 + z)

preliminary uncertainties in photometric redshifts are plotted against redshift, for

the six main SEDs adopted by ALHAMBRA. The uncertainties were computed

generating a catalogue of synthetic objects. For the elliptical (T=1) and spiral

(T=3), the 90% detection completeness levels from the MC on the deep image are

also shown. The plot shows that the detection limits for the ellipticals coincide

with the boundaries of the ∆z/(1+z) = 0.015 redshift errors: as far as our objects

are brighter than the 90% detection completeness limits, we can reasonably rely

on the associated photometric redshift.

The availability of the odds parameter associated to the computation of the

photometric redshifts (Beńıtez, 2000) would allow to estimate in an independent

way the completeness in absolute magnitude, for example by applying a threshold

to the odds.
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4
ALHAMBRA field galaxy Luminosity

Function - Preliminary results

4.1 Introduction

In this chapter we present results for the ALHAMBRA luminosity function (LF),

obtained by applying the measurements in object detection completeness to the

SWML method for the construction of the LF to preliminary ALHAMBRA cat-

alogues.

The catalogues adopted for this work constitute the March2011 release. The

full data set is composed by 39 fields out of the total of 64 catalogues for the

complete list, each one corresponding to a CCD. Each catalogue contains the

full photometric information in the 20+3 ALHAMBRA filters together with pho-

tometric redshift and best fitting SED template computed with the BPZ code

(Beńıtez, 2000) for ≈ 13000 objects, for a total of 501865 sources in the 39 cat-

alogues. The average photometric depth (3σ detection limit) reaches AB≈ 24.5

for the central bulk of optical filters, and AB ≈ 22 for the three NIR filters (see

Figure 3.11).
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4.2. Star-galaxy separation

Figure 4.1: Two-color diagram used to separate galaxies from stars. For clarity,
only objects with a magnitude error smaller than 0.01 are reported. The red line
represents Eq. 4.1, used to separate galaxies from stars.

4.2 Star-galaxy separation

The catalogues of this sample did not include an univocal classification of sources

as stars or galaxies, so that, as a first step, we needed to select those objects to

be considered as galaxies from the full sample.

The method we applied is the two-color diagram, built using (m4585 − J) vs.

(J−KS), very similar to the (B−z)-(z−KS) diagram (Daddi et al., 2004) and to

that applied in Sect. 5.2.5 on MUSYC data. In particular, in this latter case, the

selected stars were checked against an existing catalogue, obtained via SExtractor

stellarity parameter and visual inspection on HST images, confirming the validity

of the adopted two-color selection. Although the U−J would have offered a more

clear separation between the two classes of objects, we preferred to adopt for the

selection a filter with a higher transmission (see. Figure 1.6).
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4. Preliminary ALHAMBRA LF

Figure 4.2: Histogram of redshift distribution of the sample of objects selected as
galaxy through the two-color diagram and satisfying the odds and weight selection
criteria.

The two-color diagram is shown in Figure 4.1. We adopted the following limit

to split stars from galaxies:

(J −KS) = 0.16 · (m4585 − J)− 0.32 (4.1)

Very red objects, i.e. those which were not detected in the AL4585 band

were also included in our sample. The fraction of objects selected in this way

corresponds to 62% of the whole sample.

In order to consolidate the sample of galaxies and the values of the associated

redshift, we applied a selection on the odds parameter1, selecting those objects

with odds > 0.90. This is the most substantial cut, halving the fraction of selected

galaxies.

1An estimate given by the photometric redshift code BPZ (Beńıtez, 2000) of the quality of
every calculated redshift.
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Since the pointings of each field for each filter do not exactly overlap, the total

exposure time across the final image is not uniform, with regions at lower SNR.

A further selection was then applied to purge the sample from objects with lower

signal-to-noise ratio. A PixelWeight parameter, available in the catalogue and

defined for each object from its total exposure time and the associated noise map,

was then adopted for the selection. The main result of this procedure was the

removal of objects falling close to the borders, as expected.

The sample of galaxies selected through this method is composed by 139460

objects (corresponding to the 28% of the total number of objects in the full sam-

ple), with redshift between 0.0106 and 7.0 and median zmed = 0.82. Galaxies in

the range 0.3 < z < 1.5 represent 74% of the total selection, while for 1.5 < z < 4

this fraction reduces to 17%; for z > 4 the fraction is totally negligible. Figure

4.2 shows the final distribution of the objects with redshift after applying the

selections above described.

The photometric redshifts in the ALHAMBRA catalogue were compared to

those available from the COSMOS survey (Scoville et al., 2007). The equatorial

coordinates of the galaxies in the catalogue obtained with the previous steps was

matched with those in the publicly available COSMOS redshift catalogue (Ilbert et

al., 2009). This allowed to compute the difference of photometric redshifts for each

object from the two surveys. The result of this comparison in shown in Figure 4.3.

In the left panel, the ∆z/(1 + z) = zCOSMOS − zALHAMBRA/(1 + zALHAMBRA)

as a function of apparent I magnitude for the full set of matched galaxies is

plotted as black dots, while green circles identify those galaxies whose ODDS

parameter from the ALHAMBRA catalogue exceeds 0.85. The vertical dash-

dotted line indicates the apparent magnitude limit from the COSMOS catalogue

obtained from σ∆zCOSMOS/(1+z) < 0.012 (Ilbert et al., 2009). The plot shows that,

apart from a small number of outliers and for objects brighter than the limiting

magnitude, the photometric redshifts in the ALHAMBRA catalogue agree well

with those of COSMOS. This applies to both the full ALHAMBRA sample and

to the odds-selected one. The right panel of Figure 4.3 shows the histogram of the

distribution of ∆z/(1+ z) for the odds-selected sample. Fitting a gaussian to the

distribution (green line) gives a standard deviation σ = 0.022. Considering that

σ∆z,cosmos = 0.012 and σ∆z,alhambra = 0.015, this would give a total standard
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4. Preliminary ALHAMBRA LF

Figure 4.3: Left panel: difference between ALHAMBRA photometric redshifts
and COSMOS photometric redshifts for a matched sample of galaxies (black points)
as a function of apparent magnitude I. The vertical dash-dotted line marks the
apparent magnitude limit of good photometric redshifts in the COSMOS catalogue.
The green points mark those objects in the ALHAMBRA catalogue with ODDS
parameter higher than 0.85. Right panel: histogram of the distribution of the odds-
selected sample, with apparent magnitude brigher than I = 24AB. The green line
indicates the result from a gaussian fit.

deviation σ∆z,tot = 0.019, in rough agreement with the value obtained from the

fit. The above comparison of ALHAMBRA photometric redshifts with those from

a deeper survey like COSMOS allows then to rely on the values of photometric

redshifts even for the faintest objects in the ALHAMBRA catalogue.

4.3 Absolute magnitudes

Given the availability of SED template for each object in the catalogue, absolute

magnitudes were computed applying the method described in Sec. 2.2.1, i.e.

absolute magnitudes were measured starting from the apparent magnitude in the
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4.3. Absolute magnitudes

Figure 4.4: Evolution with redshift of the κ parameter of the Fermi function used
to describe the detection completeness, for the Elliptical (diamonds) and Spiral
(asterisks) spectral types. The dashed and dotted-dashed lines indicate the results
of the fitting procedure for Ellipticals and Spirals respectively. To improve plot
readability, the points and the corresponding fitting line for the spiral galaxies have
been arbitrarily lowered by 1.2 units.

filter best matching the redshifted chosen rest frame filter. In our case, the rest-

frame magnitudes were computed in the rest-frame SDSS r� and u� filters.

The spectral type information available in the catalogues is in the form of a

fractional value, meaning that the best-fitting SED template is a linear combina-

tion of two consecutive SED templates, the first SED being that one corresponding

to the integer part of the spectral classification parameter. This was taken into

account at the time of computing absolute magnitude, as this same procedure

was replicated. However, since the original templates were not normalized to

a common filter, and since a normalization is necessary when summing differ-

ent templates, we established to normalize each SED template to have the same

r�-band AB magnitude.
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Figure 4.5: Evolution with redshift of the µ parameter of the Fermi function used
to describe the detection completeness, for the Elliptical (diamonds) and Spiral
(asterisks) spectral types. The dashed and dotted-dashed lines indicate the results
of the fitting procedure for Ellipticals and Spirals respectively.

4.4 Detection completeness

In order to take full advantage of the information contained in the plots relative to

the detection completeness (Figure 3.14) presented in Sect. 3.3 in the computation

of the LF, we parameterized the behavior of the two coefficients (κ and µ)2 defining

the Fermi function (Eq. 3.19) as a function of redshift for each of the two used

spectral types, i.e. elliptical and spiral template.

The κ parameter was fitted by a straight line, while for the µ a parabola was

adopted. Data together with the results of the fits are presented in Figure 4.4

and Figure 4.5.

The described procedure allowed to associate to each redshift value (i.e. to

2We omitted to fit the α parameter, related to the normalization of the Fermi function, as
in our work this was kept fixed to a constant value of α ≡ 1.0.
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4.5. Color-Magnitude diagram

z range z median Age (Gyr) Comoving Volume (Mpc3) Num. objects

0.004-0.08a 0.04 12.919 9.3× 106 66846

0.3-0.6 0.45 8.789 2.3× 106 33743

0.6-1.0 0.78 6.735 6.4× 106 39250

1.0-1.5 1.19 5.065 11.9× 106 30851
a Baldry et al. (2004) SDSS data set.

Table 4.1: Synoptic table with the main physical parameters corresponding to the red-
shift intervals chosen for our analysis. The age corresponds to the median redshift, while
the co-moving volume was computed for the 2.5 square degrees covered by the current
data release. For comparison, in the first line of the table we report the corresponding
parameters from the SDSS local sample analyzed by Baldry et al. (2004).

each galaxy) a reasonably consistent weight given by the inverse of the com-

pleteness fraction of the corresponding spectral type at the given redshift (Zucca,

Pozzetti, & Zamorani, 1994; Lin et al., 1996). This weight was directly used in

the procedure computing the LF.

4.5 Color-Magnitude diagram

In Figure 4.6 we show the galaxy color-magnitude (CM) plot, for three redshift

ranges: 0.3 < z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5, built using absolute

magnitudes in the Sloan u� and r� filters, plotted as contour density, with the

80% completeness level marked by the red dashed line. The redshift intervals

were chosen such that each one would approximately contain the same number of

galaxies, which in our case corresponds to ngal ≈ 35000. In Table 4.1 we report

the median redshift, the age of the Universe corresponding to the median redshift,

the comoving volume and the number of galaxies for each redshift bin.

This kind of diagram is a useful tool for a first estimate of the evolution of the

galaxy populations. The color distribution suggests to split the full sample into

two classes of objects, red and blue galaxies, coinciding with early and late types

(see for instance Baldry et al. 2004 for the local CM diagram; in the first line of

Table 4.1 we outline the main parameters associated to that data set). In our
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4. Preliminary ALHAMBRA LF

Figure 4.6: Absolute color-magnitude diagram for the three redshift bins 0.3 <

z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5. The thick red dashed line indicates the
80% completeness limit for our sample.

sample, the dual population can be roughly separated by u−r � 1.7, value which

remains almost the same also for the second redshift bin, while in the last bin this

separation is difficult to determine, although the elongation of the contour profile

towards redder colors doesn’t allow to exclude its presence.

The comparison of the position of the cloud through the different redshift

values shows evolution, mainly in luminosity. In fact, the position of the highest

value contour for the blue population at z � 0.45 lays at Mr � −19, moving to

Mr � −20.2 at z � 0.8 and brightening even more at z � 1.25, with Mr � −21.2.

In order to probe this behaviour to fainter limits, we applied the weights

obtained from the completeness correction to the color-magnitude diagram. The

result is presented in Figure 4.7. In this case, with the red dashed line we indicate

the region corresponding to an original completeness of 10%, which we assumed
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4.5. Color-Magnitude diagram

Figure 4.7: Absolute color-magnitude diagram after applying the completeness
correction, for the three redshift bins 0.3 < z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5.
The thick red dashed line indicates the 10% completeness limit for our sample.

as the limiting case for a reliable determination of the weights.

We confirm the bimodality of the galaxy population as described by Baldry

et al. (2004) at 0.04, and that this bimodality holds at least out to redshift z =

1, and probably to z = 1.5. The red population hardly evolves at all in that

redshift range, either in terms of colour or luminosity, as could be expected from

those models that explain their formation as the result of single star formation

bursts happening at very high redshifts and passive evolution ever since. The

blue population, on the other hand, has evolved from being dominated by more

luminous and bluer objects in the past to the population we see today. Once

again, this can be understood in terms of popular galaxy evolution models and a

constantly decaying (but detectable) average star formation rate in this type of

objects. All these qualitative ideas can be checked in more detail via an analysis
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of the LF, that will be the object of the next Section.

4.6 Luminosity Functions

In this section we present our measurements of the LF in the three redshift bins

0.3 < z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5, and as a function of the spectral

type. Galaxies were grouped into three classes, according to their SED, as mea-

sured by the BPZ code. The first class contains objects with a red SED, typical

of quiescent galaxies like elliptical and S0. The second class includes galaxies

with a bluer SED, resulting from star formation activity, as in spiral galaxies.

In the third class we considered objects with a very blue SED, corresponding to

starburst galaxies.

The LF were computed by introducing to the SWML method a correction

for the detection completeness. Since the SWML method does not provide a

normalization, this was obtained by applying the conservation of the total number

density of galaxies given by the V max method in an absolute magnitude range of

confidence. The range was chosen such that the sample was ≈ 100% complete so

that it varied according to both the redshift range and the population of galaxies

under analysis. In the lowest redshift range we adopted an an absolute magnitude

upper limit equal to Mr = −19.5 for the normalization of the global LF and Mr =

−20.0,−19.5,−19.5 for elliptical, spiral and SB LF; at zmed = 0.8, the adopted

limits were Mr = −21.0,−21.5,−20.5,−20. respectively, while at zmed = 1.25

these were Mr = −22.5,−23.0,−21.5,−21.5. The rest-frame r-band was chosen

as a compromise between the the redshift range available when computing rest-

frame magnitudes without need to exclusively rely on the SED models (see Fig

2.4) and the adequateness of the rest-frame band to describe the underlying mass

distribution.

The completeness weights were introduced in a way analogous to what was

done by (Lin et al., 1996), obtaining for the recursive expression of the SWML

k−th LF bin (Eq. 2.31) the following form:

φk∆M =

�Ngal

i=1 wi ·W (Mk −Mi)
�Ngal

i=1

�
wi ·H(Mk −Mf )/

�Ngal

j=1 φj∆MH(Mj −Mf )
� (4.2)
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4.6. Luminosity Functions

z range Type range α M∗
r [AB mag] φ∗ [mag−1 Mpc−3]

0.30-0.60 all −1.27± 0.01 −22.03± 0.08 1.74± 0.11× 10−3

Ell −0.59± 0.02 −21.70± 0.04 2.07± 0.06× 10−3

Spi −1.26± 0.03 −20.98± 0.09 2.11± 0.19× 10−3

SB −1.63± 0.08 −20.28± 0.15 0.80± 0.17× 10−3

0.60-1.00 all −1.23± 0.06 −22.11± 0.11 2.15± 0.12× 10−3

Ell −0.60± 0.10 −21.91± 0.13 1.99± 1.10× 10−3

Spi −1.11± 0.05 −21.86± 0.16 1.12± 0.16× 10−3

SB −1.89± 0.05 −20.93± 0.17 0.51± 0.21× 10−3

1.00-1.50 all −1.21± 0.04 −22.01± 0.09 3.84± 0.36× 10−3

Ell −1.06± 0.07 −21.90± 0.14 2.59± 0.35× 10−3

Spi −0.70± 0.18 −21.61± 0.13 2.79± 0.15× 10−3

SB −1.13± 0.12 −20.74± 0.14 2.36± 0.36× 10−3

Table 4.2: LF parameters obtained from fitting a Schechter function to the SWML
measurements.

where the wi are the weights from the completeness correction, defined in Sect. 4.4.

In order to allow a first check on the goodness of the applied correction, we

also re-computed all the LFs without applying any weighting coefficient (i.e. the

adopted weights were wi ≡ 1, i = 1..Ng). We computed the LF for four galaxy

population sets: a global LF, considering all the spectral types, a red population

LF, which considers only the redder types (E and S0), an intermediate popula-

tion, obtained by selecting normal spiral galaxies (types S1 and S2) and a blue

population, where we considered only starburst galaxies (types SB1 and SB2).

The computed LF are presented in Figure 4.8, Figure 4.9 and Figure 4.10 for

the redshift ranges 0.3 < z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5 respectively.

In the left panel we plot the global LF. Asterisks refer to the computation of the

LF without taking into account completeness correction, while the open diamonds

refer to the LF obtained applying our measurement of the detection completeness.

The vertical dash-dotted line indicates our estimated completeness limit. The

right panel shows the LF for the three selected populations. Red marks indicate

the LF for the early types (E and S0), green marks for average spiral galaxies

(S1 and S2), while blue marks refer to starburst galaxies (SB1 and SB2). Open

triangles refer to the LF computed without the completeness correction, while

filled squares represent the completeness-corrected LFs. Schechter fit to the LF
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4. Preliminary ALHAMBRA LF

Figure 4.8: Luminosity function at z ≈ 0.45. In the left panel the global LF
is shown. Asterisks refer to the computation of the LF without taking into ac-
count completeness correction, while the open diamonds refer to the LF obtained
applying our measurement of the detection completeness. The vertical dash-dotted
line indicates our estimated completeness limit. The LF measurement from Il-
bert et al. (2005) for a similar redshift range is plotted as filled red circles. The
right panel shows the LF for three spectral types. Open triangles refer to the LF
computed without the completeness correction, while filled squares represent the
completeness-corrected LF. Red marks indicate the LF for the early types (E and
S0), green marks for average spiral galaxies (S1 and S2), while blue marks refer
to starburst galaxies (SB1 and SB2). The Schechter fit to the LF of each type is
marked by the solid line of the corresponding color.

of each type is marked by the solid line of the corresponding color; the fitted

Schechter parameters are summarized in Table 4.2.

When compared with the corresponding un-weighted LF, the weight-corrected

LFs show the same value up to the absolute magnitude corresponding to the

≈ 85% completeness level, as one would expect, since in this range the weight

factor should be close to 1. Starting from this absolute magnitude, the corrected

LFs assume higher values, due to the weights greater than unity in this magnitude
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4.6. Luminosity Functions

Figure 4.9: Luminosity function at z ≈ 0.8. See caption to Figure 4.8 for details.
Schechter fit to the LF of each type is marked by the dashed line of the correspond-
ing color. Solid lines indicate the Schechter fits for the z � 0.45 LFs and presented
in Figure 4.8.

region.

