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Abstract
We construct a comprehensive list of non-supersymmetric standard model extensions with a

low-scale LR-symmetric intermediate stage that may be obtained as simple low-energy effective

theories within a class of renormalizable SO(10) GUTs. Unlike the traditional “minimal” LR

models many of our example settings support a perfect gauge coupling unification even if the LR

scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields

pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model

building conforming the basic constraints from the quark and lepton sector flavour structure,

proton decay limits, etc. We pay special attention to the theoretical uncertainties related to

the limited information about the underlying unified framework in the bottom-up approach, in

particular, to their role in the possible extraction of the LR-breaking scale. We observe a general

tendency for the models without new coloured states in the TeV domain to be on the verge of

incompatibility with the proton stability constraints.
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I. INTRODUCTION

It is well-known that with only the standard model (SM) field content the gauge couplings

do not unify at a single energy scale, while the minimal supersymmetric standard model

(MSSM) leads to quantitatively precise gauge coupling unification (GCU), if the scale of

supersymmetry is “close” to the electro-weak (EW) scale [1–7]. 1 However, there are many

extensions of the SM that lead to GCU without supersymmetry (SUSY). In particular, it is

much less known that already in [10] GCU was studied in a number of non-SUSY extensions

of the SM. We also mention one particular example with vector-like quarks (VLQ) that was

discussed recently in [11], where the Higgs mass and stability bounds and the GCU were

considered in an SM extension with two different VLQs.

On the other hand, there are rather few publications which discuss GCU within left-

right symmetric extensions of the SM. The main reason for this is probably the fact that

for minimal left-right (LR) symmetric extensions of the SM the couplings do not unify

unless the LR scale is rather high, say (109 − 1011) GeV, as has been shown already in [12].

While for the SM the term “minimal” is unambiguously defined, for LR symmetric

extensions of the SM the term “minimal-LR” model has been used for quite different models

in the literature. Usually in “minimal LR” models a second SM Higgs doublet is added to

the SM field content at the LR scale to complete a bi-doublet, Φ1,2,2,0,
2 as required by the

LR group. To break the LR group to the SM group one then (usually) adds a pair of triplets

Φ1,3,1,−2 + Φ1,1,3,−2 [13–15]. Here the presence of the left-triplet Φ1,3,1,−2 allows to maintain

parity in the LR phase, i.e. gL = gR, sometimes also called “manifest LR” symmetry. This

construction automatically also creates a seesaw mass for the right-handed neutrinos from

the vacuum expectation value of the Φ1,1,3,−2 [15]. We will call this setup the “minimal LR”

(mLR) model in the following. Alternatively, also a pair of doublets, Φ1,2,1,−1 + Φ1,1,2,−1,

could break the LR group for an equally simple setup. However, in this case one would

need to rely on an inverse [16] (or linear [17, 18]) seesaw for generating neutrino masses.

In [19] it has been argued that a “truly minimal LR model” has only two doublets

Φ1,2,1,−1 + Φ1,1,2,−1 but no bi-doublet. In this case, all fermion masses are generated from

non-renormalizable operators (NROs). While this setup has indeed one field less than the

above “minimal-LR” models, it needs some additional unspecified new physics to generate

the NROs and, thus, can not be considered a complete model. Unification in this “truly

minimal” setup is achieved for an LR scale around roughly 108 GeV (and a grand unified

theory (GUT) scale of roughly 1015 GeV [20].

A LR model with only bi-doublets can not generate the observed Cabibbo-Kobayashi-

1 Actually, within supersymmetric models it is only required that the new fermions (higgsinos, wino and

gluino) have masses near the EW scale, as in the so-called “split SUSY” scenario [8, 9].
2 Throughout this paper we will use the notation Φ for scalars and Ψ for fermions with the subscript

denoting the quantum numbers with respect to either the left-right (SU(3)c × SU(2)L × SU(2)R ×

U(1)B−L) or the SM group (SU(3)c × SU(2)L × U(1)Y ).
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Figure 1: Gauge coupling unification, including the 2-loop β-coefficients, for two “minimal” left-

right models, to the left “mLR”, to the right “mΩLR” model. For definition of the models and

discussion see text.

Maskawa (CKM) mixing angles at tree-level, see the discussion in the next section. This

can be solved by adding a second Φ1,2,2,0 plus a pair of (B − L) neutral triplets, Φ1,3,1,0 +

Φ1,1,3,0. A supersymmetric version of this setup has been discussed in [21, 22], see also [23].

We will call this model the “minimal ΩLR” (mΩLR) model. Fig. 1 shows the running of

the gauge couplings for the minimal setup (“mLR”), including 2-loop beta coefficients, in

the left plot and for the mΩLR model in the right plot. Note, that the best fit point (b.f.p.)

for mLR = 3 × 1010 GeV and mG = 2 × 1015 GeV in the mLR model, while the b.f.p. for

mLR = 3 × 1011 GeV and mG = 6 × 1014 GeV in the mΩLR model.3

Obviously, such a large scale for the LR-symmetry will never be probed experimentally

and this explains, perhaps, why LR models have not been studied very much in the literature

in the context of GCU. It is, however, quite straightforward to construct LR symmetric

models, where the LR is close to the EW scale. Just to give an indication, the running

of the inverse gauge couplings for two example models, which we will discuss later in this

paper and which lead to correct GCU with a very low LR scale, are shown in fig. 2. As

discussed in section III, many such examples can be constructed and moreover, many of

these examples give perfect GCU at a price of only (a few copies of) one or a few additional

types of fields.

