
ar
X

iv
:h

ep
-p

h/
00

02
26

4v
2 

 1
1 

A
pr

 2
00

0
hep-ph/0002264

FTUV/00-14
IFIC/00-15
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Abstract

Neutrinoless double beta (ββ0ν) decay is considered within bilinear R-parity
breaking supersymmetry, including the full one-loop corrections to the neutrino-
neutralino mass matrix. Expected rates for ββ0ν decay in this model are discussed
in light of recent atmospheric and solar neutrino data. We conclude that (a) tree-
level calculations for ββ0ν decay within the bilinear model are not reliable in the
range of parameters preferred by current solar and atmospheric neutrino problems.
And (b) if the solar and atmospheric neutrino problems are to be solved within
bilinear R-parity violating SUSY the expected rates for ββ0ν decay are very low;
the effective Majorana neutrino mass at most 0.01 eV and typical values being one
order of magnitude lower. Observing ββ0ν decay in the next round of experiments
therefore would rule out the bilinear R-parity violating supersymmetric model as
an explanation for solar and atmospheric neutrino oscillations, as well as any hier-
archical scheme for neutrino masses, unless new neutrino interactions are present.
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1 Introduction

Neutrino physics has entered a new era recently with the announcement by the Super-
Kamiokande collaboration of rather conclusive evidence for neutrino oscillations [1] in
atmospheric neutrino measurements. This experiment, together with the oscillation in-
terpretation of the long-standing solar neutrino puzzle [2] now provides important infor-
mation on neutrino masses and mixings and may-be the first look to physics beyond the
standard model [3,4].

However, neutrino oscillation experiments, while being extremely valuable, can not answer
two fundamental questions in neutrino physics. First, they are only sensitive to mass
squared differences and thus can not fix the overall mass scale of neutrinos. And, second,
due to the V-A nature of the weak interaction neutrino oscillations can not distinguish in
practice between Dirac and Majorana neutrinos. 4 Other experiments on neutrino masses
are needed in order to reconstruct the neutrino mass matrix. Neutrinoless double beta
decay is a prominent example of such kind of experiments.

Neutrinoless double beta (ββ0ν) decay has for a long time been known as a sensitive
probe for physics beyond the standard model (SM). Non-observation of ββ0ν decay has
been used to derive stringent limits on various extensions of the SM, like, for example,
left-right symmetric models [6], leptoquarks [7] and supersymmetry [8,9,11]. However,
ββ0ν decay has yet to be observed experimentally.

Although there might exist a variety of mechanisms inducing ββ0ν decay in gauge theories,
one can show that whatever the leading mechanism is at least one of the neutrinos will be
a Majorana particle [12]. The observable in ββ0ν decay, the effective Majorana neutrino
mass, is in general a superposition of different mass eigenstates:

〈mν〉 =
′∑

j

U2
ejmj , (1)

where Uej characterizes the couplings of the mass-eigenstate neutrinos to the electron in
the charged current and the prime indicates that the sum runs over light mass eigenstates
only. If neutrinos have non-zero mass, also non-zero mixing among them has to be ex-
pected, so that in general 〈mν〉 does not coincide with the electron neutrino mass probed
in tritium beta decay.

Currently the most stringent experimental bound [13] gives an upper limit of the order of
〈mν〉 ≤ O(0.2 − 0.5) eV . There exist two independent proposals for future experiments
which might improve the sensitivity on 〈mν〉 by up to one order of magnitude or more
[14,15].

Here, we concentrate on the calculation of expected rates for ββ0ν decay within bilinear
R-parity violating (BRPV) SUSY. While ββ0ν decay has already been considered in the

4 The oscillations which are Dirac–Majorana–sensitive must violate lepton number by two units
and are helicity suppressed [5]
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literature before within the explicit BRPV SUSY model [9–11], it has so–far only been
treated in lowest order of perturbation theory considering the neutrino-neutralino mass
matrix only at the tree-level approximation. Here, we take into account the full one-loop
corrections to the neutrino-neutralino mass matrix and especially concentrate on those
regions in parameter space in which the model can solve simultaneously the solar and
atmospheric neutrino problems [16].