As a further check, we compared our global LF with the LF from the VVDS

project (Le Fèvre et al., 2004, 2005), presented in Ilbert et al. (2005). The VVDS

LFs of the redshift bin closest to ours are marked in the left panels as filled red

circles. Our global LF show good agreement with the LFs from the VVDS survey

in all the three redshift ranges, with our absolute magnitude limits fainter than the

VVDS one by 1− 1.5 mag in the first two redshift bins. The agreement between

the LFs from the two different data sets allows us to increase our confidence for

the fainter region of the LF. Despite this fact, the photometric depth reached by

the ALHAMBRA Survey is still not sufficient to allow for a solid determination

of the faint-end slopes of the three global LFs.

By looking at the right panel of Fig. 4.8, we see that elliptical galaxies domi-

nate the bright end of the global LF, spiral galaxies reside in the central absolute
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4. Preliminary ALHAMBRA LF

Figure 4.10: Luminosity function at z ≈ 1.25. See caption to Figure 4.8 for
details. Schechter fit to the LF of each type is marked by the dotted line of the
corresponding color. Solid lines indicate the Schechter fits presented in Figure 4.8,
while dashed lines show the Schechter fit of the z � 0.8 LFs.

magnitude range, while the faint-end slope is determined by starburst galaxies.

The faint-end slopes increase going from the red population to the blue one.

This behaviour is well replicated also for the redshift bin centered at z � 0.8,

shown in Fig. 4.9, and, even though to a less degree, also in the highest redshift

range (see Fig. 4.10).

As a qualitative way to determine if some kind of evolution has occurred since

z � 1.25, we plotted the Schechter fits to the global and to the single population

LFs of the z � 0.45 bin in the corresponding panels of Fig. 4.9 and Fig. 4.10

(solid lines), and the Schechter fits to the z � 0.8 LFs as dashed lines in Fig 4.10.

This allows us to see that:

• The bright-end of the global LF shows little to no evolution from z � 0.45

to z � 1.25. As discussed before, the analysis of the faint end would require

deeper data, especially for the higher redshift bin;
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4.6. Luminosity Functions

Figure 4.11: Relative fraction of galaxy population in LFs. Each panel refers
to a redshift bin ( 0.3 < z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5 from top
to bottom respectively); each color corresponds to a galaxy population: red for
ellipticals, green for spirals and blue for starburst galaxies. The radius of the
points is proportional to the ratio of the corresponding LF to the global LF at that
redshift.

• As for the global LF, also the LF of elliptical galaxies does not show any

significant evolution, in agreement with the fact that the bright-end of the

global LF is populated by red objects;

• The LF of spiral galaxies shows evident evolution, possibly in the luminosity

domain, from z � 0.45 to z � 0.8, with the LF shifting towards brighter

magnitudes with z, while in the two highest redshift ranges the two LFs

look similar;

• The population of starburst galaxies is the one presenting clear evolution

in all the three redshift ranges, although determining if it is luminosity or

number density evolution would require additional analysis.
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4. Preliminary ALHAMBRA LF

Figure 4.12: Evolution of the number density for Mr < −22.5 (filled circles) and
−22.5 < Mr < −20 (filled triangle), for elliptical (red), spiral (green) and star-burst
(blue) classes.

An attempt to graphically represent the above points is shown in Fig. 4.11.

Each panel refers to a redshift bin (0.3 < z < 0.6, 0.6 < z < 1.0 and 1.0 < z < 1.5

from top to bottom respectively); each color corresponds to a galaxy population:

red for ellipticals, green for spirals and blue for starburst galaxies. The radius of

the points is proportional to the ratio of the corresponding LF to the global LF

at that redshift. The area shaded by the grey lines indicates the magnitude range

where our completeness correction is no more reliable (i.e. the original complete-

ness level is below 10%).

We finally investigated the evolution with redshift of the number density of

galaxies as a function of the spectral type. The whole redshift range was divided

into six equal-size bins (∆z = 0.2), from z = 0.2 to z = 1.4. At each bin,

galaxies were separated into three classes (elliptical, spiral and SB) according

to their spectral type. The resulting population was further divided into two
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sub-populations: massive galaxies, defined by −22.5 < Mr < −20. and high-

massive galaxies, satisfying Mr < −22.5. The resulting number density per unit

magnitude is presented in Figure 4.12. The density of elliptical galaxies remains

roughly constant throughout the whole redshift range, for both the mass ranges.

Spiral galaxies, instead, show a differential evolution: while the less massive have

little to no evolution, the most massive galaxies present a significant evolution,

increasing by one order of magnitude from z = 0.3 to z = 1.3, with ≈ 80% of this

increase already in place by z � 0.9. For SB galaxies this behavior is even more

clear, considering that for z < 0.6 in our catalogues there are no galaxies with

Mr < −22.5. The above results should however be taken with care: the r-band

may in fact be not red enough to conduct such analysis, mixing star-formation

with total mass effects.

4.7 Conclusions

In this chapter we present global colour-magnitude diagrams for the galaxy pop-

ulation in three different epochs, global and type-dependent luminosity functions

and their evolution in those same three epochs, and compare them to previous re-

sults from SDSS and VVDS, using a preliminary catalogue from the ALHAMBRA

Survey.

We made full use of the detection completeness evaluations, previously de-

termined in this work, to apply a correction for the completeness to both the

color-magnitude diagram and the LF computation.

The comparison of the position of the cloud in the CM diagram through the

different redshift values shows evolution, mainly in luminosity. The position of

the highest value contour for the blue population at z � 0.45 lays at Mr � −19,

moving to Mr � −20.2 at z � 0.8 and brightening even more at z � 1.25,

with Mr � −21.2. We also confirm the bimodality of the galaxy population as

described by Baldry et al. (2004) at 0.04; this bimodality holds at least out to

redshift z = 1, and probably to z = 1.5. The red population hardly evolves at

all in that redshift range, either in terms of color or luminosity, supporting those

models that explain their formation as the result of single star formation bursts

happening at very high redshifts and passive evolution ever since. On the other

hand, for the blue population we see an evolution from being dominated by more
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luminous and bluer objects in the past to the population we see today. This

fact can also be understood in terms of galaxy evolution models and a constantly

decaying (but detectable) average star formation rate in this type of objects.

The LF was computed for 4 distinct populations (full sample, ellipticals only,

spirals only and starburst only), for three redshift bins (0.3 < z < 0.6, 0.6 < z <

1.0 and 1.0 < z < 1.5).

The agreement of the global LF with the LF from published data, obtained

from samples whose photometric depth is comparable to that in ALHAMBRA

catalogues, allowed to increase the confidence on the estimated completeness cor-

rections. The comparison of ALHAMBRA LFs at the three redshift ranges con-

firmed the conclusions we derived from the analysis of the CM diagram. The

bright-end of the global LF shows little to no evolution from z � 0.45 to z � 1.25,

although a more solid analysis of the faint end would require deeper data, es-

pecially for the higher redshift bin. Similarly to the global LF, also the LF of

elliptical galaxies does not show any significant evolution, in agreement with the

fact that the bright-end of the global LF is populated by red objects. The LF of

spiral galaxies shows marked evolution, possibly in the luminosity domain, from

z � 0.45 to z � 0.8, with the LF shifting towards brighter magnitudes with

z, while in the two highest redshift ranges the two LFs look similar. Starburst

galaxies present the clearest signs of evolution in all the three redshift ranges, al-

though determining if it is luminosity or number density evolution would require

additional analysis.
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Le Fèvre O., et al., 2004, A&A, 417, 839
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5
The evolution of the rest-frame J and H

luminosity function from z=1.5 to z=3.5
1

5.1 Introduction

In the current concordance model, galaxies are the result of continuous mergers

of dark matter halos driving baryonic matter assembly. In the last decades, sim-

ulations on halo occupation models have been able to quite accurately plot the

formation of dark matter clusters. However, there still remain big uncertainties

at the time of translating dark matter haloes to what can actually be detected

with our telescopes.

To this respect, the luminosity function (LF) of galaxies, i.e. the number

density of galaxies per unit flux, is an extremely powerful tool to study the galaxy

population and its evolution with cosmic time.

Specifically, the analysis of the LF at different rest-frame wavelengths can

give us information on different aspects of our present view of the Universe. The

UV-optical LF allows for the study of the content and the evolution of the star

formation rates with cosmic time. On the other hand the near infra-red (NIR)

LF, being less sensitive to the absorption by dust and dominated by the light of

older stars, is a better estimator of the overall mass assembly of galaxies and of

its rate of growth with time, revealing itself as a good test-bench for halo models.

1This work was published in Stefanon, M. and Marchesini, D., 2011 MNRAS accepted

129



5.1. Introduction

The local NIR LF is still not yet well determined. Although a number of

measurements have been derived so far, there seems to be uncertainties especially

for the faint end slope α. Estimates of the slope α range from ≈ −0.8 (Bell et

al. 2003; Eke et al. 2005), to α ≈ −1.2 (Jones et al. 2006), with a median value

around -1 (Mobasher, Sharples, & Ellis 1993; ?; Cowie et al. 1996; Gardner et al.

1997 and Szokoly et al. 1998; Kochanek et al. 2001; Cole et al. 2001 and Hill et

al. 2010). In particular, Hill et al. (2010) found also an increase of the number

density compared to previous determinations, likely due to the high photometric

depth of the adopted UKIDSS LAS sample.

At even larger redshift, the LF determinations (most of which are done in

the rest-frame KS band) still suffer from significant uncertainties (Saracco et al.

2006). The faint-end slope seems to be always compatible with α = −1 (Drory et

al. 2003; Pozzetti et al. 2003; Dahlen et al. 2005; Saracco et al. 2006; Cirasuolo et

al. 2010) although these measurements suffer from the large uncertainties given

by the limits in the depth of the photometric catalogues available so far. There

seems to be a general consensus however that the NIR LF does not significantly

evolve to z ≈ 1 with respect to the local LF ( Cowie et al. 1996; Pozzetti et al.

2003; Drory et al. 2003; Feulner et al. 2003; Dahlen et al. 2005). A brightening is

instead found around z ≈ 1.2− 1.5 together with a decrease of the normalization

(Saracco et al. 2006; Cirasuolo et al. 2010), decrease that is seen up to z = 3.

even if to a lesser degree.

In this chapter we present the rest-frame J and H bands LFs and luminosity

density (LD) of field galaxies, obtained from three deep photometric redshift sur-

veys, namely MUSYC, FIRES and FIREWORKS, complemented by deep Spitzer

3.6, 4.5, 5.8, and 8 µm data. As discussed in e. g. Berta et al. (2007), the com-

bination of the Planck spectral peak from low-mass stars, the minimum in the

H− opacity in stellar atmospheres and the molecular absorptions in the spectra

of cold stars produce a maximum for the emission in the rest-frame NIR portion

of galaxy spectra located at 1.6µm (the so called 1.6µm bump). Furthermore, the

AGN light can contribute significantly to the rest-frame K-band. Specifically, the

contribution from the dust torus of the AGN can be in the rest-frame K-band a

factor of 10 larger than in the rest-frame J-band, and a factor of 4 larger than in

the rest-frame H-band (e.g., Polletta et al. 2008). The adoption of the rest-frame

J− and H− bands makes thus the measurement of the LFs and LDs less sensi-
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tive to potential dust-obscured AGN contamination compared to measurements

of the LFs in the rest-frame Ks, yet allowing us to sample a wavelength range

dominated by stellar emission and very little affected by obscuration by dust. The

combination of depth and wavelength coverage in the mid-IR out to 8µm allows us

to directly probe the rest-frame J− and H− bands out to z � 3.5, relying more

on observational data rather than on stellar population models, which are still

significantly uncertain in the rest-frame NIR, due to different implementations of

the TP-AGB phase (Maraston, 2005; Conroy, Gunn, & White, 2009). The total

surveyed area sums to 450 arcmin2 with complete U-to-8µm coverage, reducing

thus the effects of cosmic variance, which we estimate to give on average a 15-20%

contribution.

This chapter is organized as follows: in section 5.2 we present the data set used

for this work, how we recover photometric redshifts and how we select galaxies

from the full sample. Section 5.3 presents the three methods adopted to estimate

the LF and its associated uncertainties. In section 5.4 we present our results

and compare them with the current models. Our conclusions are summarized in

section 5.5.

Throughout this work, the adopted cosmology is ΩΛ = 0.7, Ωm = 0.3 and

H0 = 70 Km/s/Mpc. All magnitudes are expressed in the AB system.

5.2 Description of the sample

For this work we used a total of seven public Ks-selected catalogues coming from

three different deep multi-wavelength galaxy surveys covering the range from the

optical to the Spitzer IRAC 8 µm waveband: the MUlti-walelength Survey by

Yale-Chile (MUSYC - Marchesini et al. 2009), the Faint InfraRed Extragalactic

Survey (FIRES - Labbè et al. 2003, Forster Schreiber et al. 2006) and the GOODS

Chandra Deep Field-South (FIREWORKS - Wuyts et al. 2008). Although they

have all been presented in Marchesini et al. (2009), for readers’ sake these surveys

will be briefly described in the following sections.
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5.2. Description of the sample

Figure 5.1: Field area plotted against the 90% completeness magnitude. Asterisks
refer to the MUSYC fields, diamonds to the FIRES fields, while the triangle refers
to the FIREWORKS CDF-S data.

5.2.1 MUSYC

The deep NIR MUSYC survey consists of four 10� × 10� fields, namely, Hubble

Deep Field-South 1 and 2 (HDFS-1, HDFS-2, hereafter), the SDSS-1030 field, and

the CW-1255 field, observed with the Infrared Side Port Imager (ISPI) camera

at the Cerro Tololo Inter-American Observatory (CTIO) Blanco 4 m telescope,

for a total surveyed area of 430 arcmin2. A complete description of the deep

NIR MUSYC observations, reduction procedures, and the construction of the K-

selected catalog with U -to-K photometry is presented in Quadri et al. (2007).

Deep Spitzer-IRAC 3.6-8.0 µm imaging is also available for the four fields. The

average total limiting magnitudes of the IRAC images are 24.5, 24.2, 22.4, and

22.3 (3σ, AB magnitude) in the 3.6, 4.5, 5.8, and 8.0 µm bands, respectively.

The K-selected catalogs with IRAC photometry included is publicly available

at http://www.astro.yale.edu/musyc. The SDSS-1030, CW-1255, HDFS-1, and
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HDFS-2 catalogs are KS band-limited multicolor source catalogs down to KS,tot

= 23.6, 23.4, 23.7, and 23.2, for a total of 3273, 2445, 2996, and 2118 sources,

over fields of 109, 105, 109, 106 arcmin2 respectively. All four fields were exposed

in 13 different bands, U, B, V, R, I, z, J, H, K, and the four IRAC channels.

The SDSS-1030, CW-1255, HDFS-1, and HDFS-2 K-selected catalogs have 90%

completeness levels at KS,90=23.2, 22.8, 23.0, and 22.7, respectively. The final

catalogs used in the construction of the composite sample have 2825, 2197, 2266,

and 1749 objects brighter than the 90% completeness in the KS band, over an

effective area of 98.2, 91.0, 97.6, and 85.9 arcmin2, respectively, for a total of 9037

sources over 372.7 arcmin2.

5.2.2 FIRES

FIRES consists of two fields, namely, the Hubble Deep Field-South proper (HDF-

S) and the field around MS 1054-03, a foreground cluster at z = 0.83. A complete

description of the FIRES observations, reduction procedures, and the construction

of photometric catalogs is presented in detail in Labbè et al. (2003) and Forster

Schreiber et al. (2006) for HDF-S and MS 1054-03 (hereafter HDFS and MS-1054,

respectively). BothKS-selected catalogs were later augmented with Spitzer-IRAC

data (Wuyts et al., 2007; Toft et al., 2007)). The HDFS catalog has 833 sources

down to KS,tot=26.0 over an area of 2.5× 2.5 arcmin2. The MS-1054 catalog has

1858 sources down to KS,tot=25.0 over an area of 5.5× 5.3 arcmin2. The HDFS

field was exposed in the WFPC2 U300, B450, V606, I814 passbands, the ISAAC

JS, H, and KS bands, and the four IRAC channels. The MS-1054 KS-selected

catalog comprises FORS1 U, B, V, WFPC2 V606 and I814, ISAAC J, H, and

KS, and IRAC 3.6-8.0 µm photometry. The HDFS and MS-1054 catalogs have

90% completeness levels at KS,90=25.5 and 24.1, respectively. The final HDFS

and MS-1054 catalogs used in the construction of the composite sample have 715

and 1547 objects brighter than the 90% completeness in the KS band, over an

effective area of 4.5 and 21.0 arcmin2, respectively.

5.2.3 FIREWORKS

In this work, we adopted the KS-selected catalog (dubbed FIREWORKS) of the

CDFS field constructed based on the publicly available GOODS-CDFS data by
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Figure 5.2: Overlapping regions in the three HDFS pointings. Black points rep-
resent MUSYC HDFS1 data, green triangles MUSYC HDFS2 sources, while red
filled diamonds are the the objects from FIRES HDFS.

Wuyts et al. (2008). The photometry was performed in an identical way to that of

the FIRES fields, and the included passbands are the ACS B435, V606, i775, and

z850 bands, the WFI U38, B, V, R, and I bands, the ISAAC J, H, and KS bands,

and the four IRAC channels. The KS-selected catalog comprises 6308 objects

down to KS,tot=24.6 over a total surveyed area of 138 arcmin2; the variation in

exposure time and observing conditions between the different ISAAC pointings

lead to an inhomogeneous depth over the whole GOODS-CDFS field (hereafter

CDFS). The final CDFS catalog used in the construction of the composite sample

comprises 3559 objects brighter than the 90% completeness level (KS,90 = 23.7),

over an effective area of 113 arcmin2 with coverage in all bands.

In Figure 5.1 we plot the field area as a function of the KS magnitude corre-

sponding to the 90% completeness level.
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5.2.4 Sample selection

The MUSYC HDFS1, HDFS2 and FIRES HDFS fields partly overlap. Figure

5.2 shows the distribution of the objects centered on the HDFS1. The black

points represent all the objects from the HDFS1 catalogue; red filled diamonds

correspond to the 833 sources in the FIRES catalogue, while the green triangles

represent the sources in the HDFS2 catalogue whose positions overlap with the

field covered by the HDFS1 pointing.