Our work is, of course, not the first paper in the literature to discuss GCU with a low

LR scale. Especially supersymmetric models with an extended gauge group have attracted

recently some attention. Different from the non-SUSY case, in SUSY LR models one needs

to pay special attention not to destroy the unification already achieved within the MSSM.

This can be done in different ways. In the supersymmetric model of [24] the LR symmetry

3 The authors of [21, 22] called this the “minimal supersymmetric LR” model. In this original supersym-

metric version the b.f.p. for the LR scale from GCU is equal to the GUT scale.

3



102 104 106 108 1010 1012 1014 1016
0

20

40

60

80
(α

i
)−

1

E [GeV]

B-L

R

L

3

Y

102 104 106 108 1010 1012 1014 1016 1018
0

20

40

60

80

100

(α
i
)−

1

E [GeV]

B-L

R

L

3

Y

Figure 2: Gauge coupling unification at 2-loop level (full lines) and 1-loop level (dashed lines), for

two LR models with a low scale of LR breaking. The figure to the left has the field content SM

+ Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2, while the model to the right is defined as SM + 2Ψ3,1,1,−2/3 +

2Φ1,2,1,1 + 2Φ1,1,3,−2. For discussion see text.

is broken at a large scale, but the subgroup U(1)R × U(1)B−L survives down to the EW

scale. In this construction, the scale where U(1)R × U(1)B−L is broken to U(1)Y does not

enter in the determination of the GUT scale, mG. Following [27] we will call such models

"sliding scale" models, since U(1)R × U(1)B−L can slide down from (nearly) mG to any

arbitrary value, without destroying GCU. Also supersymmetric sliding models with a full

low-scale LR group can be constructed, as shown in [25, 26]. Alternatively, one can obtain

sliding LR models, using an additional intermediate scale, as has been shown in [27]. Many

examples of such “sliding-scale” supersymmetric LR constructions have then be discussed

in [28].

However, supersymmetry is not needed in low scale LR models to achieve GCU, as first

discussed in the relatively unknown paper [29]. Our work is based on similar ideas as

this earlier paper [29], but differs in the following aspects from it: (a) We do not insist

on manifest LR symmetry. While parity maintaining LR models are, of course, a perfectly

valid possibility, they only form a subclass of all LR models. (b) The study [29] concentrated

exclusively on GCU. We also discuss constraints on model building due to the requirement

of explaining correctly the CKM in LR symmetric models. We further take in account

constraints coming from the requirement that we should have the necessary fields to have

a successful seesaw mechanism for neutrino masses. (c) We add a discussion of “sliding

models”; as discussed above a particular (but interesting) sub-class of LR models. And,

(d) we pay special attention to uncertainties in the predictions of the LR and GUT scales

(and the resulting uncertainty in the proton decay half-lives). As shown below, these

uncertainties are entirely dominated by the current theory error, due to the (calculable

but) unknown threshold errors.

The rest of this paper is organized as follows. In the next section we discuss our minimal
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requirements for the construction of low-scale LR symmetric models. Special emphasis is

put on the discussion of how to generate a realistic CKM matrix at tree-level. In section III

we then discuss a number of possible LR models. We first consider “minimal” low-scale

setups, i.e. models which fulfil all requirements discussed in section II with a field content

as small as possible. We then discuss also “sliding-scale LR models”. By this term we

understand models, which lead to the correct unification, but in which the scale, where LR

symmetry is broken, is essentially a free parameter. This latter models are non-minimal,

but reminiscent of the supersymmetric LR constructions discussed in [28]. In section IV we

then discuss uncertainties for the prediction of the LR scale and the proton decay half-life

in the different models, before turning to a short summary and conclusion in section V. A

number of details and tables of possible models are given in the appendices.

II. BASIC REQUIREMENTS

There are several basic conceptual and phenomenological requirements that we shall

impose on the set of all possible LR-symmetric extensions of the Standard model. From

the bottom-up perspective these are:

• Rich enough structure to account for the CKM mixing even after the SM Higgs

doublet is promoted to the LR bi-doublet, and a rich enough structure to support

some variant of the seesaw mechanism.

• Consistency of the assumed high-scale grand unified picture; here we shall be con-

cerned, namely, with the perturbativity of the models up to at least the unification

scale, the quality of the gauge coupling convergence (to be at least as good as in the

minimal supersymmetric standard model) and compatibility with the current proton

decay limits.

Technically, we shall also assume that the masses of the extra degrees of freedom are well

clustered around at most two scales, i.e., the LR scale and the GUT scale; if this was not

the case there would be no way to navigate through the plethora of possible scenarios.

Implicitly, the LR scale will be located in the TeV ballpark otherwise decoupling would

make the new physics escape all LHC tests.

A. Account for the SM flavour physics

The need to accommodate flavour physics is clearly the least speculative of the require-

ments above and, thus, the one we begin with.
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1. Two bi-doublets plus one extra scalar

With just the SM fermions at hand, there must obviously be more than a single bi-

doublet coupled to the quark and lepton bilinears in any renormalizable LR-symmetric

theory; otherwise, the Yukawa lagrangian (in the “classical” LR notation with Q ≡ Ψ3,2,1,1/3,

Φ ≡ Φ1,2,2,0 and so on, cf. table (IV))

LY = YQQT iτ2ΦQc + YLLT iτ2ΦLc + h.c. , (1)

yields Mu ∝ Md irrespective of the vacuum expectation value (VEV) structure of Φ and,

hence, VCKM = 1 at the SU(2)R breaking scale. With a second bi-doublet at play, one has

instead

LY = Y 1
QQT iτ2Φ1Qc + Y 2

QQT iτ2Φ2Qc + Y 1
L LT iτ2Φ1Lc + Y 2

L LT iτ2Φ2Lc + h.c. , (2)

which admits Mu non-proportional to Md (and, therefore, a potentially realistic CKM

provided4

v1
u

v2
u

6=
v1

d

v2
d

, where 〈Φi〉 ≡

(
vi

d 0

0 vi
u

)
. (3)

Note that we conveniently chose the SU(2)R index to label columns (i.e., they change in

the vertical direction) while the SU(2)L indices label the rows.