We have found that there exist important regions in the parameter space of the model –
namely those where the BRPV SUSY model can account for the solar neutrino anomaly
through matter–enhanced oscillations – where the tree-level estimates for ββ0ν decay
fail rather badly. Thus the one-loop corrections considered here play an important role
in BRPV SUSY. Their inclusion is definitely necessary in order to predict reliably the
effective Majorana neutrino mass relevant for ββ0ν decay in a way consistent with the
results from present oscillation experiments.

This paper is organized as follows. In the next section we set up the notations and discuss
the model at tree-level. Then, we outline briefly the extension of the calculation including
the one-loop corrections. Further details for these can be found in [17]. Section 4 discusses
our numerical results.

2 Bilinear R-parity violation and neutrino mass at tree-level

In the following we use conventions such that in the limit were the R-parity violating
parameters vanish the usual MSSM notations of refs. [18] are recovered. For the BRPV
case see ref. [19,20] for the conventions we adopt. The supersymmetric Lagrangian is
specified by the superpotential W given by

W = εab

[
hij

U Q̂
a
i ÛjĤ

b
u + hij

DQ̂
b
iD̂jĤ

a
d + hij

EL̂
b
iR̂jĤ

a
d − µĤa

d Ĥ
b
u + ǫiL̂

a
i Ĥ

b
u

]
(2)

where i, j = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices, and ε is a com-
pletely antisymmetric 2 × 2 matrix, with ε12 = 1. The symbol “hat” over each letter
indicates a superfield, with Q̂i, L̂i, Ĥd, and Ĥu being SU(2) doublets with hypercharges
1

3
, −1, −1, and 1 respectively, and Û , D̂, and R̂ being SU(2) singlets with hypercharges

−4

3
, 2

3
, and 2 respectively. The couplings hU , hD and hE are 3 × 3 Yukawa matrices, and

µ and ǫi are parameters with units of mass. The last term in eq. (2) is the only R–parity
violating term.

Supersymmetry breaking is parameterized with a set of soft supersymmetry breaking
terms,

Vsoft =M ij2
Q Q̃a∗

i Q̃
a
j +M ij2

U ŨiŨ
∗
j +M ij2

D D̃iD̃
∗
j +M ij2

L L̃a∗
i L̃

a
j +M ij2

R R̃iR̃
∗
j

+m2
Hd
Ha∗

d H
a
d +m2

Hu
Ha∗

u H
a
u −

[
1

2
Msλsλs + 1

2
Mλλ + 1

2
M ′λ′λ′ + h.c.

]

+εab

[
Aij

U Q̃
a
i ŨjH

b
u + Aij

DQ̃
b
iD̃jH

a
d + Aij

EL̃
b
iR̃jH

a
d − BµHa

dH
b
u +BiǫiL̃

a
iH

b
u

]
(3)
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and again, the last term in eq. (3) is the only R–parity violating term. The bilinear term
in (3) leads in the neutral part of the scalar potential to terms linear in the sneutrino
fields. Thus, in general the sneutrino fields acquire VeVs. This in turn leads to mixing
between the gaugino and lepton as well as to mixing between the scalar leptons and the
Higgs fields [20,21].

For our purposes the most important aspect is the neutrino-neutralino mixing, since it
leads at tree-level to one massive neutrino state. In the basis, Ψ′

0

T = (ψ1
L1
, ψ1

L2
, ψ1

L3
,

−iλ′,−iλ3, ψ
1
H1
, ψ2

H2
) the neutrino-neutralino mass matrix at tree-level can be written as:

M0 =




0 m

mT Mχ0


 . (4)