In order to avoid duplicate counts, we selected objects according to the pho-

tometric depth of the three involved catalogues. Since the FIRES object list is

the deepest catalogue of our sample, the corresponding region in the MUSYC

HDFS1 catalogue was discarded. Analogously, since the HDFS1 is deeper than

the HDFS2 catalogue, the corresponding objects were removed from the HDFS2

catalogue.

Spitzer IRAC pointings do not fully cover MUSYC, FIRES and FIREWORKS

fields. Since one of the major aims of our work was to derive absolute magni-

tudes with the highest reliability, we decided to select only those sources with

full Spitzer IRAC photometry. The selection was based on a weighting factor,

previously defined in the catalogue, constructed as the exposure time normalized

to the median of the weights. This definition allows to easily select objects on the

expected signal-to-noise ratio. In particular this method allows to discard those

sources falling too close to the edges of each field.

Figure 5.3 shows the corresponding plot for the MUSYC HDFS2 field. The

black points represent the whole object list, while the color-coded asterisks repre-

sent the object whose weight is above a given value. From the image, we can see

two broad behaviours: on one side, given the partial coverage of Spitzer point-

ing, we are going to loose a fraction of objects. In our cases, this lost can be

quantified between 5% and 20% (as for the case of the HDFS2). Secondly, as

long as we increase the weight threshold, we will be loosing objects which also

reside in the center of the image. Since the IRAC detector has a four-channel

converter, the most notable effect would be that one quadrant would be suddenly

almost discarded, so that an accurate determination of the weighting threshold is

fundamental.
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5.2. Description of the sample

Figure 5.3: Selection of IRAC sources on the HDFS2 field. Different colors refer
to different weight thresholds ω. Red: ω = 0.2, green: ω = 0.3, blue: ω = 0.4;
magenta: ω = 0.5; yellow: ω = 0.6

5.2.5 Photometric redshift and star/galaxy separation

The downloaded catalogues all come with photometric redshift information; spec-

troscopic redshifts are also available for a small fraction (around 10% of the whole

sample) of galaxies. However, we re-computed photometric redshifts, using the

publicly available EAZY code (Brammer et al. 2008), and adopting four differ-

ent sets of Spectral Energy Distribution (SED) templates and are presented in

Figures 5.4 through 5.7. The first SED set (Figure 5.4) is the EAZY default

template set; it consists of 5 SED templates built on the base of PEGASE mod-

els (Fioc & Rocca-Volmerange 2006), reproducing the colors of galaxies in the

semi-analytic models by De Lucia & Blaizot (2007), plus a template representing

a 50 My galaxy with heavy dust obscuration. The second set (Figure 5.5) is com-

posed by a modified version of the standard EAZY templates, with the addition

of Hα (λHα = 6562.8Å), Hβ (λHβ = 4861.3Å), [OII] (this is actually a doublet:
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Figure 5.4: EAZY default template set; the 5 SED templates built on the base
of PEGASE models range from elliptical (magenta line) to starburst (blue line)
galaxies. The 50 My galaxy with heavy dust obscuration is represented by the red
line.

λ[OII] = 3726.1Å and λ[OII] = 3728.8Å) and [OIII] (doublet: λ[OIII] = 5007Å

and λ[OIII] = 4959Å) emission lines. The third (Figure 5.6) is a set of six tem-

plates based on Coleman, Wu, &Weedman (1980) colors, included in the Bayesian

Photometric Redshift code (BPZ - Beńıtez 2000). The last set we used is an ex-

tension of the standard EAZY template set with the inclusion of a 1Gyr galaxy

template, with τ = 100 Myr and AV = 3 mag, similar to the reddest template

used in Blanton & Roweis (2007). This template is shown in Figure 5.7.

For all the four cases, the same default template error function and K band

prior was adopted.

Figure 5.8 shows the zspec vs. zphot plot for the four SED template sets

used. The average ∆z/(1+ z) are respectively -0.01, -0.01, -0.01 and -0.02 for the

EAZY, EAZY+lines, CWW and EAZY+dust template sets when considering the

full sample, and -0.05, -0.04, -0.02 and -0.07 when computed on the redshift range
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Figure 5.5: EAZY SEDs with emission lines. Indicated are the lines added to the
templates.

1.5 < z < 4.0. The standard deviations σ∆z/(1+z) are 0.12, 0.12, 0.12 and 0.13

respectively for the full sample and 0.17, 0.17, 0.17 and 0.19 for the z-selected

sample. The fraction of catastrophic photometric redshift (n( ∆z
1+z ) > 5σ) is 0.007,

0.008, 0.008 and 0.01 respectively.

We finally chose to adopt the standard EAZY template set, which is the one

presenting the smallest deviation between spectroscopic and photometric redshifts

in the redshift range of our interest.

The separation between stars and galaxy was done with the colour-colour

diagram (U − J) vs. (J − Ks) (see figure 5.9). The same colours were also

computed from the Pickles (1998) stellar atmosphere models, in order to improve

the boundaries between stars and galaxy, especially for the reddest stars which

fall out of the main sequence (see figure 5.9 for full details).
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Figure 5.6: Spectral energy distribution from the Coleman, Wu and Weedman
library (Coleman, Wu, & Weedman, 1980), and included in the BPZ photometric
redshift code (Beńıtez, 2000).

Galaxies were selected among the object satisfying the relation:

(J −Ks) ≥ 0.145 · (U − J)− 0.45 (5.1)

As a cross-check, we run the EAZY code with the Pickles (1998) model stellar

atmosphere and checked that the objects identified as galaxies via the two-colour

diagram had a χ2 greater than the χ2 obtained on the same object with the

EAZY galaxy template set. The result of this process are presented in figure

5.10. This criteria was satisfied by all objects previously selected as galaxies with

only around 6.5% of the objects selected as stars showing a discordant value for

the χ2, giving confidence in our method to separate stars from galaxies.

A star-galaxy separation was also available in the original FIRES and FIRE-

WORKS public catalogues. This selection was based on spectroscopy, SED-fitting

with stellar templates and visual inspection of the object morphology (Rudnick
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Figure 5.7: The 1Gyr galaxy template, with τ = 100 Myr and AV = 3 mag.

et al., 2006, 2003). We verified that those objects selected as stars in the FIRES

catalogue were actually falling in the correct region of our two-color plot.

The availability of Spitzer IRAC data for all our sample allows us to compute

absolute magnitudes in the rest-frame J− and H− bands with little dependance

on the SED templates; in fact, as an extreme case, the rest-frame H band at

z = 3.5 is shifted to the range 6.7− 7.9µm, well bracketed by the IRAC channels

3 and 4, centered at 5.8 and 8µm.

Our final catalogue, after selecting only those sources with full Spitzer IRAC

information, is composed by a total of 14295 galaxies, with redshift determinations

to z = 6.2 and median redshift zmed � 1, distributed over an effective area of 450

arcmin2. The redshift range of interest, result of the trade-off between number of

objects in the sample and covered comoving volume, is 1.5 < z < 3.5 with a total

of 3496 objects, of which ≈ 6% have also a spectroscopic redshift.
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Figure 5.8: Photometric redshifts compared to spectroscopic redshifts, for the
four diffrent SED sets. From top to bottom: EAZY default template set; EAZY
default template set with the addition of Lyα, Hα, Hβ, [OII] and [OIII] emission
lines; Coleman, Wu and Weedman template set and EAZY SED set with dusty
galaxy template (see text for details). The red line represents the ideal case where
zphot = zspec.

5.3 Methodology

For the measurement of the LF, we adopted three among the most widely used

methods, namely the 1/Vmax (Schmidt, 1968), the STY maximum likelihood

(Sandage, Tammann, & Yahil, 1979) and the Step-Wise Maximum Likelihood

(Efstathiou, Ellis, & Peterson, 1988).

The need to analyze composite samples with different photometric depth was

overcome by applying standard techniques available for each chosen method.

These methods were described in Section 2.3

Confidence levels for α and M∗ corresponding to 68%, 95% and 99% were
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Figure 5.9: Two colours diagram for all the sources in the composite catalogues.
Colours from Pickles (1998) stellar atmosphere models are shown as red diamonds.
The red dashed line represents Eq. 5.1, which we adopted to separate stars from
galaxies

computed from the ellipsoid of parameters defined by:

lnL = lnLmax − 0.5χ2
β(N) (5.2)

where L is the maximum likelihood function and Lmax its value at maximum,

while χ2
β(N) is the β-point of the χ2 distribution with N degrees of freedom

(Efstathiou, Ellis, & Peterson 1988). Uncertainties on the normalization factor

φ∗ were computed from the range of values compatible with the 1σ uncertainties

in the α and M∗ parameters.

5.3.1 Cosmic variance and photometric redshift uncertainties

The data set used for our measurement of the LF is the combination of seven

catalogues, each one related to a different region of the sky. This allows to keep
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Figure 5.10: Comparison between the χ
2 obtained for the fitting with the EAZY

galaxy templates and the χ
2 obtained with the Pickles (1998) models, for the 7

catalogues composing our sample. The green points represent the stars selected via
the two-color diagram, while red diamonds refer to objects flagged as star in the
downloaded catalogue.
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in principle the effects of cosmic variance to low levels.

In this work, we included a more refined estimate of cosmic variance following

the recipe by Moster et al. (2010). A halo distribution model is used to relate

the stellar mass to the dark matter halo as a function of redshift; the galaxy bias

is then estimated via dissipation-less N-body simulations. The cosmic variance

is first computed on dark matter haloes, and then converted to galaxy cosmic

variance by applying the galaxy bias. This estimate was cross-checked with the

different evaluation of cosmic variance by Driver & Robotham (2010). Their work

is based on direct computation of the cosmic variance using M∗ galaxies from the

SDSS catalogue. The expression found is then generalized to any redshift bin

amplitude and mean value and to any geometry of the survey. We find that the

two estimates, in the case of M∗ galaxies, are consistent within 70% in the lowest

redshift bin, but differ up to a factor of 2.5 in the higher redshift ranges. As

discussed in Driver & Robotham (2010), this discrepancy can be explained as the

change in M∗ stellar mass value with redshift.

The computation of the luminosity as a function of mass (or, more frequently,

the computation of mass from the luminosity), necessary to obtain the values

for cosmic variance is generally a non trivial task, involving the generation of

synthetic SEDs based on different initial mass functions, which are then fitted on

a per-galaxy basis. For our purposes of cosmic variance estimate in the final LF,

we performed the conversion between galaxy baryonic mass M and luminosity

LJAB
and LHAB

a-posteriori on the LF, under the work hypothesis that the mass-

to-light ratio can be considered constant over all the involved luminosity range and

equal to its average value. We adopted the mean value �M/L� = 1.0+0.32
−0.27M⊙/L⊙

from Cole et al. (2001) for both the J and H bands. In our estimation of the

cosmic variance we did not take into account any variation in the M/L ratio as

these would be a second order correction, being our primary goal the measurement

of the variance related to the cosmic distribution of galaxies. In addition, while

a uniform M/L ratio would be incompatible with observations at UV-to-optical

wavelength (see e.g. González et al. (2010)), the rest-frame NIR wavelength range

is better related to the stellar mass of a galaxy, suggesting a roughly constantM/L

ratio at these wavelengths.

Figure 5.11 shows as a contour plot the values of the cosmic variance for our

data as a function of redshift and galaxy mass, as computed using the Moster
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Figure 5.11: Cosmic variance estimate for our survey geometry following Moster
et al. (2010), as a function of redshift and mass (left vertical axis) and absolute
magnitude (right vertical axis).

et al. cookbook. The values of cosmic variance range from 0.07 to 0.19 in the

lowest redshift bin, from 0.09 to 0.24 in the 2.0 < z < 2.5 bin, from 0.10 to 0.32

in the 2.5 < z < 3.0 bin and from 0.12 to 0.42 in the 3.0 < z < 3.5 redshift

bin. The recovered uncertainties have been added in quadrature to the standard

errors computed in the 1/V max and SWML methods, while the cosmic variance

corresponding to M∗ has been added in quadrature to the error on φ∗.

The effects of photometric redshift errors have been studied via Monte Carlo

simulations. Five hundred realizations of the LF in each redshift bin were com-

puted. The redshift of each source in the original catalogue was randomly modified

according to the gaussian standard deviation recovered from figure 5.8; the abso-

lute magnitude of each object was then modified accordingly. The distribution of

parameters of the recovered LF did not show any systematic effect and the spread

of the parameters was compatible with the photometric errors. The distribution

of the differences in the Schechter parameters for each redshift bin is presented in

Figure 5.12.
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Figure 5.12: Effects of the error on the photometric redshifts on the recovery of
the LF α and M

∗ Schechter parameters. The black filled dots correspond to the
difference between the input LF and the LF recovered after applying a gaussian
spread to the redshift values, while the red asterisk indicates the mean displacement.

5.4 J and H Luminosity Functions

Both rest-frame J and H luminosity function were estimated in the redshift in-

tervals 1.5 < z < 2.0, 2.0 < z < 2.5, 2.5 < z < 3.0 and 3.0 < z < 3.5 with the

three methods described in Sec 5.3. In Table 5.3 and Table 5.4 we present our

measurements obtained with the SWML and 1/Vmax method, while the derived

Schechter parameters in each filter and redshift range are summarized in Table

5.1 and Table 5.2.

Figure 5.13 shows the LF for the rest-frame J filter in the four redshift bins.

The number of objects used to construct the LF in each redshift bin are respec-

tively 996, 419, 298 and 103. The three methods return consistent measurements

of the LFs.

In Figure 5.14 we show our measurement of the LF obtained in the H filter,
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z range α M∗ φ∗ (10−4 Mag−1 Mpc−3)

1.5-2.0 −1.24+0.03
−0.03 −23.72+0.09

−0.06 11.31+0.28
−0.10

2.0-2.5 −1.12+0.11
−0.13 −23.60+0.14

−0.17 7.45+0.53
−0.38

2.5-3.0 −1.17+0.18
−0.22 −23.42+0.22

−0.23 9.73+5.37
−2.33

3.0-3.5 −0.92+0.42
−0.48 −23.28+0.33

−0.39 4.36+8.61
−1.93.

Table 5.1: Schechter parameters for the J LF from the maximum likelihood anal-
ysis with one σ errors.

z range α M∗ φ∗ (10−4 Mag−1 Mpc−3)

1.5-2.0 −1.30+0.04
−0.03 −24.03+0.06

−0.05 8.79+0.50
−0.20

2.0-2.5 −1.23+0.12
−0.07 −23.94+0.13

−0.12 4.35+0.68
−0.45

2.5-3.0 −1.11+0.19
−0.18 −23.74+0.21

−0.23 6.32+4.52
−1.36

3.0-3.5 −1.30+0.40
−0.49 −23.89+0.36

−0.42 2.03+8.50
−2.04

Table 5.2: Schechter parameters for the H LF from the maximum likelihood
analysis with one σ errors.

for the same four redshift bins as for the J LF. The number of objects used to

compute the LF is 996, 419, 298 and 103 respectively for the 1.5 < z < 2.0,

2.0 < z < 2.5, 2.5 < z < 3.0 and 3.0 < z < 3.5 intervals. To date, this is the first

measurement of the rest-frame H LF in the interval z ∈ [1.5, 3.5].

5.4.1 Discussion

The work by Saracco et al. (2006) is the only measurement of the LF in the

rest-frame J band in redshift ranges comparable with those in our work available

so far. In that paper, they estimate the J LF in three redshift ranges, namely

z < 0.8, 0.8 < z < 1.9 and 1.9 < z < 4.0, based on observations of 101, 100

and 84 galaxies respectively, collected from HDF-S data and complemented by

VLT-ISAAC J,H and K imaging.

At z ≈ 1.5, the absolute magnitude ranges of the two determinations are quite

different: their lack of points at the bright end, presumably due to the very small

field of the HDF-S compared to ours, is compensated by a deeper limit at the

faint end. Their Schechter representation of the LF is flatter (α = −0.94) than

our lowest redshift LF and presents a dimmer characteristic magnitude, with a

difference of about 1 magnitude. However, when directly comparing the 1/Vmax
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z range MJ [AB] SWML[h3
70mag−1Mpc−3] Vmax[h3

70mag−1Mpc−3]

1.5 < z < 2.0 −25.51 4.78 (±3.30)± 3.42× 10−6 5.65 (±3.99)± 4.13× 10−6

−25.01 2.87 (±0.77)± 0.94× 10−5 3.39 (±0.98)± 1.16× 10−5

−24.51 1.08 (±0.14)± 0.25× 10−4 1.27 (±0.19)± 0.30× 10−4

−24.01 2.90 (±0.25)± 0.59× 10−4 3.42 (±0.31)± 0.71× 10−4

−23.51 4.44 (±0.35)± 0.90× 10−4 5.03 (±0.38)± 1.01× 10−4

−23.01 5.90 (±0.49)± 1.20× 10−4 5.82 (±0.43)± 1.17× 10−4

−22.51 9.09 (±0.84)± 1.38× 10−4 7.80 (±0.62)± 1.13× 10−4

−22.01 1.26 (±0.14)± 0.20× 10−3 9.39 (±0.84)± 1.41× 10−4

−21.51 1.61 (±0.20)± 0.25× 10−3 -
−21.01 2.08 (±0.36)± 0.41× 10−3 -
−20.51 2.29 (±0.66)± 0.69× 10−3 -