Needless to say, the VEV structure of such a theory is driven by the relevant scalar

potential. With just the two bi-doublets at play it can be written in a very compact form

V ∋ −
1

2
µ2

ijTr(τ2ΦiT τ2Φ
j) , (4)

where the mass matrix µ can be, without loss of generality, taken symmetric, cf. eq. (6)

in [21]. In such a simple case, however, it is almost obvious that the condition (3) can

not be satisfied because of the Φ1 ↔ Φ2 interchange symmetry which yields v1
d/v1

u = v2
d/v2

u

implying v1
d/v2

d = v1
u/v2

u. Hence, either eq. (2) or eq. (4) require further ingredients.

Let us first try to devise (3) by adding some extra scalar fields so that the simple scalar

potential (4) loses the Φ1 ↔ Φ2 symmetry.

To this end, it is clear that the desired asymmetric term must contain at least a pair

of Φ’s and anything that can be coupled to such a bilinear, i.e., an SU(2)R singlet or a

triplet, either elementary (with a super-renormalizable coupling) or as a compound of two

doublets. Clearly, a singlet field (of any kind) behaves just like the explicit singlet mass

term in (4) and, as such, it does not lift the undesired degeneracy.

4 Note that in the opposite case one can go into a basis in which one of the two bi-doublets is entirely

deprived of its VEVs and, hence, one is effectively back to the single-Φ case (1).
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Hence, only the triplet option is viable, either in the form of an elementary scalar5 Φ1,1,3,0

(to be denoted Ωc, see again table IV) which couples to the bi-doublets via an antisymmetric

coupling α

V ∋ αijTr[ΦiT τ2~τΦjτ2].~Ωc , (5)

or a non-elementary triplet made of a pair of SU(2)R doublets χc ≡ Ψ1,1,2,−1 (and χc†)

replacing, effectively, ~Ωc → χc†~τχc. Let us mention that the former option has been enter-

tained heavily in the SUSY LR context [21, 22] where the requirement of renormalizability

of the superpotential simply enforces this route; in the non-SUSY framework, however, the

doublet solution is at least as good as the triplet one.

To conclude, we shall consider all settings with the SM matter content, a pair of LR

bi-doublets and either and extra Ωc-like SU(2)R triplet or an extra χc-like SU(2)R doublet

consistent with the requirement of a realistic SM flavour.

2. Extra fermions

Relaxing the strictly SM-like-matter assumption, one may attempt to exploit the mixing

of the chiral matter with possible vector-like fermions emerging in various extensions of the

SM. Among these, one may, for instance, arrange the mixing of the SM left-handed quark

doublet Q = Ψ3,2,+1/6 with the Q′ part of an extra Q-type vector-like pair

Q′ ⊕ Q′∗ ≡ Ψ′
3,2,+1/6 ⊕ Ψ′

3,2,−1/6 , (6)

or a mixing of the SM uc = Ψ3,1,−2/3 and/or dc = Ψ3,1,+1/3 (in the notation in which all

matter fields are left-handed) with the extra uc and/or dc-like fields

u′c ⊕ u′c∗ ≡ Ψ′
3,1,−2/3 ⊕ Ψ′

3,1,+2/3 , d′c ⊕ d′c∗ ≡ Ψ′
3,1,+1/3 ⊕ Ψ′

3,1,−1/3 . (7)

For the sake of simplicity, we shall consider all these possibilities at once and then focus

on several special cases with either some of these fields missing or with extra correlations

implied by the restoration of the LR symmetry at some scale.

The relevant piece of the Yukawa-type + mass lagrangian in such a case reads (omitting

all the gauge indices as well as the omnipresent transposition and C−1 Lorentz factors in

all terms):

Lmatter
Y +mass = YuQucHu + YdQdcHd + Y ′

uQ′ucHu + Y ′
dQ′dcHd + Y ′c

u Qu′cHu + Y ′c
d Qd′cHd

+ Y ′′c
u Q′u′cHu + Y ′′c

d Q′d′cHd + MQ′Q′∗Q′Q′∗ + Md′cd′c∗d′cd′c∗ + Mu′cu′c∗u′cu′c∗

+ MQQ′∗QQ′∗ + Mdcd′c∗dcd′c∗ + Mucu′c∗ucu′c∗ + h.c. (8)

5 We discard the “symmetric solution” with an elementary Ω ≡ Φ1,3,1,0 because such a field can not get

any significant VEV without ruining the SM ρ parameter.
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where Yu and Yd are the standard 3 × 3 Yukawa matrices of the SM; the dimensionalities of

the other matrix couplings (primed Y ’s) and/or direct mass terms (M ’s) should be obvious

once the number of each type of the extra matter multiplets is specified.