Here, the sub-matrix m contains entries from the bilinear Rp/ parameters,

m =




−1

2
g′ve

1

2
gve 0 ǫe

−1

2
g′vµ

1

2
gvµ 0 ǫµ

−1

2
g′vτ

1

2
gvτ 0 ǫτ



, (5)

where vi := 〈ν̃i〉 and Mχ0 is the MSSM neutralino mass matrix, given by,

Mχ0 =




M1 0 −1

2
g′vd

1

2
g′vu

0 M2
1

2
gvd −1

2
gvu

−1

2
g′vd

1

2
gvd 0 −µ

1

2
g′vu −1

2
gvu −µ 0




. (6)

There are two interesting aspects concerning M0. First, M0 has such a texture that at
tree-level only one neutrino gets a non-zero mass [22], leaving two massless (but mixed)
states in the spectrum. And second, at tree-level the neutrino mass is strictly proportional
to the “alignment vector” |~Λ|2, where,

~Λ := ~ǫvd + ~vµ. (7)

Thus, at tree-level the individual ǫi and vi are not constrained neither by the neutrino
mass measurements nor by neutrinoless double beta decay, as long as they are sufficiently
aligned. However, we would like to stress (more details below) that this is a pure tree-level
result. Once the calculation is improved to one-loop order current experimental hints on
solar and atmospheric neutrino oscillations provide rather stringent constraints not only
on ~Λ, but also on the individual BRPV parameters, ǫi and vi.
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Assuming that m≪ M0 one can find [9,11] a simple formula relating the effective Majo-
rana neutrino mass to the supersymmetric parameters:

〈mν〉 ≃
2

3

g2M2

det(M0)
Λ2

e. (8)

It has been shown in [11] that within BRPV the contribution from 〈mν〉 as given above
is the dominant source for ββ0ν decay. In the following we will concentrate on this BRPV
mass mechanism only, improving it by taking into account the one-loop corrections to the
neutrino-neutralino mass matrix.

3 One-loop corrections to the neutrino-neutralino mass matrix

As we have seen the effective neutrino mass matrix has a projective structure, such that
only one neutrino gets a mass at tree-level. As a result for a realistic description of the
neutrino spectrum one has to improve the calculation to 1-loop order. 5 A shortened
description is given below, for a complete listing of all necessary couplings etc. see ref. [17].
However, most important for the understanding of the importance of the loops is the fact
that these contributions explicity break the projectivity of the tree-level mass matrix,
incorporating contributions which are proportional to the ǫi themselves, as we will show
explicitly below. In contrast, as discussed above, the tree-level mass matrix is sensitive
only to ~Λ.

The full neutrino-neutralino mass matrix including the 1-loop corrections is given by

Mij = M tree
ij + ∆Mij , (9)

where ∆Mij are the 1-loop corrections defined by

∆Mij =
1

2

(
Πij(p

2
i ) + Πij(p

2
j) −mχ0

i
Σij(p

2
i ) −mχ0

j
Σij(p

2
j )

)
(10)

where Σij and Πij are self-energies. There are three simple topologies of relevant Feynman
diagrams contributing to the neutrino-neutralino mass matrix [17]. 6 . Here, DR signifies
the minimal dimensional reduction subtraction scheme and µR is the renormalization
scale. As pointed out in [17] the inclusion of the tadpole diagram is essential in order to
obtain gauge invariance of the calculation.

Figure 1 shows the relevant Feynman graphs. Internal particles in the scalar self-energies
can be either (q − q̃), (charged scalars-charginos) or (neutral scalars-neutralinos), for the

5 With two massless neutrinos, one angle of the neutrino sector of the theory could be rotated
away. Thus a discussion of the predictions of the theory for the solar angle is meaningless at
tree-level.
6 For a complete description see ref. [17]
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Fig. 1. Simple one-loop topologies contributing to the neutralino-neutrino mass matrix, see text.

gauge loops it can either be (W±−charginos) or (Z0−neutralinos). Which of the loops is
most important depends both on parameters and whether one considers the heavy states
(“neutralinos”) or the light states (“neutrinos”). Here we concentrate on the “neutrino”
states. For these only the (d− d̃), (charged scalars-charginos) and (W±−charginos) com-
binations do indeed contribute. For large values of tanβ generally the (d − d̃) loops are
most important. We will therefore concentrate on this loop in the following, noting in
passing that the basic structure of all the self-energies are the same and can be found by
replacing internal masses and couplings correspondingly [17].