2.0 < z < 2.5 −25.17 1.36(±0.52)± 0.61× 10−5 1.61 (±0.66)± 0.77× 10−5

−24.67 4.52 (±0.91)± 1.44× 10−5 5.36 (±1.20)± 1.78× 10−5

−24.17 1.15 (±0.15)± 0.32× 10−4 1.38 (±0.19)± 0.39× 10−4

−23.67 2.24 (±0.25)± 0.61× 10−4 2.65 (±0.29)± 0.71× 10−4

−23.17 4.08 (±0.47)± 1.11× 10−4 4.48 (±0.48)± 1.20× 10−4

−22.67 4.22 (±0.64)± 0.92× 10−4 4.36 (±0.58)± 0.89× 10−4

−22.17 5.52 (±0.93)± 1.27× 10−4 4.24 (±0.59)± 0.89× 10−4

−21.67 6.51 (±1.28)± 1.50× 10−4 7.48 (±1.41)± 1.67× 10−4

−21.17 7.58 (±2.12)± 2.31× 10−4 -

2.5 < z < 3.0 −25.19 8.41 (±3.73)± 4.62× 10−6 1.61 (±0.66)± 0.84× 10−5

−24.69 2.82 (±0.76)± 1.19× 10−5 4.43 (±1.11)± 1.81× 10−5

−24.19 8.45 (±1.54)± 3.14× 10−5 1.21 (±0.21)± 0.44× 10−4

−23.69 1.68 (±0.27)± 0.60× 10−4 2.19 (±0.36)± 0.79× 10−4

−23.19 3.78 (±0.53)± 1.33× 10−4 4.35 (±0.58)± 1.52× 10−4

−22.69 7.48 (±1.07)± 1.88× 10−4 5.80 (±0.73)± 1.40× 10−4

−22.19 1.03 (±0.17)± 0.27× 10−3 -
−21.69 1.14 (±0.29)± 0.38× 10−3 -

3.0 < z < 3.5 −24.93 2.64 (±1.25)± 1.67× 10−5 1.83 (±0.75)± 1.07× 10−5

−24.43 3.81 (±1.42)± 2.13× 10−5 2.51 (±1.13)± 1.54× 10−5

−23.93 9.80 (±1.67)± 4.43× 10−5 7.45 (±2.23)± 3.83× 10−5

−23.43 1.68 (±0.14)± 0.72× 10−4 1.54 (±0.38)± 0.75× 10−4

−22.93 2.19 (±0.25)± 0.95× 10−4 2.82 (±1.35)± 1.79× 10−4

−22.43 2.55 (±0.47)± 0.83× 10−4 -

Table 5.3: Luminosity function values obtained with the SWML and Vmax meth-
ods in the four redshift bins for the J filter. The first error value refers to the error
estimated via the information matrix for the SWML method and to the Poisson
error for the Vmax method, while the second term is the cumulative error taking
into account also cosmic variance uncertainties.
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z range MH [AB] SWML[h3
70mag−1Mpc−3] Vmax[h3

70mag−1Mpc−3]

1.5 < z < 2.0 −25.63 4.12 (±2.85± 2.95× 10−6 5.69 (±4.02)± 4.16× 10−6

−25.13 3.71 (±0.79)± 1.05× 10−5 5.08 (±1.20)± 1.53× 10−5

−24.63 1.24 (±0.14)± 0.27× 10−4 1.69 (±0.22)± 0.38× 10−4

−24.13 2.74 (±0.23)± 0.56× 10−4 3.73 (±0.33)± 0.77× 10−4

−23.63 3.92 (±0.32)± 0.80× 10−4 4.91 (±0.37)± 0.99× 10−4

−23.13 5.04 (±0.44)± 1.04× 10−4 4.86 (±0.38)± 0.98× 10−4

−22.63 8.61 (±0.81)± 1.32× 10−4 6.19 (±0.50)± 0.90× 10−4

−22.13 1.04 (±0.12)± 0.17× 10−3 7.49 (±0.73)± 1.16× 10−4

−21.63 1.53 (±0.19)± 0.27× 10−3 -
−21.13 2.03 (±0.34)± 0.39× 10−3 -
−20.63 2.26 (±0.61)± 0.64× 10−3 -

2.0 < z < 2.5 −25.29 2.04 (±0.55)± 0.74× 10−5 2.95 (±0.89)± 1.15× 10−5

−24.79 4.06 (±0.80)± 1.28× 10−5 5.89 (±1.26)± 1.92× 10−5

−24.29 1.23 (±0.15)± 0.34× 10−4 1.74 (±0.22)± 0.48× 10−4

−23.79 1.76 (±0.21)± 0.48× 10−4 2.02 (±0.23)± 0.55× 10−4

−23.29 3.46 (±0.44)± 0.96× 10−4 2.97 (±0.34)± 0.81× 10−4

−22.79 3.62 (±0.57)± 1.06× 10−4 3.75 (±0.51)± 1.05× 10−4

−22.29 5.04 (±0.88)± 1.18× 10−4 4.36 (±0.71)± 0.99× 10−4

−21.79 5.56 (±1.14)± 1.44× 10−4 5.05 (±0.94)± 1.23× 10−4

−21.29 6.27 (±1.69)± 1.84× 10−4 -

2.5 < z < 3.0 −25.60 5.69 (±2.93)± 3.46× 10−6 1.34 (±0.60)± 0.74× 10−5

−25.10 1.91 (±0.58)± 0.84× 10−5 3.49 (±0.97)± 1.49× 10−5

−24.60 5.21 (±1.06)± 1.99× 10−5 6.98 (±1.37)± 2.64× 10−5

−24.10 1.05 (±0.18)± 0.39× 10−4 9.98 (±1.72)± 3.65× 10−5

−23.60 2.20 (±0.35)± 0.79× 10−4 2.67 (±0.39)± 0.95× 10−4

−23.10 3.93 (±0.65)± 1.43× 10−4 4.40 (±0.59)± 1.54× 10−4

−22.60 5.56 (±1.03)± 1.54× 10−4 4.25 (±0.60)± 1.06× 10−4

−22.10 7.23 (±1.51)± 2.12× 10−4 -

3.0 < z < 3.5 −25.25 1.40 (±1.02)± 1.17× 10−5 1.10 (±0.55)± 0.72× 10−5

−24.75 3.32 (±1.13)± 1.79× 10−5 1.93 (±0.73)± 1.09× 10−5

−24.25 6.10 (±1.98)± 3.23× 10−5 4.11 (±1.19)± 2.10× 10−5

−23.75 4.69 (±2.10)± 2.87× 10−5 5.38 (±1.94)± 2.97× 10−5

−23.25 1.47 (±0.62)± 0.87× 10−4 1.77 (±0.39)± 0.84× 10−4

−22.75 1.35 (±0.54)± 0.65× 10−4 1.88 (±0.45)± 0.68× 10−4

Table 5.4: Luminosity function values obtained with the SWML and Vmax meth-
ods in the four redshift bins for the H filter. The first error value refers to the error
estimated via the information matrix for the SWML method and to the Poisson
error for the Vmax method, while the second term is the cumulative error taking
into account also cosmic variance uncertainties.
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5.4. J and H Luminosity Functions

Figure 5.13: Luminosity function for the J rest frame band, in the four redshift
bins. Asterisks represent the 1/Vmax measurement, diamonds are from the SWML.
The Schechter function obtained via the maximum likelihood is shown as the solid
black line. The coloured area in each plot indicates the 1 σ (68% confidence level)
from the parametric maximum likelihood. The inset shows the 1, 2 and 3 σ con-
tours (corresponding to 68%, 95% and 98% confidence region) for the joint α-M∗

parameters from the ML analysis. As a reference, the z=1.75 LF is reported as a
dashed line in the panels corresponding to higher redshift bins.

estimate from Saracco et al. (2006) with our non parametric 1.5 < z < 2.0 LFs,

we find similar LFs (see Figure 5.15, left panel) with points lying within the 1

sigma error bars. Despite these differences, our Schechter parameterization is

substantially compatible also with their points. We would like to note that our

composite catalogue provides an improved sampling of the bright end, resulting

in overall better constrained Schechter parameters.

In the highest redshift bin, the differences in the Schechter parameters are

still present, with the faint-end slope α being the parameter showing the larger

dispersion. Also in this case, when comparing our non parametric estimate with

their points, we find a good agreement (see the right panel in Figure 5.15).
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5. NIR LF to z=3.5

Figure 5.14: Luminosity function in the H rest frame filter. Plot conventions are
the same as for Figure 5.13.

In Figure 5.16 we compare the Schechter parameters for the rest-frame J-

band obtained in this work with those available in the literature as a function of

redshift.

The upper panel shows the evolution of φ∗ as a function of redshift. φ∗ is

monotonically decreasing with increasing z. By z � 2, φ∗ has decreased by a full

order of magnitude compared to the local values. The following parameterization

was adopted to model the observed evolution of φ∗ with z:

φ∗(z) = θ exp
�
γ/(1 + z)β

�
(5.3)

where θ, γ and β are the free parameters. The best-fit values obtained for the

parameters of the J rest-frame band are θJ = 2.9 ± 0.9 × 10−5 mag−1 Mpc−3,

γJ = 6.5±0.3, βJ = 0.56. The β parameter was estimated together with the other

two in the first instance of the best fitting procedure, and kept fix in a second

iteration. The quoted errors refer to the second iteration. Equation 5.3 appears

151



5.4. J and H Luminosity Functions

Figure 5.15: Comparison of Saracco et al. (2006) LFs (black squares and black
solid line) with our measurements (grey symbols: asterisks for 1/Vmax, diamonds
for the SWML, dash-dotted line for the Schechter parameterization). The left panel
refers to z ≈ 1.5 LF, while the right panel to the z ≈ 3 LF.

as a dashed line in the upper panel of Figure 5.16.

In the middle panel we present the evolution of M∗ as a function of redshift.

Data show a brightening of M∗ from the local universe to z � 2, followed by a

slow dimming. In analogy to the LF shape by Schechter (1976), it is then possible

to introduce the following ad-hoc representation for M∗(z):

M∗(z) = µ [(1 + z)/(1 + z∗)]η exp [−(1 + z)/(1 + z∗)] (5.4)

with µ, z∗ and η free parameters to be determined. By performing a least-square

fit to the available data set we obtain the following values: µJ = −44.6±0.2 mag,

z∗J = 9.5 ± 0.5, ηJ = 0.28 ± 0.15. The resulting curve is plotted as a dashed line

in the middle panel of Figure 5.16.

The lower panel illustrates the behavior of α as a function of redshift. The

error bars are here generally large and do not allow to properly evaluate the
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5. NIR LF to z=3.5

Figure 5.16: Evolution of the Schechter parameters of the J LF as a function of
redshift. Estimates from this work are shown as filled black stars. Measurements
from the literature are also plotted (vertical crosses: Cole et al. 2001; asterisks:
Pozzetti et al. 2003; crosses: Feulner et al. 2003; open squares: Eke et al. 2005;
open circles: Dahlen et al. 2005; open diamonds: Saracco et al. 2006; open triangles:
Jones et al. 2006; filled circle: Hill et al. 2010). Top panel shows the data for φ

∗.
The dashed line represents Eq. 5.3 (see text for details); the middle panel presents
the measurements for M

∗, with the dashed line representing Eq. 5.4; in the lower
panel the faint end slopes α together with the average value (dashed line) are shown.

presence of evolution as a function of z. Therefore we limit ourselves to compute

an average value, resulting in ᾱ = −1.05± 0.03.

Figure 5.17 shows the plots of the Schechter parameters as a function of red-

shift corresponding to the rest-frame H-band. For this band, there are only two

determinations of the LF from the literature, so that it is more challenging trying

to deduce any evolution. Despite this, we applied the same analysis done for the

rest-frame J-band, obtaining θH = 9.1±3.9×10−6 mag−1 Mpc−3, γH = 7.8±0.5,

βH = 0.56 for the parameters of Eq. 5.3; µH = −46.5 ± 4.3, z∗H = 9.0 ± 3.9,

ηH = 0.30 ± 0.08 for Eq. 5.4 and ᾱ = −1.15 ± 0.02. The resulting curves are

shown as dashed lines in Figure 5.17.
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5.4. J and H Luminosity Functions

Figure 5.17: Evolution of the Schechter φ∗, M∗ and α parameters from the H LF
as a function of redshift. See caption to Figure 5.16 for details.

5.4.2 Luminosity densities

Here we present our measurements of the luminosity density, obtained in the

standard way, i.e. as:

ρJ =

� +∞

0
LΦ(L)dL = Γ(2 + α)L∗φ∗ (5.5)

where the last equality holds when assuming a Schechter parametrization for the

Φ(L). This means that we are assuming that the Schechter distribution is a

good representation of the underlying luminosity function. Figure 5.18 shows the

evolution of the luminosity density in the J filter, while Figure 5.19 displays the

corresponding plot for the rest-frame H-band. Values of the luminosity density

at each redshift and for each filter are presented in Table 5.5.

In order to be less sensitive to the derived faint end slope of the LF, we also

computed the luminosity density assuming a limiting absolute magnitude equal

to the limit of our survey, i.e. Mlim = −20.0. These results are presented in the
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5. NIR LF to z=3.5

Figure 5.18: Luminosity density ρJ as computed from our Schechter parameters
(filled black stars) and compared with the available data in the redshift range
[0,3.0]. Greyed symbols indicate the luminosity density computed assuming an
absolute magnitude limit of MJ = −20.0. The dashed line represents the LD
obtained directly from Eq. 5.5 in terms of Eq. 5.3 and 5.4. Plotting symbols same
as for Fig. 5.16.

plots as greyed symbols.

The overall plot of the J luminosity density shows a constant or slightly in-

creasing value for z � 0.8− 1.0. At z ≈ 0.8− 1.0 the luminosity density starts to

decrease down to z ≈ 3.5, although the points at 2.0 � z � 3.0 suggest a possible

plateau at this epoch. This can be better visualized by comparing this plot with

the top and middle panels of Figure 5.16. Here we see in fact that for z � 1 the

decrease in number of galaxies is balanced by a brightening of the characteris-

tic magnitude. After this point both quantities decrease, making the luminosity

density also decrease.

Using the expression of Eq. 5.3 and Eq. 5.4 in Eq. 5.5, it is possible to obtain

a functional representation of the luminosity density. The dashed line in Figure

5.18 represents the luminosity density for the rest-frame J-band obtained with
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5.4. J and H Luminosity Functions

Figure 5.19: Luminosity density ρH as computed from our Schechter parameters
(filled black stars) and compared with the available data. See caption to Fig. 5.18
for details.

this method and adopting the values of the parameters previously recovered via

best-fit. The agreement with the points is good in the entire redshift range. We

would like to stress that no best fit has been done using the data of the luminosity

density, as we only used the parametric expressions for the evolution of φ∗ and

M∗.

Similarly to the case of the LF, the luminosity density in the H filter has ben

poorly studied, so that it is more difficult to trace the path of its evolution. Our

data however indicate a decline with redshift of the LD, similar in shape to the one

found also in the J band, with a faster evolution from z = 3.5 to z = 1.5, followed

by a much smaller evolution. An exercise similar to what done for computing

the J luminosity density, introducing our parameterizations, is shown as a dashed

line in Figure 5.19. The agreement seems to be quite good in the whole redshift

range, although more measurements are necessary at z < 1.5.
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5. NIR LF to z=3.5

Filter z range log ρ log ρ(Mlim = −20)

J 1.5-2.0 20.26± 0.08 20.22± 0.09
2.0-2.5 19.98± 0.12 19.96± 0.13
2.5-3.0 20.05± 0.18 20.01± 0.20
3.0-3.5 19.57± 0.30 19.55± 0.32

H 1.5-2.0 20.30± 0.08 20.27± 0.09
2.0-2.5 19.93± 0.12 19.90± 0.14
2.5-3.0 19.96± 0.21 19.94± 0.24
3.0-3.5 19.61± 0.32 19.57± 0.38

Table 5.5: Luminosity density in logarithmic scale and expressed in units of log[W
Hz−1 Mpc−3], in the rest-frame J− and H− bands. Quoted errors include the
effects of cosmic variance. In the third column we report the luminosity density
computed using Eq. 5.5 and corresponding to the black stars in Figures 5.18 and
5.19; the values of the luminosity density in the fourth column reflect the upper
limit in absolute magnitude corresponding to Mlim = −20, which we imposed in
order to limit the effect of the uncertainties in the determination of α (grey stars
in the same figures).

5.4.3 Star Formation Rate

As a last exercise, we computed the star formation rate (SFR) by differentiating

with respect to cosmic time the parametric formula obtained for the luminosity

density from Eqq. 5.3 and 5.4, and adopting a mass-to-light ration M⊙/LJ,⊙ = 1.

(Cole et al., 2001) The result is shown in Figure 5.20 by the solid line, while data

points and corresponding errors have been taken from Bouwens et al. (2005).

The line approximates quite well the data points to z � 2. However, in the

region between z � 2.5 and z � 8 our measurement disagrees with the SFR from

Bouwens et al. (2005) by a factor ≈ 0.4−0.5, appearing also lower compared with

other measurements (Bouwens et al. 2011 and references therein). However, we

must recall that our parameterization has been fitted on data up to z = 3.5, so

that the comparison is done on an extrapolation. Another factor could be the

different wavebands the SFR are extracted from. Our SFR, in fact, is based on

rest-frame J band, while the measurements presented by Bouwens et al. (2005)

are all based on UV data.

Whereas our measurement is simpler, in the sense that it directly estimates

stellar mass as it is formed, theirs can be seen a more straightforward as they
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5.5. Conclusions

Figure 5.20: Star formation rate as computed from our parameterization of the
luminosity density (solid line). Diamonds refer to the measurements collected in
Bouwens et al. (2005).

measure UV flux from young stars directly, but depend upon modelling to estimate

the total stellar mass that it is created.

5.5 Conclusions

In the present work, we used a composite sample constructed from deep multi-

wavelength publicly available photometric catalogues from the MUSYC, FIRES

and FIREWORKS projects. The availability of Spitzer data in the 3.6, 4.5, 5.8

and 8µm channels allows us to robustly estimate the LF and LD in the rest-frame

J− and H− bands with a minimum dependence on the SED templates up to

z = 3.5.

Uncertainties introduced by the cosmic variance were estimated using two

distinct methods, one by Moster et al. (2010) and the other by Driver & Robotham
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5. NIR LF to z=3.5

(2010). We find that for our data the two approaches agree to within a factor of

2.5, which can be due to the change for the M∗ stellar mass value with redshift

(Driver & Robotham, 2010).

We determined the LF with three independent methods, namely the 1/Vmax,

the SWML and the STYML methods. We find that they do agree well with each

other.

Our rest-frame J-band LF is consistent with previous determination by Saracco

et al. (2006), although the recovered Schechter parameters M∗ and α are consis-

tent only at the 2σ level. This might be due to the limited range in rest-frame

magnitudes probed by the sample in Saracco et al. (2006). Our determination of

the rest-frame J−band improves the coverage of the bright end measurement by

1 full magnitude.

We determined for the first time the LF in the rest-frameH-band up to z = 3.5.

Given that this band is less contaminated from AGN dust emission than the rest-

frame K-band, it suggests itself as a more direct and solid measurement of the

mass assembly across cosmic time, simplifying the task of comparison with the

current models.