In the QCD⊗QED phase, this structure gives rise to the following pair of the up- and

down-type quark mass matrices (the last columns and rows indicate whether the relevant

field comes from an SU(2)L doublet or a singlet and, hence, justify the qualitative structure

of the mass matrix; note also that we display only one of the off-diagonal blocks of the

full Dirac matrices written in the Weyl basis and we do not pay much attention to O(1)

numerical factors such as Clebsches and/or normalisation):

Mu uc u′c∗ u′c SU(2)

u Yuvu MQQ′∗ Y ′c
u vu 2

u′ Y ′
uvu MQ′Q′∗ Y ′′c

u vu 2

u′c∗ MT
ucu′c∗ Y ′′cT

u vu MT
u′cu′c∗ 1

SU(2) 1 2 1

Md dc d′c∗ d′c SU(2)

d Ydvd MQQ′∗ Y ′c
d vd 2

d′ Y ′
dvd MQ′Q′∗ Y ′′c

d vd 2

d′c∗ MT
dcd′c∗ Y ′′cT

d vd MT
d′cd′c∗ 1

SU(2) 1 2 1

(9)

Given this, there are several basic generic observations one can make:

• The spectrum of both these matrices always contains three “light” eigenvalues, i.e.,

those that are proportional to the SU(2)L breaking VEV. This, of course, provides a

trivial consistency check of their structure.

• Removing the second row+column in both Mu,d (that corresponds to integrating out

Q′ ⊕ Q′∗) and/or the third row+column in Mu (and, thus, integrating out u′c ⊕ u′c∗)

and/or the third row+column in Md (and thus integrating out d′c ⊕ d′c∗) the game

is reduced to all the different cases discussed in many previous studies in the SM

context.

• There are several entries in Mu and Md that are intercorrelated already at the SM

level; yet stronger correlations can be expected if the effective lagrangian (8) descends

from a LR-symmetric scenario. For example, grouping u′c ⊕ u′c∗ and d′c ⊕ d′c∗ into

SU(2)R doublets Q′c ⊕ Q′c∗ the degeneracy among Mu and Md would be exact up

to (model-dependent) SU(2)R-breaking terms; in such a case the (dis-)similarity of

the up and down quark spectra and mixing matrices depends on the details of the

specific SU(2)R-breaking mechanism which, obviously, will be able to smear such

degeneracies (and, thus, open room for a potentially realistic spectra and the CKM

matrix) only if the relevant VEV is comparable to (or larger than) the singlet mass

terms therein. Note that here we implicitly assume that there is no other mechanism

such as the one described in the previous section operating to our desire.

Hence, if one wants to make use of the extra vector-like fermions in order to account for a

realistic SM quark masses and mixing in the LR setting, such extra matter fields should be

8



included at (or below) the LR scale, otherwise they will effectively decouple. This is the

second route to the realistic SM flavour that we shall entertain in what follows.

To conclude, without going into more details, we shall consider all scenarios including

some of the combinations of the extra matter fields discussed above with masses at the LR

scale eligible for the subsequent renormalization group (RG) analysis. In this respect, it is

also worth stressing that there are many specific realisations of the structures above at the

LR level that differ namely by the origin of the desired vector-like fermions therein and,

thus, by the specific structure of the effective mass matrices above. An interested reader is

deferred to section III where several examples are discussed in more detail.

3. Seesaw & neutrino masses

We also require there are fields in the model that may support some variant of the

seesaw mechanism, either ordinary or inverse/linear, and, thus, provide Majorana masses for

neutrinos. Technically, the requirements are identical to those given in the previous SUSY

study [28] so we shall just recapitulate them here: i) in models where the LR symmetry is

broken by Φ1,1,3,−2 one automatically has a right-handed neutrino mass and, thus, type-I

seesaw; if Φ1,3,1,−2 is also present, type-II contribution to the seesaw formula is likely. ii)

as for the models with the LR breaking driven by Φ1,1,2,−1 one may implement either an

inverse [16] and/or linear [17, 18], seesaw if Ψ1,1,1,0 is present, or a variant of type-III seesaw

if Ψ1,3,1,0 and/or Ψ1,1,3,0 is available.

B. Consistency of the high-scale grand unification

1. Perturbativity

Since the analysis in the next sections relies heavily on perturbative techniques we

should make sure these are under control in all cases of our interest. In particular, one

should assume that for all couplings perturbativity is not violated at mG and below mG

the same holds for all the effective parameters of the low-energy theory. To this end we

shall, as usual, adopt a very simplified approach assuming that none of the gauge couplings

explodes throughout the whole “desert” and, at the same time, the unified coupling does

not diverge right above the unification scale. On top of that, a perturbative description

does not make much (of a quantitative) sense either even if the couplings are formally

perturbative up to mG (and the spectrum is compact) when some of them diverge very

close above mG: in fact, the results would be extremely sensitive to the matching scale

selection because their rapid just-above-mG growth is equivalent to large thresholds for

not-so-well chosen matching scale.
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2. Grand unification

Technically, mG is best defined as the mass scale of the heavy vector bosons governing

the perturbative baryon number violating (BNV) processes. At first approximation, this

may be determined as the energy at which the running gauge couplings in the MS scheme

converge to a point; from consistency, this is then assumed to be the scale where the heavy

part of the scalar and vector spectrum is integrated in.

Needless to say, if accuracy is at stakes, this picture is vastly oversimplified. The main

issue of such an approach is the lack of a detailed information about the high-energy theory

spectrum which, in reality, may be spread over several orders of magnitude6. The “threshold

effects” thus generated can then significantly alter the naïve picture by as much as a typical

two-loop β-function contribution.