It is interesting to note that the tree-level result of neutrino masses being strictly propor-
tional to |~Λ|2 is no longer valid once the one-loop contributions are taken into account.
This can be shown for example for the down-type squark loops, for which Πij(p

2
i ) and

Σij(p
2
i ) are given by,

Πij(p
2
i ) =

−1

16π2

∑

k,s

(
Onds

L,jksOdns
L,kis + Onds

R,jksOdns
R,kis

)
mkB0(m

2
i , m

2
k, m

2
s) (11)

Σij(p
2
i ) =

−1

16π2

∑

k,s

(
Onds

R,jksOdns
L,kis + Onds

L,jksOdns
R,kis

)
B1(m

2
i , m

2
k, m

2
s) (12)

where B0 and B1 are Passarino-Veltman functions [24], mk and ms are the down-type
quark, down-type squark masses and the various O are neutralino-quark-squark couplings,
in our notation given by,

Odns
Lijk = −2

3
(
g√
2
) tan θWN ∗

j5R
d̃∗

k,m+3R
d
Ri,m − (hd)mlR

d̃∗

k,mRd
Ri,lN ∗

j7 (13)

Odns
Rijk = (

g√
2
)(Nj6 −

1

3
tan θWNj5)R

d̃∗

k,mR∗d
Lm,i − (h∗d)mlR

d̃∗

k,l+3R
∗d
Lm,iNj7 (14)

where the hd denote the down-type Yukawa couplings and Onds
Lijk =

(
Odns

Rjik

)∗
and Onds

Rijk =
(
Odns

Ljik

)∗
. The rotation matrices Rd and Rd̃ are the ones which diagonalize the quark and

squark mass matrices, respectively, while N diagonalizes the neutralinos/neutrinos.

That terms proportional to ǫi survive in eq. (11) is most easily seen assuming the BRPV
parameters are small, as suggested by the present indications from solar and atmospheric
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neutrino data. Then one can block-diagonalize the neutrino-neutralino mass matrix per-
turbatively at tree level in terms of the expansion parameter ξ = m ·M−1

χ0 [23] as,

N ∗ =



V T

ν (1 − 1

2
ξξ†) −V T

ν ξ

N∗ξ† N∗(1 − 1

2
ξ†ξ)


 (15)

where N∗ is the matrix diagonalizing the MSSM part of the neutralino mass matrix and
V T

ν describes the mixing of neutrinos among themselves.

The full form for the expansion matrix ξ can be found, for example, in [11]. For our

purposes it suffices to state that in the limit ~Λ ≡ 0 the matrix V T
ν is diagonal, and all

elements of ξ vanish except ξi3, which take the simple form,

ξi3 = −ǫi
µ

(16)

Inserting this result for ~Λ ≡ 0 and for simplicity considering only i, j = 1, 2, 3, (Σij

vanishes for i, j = 1, 2, 3 in this limit) Πij can be written as,

Πij(p
2
i ) =

−1

16π2

ǫiǫj
µ2

∑

k,s

(
Rd̃

s,k+3R
d̃∗

s,k + h.c.
)
|(hd)kk|2mkB0(m

2
i , m

2
k, m

2
s), (17)

where, for simplicity, we have assumed that hd is diagonal. Eq. (17) demonstrates that
the entries in Πij in the “neutrino sector” are proportional to ǫiǫj . This shows explicitly
that in the limit where the tree-level neutrino mass vanishes the loop contributions do
not and can, potentially, be rather important. Moreover, from this example we can draw
two conclusions. First, 1-loop contributions break the projectivity of the mass matrix
(mtree

ij ∼ ΛiΛj at tree-level) and thus the degeneracy of the two lightest states is lifted.
And, second, the size of the ratio of the 1-loop to the tree-level entries of the mass matrix
should be controled mainly by the quantity |~ǫ|2/|~Λ|. 7