We analyzed the evolution of the Schechter function parameters as a function

of redshift, making full use of the data available from the literature. We found

that the faint end slope α of the LF is nearly constant over the whole redshift

range and that φ∗ decreases by a factor of ≈ 10 from z = 0 to z = 1.75, and

by a factor of ≈ 3 to z = 3.25. We introduced a parameterization based on an

exponential form for the evolution of φ∗ as a function of z. The fit of this function

to the available data shows good agreement, especially for the rest-frame J-band,

where more data from the literature are available in the redshift range z ∈ [0, 1],

complementing our measurements at z > 1.5.

The behavior of M∗ as a function of z shows an increase from z = 0 to z � 2,

followed by a smoother decrease. We adopted a Schechter (1976)-like expression

for its description, resulting in a good representation of the observed evolution.

We finally computed the LD in the rest-frame J- and H- bands, using the

Schechter parameters previously determined. The LD is nearly constant up to

z ≈ 1 and decreases as a power-law by a factor of ≈ 6 from z ≈ 1 to z = 3.25.
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5.5. Conclusions

In order to obtain a more solid constraint of the LF, a larger area is needed

to better probe the bright end and reduce the impact of field-to-field variations

and low number statistics. To this aim, projects with data publicly available like

the NEWFIRM Medium Band Surveys (van Dokkum et al., 2009) or the Cosmic

Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS - Koekemoer

et al. 2011) will be of invaluable help, paving the way to the results from the

surveys of the next decades with new telescopes like the JWST and E-ELT.
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6
Spectrophotometric redshifts: a new

approach to the reduction of noisy spectra

and its application to GRB090423
1

6.1 Introduction

Measuring redshifts is one of the most important techniques in astronomy; how-

ever, it is also one that depends critically on the quality of the available data.

Because of its nature it is sometimes difficult to attest the quality of the results,

since no quantitative error estimates are obtained. In the optical range, the stan-

dard approach is to reduce all the available data to a one-dimensional array, which

is flux- and wavelength-calibrated with the help of auxiliary data. In most cases,

detection of emission and/or absorption lines is necessary for a valid measure-

ment, although in some instances, only the continuum and some basic spectral

features (e.g. breaks) are needed. Even the latter is sometimes difficult because

of the paucity of photons. Ideally, in cases of low signal-to-noise data, one would

bin the spectrum in the wavelength direction, but even this is sometimes useless.

Moreover, information is often lost in the process of extracting the spectrum.

A different approach from the informational point of view would be to choose

a model that represents the best possible fit to the available two-dimensional spec-

1This work was published in Stefanon, M., Fernandez-Soto, A. and Fugazza, D. 2011 A&A,
525, 75
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6.1. Introduction

tral data. This is actually the approach used by photometric redshift techniques,

when a series of spectral energy distributions are considered at different redshifts

and converted into photometric data that can be compared with the available pho-

tometry. It is also the method that has become standard in high-energy (X and

gamma-ray) spectroscopy, where the models are convolved with the instrumental

response and compared to the data, instead of the data being extracted and cali-

brated. In order for this kind of approach to work, at least three conditions need

to be fulfilled:

• The real spectrum must be included in the family of models under analy-

sis. This would be relatively difficult, for instance, in the case of quasars

or galaxies at moderate resolution, because the intrinsic scatter amongst

different models or types is very large. However, GRB afterglows make for

an excellent example, as their intrinsic optical spectrum can usually be ap-

proximated very well with a single power law (van Paradijs, Kouveliotou,

& Wijers, 2000), where the effects of the GRB host gas and dust, the inter-

galactic medium, and our local extinction can be superimposed.

• The technical characteristics of the instrument must be well known, in or-

der to model their effect into the simulated data. This includes the total

wavelength-dependent efficiency, any possible geometric distortions in the

spectral direction, and of course the exact position of the target in the slit

image.

• The characteristics of the noise in the CCD must also be modelled accu-

rately, so that the statistical analysis will accurately estimate the model

parameters and also the uncertainties associated to them.

Even though we have not mentioned it explicitly, it is of course necessary

to ensure an accurate first reduction of the data, going from the raw individual

images to the combined two-dimensional spectrum, which constitutes the input

data for our analysis.
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6.2 Gamma-Ray Bursts

Gamma-ray bursts (GRB) are brief events occurring at an average rate of a few

per day throughout the universe: for a very short time, typically of the order

of tens of seconds, their luminosity converts them into the brightest gamma-ray

objects in the whole sky. Their energy flow during the burst is comparable to that

of the Sun over few×1010 years or to that of our entire Milky Way over a few years.

In fact, they are the most concentrated and brightest electromagnetic explosions

in the Universe. Being originated by the death of massive stars (whose lifetimes

are much shorter than the expansion time- scale at the redshifts of interest), they

propose as tracer of the star-formation history of the universe, as discussed by

many authors (see Salvaterra & Chincarini 2007; Porciani & Madau 2001 and

references therein)

GRBs remained undetected at any wavelengths but gamma-rays until 1997,

when the BEPPO-SAX satellite was launched. The detection through its X-ray

camera allowed to decrease the positional errors so that it became possible to

identify the source with optical telescopes; these observations confirmed that the

GRB were originated at cosmological distances.

The current model of the central engine able to produce such a high energy

is the occurrence of a cataclysmic stellar event like the collapse of the core of a

massive star or the subsequent merger of two remnant compact cores, involving a

very limited fraction (≈ 10−6) of stars toward the end of their evolutionary phases.

These phenomena would be bound in a very small region (of the order of ten

kilometers) and would release a high amount of gravitational energy (equivalent

approximately to a rest solar mass) in an extremely short time (up to few seconds).

Most of the energy would be emitted in the first seconds as thermal neutrinos,

while a major fraction of the remaining energy could be emitted in the form of

gravitational waves.

The result of this rapid energy liberation would be the formation of a very high

temperature fireball expanding at a relativistic speed. The dissipation processes

inside the fireball would then be at the origin of the observed gamma rays; at

later times, this fireball would convert into a blast wave as it decelerates against

the external medium and produce an afterglow, which would dim with time (see

Figure 6.1).
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6.2. Gamma-Ray Bursts

Figure 6.1: Schematic representation of the GRB fireball model (Credits: Swift
team)

Depending primarily on the duration of the observed afterglow, GRBs can be

divided into two distinct classes: long and short GRB.

The class of long GRBs is populated by massive stars whose core collapses

to a black-hole, either directly or after a short accretion phase. This scenario

is often called as the hypernova or collapsar and has been supported by several

spectroscopic observations of associated supernovae (e.g. Galama et al. 1998;

Stanek et al. 2003).

Short GRBs are thought to be originated by the merging of binary stars formed

by two neutron stars or a neutron star and a black-hole (Eichler et al., 1989;

Meszaros & Rees, 1992). These binary systems would loose orbital angular mo-

mentum by gravitational wave radiation, causing the merger.

For both of these progenitors, the current models foresee the final formation

of a black-hole of a few solar mass, surrounded by a debris disk.
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Figure 6.2: Schematic features seen in early x-ray afterglows detected with the
Swift XRT instrument (Nousek et al., 2006).

The analysis of photometric and spectroscopic data from the X-Ray Telescope

(XRT) and Burst Alert Telescope (BAT) onboard the Swift satellite has allowed to

draw a canonical X-ray afterglow picture (Nousek et al., 2006), schematized also in

Figure 6.2, which includes one or more of the following: (1) an initial steep decay

FX ∝ t−α1 with a temporal index 3 � α1 � 5 and an energy spectrum Fν ∝ ν−β

with energy spectral index 1 � β1 � 2, extending up to a time 300s � t1 � 500s,

(2) a flatter decay portion FX ∝ t−α2 with temporal index 0.2 � α2 � 0.8 and

energy index 0.7 � β2 � 1.2, at times 103s � t1 � 104s, (3) a normal decay

FX ∝ t−α3 with 1.1 � α3 � 1.7 and 0.7 � β2 � 1.2, up to a time t3 ≈ 105s which

in some cases can be longer.
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6.3 Description of the data

To describe our work in detail, we concentrate on the particular case for which

we developed our original idea, thus we start by describing those data.

6.3.1 GRB090423 afterglow data

GRB090423 was a gamma-ray burst detected by the Swift satellite on April 23,

2009 (Krimm et al 2009). Early observations in the optical and near infrared

distinctly pointed towards the possibility of it being a high-redshift object, when

it went undetected for all observers using visible bands, but showed as a rela-

tively bright near-infrared source (Tanvir et al 2009a, Cucchiara et al 2009a).

Photometric data alone indicated a very high-redshift nature, with basically zero

dust absorption (Cucchiara et al 2009b, Olivares et al 2009). Our group used the

Italian 3.6m Telescopio Nazionale Galileo on the island of La Palma, to obtain a

low-resolution spectrum using the Amici prism with the spectrograph NICS (Oliva

2003), and measured its redshift to be z = 8.1+0.1
−0.3 (Thoene et al 2009, Fernandez-

Soto et al 2009, Salvaterra et al 2009). A compatible result (z = 8.23+0.06
−0.07) was

reached independently by Tanvir et al (2009b, 2009c) using two sets of higher-

quality data obtained with the VLT in Chile.

The Amici spectrum covers in a single exposure the wavelength range 0.8 −
2.5µm with very low resolution (R ≈ 50) but very high efficiency, and thus became

the ideal choice for this kind of analysis. We obtained a total of 128 minutes of

on-target exposure time. The exposures were dithered following the usual NIR

technique, and combined into a single two-dimensional frame, which is showed in

Fig. 6.3. The slit was positioned with the help of a nearby star, whose extracted

spectrum will be one of the keys in our analysis.

The position of the star along the slit (measured at the reference position

X=600 in the CCD frame) is Y=765. The angular distance between the reference

star and the afterglow was ≈ 30 arcseconds, which corresponds to 120 pixels

along the slit. To avoid possible issues caused by misalignments or the effect of

distortions in the focal plane, we use this distance only as a reference, and perform

a careful recentring, as described in the next section.
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6. Spectrophotometric redshifts

Figure 6.3: The combined two-dimensional spectrum used as input data. The
white rectangle identifies the region of the GRB afterglow spectrum that was used
for the analysis. The box height is equal to 4× fwhm, corresponding to 21 pixels
which ensures that we completely include both wings of the Gaussian. The inset
shows a magnification of the same region.
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6.4 Description of the method

Our aim is to reproduce the spectrum of the afterglow of GRB090423 as per-

fectly as possible, and to reconstruct the spectral equivalent of the wavelength-

dependent point spread function as generated when the light passes through the

atmosphere, telescope, and instrument optics, and reaches the detector. We

present in this section the different steps to reach this objective.

6.4.1 Model spectra

We have created a library of model spectra, where there are three basic input

parameters: the redshift z, the slope α in the power-law spectral model fν ∝ λα,

and the total neutral hydrogen column density in the host interstellar medium

N(HI), which produces a strong damped Lyman alpha (DLA) profile at the host

redshift. It is important to include this profile in the analysis, because a dense

(N(HI) � 1021cm−2) DLA profile would displace the position of the break, thus

mimicking a higher redshift. A fourth parameter, the apparent magnitude nor-

malisation in the observed K band (at the epoch of our observations) mK , will

be left as an uninteresting parameter, and it is directly fitted to the data during

the process.

The effect of the Inter-Galactic Medium (IGM) at the redshifts of interest

(z � 6) is very simple to include. At such a high redshift, the HI absorption is

complete—within our observational capabilities—below the Lyman-α line, and as

such we include it in the models (Yoshii & Peterson 1994). The putative effects of

a significatively different neutral fraction in the IGM were deliberately neglected

for two reasons. on one hand, the literature on GRB090423 points to a normal

environment (i.e. neutral, see Tanvir et al. 2009c); on the other, some authors

have shown that those effects are difficult to model and are challenging to observe

even with better quality data (e.g. Patel et al. 2010).

In other cases one would of course need different parameters. It could be

necessary to add dust extinction either at the host or by the Milky Way (or both),

with the amount of extinction and even its grain type left as free parameters. We

do not consider it here, because the available afterglow photometry indicates a

blue object with an almost complete lack of intrinsic extinction (Fernandez-Soto

et al 2009 and Tanvir et al 2009c, in particular their Fig. 2 which shows how the
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6. Spectrophotometric redshifts

Figure 6.4: Relative transmittance for the E(B − V )=0.03 extinction curve.

spectral slope is represented by a pure power law). Moreover, given the narrow

rest-frame wavelength range that we are observing (λ ≈ 1200 − 2200Å), as well

as the resolution and signal-to-noise ratio of our data, there is an almost perfect

degeneracy between the amount of dust extinction and a change in spectral slope.

We used the Schlegel et al (1998) maps to include in the templates the effect

of Milky Way dust at the level of E(B − V )=0.03; the corresponding relative

transmittance is plotted in Fig. 6.4.

Figure 6.5 shows a selection of spectral templates that sample part of the

parameter space. The full range covered by our templates is α ∈ [−1, 3], z ∈
[5, 10], and N(HI)∈ [1020, 1024]cm−2. All three ranges safely include the expected

values of each variable. All models are normalised to have ABK = 21.3, a value

measured by GROND (Tanvir et al 2009c) at almost exactly the same time our

observations were performed. It must be pointed out, however, that, because of

the possibility of slit losses affecting the detected flux, we leave the normalisation

factor for the flux as a free parameter, as explained in the next section.
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6.4. Description of the method

Figure 6.5: Some of the templates used for the analysis. Each column corresponds
to a different redshift as labelled in the top panels, and each line to a different
spectral slope, as labelled on the leftmost column. Within each panel, the different
curves correspond to values of log[N(HI)] varying from 19 to 24 in steps of one.
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Table 6.1: Stellar data. SDSS and 2MASS photometry taken from their respective
catalogues, expressed in their usual reference–AB magnitudes for SDSS, Vega-based
for 2MASS.

Parameter V alue

SDSS name J095535.28 + 180903.8
R.A. (J2000) 09:55:35.286
Dec (J2000) +18:09:03.88
Spectral Type M4V
uSDSS 22.17± 0.21
gSDSS 19.27± 0.01
rSDSS 17.78± 0.01
iSDSS 16.54± 0.01
zSDSS 15.91± 0.01
J2MASS 14.52± 0.03
H2MASS 13.97± 0.04
K2MASS 13.77± 0.05

6.4.2 CCD and instrumental characteristics

Once satisfied with the set of spectral templates, we need to characterise the ob-

servations in terms of spectral resolution, efficiency of the instrument at different

wavelengths, noise characterics of the detector, and position of the spectrum along

both the spectral and spatial directions.

Instrumental Characteristics

We used an archival solution to calibrate the Amici spectrum in wavelength. As

described in Fernandez-Soto et al (2009) we needed to add an offset of 5 pixels,

determined via comparison with the observed sky absorption features.

As we mentioned in the previous section, there is a nearby star that falls within

the slit—it was in fact used to position the slit, as the afterglow was too dim to be

pointed at directly. Its spectral type is M4V, as determined via available SDSS

and 2MASS photometry (Adelman-McCarthy et al 2008, Skrutskie et al 2006,

see Table 6.1 for the complete data). We used the corresponding spectrum from

the Bruzual-Persson-Gunn-Stryker library (Bruzual et al 1996) to determine the
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Figure 6.6: Comparison between the photometric data of the reference star (di-
amonds) with the Bruzual-Persson-Gunn-Stryker library (solid line -Bruzual et al
1996) M4V spectral energy distribution template.

total efficiency of the instrument as a function of wavelength. In the 0.95−1.1µm

region, corresponding to the Lyman break of a z ≈ 8 source — the most prominent

feature in our GRB spectrum — the spectrum of an M4V star is free of strong

spectral features. This, considered together with the low resolution of the spectra

and the fact that the M4V star shows even less features at higher wavelengths,

allows us to rely on the total instrumental efficiency we derived. Figure 6.6 shows

the photometric points from table 6.1 overplotted to the model spectra of the

M4V class star.

It must be noted that there is a free factor involved in the calculations, as we

cannot ensure that the slit losses in the stellar spectrum are the same in the one

corresponding to the afterglow. However, as long as the pointing was reasonably

accurate—and we can assume it was from the comparison of the fluxes—at least

to first order, it will be a single number (i.e., not wavelength-dependent) since the

slit angle is obviously the same for both objects.
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The seeing at the time of the observations was ≈ 1.4 arcseconds in the J band,

as measured in the acquisition images. The slit width was 1.0 arcsecond, so we

expect some slit losses, and no degradation in resolution induced by the slit width.

We show in Fig. 6.7 the measured total efficiency, obtained as the (arbitrarily

normalised) ratio of the counts to the model spectrum of the star.

As is usually done when reducing spectroscopic data of very faint sources, we

assume that the shape of the afterglow spectrum in the CCD follows the trace left

by the much brighter star (plotted in Fig. 6.7, second panel from the top), which

can easily be traced at all wavelengths from 0.8 to 2.5 microns. We determined

the distortions along the dispersion axis of the stellar spectrum, fitted it via

Legendre polynomials, and used it to define the template spectrum position. We

determined the vertical offset by using a zero-order solution (an fν-flat spectrum

at z = 8.4 with HI absorption of 1020cm−2) and displacing it vertically, evaluating

its likelihood at different positions when compared to the CCD data. We measured

an offset of 115.4 pixels (equivalent to 28.8 arcseconds).

The FWHM in the spatial direction of the stellar spectrum varies with wave-

length from ≈ 1.2 arcseconds at 2.2µm to ≈ 1.5 arcseconds at ≈ 0.8µm (corre-

sponding to ≈ 5.8 to ≈ 4.9 pixels on our plate scale). We used a smoothed fit to

those values (also shown in Fig. 6.7) to reproduce the afterglow spectrum.

CCD characteristics

Observations in the IR are more complex than the corresponding in the optical

range. The differences are mainly due to a higher and more variable sky, by

stronger atmosferic absorption abd by telluric emission throughout the 1-2.5 µm

wavelength range.

For wavelengths bluer than 2.3 µm, the background is dominated by non-

thermal emission, such as that produced by OH and O2 emission lines. The

vibrational excited OH lines are highly variable in time, with scales of few minutes.

These lines are stronger just after sunset and weaker around midnight.

For wavelength values higher than 2.3 µm, the background is instead domi-

nated by thermal emission from both the telescope and from the sky. The sky

background in the KS band can vary by a factor of two from winter to summer,

although it is more stable than the J and H bands on the short time scales.
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Figure 6.7: Total efficiency of the atmosphere, telescope, and instrument combi-
nation (a). Changes in the spectral position (b) and width (c) with wavelength,
and projection of the measured CCD noise (rms counts per pixel) as a function of
wavelength (d).
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All these difficulties have led to the development of specific observing tech-

niques for the IR.