This makes it particularly difficult to get a good grip on the GUT scale from a mere

renormalization group equations (RGE) running - with the thresholds at play the running

gauge couplings in the “usual” schemes such as MS do not intersect at a point and the

only way mG may be accurately determined is, indeed, a thorough inspection of the heavy

spectrum, see, e.g., [31]. In this respect, perhaps the best that may be done in the bottom-

up approach (in which, by definition, the shape of the heavy spectrum is ignored) is to

define mG by means of a χ2 optimisation based on an educated guess of the relevant theory

error, cf. section IV.

Another issue which often hinders the determination of MG is the proximity of the

unification and Planck scales which usually makes it impossible to neglect entirely the

Planck-suppressed effective operators, especially those that, in the broken phase, make

the gauge kinetic terms depart from their canonical form. In the canonical basis, these

then yield yet another source of out-of-control shifts in the GUT-scale matching conditions,

i.e. smear the single-point gauge unification picture yet further, see for instance [32] and

references therein. A simple back-of-the-envelope calculation reveals that in most cases

such effects are again comparable to those of the two-loop contributions in the gauge beta

functions. Furthermore, the real cut-off Λ associated to the quantum gravity effects may

be further reduced below the Planck scale if the number of propagating degrees of freedom

above is very large, cf. [33].

Since none of these issues may be addressed without a thorough analysis of the coupled

system of the two-loop renormalization group equations augmented with a detailed

information about the high-scale spectrum (and, possibly, even quantum gravity), in what

follows we shall consider a unification pattern to be fine if the effective MS running gauge

couplings do converge to a small region characterised by a certain “radius” in the “t − α−1

6 Note that this, in fact, is rather typical for “simple” models which tend to suffer from the emergence

of pseudo-Goldstone bosons associated to spontaneously broken accidental global symmetries, especially

when there are several vastly different scales at play, cf. [30].
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plot” (with 2πt ≡ log(µ/MZ) and µ denoting the MS regularization scale). Note that,

in practice, we shall perform a χ2-analysis of the gauge coupling RG evolution pattern

with three essentially free parameters at play, namely, mLR (denoting the LR-scale where

the part of the spectrum that restores the SU(2)R gauge symmetry is integrated in),

mG (the scale of the assumed intersection of the relevant effective gauge couplings of the

intermediate-scale LR model) and αG (the unified “fine structure” coupling); with these

three degrees of freedom, however, an ideal fit of all three SM effective gauge couplings, i.e.,

αs, αL and αY , is (almost) always achievable. Hence, we shall push the χ2-analysis further

in attempt to assess the role of the theoretical uncertainties in the possible future determi-

nation of these three parameters that may be obtained in several different ways, cf. Sect. IV.

3. Proton lifetime

There are in general many ingredients entering the proton lifetime predictions in the

grand unification context with very different impact on their quality and accuracy. Bar-

ring the transition from the hadronic matrix elements to the hard quark-level correlators

(assumed to be reasonably well under control by the methods of the lattice QCD and/or

chiral Lagrangian techniques), these are namely the masses of the mediators underpinning

the effective BNV operators. At the d = 6 level, these are namely the notorious GUT-

scale X and Y (and/or X ′ and Y ′) gauge bosons, and also the three types of potentially

dangerous scalars Φ3,1,−1/3, Φ3,1,−4/3 and Φ3,3,−1/3 (descending from the fields nr. 9, 10, 14

and 19 in table IV) with direct Yukawa couplings to matter. In both cases, the flavour

structure of the relevant BNV currents is the central issue that can hardly be ignored in

any dedicated proton lifetime analysis. From this point of view, the gauge-driven p-decay is

usually regarded to as being under a better control because it depends only on the (unified)

gauge coupling and a set of unitary matrices encoding transitions from the defining to the

mass bases in the quark and lepton sectors (whose matrix elements, barring cancellations,

are typically O(1)) while the scalar BNV vertices are governed by the Yukawa couplings

and, thus, are often (unduly) expected to be suppressed for the processes involving the first

generation quarks and leptons. In either case, a detailed study of the flavour structure of

the BNV currents is far beyond the scope of the current study; the best one can do then is

to assume conservatively the gauge channels’ dominance and suppose that the elements of

the underlying unitary matrices are of order 1.

However, in theories with accidentally light (TeV-scale) states one should not finish at

the d = 6 level but rather consider also d > 6 BNV transitions that may be induced by such

“unusual” scalars. To this end, let us just note that the emergence of d = 7 baryon number

violating operators has been recently discussed in some detail in [34] (see also [35, 36])

and a specific set of scalars (in particular, Φ3,2,1/6, Φ3,2,7/6 and Φ3,1,2/3) underpinning such

transitions in SO(10) GUTs has been identified. Nevertheless, in the relevant graphs these
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fields are often accompanied by the “usual” d = 6 scalars above and, thus, for acceptable

d = 6 transitions the d = 7 BNV operators tend to be also suppressed so we shall not

elaborate on them any further.

Since neither these issues may be handled without a very detailed analysis of a specific

scenario, for the sake of the simple classification of potentially viable settings intended for

the next section we shall stick to the leading order (i.e., d = 6) purely gauge transitions and

implement the current SK constraint of τp→π0e+ & 1034 years [37]. This will be imposed

through the simple phenomenological formula

Γp ≈ α2
Gm5

p/m4
G , (10)

which, technically, provides a further input to the χ2 analysis in section IV. We shall also

ignore all the effects related to pulling the effective d = 6 operators from mG down to the

electroweak scale, see, e.g., [38–40].