4 Numerical results

In our numerical study we assume unification at a scale Q = MU with standard minimal
supergravity boundary conditions,

At = Ab = Aτ ≡ A ,

7 In the numerical calculation we have found that this is indeed the case. However, the loops
depend also strongly on tan β, because large tan β leads to large Yukawa couplings in the down
sector, and as shown in eq. (17) the 1-loop entries strongly depend on hd. Numerically, variations
of other SUSY parameters have been found to be much less important.
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10-10 10-8 10-6 10-4
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10-3

10-2hm �i[eV]

�m212 [eV 2]
Fig. 2. Effective Majorana neutrino mass as a function of ∆m2

12 for data points which have
sin2(2θsol) ≥ 0.6 and solve the atmospheric neutrino problem.

B = Bi = A− 1 ,

m2
Hd

= m2
Hu

= M2
Li

= M2
Ri

= m2
0 (18)

M2
Qi

= M2
Ui

= M2
Di

= m2
0 ,

M3 = M2 = M1 = M1/2 .

We run the RGE’s from the unification scale MU ∼ 2 × 1016 GeV down to the weak
scale, giving random values to the fundamental parameters at the unification scale. We
then check that the numerical values obtained from the RGE running correctly break
electroweak symmetry. Moreover, we accept only those points for further study, which
fulfill phenomenological constraints from negative Higgs and SUSY particle searches at
accelerators [25].

Although this procedure is not essential for the calculation of the neutrino masses in the
model, it allows us to reduce the number of free parameters considerably and can be
viewed as a test for self-consistency of the parameter ranges under consideration.

For the Rp/ parameters, we use the constraints from solar and atmospheric neutrinos found
in [16,17]. These two sets of measurements imply that BRPV parameters have to be small,
i.e. |ǫ| and |Λ| should be smaller than O(GeV) and O(0.2GeV 2) respectively for typical
MSSM parameters smaller than, say 1 TeV. 8 Moreover, measurements of (or limits on)
neutrino angles fix (or yield limits) on ratios of R-parity breaking parameters. Here
we summarize these restrictions as follows [17]. The atmospheric neutrino measurements
require Λµ ≃ Λτ , whereas the negative results from the CHOOZ [26] and Palo Verde

reactor [27] experiments require that Λe should be smaller than Λe ≤ O(0.3)
√

Λ2
µ + Λ2

τ .

The solar neutrino problem can be either solved with relatively large mixing (LMA-MSW
or vacuum oscillations), which implies that all ǫi should be similar, or by small mixing

8 Although smaller than usual supersymmetric parameters, such a suppression might be actually
expected in scenarios with radiative R-parity breaking ref. [17,19]
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10-10 10-8 10-6 10-4

10-2

10-1

100

101

102

hmfull �i=hmtree �i

�m212 [eV 2]
Fig. 3. Ratio of 1-loop corrected effective Majorana neutrino mass to its tree-level value as a
function of ∆m2

12 for data points which have sin2(2θsol) ≥ 0.6 and solve the atmospheric neutrino
problem.

(the SMA-MSW solution), the latter implying ǫe ∼ (few)10−2ǫµ,τ .

We have determined the expected values of 〈mν〉 as a function of ∆m2
12 for about 104

calculated points, which solve the atmospheric neutrino problem. Predicted values of
〈mν〉 are rather small, reaching at most 10−2 [eV] for the large mixing solution (LA-
MSW) of the solar neutrino problem, as can be seen from Fig. (2). For the case of vacuum
oscillations 〈mν〉 will be even much smaller, around 10−4 [eV], as seen from the figure.

Let us now discuss the crucial importance of the loop corrections to the neutrino masses
in this context. In order to do this we have calculated ratios of 〈mν〉 including the 1-loop
corrections divided by its tree-level value. In figure Fig. (3) we show our results. As can be
seen, if ∆m2

12 lies in the range required for vacuum (or just-so) oscillations the tree-level
and the 1-loop improved 〈mν〉 are rather similar, whereas for larger ∆m2

12 in the MSW
range one has a substantial change from the tree-level result. Thus, tree-level calculations
of 〈mν〉 are certainly not accurate in this case, and the 1-loop corrections considered here
play an essential role.