It is not unusual for the objects of interest to be hundreds or even thousands

of times fainter than the sky. Under these conditions it has become standard

procedure to observe the source (together with the sky) and subtract from it an

estimate of the sky. Since the sky emission is variable, the only way to obtain

good sky measurement is to frequently repeat this kind of observation. The fre-

quency depends on the wavelength of observation, on the nature of the emission

of the sky background and on meteorological conditions; as a general guideline,

the measurement of the sky should be taken at least as frequently as the sky

varies. With modern arrays this is usually done with frequencies of the order of

once per minute. The observations consist in slightly displacing the telescope by

random values between consecutive exposures. Although this observing technique

introduces large amounts of overheads, it has the advantage that it automatically

removes the counts offsets generated by the electronics such as the bias and the

dark current.

The CCD image we are working with is the result of a careful reduction pro-

cedure following the usual steps for NIR spectroscopy.

We did, however, perform one extra check: we measured the background in

detail, to ensure that it is flat in both the spectral and spatial directions.

Since the final image contains the trace of the sky subtraction in form of nega-

tive spectra, we needed a way to clean it. The background was then reconstructed

following the below steps:

1. We run SExtractor on the reduced image; the output image was chosen to

be the subraster of the (positive) detected sources, which, in our case, were

the spectra of the GRB and of the star.

2. We subtracted the output image previously obtained from the reduced image

and inverted the result, so that the negative spectra would now appear as

positive features

3. We repeated step 1 on the inverted image. The output was the result of

source subtraction.
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4. We now have an image clean from sources (both positive and negative).

This image was then multiplied by -1 in order to re-convert it to its original

scale.

5. The clean image was then given as input to SExtractor which this time was

set to produce as output the frame corresponding to the background.

The result of this procedure is shown in Figure 6.8. As it can be seen, there

appears no significant trend either in the spatial or in the dispersion direction,

with the background flat to a fraction of the CCD noise.

We also estimated the CCD noise using different methods. This is a very

important step, because we want not only to determine the basic parameters of the

GRB afterglow (redshift, spectral slope, and neutral hydrogen column density),

but also to measure confidence limits on all of them. We decided that the best

method consists in using 7 rectangular areas of equal size in the CCD, each one

covering the interval X ∈ [480, 650] and 21 pixels in the Y direction. Those boxes

were chosen in areas that are free of any (positive or negative) feature. Their

location on the frame is presented in Figure 6.9. With them we estimated the

noise as a function of X position (that is, wavelength) by using a 3x3 grid around

each pixel and all 7 independent images. In this way we obtained a 170 × 21

mini-CCD noise frame, which we will use for the subsequent chi-square analysis.

The projection of this noise array on the Y direction is also shown at the bottom

in Fig. 6.7.

We finally computed the noise expected from an ideal χ2 ≡ 1 relation when

comparing each one of the noise regions to an empty (zero counts) one. The

average of the obtained noise values differs from the RMS of our noise array by

≈ 0.3%.

6.4.3 Application of the method

We used all the knowledge about the instrument gathered in the previous sub-

section to create replicas of the GRB afterglow spectrum, for each one of the

templates described in Sect. 3.1.

In brief, we choose a spectrum template combination (i.e., values of z, α, and

N(HI)) and generate a one-dimensional spectrum using them. We redden this

spectrum using the measured Galactic value E(B−V )=0.03. Then this spectrum
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-0.6 -0.4 -0.2 0 0.2 0.4

Figure 6.8: Background measurement obtained from the original reduced frame,
following the steps described in section 6.4.2. Note the reduced spread of values.
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-30 -20 -10 0 10 20 30 40

Figure 6.9: The green rectangles represent the 7 boxes we used to measure the
CCD noise.

is converted to a two-dimensional image, using the measured efficiency, adjusting

and block-averaging the wavelength axis to the known dispersion solution of the

Amici prism, and convolving it in the spectral direction with a Gaussian function

of the measured FWHM at each wavelength. This two-dimensional spectrum is

forced to follow the trace that was measured with the stellar spectrum, and is set

on a mini-CCD matrix measuring 170× 21 pixels, as was described above for the

noise image. Figure 6.10 shows some of the same spectra that were presented in

Fig. 6.5, now converted to two-dimensional images with this process.

Each of them is then compared to the real data, using the section of the
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Figure 6.10: Some of the templates that were shown in Fig. ?? are shown here
as two-dimensional arrays, after applying the procedures described in Sect. 6.4.
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6.5. Results

CCD that contains the GRB afterglow spectrum, centred to the same position

of each of the template frames. We do this comparison using a χ2 fit, where

the noise array corresponds to the one that was obtained in the previous section.

Calling the template T (z,α,N(HI)), the CCD data D, and the noise matrix S,
and remembering each one of them represents a 170× 21 matrix, one obtains

χ2[z,α,N(HI)] =
170�

i=1

21�

j=1

[AT (z,α,N(HI))ij −Dij]2

S2
ij

, (6.1)

where A represents a normalisation parameter for the flux. This is actually fixed

for each template by minimising χ2, which renders

A =

�170
i=1

�21
j=1 DijT (z,α,N(HI))ij/S2

ij�170
i=1

�21
j=1 T (z,α,N(HI))2ij/S2

ij

. (6.2)

Thus, once the normalisation A is fixed, the calculation of χ2 is straightforward

for each template.

6.5 Results

In Fig. 6.11 we present the result of the calculation above, projected on the differ-

ent planes of parameter space. Throughout our analysis, we associated the 68.3%

confidence level to 1σ and 95.4% to 2σ. As can be seen, the best fit corresponds

to z = 8.40 , α = 1.2, N(HI) = 1020.0cm−2. We calculated the confidence regions

corresponding to the best fit on each of the individual parameters, reaching the

results presented in Table 6.2. We must point out that the best-fit solution repre-

sents a value of χ2 = 4019. This value indicates a good fit for our problem, which

has ≈ 3600 degrees of freedom, albeit obviously most of them void in terms of

information content.

As can be observed, there is no lower limit to the neutral hydrogen column

density. This is a natural observational consequence of the fact that below N(HI)≈
2× 1020cm−2 there is no damped profile, and the absorption is not significant at

our resolution and signal-to-noise level. On the other end of the column density

scale, we stop our analysis at N(HI)= 1024cm−2, a value high enough to include

even the densest absorbers ever observed. At 2σ level, even higher values could be
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Figure 6.11: Results of the fitting procedure, projected on each of the two-
dimensional planes of parameter space. Red (blue) contours correspond to 1σ (2σ)
confidence levels.

accomodated, paired to lower redshifts z < 6.5 and flatter spectral slopes α < 0.5.

Figure 6.12 shows the best-fit spectrum, seen in the two top panels both as a

one-dimensional plot and as a clean two-dimensional model, and compared to the

real data in the two lower panels.

We may also use the spectral slope of the GRB afterglow spectrum, as mea-

sured from broad-band NIR photometry, as a prior condition in our analysis. In

this way, using the 1-sigma limit presented in Salvaterra et al (2009) for the spec-

tral slope measured from availability of higher S/N photometry (α = −0.4+1.4
−0.2),

one would obtain a more stringent limit on the redshift, approximately z > 7.5

at the 2-sigma confidence level.
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Table 6.2: Results of the fitting procedure.

Parameter Value 1σ 2σ

Redshift 8.40 (8.38, 8.45) (6.67, 8.49)
Spectral Slope 1.2 (0.7, 1.8) (0.1, 2.2)
log[N(HI)] 20.0 (< 20.7) —

Figure 6.12: The best-fit spectrum, convolved with the instrument response.
It is shown in the top panel as a one-dimensional spectrum and as a clean two-
dimensional array in the second one. The third panel shows a 1σ noise two-
dimensional array in the CCD area corresponding to the afterglow spectrum, as
described in Sect. 6.4.2. The fourth panel shows one realisation of the CCD noise
plus the best-fit spectrum, which can be directly compared to the real data at the
bottom panel. The contrast scale is the same in the two last panels, but not in the
previous ones.

6.6 Conclusions

We have presented a different method for the analysis of spectroscopic data, akin

in spirit to the one used in X-ray astronomy and also in photometric resdhift
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6. Spectrophotometric redshifts

techniques. This method does not attempt to extract a one-dimensional spectrum

from the CCD data. On the other hand, we generate simulated two-dimensional

spectra from template spectra of known characteristics, and decide which one

fits the real data best, choosing the best-fit parameters as the solutions to the

problem.

We used this method to carefully analyse a very low signal-to-noise spectrum

of the afterglow of the very distant GRB090423, showing that it is possible to

extract information from this kind of data, more than is usually assumed. Our

best result at 1σ level (z = 8.40+0.05
−0.02) is slightly higher than previous results

using the same data (Salvaterra et al 2009) or data from other sources (Tanvir

et al 2009c), although still compatible well within the 2σ confidence level. We

consider our confidence intervals to be reliable, given the full analysis of the noise

characteristics performed in this work.

The same method can be applied to other cases where the source belongs to a

well-defined spectral class of objects, and there is a need to extract the maximum

possible information from low-quality data. This is usually the case for faint,

rapidly fading GRB afterglows, and we expect this method to be used in future

measurements.
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7
Conclusions

In this thesis we explored the faint end region of a cosmological survey, both from

the photometric and from the spectroscopic point of view.

In the framework of the ALHAMBRA photometric survey, we implemented

two distinct methods for the determination of the detection completeness, as a

function of spectral and morphological type as well as of the effects of the redshift

on apparent size and observed SED. In particular, we showed that the apparent

sizes of galaxies are non-negligible to at least z ≈ 1, so that it is important to

take into account this effect when determining the completeness.

The high number of filters adopted by the ALHAMBRA Survey makes the

definition of detection (and consequently of completeness) a challenging topic.

The adopted strategy consists in detecting objects on the image (called the deep

image) resulting from the sum of single frames (of the same field) among a wide

range of filters, satisfying constraints about seeing and transparency conditions

during observations.

The first method we developed is totally based on a simulation of the in-

strumental apparatus (telescope+camera+detector) used for the observations. In

order to grant a higher level of detail in the estimation of the signal-to-noise ratio

for the simulated extended objects, we implemented a statistical correction to the

measure of the flux related to the apparent area covered by the extended source.

The second novel method is a Monte Carlo analysis based on real data. Our

approach tries to reproduce the way the deep image is created and how the de-

tection is performed on it. The completeness is computed on the basis of the
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recovery fraction of copies of real objects adopted as templates, whose flux and

apparent size have been rescaled in order to match a grid of realistic values as a

function of redshift.

The comparison between the analytic and the Monte Carlo methods revealed

that the analytic way is a fast and quite accurate procedure for determining the

completeness. However, the difference with the Monte Carlo method for z < 1

stressed the importance of taking full consideration of the luminosity profiles of

objects linked to the apparent sizes and morphological type of objects.

The Monte Carlo method, making full use of real data, as opposed to the

methods used so far in surveys like COMBO-17 or COSMOS which instead adopts

at most a set of artificial luminosity profiles for the extended objects, is able to

produce more reliable limits to the source detection completeness measurement.

In addition, the full information about the completeness levels as a function of

intrinsic parameters allows to easily apply corrections to statistical estimators

of the galaxy population like the Luminosity Function (LF), thus allowing to

reliably deal with intrinsically fainter objects. Part of the above conclusions were

presented with a poster at the conference Harvesting the desert : the universe

between redshift 1 and 3, held in Marseille, 2009.

The above results were tested using a preliminary catalogue from the ALHAM-

BRA survey. The luminosity function was computed in three different redshift

bins and for the three main classes of galaxies, i.e. elliptical, spiral and star-

burst. The application of completeness corrections allowed us to measure the

LF one magnitude deeper than the VVDS survey - a spectroscopic survey with

similar apparent magnitude limits.

The bright-end of the global LF shows little to no evolution from z � 0.45 to

z � 1.25, although a more solid analysis of the faint end would require deeper

data, especially for the higher redshift bin. Similarly to the global LF, also the

LF of elliptical galaxies does not show any signicant evolution, in agreement with

the fact that the bright-end of the global LF is populated by red objects. The

LF of spiral galaxies shows marked evolution, possibly in the luminosity domain,

from z � 0.45 to z � 0.8, with the LF shifting towards brighter magnitudes with

z, while in the two highest redshift ranges the two LFs look similar. Starburst

galaxies present the clearest signs of evolution in all the three redshift ranges,

although determining whether it is luminosity or number density evolution would
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7. Conclusions

require additional analysis. The above conclusions were also supported by rest-

frame color-magnitude diagrams on the same sample.

The study of the evolution of the LF was extended to the rest-frame J and H

bands up to z = 3.5. This was the result of the analysis of three publicly available

catalogues from the MUSYC, FIRES and FIREWORKS projects. The analysis

allowed for the first time to measure the rest-frame H-band LF of field galaxies in

the redshift interval z ∈ [1.5, 3.5]; at the same time, the larger volume allowed to

improve the measurement of the bright end of the LF significantly in one of the

highest redshift bin.

We analyzed the evolution of the Schechter function parameters as a function

of redshift, making full use of the data available from the literature. We found

that the faint end slope α of the LF is nearly constant over the whole redshift

range and that φ∗ decreases by a factor of ≈ 10 from z = 0 to z = 1.75, and

by a factor of ≈ 3 to z = 3.25. We introduced a parameterization based on an

exponential form for the evolution of φ∗ as a function of z. The fit of this function

to the available data shows good agreement, especially for the rest-frame J-band,

where more data from the literature are available in the redshift range z ∈ [0, 1],

complementing our measurements at z > 1.5. The results of this work have been

accepted for publication in Monthly Notices of the Royal Astronomical Society

(Stefanon and Marchesini, 2011).

On the spectroscopic side, we developed a different method for the analysis

of spectroscopic data, akin in spirit to the one used in X-ray astronomy and also

in photometric resdhift techniques. This method consists in generating simulated

two-dimensional spectra from template spectra of known characteristics, and de-

ciding which one fits the real data best, choosing the best-fit parameters as the

solutions to the problem. This method was used to analyze a very low signal-

to-noise spectrum of the afterglow of the very distant GRB090423, showing that

it is possible to extract information from this kind of data, more than is usu-

ally assumed. Our best result at 1σ level (z = 8.40+0.05
−0.02) is slightly higher than

previous results using the same data or data from other sources, although still

compatible well within the 2σ confidence level. We consider our confidence inter-

vals to be reliable, given the full analysis of the noise characteristics performed in

this work. This method was published in Astronomy and Astrophysics (Stefanon,

Fernandez-Soto and Fugazza, 2011).
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Future work

We have started a spectroscopic campaign to study the high redshift (z > 3)

population of massive galaxies (M∗ � 3× 1011M⊙). In particular we will analyze

the spectra of C1-23152, a very massive galaxy at z = 3.3, whose observations

are already queued for the end of 2011-beginning of 2012 at the Gran Telesco-

pio Canarias (GTC) with the OSIRIS instrument. The resulting rest-frame UV

spectra will allow us to study the Lyman α emission, to determine the presence

of an AGN, and to measure superwind outflows through the comparison of UV

absorption lines and Lyman α emission line.

We will also make use of a composite NIR-selected sample of galaxies built

from several multi-wavelength surveys, all having very high-quality UV to mid-

infrared photometry, to improve the rest-frame optical and NIR measurement of

the evolution of the LF and LD for 1 < z < 4. The catalogue is composed by the

ultra-deep Faint InfraRed Extragalactic Survey (FIRES), the Great Observatories

Origins Deep Survey (GOODS), the NEWFIRM Medium-Band Survey (NMBS),

the ultra-deep NICMOS observations over the HDF-North (HDFN) GOODS field,

the ultra-deep WFC3/IR observations taken as part of the HUDF09 program over

the Hubble Ultra-Deep Field (HUDF), and the wide-area WFC3 Early Release

Science (ERS) observations over the CDF-South GOODS field, and provides red-

shift information for over 20000 galaxies distributed on an area of 1600 arcmin2.

The forthcoming official release of the ALHAMBRA catalogue will allow to

complement the above measurements with rest-frame optical LF and LD mea-

surements up to z = 1.5. Spitzer IRAC images are already available for half the

total area covered by the ALHAMBRA survey. The addition of the IRAC pho-

tometry will also allow us to improve the photometric redshifts for the objects in

the overlapping regions and to extend the study of the LF to the rest-frame NIR

bands, with minimal dependence on the spectral energy distribution models.
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A
Resumen del trabajo de tesis

A.1 [Cap. 1] Introducción

El estudio de las propiedades f́ısicas del Universo como un todo requiere observa-

ciones de una región de cielo de tamaño significativo, que generalmente se define

con el término cartografiado. El paso sucesivo es extraer, desde las imágenes

obtenidas a través de los telescopios, cuanta mas información posible, y con el

mayor grado de confianza posible.

A.1.1 Ĺımites de detección

Cuando se analizan imágenes astronómicas, tenemos que ponernos delante del

hecho que la razón señal-ruido (RSN) de cada objeto depende del flujo total que

podamos recuperar de él. Este hecho lleva a la determinación de un ĺımite de

detección. Aunque podamos pensar en primera partida que ese valor dependa

unicamente del tiempo total de exposición, de hecho existe un tiempo ĺımite de

exposición (que depende del conjunto telescopio-instrumentación) pasado el cual

no hay conveniencia en extender el tiempo de exposición, ya que la RSN sólo

tendrá un pequeño aumento. La RSN depende, además del tiempo de exposición,

de la intensidad de la fuente y del fondo. La razón entre estas dos intensidades

determina dos regimenes: cuando la fuente es más luminosa que el fondo se habla

de regimen limitado por los fotones, mientras que si el fondo es mas luminoso que

la fuente se habla de regimen limitado por el fondo.
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A.1.2 Efectos observacionales de selección

El estudio del Universo a través de imágenes muy profundas puede llevar a resulta-

dos discordantes sobre la naturaleza de la población de galaxias y de su evolución

con el tiempo cósmico si no se tienen en debida cuenta los efectos de selección.

El principal efecto de selección es el que depende directamente del flujo. De-

bido a este efecto, solo podemos tener informacón sobre los objetos más luminosos

con el aumento del desplazamiento al rojo, reduciendo el numero total de obje-

tos detectados en un campo. Este efecto depende de tres factores principales:

condiciones de observación, propiedades intŕınsicas del objeto y parámetros cos-

mológicos. Cuando desperfectos f́ısicos de la CCD u objetos brillantes impiden la

detección de objetos se habla de selección espacial.