III. LOW SCALE LEFT-RIGHT MODELS

We will first discuss the simplest variants of models, i.e. those with one new energy

scale, which we will denote by mLR. Later on we will also discuss the possibility to have

a “sliding” LR scale “on top” of a SM-group stage with extended particle content. These

latter models are slightly more complicated in their construction than the minimal ones,

but interesting since they are reminiscent of the supersymmetric sliding models discussed

in [27, 28].

Although all our models are inspired by SO(10) unification, we do not concern ourself

with the first step of symmetry breaking, i.e. SO(10) → SU(3)c × SU(2)L × SU(2)R ×

U(1)B−L. The interested reader is referred to, for example, [26] or [24]. In the LR stage,

we consider a total of 24 different representations, as listed in table (IV). These fields give

all representations found in SO(10) multiplets up to 126 and we consider multiplets up

to 126 simply because the right triplet, Φ1,1,3,−2, which presents one of the two simplest

possibilities to break the LR group correctly, is Φ1,1,3,−2 ∈ 126 in the SO(10) stage. Larger

multiplets could be easily included, but lead of course to more elaborate models. The

transformation properties of all our allowed multiplets under the LR group are given in

table IV of the appendix.

In this section, we will keep the discussion mostly at the 1-loop level for simplicity. Two-

loop β-coefficients can be easily included, but do not lead to any fundamental changes in

the models constructed. Recall that at 1-loop order two copies of a complex scalar give

the same shift in the β-coefficients ∆(bi) as one copy of a Weyl fermion. The coefficients

for scalars and fermions differ at two-loop order, of course, but these differences are too

small to be of any relevance in our model constructions considering current uncertainties,

see section IV.
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A. “Minimal” models

The master equation for the running of the inverse gauge couplings at the 1-loop level

can be written as:

α−1
i (t) = α−1

i (t0) +
bi

2π
(t − t0), (11)

where ti = log(mi), as usual. The corresponding β-coefficients are:

(
bSM

3 , bSM
2 , bSM

1

)
= (−7, −19/6, 41/10) ,

(
bLR

3 , bLR
2 , bLR

R , bLR
B−L

)
= (−7, −3, −3, 4) +

(
∆bLR

3 , ∆bLR
2 , ∆bLR

R , ∆bLR
B−L

)
. (12)

The (B-L) charges in eq. (12) are written in canonical normalization. Here, ∆bLR
i

stand for the contributions from additional fields, not accounted for in the SM, while the

coefficients for the groups SU(2)L × SU(2)R include the contribution from one bi-doublet

field, Φ1,2,2,0. We decided to include this field in the bLR
i directly, since the SM Higgs

h = Φ1,2,1/2 ∈ Φ1,2,2,0 in all our constructions.

Next, α−1
R (mLR) and α−1

B−L(mLR) are related to the SM hypercharge via:

α−1
1 (mLR) =

3

5
α−1

R (mLR) +
2

5
α−1

B−L(mLR). (13)

Eq. (13) can be used to eliminate one of the four running couplings from the system of

equations, since the orthogonal combination −2
5
α−1

R (mLR)+ 3
5
α−1

B−L(mLR) is a free paramter.

Defining αeff
1 , with a β coefficient 3

5
bLR

R + 2
5
bLR

B−L then allows finding the GUT scale using

only three running couplings.

Finding a model which unifies correctly, then simply amounts to calculating a set of

consistency conditions on the ∆(bLR
i ), which can be derived from eq. (11), by equating

αeff
1 = α2 and α2 = α3. Two examples, for which a correct unification is found with a

low value of mLR are shown in fig. 3. Note that, the model to the left has a rather low

unification scale (while the one to the right has a rather high one). The half-life for proton

decay in the best fit point at 1-loop level (at 2-loop level) for the model on the left is

estimated to be T1/2 ≃ 1033 y (T1/2 ≃ 1031 y), below the lower limit from Super-K [37, 41].

This will be important in the discussion on the error bar for proton decay in section IV

and is a particular feature of all model constructions without additional coloured fields, see

below.

As discussed in the previous section, we then require a number of additional conditions

for a model to be both, realistic and phenomenologically interesting: (i) All models must

have the agents to break the LR symmetry to the SM group; (ii) all models must contain

(at least) one of the minimal ingredients to generate a realistic CKM and generate neutrino

masses and angles; (iii) models must have perturbative gauge couplings all the way to mG;

(iv) mG should be large enough to prevent too rapid proton decay, numerically we have

used (somewhat arbitrarily) mG ≥ 1015 GeV as the cut-off in our search; and, lastly (v) the
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Figure 3: Two example models for which correct unification is found for a low value of the scale

mLR. The model to the left has a rather low unification scale, see text. Note that these are the

same two models already shown in fig. 2 in the introduction.