Let us now analyze the remaining oscillation possibility to solve the solar neutrino prob-
lem, namely the small-angle MSW solution. In this case one finds a suppression in the
ββ0ν rate, as can be seen in Fig. (4). This result is easy to understand conceptually, as
the ββ0ν rate must be given in terms of the only Le violating parameters in the model Λe

and ǫe, while sin2(2θsol) → 0 as Λe, ǫe → 0.

To close this section we mention that, although we have worked within the framework of
a concrete model in which Rp/ constitutes the origin for neutrino mass and mixing, our
conclusions are more general. In fact the smallness of effective Majorana neutrino mass
〈mν〉 holds in any hierarchical model of neutrino mass, of which our bilinear Rp/ breaking
model is a particular case. Note, that although it is possible in the BRpV model to have
two neutrinos nearly degenerate once the 1-loop contributions are included, it is never
possible to have all three neutrinos degenerate [17]. Moreover, such points are extremely

9



10-3 10-2 10-1

10-5

10-4

10-3

10-2hm �i[eV]

sin2(2�sol)
Fig. 4. Expected 1-loop corrected effective Majorana neutrino mass 〈mν〉 as a function of
sin2(2θsol) for those points which solve the atmospheric neutrino problem.

rare in parameter space and not protected by any symmetry in our model. In hierarchical

models, however one expects that the maximum allowed value of 〈mν〉 (which is achieved
for the LA-MSW solution) can be estimated by:

〈mν〉=
′∑

j

U2
ejmj (19)

∼U2
e2

√
∆m2

sol + U2
e3

√
∆m2

atm
<
∼

1

2

√
10−4eV2 + 0.05

√
10−2eV2 ∼ 0.01eV,

which our numerical results confirm for the BRpV model explicitly. Note, that eq. (19)
gives us only an upper bound on 〈mν〉, but no lower bound and no prediction for 〈mν〉.

One interesting way to avoid this upper bound is the possibility of neutrinos being closely
degenerate in mass. According to our results, this would be a clear indication that BRpV is
not the underlying mechanism for generating the solar and atmospheric neutrino masses.
Another is if other more exotic mechanisms for solving the neutrino anomalies are enter-
tained, such as flavour changing interactions or decays [28].

5 Summary

We have calculated the one-loop corrections to the ββ0ν decay observable 〈mν〉 in bilinear
R-parity violating supersymmetry, following the procedure developed in [17]. Since it has
been shown in [16,17] that the model is able to solve the solar and atmospheric neutrino
problems under certain, relatively simple assumptions, special emphasis has been put in
our analysis on those “successful” regions of parameter space.

There are two main results of this study. First, one-loop corrections are important for
estimating ββ0ν decay rates in bilinear BRPV SUSY. This is due to the fact that the

10



model at tree-level has two massless states in the spectrum. This degeneracy is lifted
once the one-loop corrections are taken into account. Since tree-level and one-loop masses
depend on different combinations of BRPV parameters, which are a priori unknown, the
loop corrections can be easily as big as the tree level masses. Especially this is true in those
parameter ranges, where the model is able to solve the solar and atmospheric neutrino
problems.

Moreover we show that, if bilinear R-parity violating is indeed the solution to the solar
and atmospheric neutrino problems, than the expected values of 〈mν〉 are very small,
certainly smaller than 10−2 eV, and probably even smaller than 10−3 eV.

Although this conclusion might appear rather discouraging for the experimentalists, we
would like to stress that, on the other hand, discovering ββ0ν decay at a level significantly
larger than 〈mν〉 = 10−2 eV would be sufficient to rule out our model as an explanation
for the atmospheric and solar neutrino problems. This conclusion also applies to any
hierarchical scheme for neutrino masses. The only possible way this conclusion might be
evaded is to consider the presence of exotic neutrino properties, such as flavour changing
interactions or decays [28].
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