A.1.3 Cartografiados multi-banda

Los cartografiados multi-banda consisten en la observación de una región de cielo

extensa en un conjunto de filtros fotométricos. En estudios de cosmoloǵıa este

tipo de cartografiado lleva la ventaja sobre su equivalente espectroscopico de que,

gracias a las técnicas de recuperación para desplazamientos al rojo, se puede

obtener información sobre objetos más debiles.

En este marco, entre los varios proyectos, destacan el Hubble Deep Field, el

cartografiado que dio origen a una serie de los cartografiados más profundos jamás

observados, el proyecto COMBO-17, un cartografiado de un grado cuadrado de

cielo, observado en 17 filtros de banda media, el SDSS, un cartografiado en 5

filtros que cubre más de 8000 grados cuadrados de cielo, y ALHAMBRA, un

cartografiado que cubre 4 grados cuadrados de cielo, en 20 filtros ópticos contiguos

más los 3 estandares del infrarrojo cercano.

A.1.4 Finalidades de esta tesis

La finalidad principal de esta tesis es la exploración del rango de fuentes débiles,

tanto desde el punto de vista fotométrico, como espectroscópico. En el marco

fotométrico, determinaremos los limites fotométricos en la observación de galaxias,

en función del tipo espectral, de su magnitud absoluta y de su distancia. La

determinación de este limite es importante para estudios de tipo estad́ıstico de
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poblaciones estelares. Aplicaremos nuestros resultados al calculo de la función de

luminosidad de poblaciones de galaxias observadas por ALHAMBRA y MUSYC.

En el marco espectroscópico, desarrollaremos un método para la determinación

de parámetros intŕınsicos y de sus incertitumbres en imágenes con muy baja RSN,

aplicando este procedimiento al destello de rayos gamma más lejano observado a

la fecha de hoy.

A.2 [Cap. 2] Medida de magnitudes absolutas

La distribución de las distancias de los objetos astronómicos hace que el análisis de

los parámetros directamente observados a través de los telescopios sea de interés

limitado para comprender la f́ısica del Universo. El parámetro clave que permite

obtener observables intŕınsicos es la distancia del objeto desde la Tierra, o, de

manera equivalente, su desplazamiento al rojo z.

A.2.1 Magnitudes absolutas y correcciones K

La magnitud aparente de un objeto con distribución espectral de enerǵıa (DEE)

fν(ν0), recibida a través de un filtro R(ν0) se puede escribir como:

mo = −2.5 log

��
dν0
ν0

fν(ν0)R(ν0)�
dν0
ν0

gν(ν0)R(ν0)

�
(A.1)

donde g es una función que depende del sistema fotométrico adoptado.

La magnitud absoluta se define como la magnitud que tendŕıa un objeto si

estuviera a una distancia fija de 10 parsec. Su expresión es:

Me = mo − 5 log(DL)− 25−Ko→e(z,DEE) (A.2)

dónde DL es la distancia de luminosidad y Ko→e(z,DEE) la corrección K, que

usando las informaciones de desplazamiento al rojo z del objeto y de su DEE

permite reconstruir el flujo en un filtro elegido e a partir desde observaciones

hechas en un filtro o. A partir de las relaciones entre el flujo y la magnitud

absoluta es posible obtener una expresión exacta para la corrección K.

Otro aspecto fundamental en el cálculo de magnitudes absolutas para objetos
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extra-galácticos es la absorción por el medio intergaláctico. Los valores de ab-

sorción utilizados en nuestro trabajo son el resultados de un ajuste a absorciones

medidas desde observaciones de cuásares, recopiladas por J. Webb.

Correcciones K con DEE

El cálculo de la magnitud absoluta con el método de las correcciones K depende

fuertemente de las DEE utilizadas. La disponibilidad en el cartografiado de AL-

HAMBRA de una consistente cantidad de filtros en banda media permite también

implementar otros métodos. El primero consiste en utilizar como filtro de obser-

vación o el filtro de ALHAMBRA que más se acerque a la longitud de onde central

del filtro en el que queremos la magnitud absoluta desplazado por el factor que

corresponde a la distancia del objeto, permitiendo reducir el peso de la DEE, que

depende de modelos de formación estelar.

Combinación lineal de una base de filtros

El hecho que los filtros de ALHAMBRA son de banda media y, en general, las

magnitudes absolutas usadas están referidas a filtros de banda ancha, permite

calcular las magnitudes absolutas como suma pesada de los flujos que el objeto

tiene en los filtros de ALHAMBRA que cubren el filtro en banda ancha corre-

spondiente a la distancia al objeto. El calculo de los pesos fue implementado en

dos maneras distintas. La primera consiste en un procedimiento de χ2 entre el

perfil del filtro de referencia y la suma pesada de las eficiencias de los filtros de

ALHAMBRA. El segundo método, que se puede considerar como una evolución

geométrica del primero, considera al conjunto de los filtros de ALHAMBRA como

una base ortogonal. El cálculo de los coeficientes de los filtros, entonces, se reduce

a calcular el producto escalar entre el filtro de referencia y cada elemento de la

base.

Comprobamos la calidad de reconstrucción de filtros en dos maneras: primero

confrontamos las magnitudes aparentes reconstruidas en los 5 filtros Sloan para

objetos en un campo de ALHAMBRA que también tiene cobertura en el SDSS.

Las diferencias entre los dos valores muestran pequeños desplazamientos, menores

en los filtros más rojos. Otra prueba se hizo generando magnitudes aparentes

sintéticas a partir de magnitudes absolutas y analizando las diferencias entre las
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dos magnitudes absolutas. Los resultados muestran que hay offsets del orden de

0.03 mag para los tipos más rojos, mientras que el offset es cerca de 0 para los

tipos más azules.

Discusión

Confrontamos los errores en magnitud absoluta, calculados con el método an-

terior, con estimaciones de errores en magnitudes absolutas procedentes de los

errores en el cálculo de los desplazamiento al rojo con medidas fotométricas. Las

incertidumbres en ese valor son del orden de ∆z/(1+z) � 0.05, uno o dos órdenes

de magnitud más altos que los errores en z por medidas espectroscópicas, se pro-

pagan al calculo de la magnitud absolutas produciendo errores de entre medio

y un orden de magnitud más altos respecto a los errores por reconstrucción de

filtros. Una comparación analoga se hizo suponiendo que el programa de cálculo

de los z cogiera una DEE cercana a la original. En este caso los errores en mag-

nitud absoluta son de hasta 0.5 mag, aunque hay que notar que este caso es de

frecuencia muy baja.

A.2.2 Cálculo de la función de luminosidad

Uno de los descriptores estad́ısticos de la población de galaxias es la densidad

numérica de galaxias por unidad de magnitud, llamada función de luminosidad

(FL). A lo largo de los años se han desarrollado varios métodos para su cálculo.

En este trabajo, implementamos tres de los métodos más usados.

El primer método es el Vmax, basado en el cálculo, para cada galaxia, del

máximo volumen comóvil en que la galaxia puede estar sin salir de los ĺımites fo-

tométricos y de distancia que caracterizan el catálogo de datos usado. El segundo

y tercer métodos se basan en la maximización de la probabilidad de que cada

galaxia se encuentre efectivamente en el catálogo. Esta probabilidad se puede

calcular asumiendo una expresión paramétrica para la distribución de galaxias

con la magnitud absoluta (método de Schechter) o considerando una distribución

discretizada para la función de luminosidad (método SWML).

Estos últimos dos métodos no permiten determinar la normalización de la FL

a la vez que su forma. Por tanto hay que determinar este valor con métodos

distintos, disponibles en la literatura.
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A.3 [Cap. 3] Determinación de la completitud en la

detección de objetos

A.3.1 Introducción

Las imágenes tomadas por telescopios nunca contienen toda la información sobre

todos los objetos que f́ısicamente se encuentran en esa región de cielo. Eso depende

de varios factores que se pueden organizar dentro de tres categorias: dificultades

prácticas de los ĺımites de magnitud, dependencia del color de los objetos y depen-

dencia del desplazamiento al rojo. La primera categoŕıa comprende efectos como

la agitación de la atmósfera, toda la electrónica de los dispositivos usados en la

toma de los datos y de los algoritmos usados en su reducción. Objetos con colores

muy extremos respecto al filtro en que se hizo la detección de las fuentes serán

incluidos en el catálogo final con muy poca probabilidad. Este hecho constituye

la segunda clase de factores. En la tercera caen los efectos de cambio de color

observado causados por el desplazamiento al rojo de las fuentes extra-galácticas.

En la determinación de las propiedades f́ısicas de los objetos, entonces, un

rol importante juega la medida de estos efectos de selección sobre la muestra

completa. El método empleado por ALHAMBRA para la detección de las fuentes,

basado en la construcción de una imagen profunda resultado de la suma de las

mejores imágenes en varios filtros, hace que la detección sea muy sensible a las

tres categorias de selección, y entonces la determinación de la completitud requiere

una atención particular.

A.3.2 Descripción de los métodos

La finalidad principal de este trabajo ha sido la de definir e implementar un pro-

cedimiento automatizado para la medida de la completitud en la detección de

fuentes en función de z, del tipo espectro-morfológico y de la magnitud abso-

luta de cada galaxia. Para que el procedimiento fuera lo más parecido a lo que

efectivamente está implementado por la pipeline de ALHAMBRA con la imagen

profunda, estimamos un valor de peso medio por cada filtro, que utilizamos luego

para la creación de una imagen profunda media.
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El método anaĺıtico

El primer método que implementamos se basa en la implementación del camino

de un fotón desde que entra en la atmósfera hasta la producción de electrones

por efecto fotoeléctrico en la CCD. El numero de foto-electrones recolectados

por la CCD es usado para calcular tanto el flujo total en electrones como el error

poissoniano asociado. De manera analoga a los algoritmos de detección de objetos

en imágenes astronómicas, definimos como método de detección el cálculo del

número de desviaciones estándares asociadas al objeto. De esta manera una fuente

se puede considerar detectada si el numero de desviaciones estándares supera un

dado umbral. En nuestra implementación utilizamos como umbral una detección

a nivel de 3σ, la misma adoptada por el proceso oficial de reducción de datos de

ALHAMBRA.

Para que la simulación considerara también los efectos debidos a la extensión

de los objetos (y consecuentes efectos de selección por brillo superficial), en el

cálculo del ruido poissoniano incluimos un término proporcional a la ráız cuadrada

del número de ṕıxeles cubiertos por el objeto de interés.

La simulación Monte Carlo

El segundo método que implementamos para la determinación de la completitud

se basa en una simulación de tipo Monte Carlo, utilizando imágenes reales.

A partir de las 20 imágenes en los filtros ópticos, elegimos una galaxia espiral

y una eĺıptica, suficientemente grandes y aisladas que utilizamos como modelo,

quitando la mediana del nivel de fondo desde los modelos. Luego se definió un

conjunto de z en el que correr la simulación. Las imágenes de las galaxias se

re-escalaron para que el tamaño aparente fuera similar al de las correspondientes

galaxias al dado z. El flujo de cada imagen de galaxia se ajustó a partir del valor

de magnitud absoluta M elegido y según la DEE correspondiente a la galaxia.

El modelo renormalizado y re-escalado se copió en 40 posiciones aleatorias

distintas (aunque las mismas para todos los filtros), en la imagen de cada filtro.

Las imágenes aśı obtenidas se multiplicaron por el correspondiente factor de peso

y sumaron, obteniendo una buena aproximación de una imagen de detección pro-

funda, con las 40 galaxias añadidas. Sobre esta imagen se corrió el programa

SExtractor, con los mismos parámetros usados por la pipeline estándar, para re-
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cuperar todas las fuentes. La comparación entre los objetos recuperados y los

añadidos nos proporciona el valor de completitud en función de la magnitud ab-

soluta. Estos datos fueron ajustados por una función de Fermi, obteniendo aśı

una parametrización de la completitud para un dado punto en el plano (z, M ,

DEE). Este procedimiento se repitió para un conjunto de valores de 0.2 < z < 2.0

y −24 < M < −15, por cada uno de los dos modelos.

El algoritmo de arriba se aplicó también a dos casos más. En el primero, en lu-

gar de la imagen de una galaxia, se ha usado como modelo la de una estrella. Esto

nos ha permitido obtener una medida de los ĺımites de completitud en magnitud

aparente, para objetos puntuales. Ejecutar este mismo proceso sobre imágenes en

el filtro J nos permitió comparar nuestros resultados con una medida publicada

con datos similares, encontrando buen acuerdo. En la segunda implementación,

en lugar de generar la imagen profunda, se corrió SExtractor en cada una de las

imágenes en cada filtro.

A.3.3 Conclusiones

Comparando el método anaĺıtico con la simulación Monte Carlo encontramos un

buen acuerdo para z > 1, donde las diferencias entre las magnitudes correspon-

dientes al nivel de completitud no superan las 0.3-0.4 mag. En el caso z < 1,

los dos métodos muestran diferencias más marcadas, con el método anaĺıtico pro-

porcionando magnitudes absolutas más débiles que el método Monte Carlo. Esta

diferencia se puede imputar a la simple implementación del tamaño angular de

los objetos en el método anaĺıtico, resultando en una posible sobre-estimación de

la profundidad alcanzada.

Consideramos el método Monte Carlo en la imagen profunda un mejor proceso

de reconstrucción del precedimiento efectivamente implementado por la pipeline

de ALHAMBRA. Los resultados obtenidos con este método se pueden considerar

una determinación de la completitud en detección más robusta y fiable.

Sin embargo, una completa determinación de la completitud no puede pre-

scindir de la capacidad que tenemos de recuperar los desplazamientos al rojo

fotométricos. Estos dependen en primer lugar de la calidad fotométrica de los

datos, que depende de z, del tipo morfológico y de la magnitud absoluta de la

fuente.
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A.4 [Cap. 4] Función de luminosidad con datos AL-

HAMBRA

A.4.1 Introducción

Utilizamos los catálogos de ALHAMBRA para testear los resultados de la deter-

minación de la completitud en detección en el cálculo de la función de luminosidad.

Los catálogos usados son la versión de marzo2011 e incluyen información fo-

tométrica en los 20+3 filtros y medidas de desplazamiento al rojo para 39 de los 64

catálogos totales, cada uno correspondiente a una CCD, para un total de 501865

fuentes. La profundidad fotométrica media alcanza AB ≈ 24.5

A.4.2 Separación estrellas-galaxias

La separación entre estrellas y galaxias se basó en un diagrama color-color, con-

struido utilizando el filtro centrado a 4585Å(similar a un B), J y K. Para que la

muestra fuera más solida, incluimos una selección con el parámetro odds, propor-

cionado por el programa da calculo de los z. También utilizamos la información

sobre el tiempo de exposición total para cada objeto para excluir de nuestra mues-

tra los objetos que, quedando en los bordes de las imágenes, tienen un menor

tiempo de exposición, degradando la razón señal-ruido. Al final del proceso de

selección, la muestra está formada por 139460 objetos con redshift entre 0.01 y 7,

y zmed = 0.9.

A.4.3 Magnitudes absolutas

Las informaciones incluidas en los catálogos contienen tambien una medida del

tipo espectral de cada objeto, de manera que podemos utilizar esa información

para calcular las correcciones K necesarias. Para mejorar el proceso, en el cálculo

de las magnitudes absolutas utilizamos como magnitud aparente de inicio la rel-

ativa al filtro que más se acerca a la banda en reposo desplazada al redshift de la

fuente. Las magnitudes absolutas fueron calculadas para las bandas Sloan r y u.
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A.4.4 Completitud en detección

Por cada uno de los parametros que describen la función de Fermi utilizada para

calcular la completitud, se introdujo un ajuste con una función. Esto nos permite

una determinación más precisa de la completitud en función de z.

El inverso del valor de completidud relativo al desplazamiento al rojo de cada

galaxia fue usado como peso tanto en el cálculo de los diagramas color-magnitud,

como en la medida de la función de luminosidad.

A.4.5 Diagrama color-magnitud

Construimos los diagramas color-magnitud usando las magnitudes absolutas Mr

y Mu, para tres intervalos de redshift: 0.3 < z < 0.6, 0.6 < z < 1.0 y 1.0 < z <

1.5 usando primero el conjunto de datos sin corrección por completitud y luego

añadiendo la corrección. La comparación de los diagramas muestra una neta

evolución en luminosidad de la población de galaxias más azules en el sentido

de hacerse más luminosas con z, mientras que las galaxias más rojas parecen no

deplazarse, aunque la identificación de esta población es más dif́ıcil en el rango

de redshift más alto.

A.4.6 Funciones de luminosidad

Las funciones de luminosidad se calcularon en los mismos rangos de redshift adop-

tados para los diagramas color-magnitud, aplicando la correción por completitud.

En cada rango se midió la FL global y la relativa a las tres poblaciones principales:

eĺıpticas, espirales y starburst.

Nuestra FL global en los 3 rangos está en buen acuerdo con FL publicadas en

la literatura, lo que nos hace confiar tambien en las correcciones por completitud,

permitiendo alcanzar magnitudes absolutas más debiles en hasta 1.5 mag.

La comparación de las FL en los rangos de redshift nos permite decir que:

• El extremo luminosa de la FL global muestra muy poca evolución entre

z � 0.45 y z � 1.25. Un analisis mas detallado de la cola debil requiere

datos mas profundos, en particular para el intervalo de redshift mas alto;

• La FL para las galaxias elipticas, como para la FL global, no muestra signos
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evidentes de evolución, en acuerdo con el hecho de que la cola luminosa de

la FL está poblada por objetos muy rojos;

• La FL para las galaxias espirales muestra una evolución evidente, probable-

mente en el dominio de luminosidad, desde z � 0.45 hasta z � 0.8, con la

FL que se desplaza hacia magnitudes mas luminosas con z, mientras que en

los dos rangos de redshift mas altos las FL aparecen similares;

• La población de galaxias starburst es la que presenta mayor evolución en los

tres rangos de redshift, aunque un análisis mas detallado es necesario para

definir si la evolución es sobre todo en luminosidad o en densidad.

A.5 [Cap. 5] Evolución de la FL en bandas J y H

desde z = 1.5 hasta z = 3.5

A.5.1 Introducción

En el actual modelo cosmológico de concordancia, las galaxias son el resultado

de agrupamientos continuos de halos de materia oscura, que gúıan el ensamblaje

de mateŕıa barionica. La función de luminosidad (FL) de las galaxias es entonces

una herramienta muy útil para el estudio de las poblaciones de galaxias y de su

evolución en el tiempo. En particular la FL en bandas infrarrojas, siendo menos

sensible a los efectos de absorción por el polvo interestelar y siendo dominada

por la luz de estrellas más viejas, proporciona una estimación mejor de la tasa de

formación de las galaxias, presentándose como una mejor tabla de prueba para

los modelos de formación de halos.