predicted mLR should be low enough such that at least some of the new fields have masses

accessible at the LHC. As the cut-off in the search we used, again somewhat arbitrarily,

mLR = 10 TeV. 7

Before discussing the different model classes, we first ask the question how involved our

constructions are. Different criteria can be defined for comparing the complexity of different

models, perhaps the two simplest ones are: (i) nf : the number of additional different kinds

of fields introduced and (ii) nc: the total number of new fields introduced. Consider first

the classical, “minimal” high-scale LR models, mentioned already in the introduction. As

shown in table I the mLR [13–15] introduces only 2 kind of fields, each with only one copy

for a total of 2 new fields, while the mΩLR already needs 5 different fields. However, a

realistic model should not only try to minimize the number of new fields, it should also

fulfil basic phenomenological constraints discussed previously. On this account, we would

not consider the mLR a valid model, since it has a trivial CKM at tree-level, while the

mΩLR is excluded (or at least at the boundary of being excluded 8) by the constraints

from the proton decay half-life. The model mmΩLR (more-minimal ΩLR), on the other

hand, can pass the phenomenological tests, with only (nf ,nc)=(3,3). However, this model

does not have gL = gR (“exact parity”) at the scale where the LR symmetry is broken

and exact parity symmetry was required in most constructions of LR models, that we have

found in the literature. The question whether exact parity (“manifest”) LR symmetry is a

more important requirement for a “good” model than having the smallest possible number

7 For both, mG and mLR the values quoted are only the limits used in the search for models. Whether a

particular model survives the constraints from proton decay searches depends not only on the values of

mG and αG but also on their uncertainties, see section IV.
8 See the discussion in section IV.
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of new fields clearly is more a matter of taste than a scientific measure. We decided not to

insist on exact parity and instead construct models with the fewest number of total fields

possible.

The models we construct then can be separated into two different classes: (a) models in

which a realistic CKM is generated by the extension of the scalar sector and (b) models in

which a realistic CKM is generated by the extension of the fermion sector.

1. Model class [a]: “Scalar” CKM models

Consider first models of class (a). The breaking the LR group can be either achieved

via a right triplet, Φ1,1,3,−2 (case [a.1]), or by a (right) doublet, Φ1,1,2,−1 (case [a.2]), as

discussed in the previous section. Several examples of simple models for both classes are

given in table I.

Consider the triplet case first. The minimal field content for the triplet case consists in

nΦ1,2,2,0Φ1,2,2,0 + nΦ1,1,3,0Φ1,1,3,0 + nΦ1,1,3,−2
Φ1,1,3,−2 and the simplest model we have found is

given by nΦ1,2,2,0 = 1, nΦ1,1,3,0 = 1 and nΦ1,1,3,−2
= 3 for a total of nc = 5 copies, followed

by nΦ1,2,2,0 = 1, nΦ1,1,3,0 = 3 and nΦ1,1,3,−2
= 2 for a total of nc=6. Both models have

rather short proton decay half-lives, with the nc=6 model doing slightly better than the

nc=5 model. For this reason we used the nc=6 model in figs (2) and (3) and in section IV

for our discussion. Once additional new fields are allowed with non-zero coefficients, a

plethora of models in this class can be found. Example models for each of the 24 fields are

given in table V in the appendix. Here, let us only briefly mention two more examples:

2Φ1,2,2,0 +Φ1,1,3,0 +Φ8,1,1,0 +2Φ1,1,3,−2 and 3Φ1,2,2,0 +Φ1,1,3,0 +3Φ6,1,1,4/3 +2Φ1,3,1,−2 +Φ1,1,3,−2.

The former shows (see discussion of fig. 4 below) that at the price of introducing one

coloured field, the proton decay half-life constraint can be completely evaded, while the

latter demonstrates that it is possible to obtain exact parity symmetry even with different

number of copies of fields in the left and right sector of the model - at a price of a few

additional copies of fields.

Consider now model class [a.2]: nΦ1,2,2,0Φ1,2,2,0 + nΦ1,1,2,−1
Φ1,1,2,−1 + · · · . In this case, in

principle the simplest model possible consists in only two different fields, since Φ1,1,2,−1 can

play the double role of breaking the LR symmetry and generating the non-trivial CKM,

as explained in the previous section. However, as table I shows, our condition of having a

low mLR <∼ 10 TeV enforces a large number of copies for this possibility: nΦ1,2,2,0 = 1, but

nΦ1,1,2,−1
= 16, not a very minimal possibility. Table I also shows that with three different

fields, much smaller multiplicities lead to consistent solutions. With 3 different fields a

solution with nc=5 exists, for four different fields nc=4 is possible in one example. However,

again, the example with nc=5 has a rather short T1/2, while the nc=4 contains a copy of

Φ3,1,3,−2/3. This field induces proton decay via a dimension-6 operator, see discussion in the

previous section and thus does not lead to a realistic model, unless either the ∆(L) = 1 or

the ∆(B) = 1 Yukawa coupling is eliminated by the imposition of some symmetry. The next
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Name Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]

mLR Φ1,1,3,−2 + Φ1,3,1,−2 2 2 � / 3 · 1010 1033±2.5

mΩLR Φ1,2,2,0 + Φ1,1,3,0 + Φ1,3,1,0 + Φ1,1,3,−2 + Φ1,3,1,−2 5 5 � � 3 · 1011 1030.8±2.5

mmΩLR Φ1,2,2,0 + Φ1,1,3,0 + +Φ1,1,3,−2 3 3 / � 3 · 109 1034.3±2.5

Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]

Φ1,2,2,0 + Φ1,1,3,0 + 3Φ1,1,3,−2 3 5 / � 1 · 102 1030.6±2.5

Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2 3 6 / � 2 · 103 1031.3±2.5

2Φ1,2,2,0 + Φ1,1,3,0 + Φ8,1,1,0 + 2Φ1,1,3,−2 4 6 / � 5 · 102 1041.3±2.5

3Φ1,2,2,0 + Φ1,1,3,0 + 3Φ6,1,1,4/3 + 2Φ1,3,1,−2 + Φ3,1,2,−2 5 10 � � 4 · 102 1036.3±2.5

Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]

Φ1,2,2,0 + 16Φ1,1,2,−1 2 17 / � 1 · 104 1031.6±2.5

Φ1,2,2,0 + Φ1,1,2,−1 + 3Φ1,1,3,−2 3 5 / � 2 · 103 1031.3±2.5

Φ1,2,2,0 + Φ1,1,2,−1 + Φ1,1,3,−2 + Φ3,1,3,−2/3 4 4 / � 2 · 103 ???