A.5.2 Descripción de los datos

Para este trabajo hemos utilizado un conjunto de siete catálogos de datos disponibles

publicamente y procedentes de tres distintos cartografiados: el MUlti-walelength

Survey by Yale-Chile (MUSYC), el Faint InfraRed Extragalactic Survey (FIRES)

y el GOODS Chandra Deep Field-South (FIREWORKS).

205



A.5. [Cap. 5] Evolución de la FL en bandas J y H desde z = 1.5 hasta
z = 3.5

El cartografiado MUSYC consiste en cuatro campos de 10� × 10� arcmin2 (el

Hubble Deep Field South 1 y 2 y los campos alrededor de SDSS-1030 y CW1255),

observados en bandas ópticas (UBVRIz), en el infrarrojo cercano (J, H, y KS) y

por el telescopio Spitzer (bandas a 3.6, 4.5, 5.8 y 8.0µm). Los ĺımites al 90% de

detección de fuentes puntuales se encuentran en KS � 23 AB. El catálogo final

contiene 9037 fuentes sobre un area de 372.7 arcmin2.

FIRES se compone de dos campos, el Hubble Deep Field South y el campo

alrededor de un cúmulo de galaxias a z = 0.83. La fotometŕıa existe en las bandas

ópticas U,B,V,WFPC2 V606 y I814, en el infrarrojo cercano J, H y Ks y com-

plementada por datos Spitzer en los 4 canales de IRAC centrados en 3.6, 4.5, 5.8

y 8.0µm. Estos son los catálogos más profundos utilizados en nuestro trabajo,

llegando a una profundidad de KS � 25AB para el HDF-S. En total los dos

catálogos proporcionan informaciones sobre 715+1547 fuentes, en un área de 4.5

y 21 arcmin2 respectivamente.

El catálogo FIREWORKS se compone de datos disponibles públicamente del

GOODS-CDFS. La información fotométrica es disponible en las bandas U38,B,

V, R, I, J, H,K y los 4 canales Spitzer. La profundidad llega a KS � 24 AB. El

catálogo se compone de 3559 objetos sobre un área de 113 arcmin2.

Los campos MUSYC HDFS-1, HDFS-2 y FIRES HDFS tienen una parte que se

sobrepone, aśı que tuvimos que excluir los objetos repetidos desde los catálogos

menos profundos. Además, seleccionamos solo las fuentes que presentaran fo-

tometŕıa en todas las bandas infrarrojas, de manera que nuestras magnitudes

absolutas se apoyaran en la menor parte posible en el conjunto de DEE.

Calculamos los desplazamientos al rojo fotométricos utilizando el programa

EAZY y probando cuatro conjuntos distintos de DEE: el conjunto que viene por

defecto con EAZY, el mismo, pero con lineas de emisión añadidas, un conjunto

basado en los modelos de Coleman., Wu y Weedman, y el conjunto EAZY al que

se añadiél modelo de una galaxia joven muy enrojecida. La comparación con los

z espectroscópicos disponibles para el 6% de las fuentes nos sugerió utilizar los z

obtenidos con los modelos EAZY.

La separación entre estrellas y galaxias se basó en el diagrama color-color (U-

J)-(J-K), acompañado por un chequeo de los χ2 con modelos de DEE estelares y
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de EAZY.

A.5.3 Métodoloǵıa

Las FL se calcularon con los tres métodos más comúnmente usados: Vmax, SWML

y STYML. Debido al relativo pequeño tamaño del campo total, la determinación

de las incertitumbres debidas a la varianza cósmica tienen un rol importante.

Estas se midieron según una receta publicada por Moster, basada en simulaciones

semi-analiticas.

A.5.4 Funciones de luminosidad en J y H

Calculamos las FL en las banda de reposo J y H, y en 4 intervalos de desplaza-

miento al rojo: 1.5 < z < 2.0, 2.0 < z < 2.5, 2.5 < z < 3.0 y 3.0 < z < 3.5.

El número total de objetos utilizados es de 996, 419, 298 y 103. Comparamos la

FL en la banda J y para 1.5 < z < 2.0 y 2.5 < z < 3.0 con FL publicadas en

la literatura. Nuestras medidas discretizadas están en buen acuerdo con las pub-

licadas en los dos rangos de redshift, aunque las parametrizaciones de Schechter

muestran diferentes faint-end slopes, sobre todo a redshift más alto. Nuestra de-

terminaciones de la FL en H son la primeras en este intervalo de z.

Para estudiar la evolución de las FL, hicimos un ajuste con funciones es-

tablecidas ad-hoc sobre los parámetros de Schechter α,M∗,φ∗ en función de z,

incluyendo tambien todas las determinaciones encontradas en la literatura. En-

contramos que φ∗ decrece en un factor 10 desde z = 0.1 a z = 2; M∗ después de

hacerse más brillante hasta z = 2, disminuye de luminosidad, aunque de forma

menos acentuada. La determinación de una tendencia para α es más dif́ıcil, de-

bido a las grandes incertitumbres, aśı que decidimos considerarlo constante.

Utilizando tanto los parámetros de Schechter como nuestras parametrizaciones

también calculamos la densidad de luminosidad. El cálculo obtenido simplemente

desde la parametrización está de acuerdo con las estimaciones obtenidas a partir

de los puntos medidos. La evolución de la densidad de luminosidad muestra que

este observable se mantiene constante en el rango 0 < z < 1, seguido por una

cáıda constante, tanto en J como en H.
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Como último ejercicio, derivando nuestra expresión parametrica de la densidad

de luminosidad obtenida desde los parámetros de Schechter, calculamos la tasa de

formación estelar. Comparando con las estimaciones disponibles en la literatura,

obtenidas desde la densidad de luminosidad en UV, nuestras medidas son un factor

0.4-0.5 más bajas, sobre todo a z > 3, donde estaŕıamos extrapolando nuestros

datos. Aunque nuestra medida es más sencilla, estimando la tasa de formación

directamente como masa que se forma, las obtenidas por UV son más directas

porque se relacionan a las estrellas más jovenes, aunque necesitan modelos para

estimar la masa total que se va formando.

A.5.5 Conclusiones

Analizamos la evolución de las FL en las bandas de reposo J y H, obtenidas a

partir de catálogos públicos profundos. Las en banda H son las primeras medidas

hechas hasta redshift 3.5. Dada la menor sensibilidad de esta banda a los efectos

del polvo, la FL en banda H se propone como herramienta muy útil en el estudio

del ensamblaje de masa a lo largo del tiempo. Encontramos que la faint-end

slope se puede considerar constante en un rango 0 < z < 4; M∗ crece en función

de z para 0 < z = 2 y luego disminuye más suavemente; φ∗ decrece en todo

el rango. Introducimos una parametrización que nos ha permitido calcular la

densidad de luminosidad y la tasa de formación estelar, con un buen y razonable

acuerdo respectivamente con otras determinaciones desde la literatura. Nuestras

medidas de FL mejoraron considerablemente también la estad́ıstica en la medida

del estremo brillante de la FL.

A.6 [Cap. 6] Redshift espectrofotométricos: un nuevo

enfoque para la reducción de espectros a bajo

RSN y su aplicación a GRB090423

A.6.1 Introducción

La medición de los desplazamiento al rojo para objetos extra-galácticos es una

de las técnicas más importantes en astronomia. Sin embargo, también depende
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de manera cŕıtica de la calidad de los datos. Por su naturaleza, a veces es dif́ıcil

evaluar la calidad de los resultados, porque ha sido dif́ıcil medir cuantitativamente

los errores.

La manera estandar de reducir los datos prevee la extracción de los espectros y

su calibración en flujo y longitud de onda. Un enfoque diferente seŕıa el de escoger

un modelo que represente el mejor ajuste en dos dimensiones. Este procedimiento

necesita unas condiciones:

• El espectro intŕınsico de la fuente tiene que estar incluido en la familia de

modelos usados. Este proceso tendŕıa bastantes dificultades para cuásares

o galaxias observadas a media resolución, por la dispersión intŕınsica entre

los tipos diferentes;

• Se tienen que conocer bien las caracteŕısticas del instrumento. Éstas in-

cluyen la eficiencia total en función de la longitud de onda, todas las distor-

siones geométricas en la dirección espectral y, claramente, la posición exacta

del objeto en la imagen.

• El ruido necesita una modelización adecuada, indispensable para medir de

la manera mas precisa posible no solo los valores de los parámetros, sino

también las incertidumbres asociadas.

A.6.2 Estallidos de rayos gamma

Los estallidos de rayos gamma (ERG) son eventos muy breves que ocurren con

una frecuencia de unos pocos al d́ıa. En un tiempo muy breve, del orden de unas

décimas de segundos, su brillo los convierte en las fuentes de rayos gamma más

brillantes de todo el cielo.

El modelo más comunmente aceptado para un similar motor central, capaz

de producir tan alta enerǵıa, prevé el acontecimiento de un evento estelar cat-

acĺısmico, como puede ser el colapso del núcleo de una estrella masiva.

Dependiendo de la duración de la post-luminiscencia, los ERG se pueden di-

vidir en dos poblaciones: largos y cortos. Los ERG largos son generados por

estrellas masivas cuyo nucleo colapsa en un agujero negro. En cambio, los ERG

cortos son originados por la fusión de dos estrellas de neutrones o de una estrella

de neutrones y un agujero negro.
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A.6.3 Descripción de los datos

Para desarrollar nuestro método, utilizamos los datos relativos al estallido de

rayos gamma GRB090423. Éste fue un ERG detectado por el satélite Swift el

23 de abril 2009. Ya desde las primeras observaciones se comprendió que deb́ıa

ser un objeto a muy alto z, con muy poca absorción por el polvo. Los datos que

utilizamos fueron tomados por el Telescopio Nazionale Galileo (TNG), utilizando

el espectrógrafo NICS en combinación con un prisma de Amici. El espectro cubre

el rango 0.8− 2.5µm, con una resolución de R ≈ 80. Cerca del espectro del ERG

hay también el espectro de una estrella, que ha sido utilizada como referencia en

la caracterización instrumental.

A.6.4 Descripción del método

Nuestro objetivo es el de reproducir el espectro de la post-luminiscencia del

GRB090423 de la manera más precisa posible y de reconstruir el equivalente es-

pectral de la función de ajuste de perfil como es generada cuando la luz atraviesa

la atmósfera, el telescopio, el instrumento, la óptica y llega al detector.

Creamos una libreŕıa de espectros modelos, basados en tres parámetros funda-

mentales: el desplazamiento al rojo, el exponente α del modelo espectral fν ∝ λα

y la columna de densidad total de hidrógeno neutro (NHI), que produce un mar-

cado perfil de ĺınea Lyman α saturada.

Utilizamos el espectro de una estrella brillante en la misma imagen para de-

terminar la eficiencia total del sistema, confrontando el espectro extráıdo con el

modelo de la libreria de Bruzual-Persson-Gunn-Stryker. El espectro de la estrella,

en el rango de longitudes de ondas observadas, es libre de caracteŕısticas espec-

trales dominantes. El espectro observado de la estrella fue utilizado también para

determinar las distorsiones a lo largo del eje de dispersión y la FWHM en función

de la longitud de onda.

Estimamos el ruido de la CCD analizando 7 regiones rectangulares con el

mismo tamaño, y cubriendo el mismo rango en la dirección de dispersión. Esti-

mamos el ruido en función de la longitud de onda utilizando cajas de 3x3 ṕıxeles

210



A. Resumen del trabajo de tesis

alrededor de cada uno de los ṕıxels en cada una de las cajas. El resultado de este

procedimiento fue la creación de una mini-imagen de ruido.

Se definió una rejilla de valores z,α y NHI y se creó un espectro sintetico

por cada punto del espacio definido. El espectro uni-dimensional se convirtió a

imagen 2D utilizando las propriedades obtenidas anteriormente. Finalmente, se

procedió a una evaluación del χ2 enrte el espectro 2D sintético y el espectro real,

usando la imagen de ruido como medida de la incertidumbre.

A.6.5 Resultados y conclusiones

Utilizamos la caracterización del instrumento obtenida en los pasos descritos en

el párrafo anterior para crear réplicas del espectro observado del ERG, para cada

uno de los modelos escogidos. En breve, escogimos un conjunto de valores de z,α

y N(HI) y los utilizamos para generar un espectro uni-dimensional. En fin, enro-

jecemos el espectro utilizando el valor de extinción galáctica que le corresponde,

E(B-V)=0.03. Luego este espectro es convertido a una imagen bi-dimensional,

usando la eficiencia medida, ajustando el eje de longitud de onda a la solución de

dispersión del prisma de Amici y convolucionándola en la direción espectral con

una función gausiana, según la FWHM medida a cada longitud de onda. Al final

se fuerza el espectro a que siguiera en la dirección espacial la traza medida por el

espectro de la estrella.

Cada realización se compara luego con la sección de la imagen que contiene

el espectro del ERG, a través un ajuste de χ2, donde la imagen de ruido se

corresponde a la que medimos.

El mejor ajuste encontrado a nivel de 1σ corresponde a z = 8.4+0.5
−0.2,α = 1.2+0.8

−0.3

y N(HI) = 1020.0 cm−2, calculamos las regiones de confianza en cada uno de los

parámetros. El valor de NHI no tiene ĺımite inferior; esta es una consecuencia

natural ya que para NHI≈ 1020cm−2 no existe el perfil saturado de la linea de

Lyα.

También se podŕıa utilizar el valor de la pendiente del espectro medida a partir

de la fotometŕıa infrarroja, como una condición a-priori de nuestro análisis. De

esta manera, utilizando el limite a 1 σ presentado en Salvaterra et al. (2009), se

obtendŕıa un limite más restringido para el redshift, aproximadamente z > 7.5 a
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un nivel de confianza de 2− σ.

Nuestros resultados aparecen ligeramente más elevados de los que se han pre-

sentados en la literatura tanto con los mismos datos como con otros conjuntos de

datos, aunque siempre compatible a nivel de 2σ. Consideramos fiables nuestros

intervalos de error, dado el análisis de las caracteŕısticas del ruido evaluadas en

este trabajo.

Este mismo procedimiento se puede aplicar a otros casos, donde la fuente

pertenece a una clase espectral de objetos bien definida, necesitandose la ex-

tracción de la máxima cantidad posible de información desde espectros con muy

baja calidad, como es el caso de ERG a alto z.

A.7 [Cap. 7] Conclusiones

En esta tesis exploramos el rango débil de un cartografiado cosmológico, tanto

desde el punto de vista fotométrico como espectroscópico.

En el marco del proyecto ALHAMBRA, implementamos dos distintos métodos

para la medida del nivel de completitud en la detección de objetos, en función del

tipo espectro-morfológico y del redshift.

El primer método está totalmente basado en la simulación del aparato instru-

mental (telescopio, cámara y detector) empleado para las observaciones.

El segundo método consiste en una simulación Monte Carlo basada en datos

reales. Nuestro enfoque intenta reproducir la manera en que se crea la imagen

profunda y como se hace la detección de los objetos en dicha imagen. Se obtiene

la completitud a partir de la fracción de objetos detectados cuyo flujo y tamaño

aparente se han previamente re-escalado para que representen los de galaxias

t́ıpicas a esos redshifts.

Los resultados obtenidos con los dos métodos anteriores se aplicaron a un

catálogo preliminar del cartografiado ALHAMBRA, para la medida de la función

de luminosidad en tres diferentes rangos de redshift y para las tres clases princi-

pales de galaxias. La aplicación de las correcciones en completitud nos permitió

medir la función de luminosidad llegando a una profundidad mayor de una magni-

tud respecto al cartografiado VVDS, un cartografiado espectroscópico con ĺımites

en magnitud aparente parecidos.
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El estudio de la evolución de la FL se extendió al rango infrarrojo, en las

bandas en reposo J y H, hasta redshift 3.5. Este fue el resutlado del análisis

de tres catálogos públicos desde los proyectos MUSYC, FIRES y FIREWORKS.

El análisis nos permitió medir por primera vez la FL en la banda H de reposo

de galaxias de campo en el rango de redshift z ∈ [1.5, 3.5]; al mismo tiempo,

el mayor volumen nos permitió mejorar de manera significativa la medida del

extremo brillante de la FL.

Desde el punto de vista espectroscópico, desarrollamos un método novedoso

para el análisis de espectros con baja razón señal-ruido, parecido a los utilizados

en el análisis de datos de rayos X. El método consiste en generar espectros bi-

dimensionales a partir de espectros modelos, seleccionando el que mejor reproduce

los datos observados a través de minimización de χ2. El método se aplicó en

concreto al caso del GRB090423, el GRB mś lejano observado hasta el momento,

demostrando que se puede extraer mas información de lo que generalemte se asume

desde este tipo de datos.

Trabajos futuros: Hemos empezado una campaña espectroscópica para es-

tudiar la población de galaxias masivas a alto redshift. En particular analizaremos

el espectro del objeto masivo C1-23152, una galaxia con masa M = 3×1011M⊙ a

redshift z = 3.3, cuya observaciones ya están programadas para finales de este año-

principio de 2012, con el Gran Telescopio Canarias, con el instrumento OSIRIS.

Los espectros medidos en el ultravioleta nos permitirán estudiar la emisión Ly-

man α para determinar la presencia de un AGN y medir los vientos interestelares

comparando las lineas de absorpción en UV con la de Lyman α.

Utilizaremos también las muestras de galaxias seleccionada en las bandas NIR,

obtenidas a partir de varios cartografiados multi-banda, para mejorar la medida

de la evolución de la FL y DL en el óptico y NIR de reposo para redshift entre 1

y 4. En total emplearemos datos de más de 20000 galaxias dentro de un área de

1600 arcmin2.

El catálogo final de ALHAMBRA, que será disponible en los próximos meses,

nos permitirá completar las medidas de la FL en el rango óptico hasta z = 1.5.

Además, se analizarán las imágenes tomadas por el instrumento IRAC del satélite

Spitzer disponibles para mitad del area cubierta por ALHAMBRA, para obtener

la fotometŕıa en bandas hasta 8µm . Esto nos permitirá por un lado mejorar las

medidas de redshift fotométricos para los objetos en los campos comunes, y por

213



A.7. [Cap. 7] Conclusiones

otro lado estudiar la evolución de la FL en el rango infrarrojo de reposo con una

dependencia mı́nima en los modelos de distribución espectral.
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