2Φ1,2,2,0 + Φ1,1,2,−1 + Φ6,1,1,−4/3 + 2Φ1,1,3,−2 4 6 / � 1 · 102 1039.6±2.5

Φ1,2,2,0 + 2Φ1,1,2,−1 + 2Φ1,2,1,1 + Φ8,1,1,0 + 10Φ1,1,1,2 5 16 � � 3 · 103 1041±2.5

Table I: A comparison of some of the simplest possible LR models. Configuration gives the actual

(extra) fields used in the model on top of the SM fields. nf stands for #(fields) and counts how

many different fields are used in the construction, while nc is #(copies) and counts the total

number of different copies of fields. “Parity?” gives whether a given model predicts gL = gR and

“CKM?” whether it has a non-trivial CKM matrix at tree-level, see the discussion in the previous

section. mLR gives the approximate best fit point (including 2-loop coefficients) for the scale of

LR breaking, while T1/2 [y] gives the estimated half-life for proton decay. The error bar quoted

for T1/2 is an estimation derived from the discussion in section IV. The first table gives “minimal”

LR models for comparison: These models all have mLR far above the EW scale. The second table

gives models with low predicted mLR and CKM generated by scalar triplets (model class [a.1]),

while the 3rd gives model examples with CKM generated by right-doublets (model class [a.2]).

For discussion see main text. The model containing the field Φ3,1,3,−2/3 does not give a proton

decay half-life, since the scalar field Φ3,1,3,−2/3 can induce proton decay via an unknown Yukawa

coupling.
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Figure 4: One-loop estimated proton lifetime for “colourless models” as a function of mLR. The

figure shows T1/2 [y] estimated from mG defined as the point where α2 = α3 with from top to

bottom: ∆(bLR
2 ) = 0, 1

6 , 1
3 and 1

2 and ∆(bLR
3 ) = 0 (“colourless models”), see text. The horizontal

line is the experimental limit from Super-K [37, 41].

simplest model then contains (nf=4,nc=5). This case, however, has a b.f.p. for the mLR

above our usual cutoff. Once we allow for (nf =4,nc=6) or larger, again many possibilities

exist, one example is given in table I. As for the case [a.1], models with exact parity are

possible, but require a larger number of copies of fields.

Before closing this discussion on model class (a), we briefly comment on the compara-

tively low values for the proton lifetime for all cases in which no coloured field is added to

the configuration. In the SM (with one Higgs and at 1-loop order) α2 equals α3 at a scale of

roughly mG23
= 1017 GeV. Adding a second Higgs, as necessary to complete the bi-doublet

in our LR models,9 lowers this GUT scale to roughly mG23
= 2 · 1016 GeV. Any addition

of a field charged under SU(2)L increases b2, leading to a further reduction in mG23
, unless

some coloured field is added at the same time. Thus, all models with a second Φ1,2,2,0 (or

other fields charged under SU(2)L) but no additional coloured particles will have a GUT

scale below 1016 GeV. This is indeed quite an important constraint, as is shown in fig. 4.

Recall, for a Φ1,2,1,1 the ∆(bLR
2 ) = 1

6
, while for Φ1,2,2,0 the ∆(bLR

2 ) = 1
3
. Thus, “colourless”

models can have at most one additional Φ1,2,2,0, otherwise they are ruled out by proton

decay constraints. We note, that the figure is based on a 1-loop calculation and that this

conclusion is only strengthened, once 2-loop β coefficients are included, compare to the

lifetimes quoted in table I.

9 As in the MSSM, where a second Higgs doublet must be present.
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Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]

2Ψ3,1,1,−2/3 + 2Φ1,2,1,1 + 2Φ1,1,3,−2 4 6 / � 3 · 103 1040±5

2Ψ3,1,1,−2/3 + 2Φ1,1,2,−1 + Φ1,2,2,0 + 4Φ1,1,3,0 5 11 / � 1 · 104 1039.9±2.5

2Ψ3,1,1,−2/3 + 2Φ1,1,2,−1 + 2Φ1,2,1,1 + 4Φ1,1,3,0 5 12 / � 9 · 103 1039.9±2.5

2Ψ3,1,1,−2/3 + Φ1,2,1,1 + Φ1,1,2,−1 + 9Φ1,1,1,2 5 13 � � 1 · 102 1043.4±2.5

2Ψ3,1,1,4/3 + 3Φ1,2,1,1 + Φ1,1,3,−2 + Φ3,1,1,4/3 5 7 / � 6 · 103 1040±2.5

2Ψ3,1,1,4/3 + 3Φ1,2,1,1 + 5Φ1,1,2,−1 + Φ3,1,1,4/3 5 11 / � 1 · 104 1040±2.5

2Ψ3,2,1,1/3 + Φ8,1,1,0 + 4Φ1,1,3,−2 4 7 / � 1 · 102 1043±2.5

2Ψ3,2,1,1/3 + Φ6,1,1,2/3 + 4Φ1,1,3,−2 4 7 / � 1 · 102 1039.3±2.5

2Ψ3,2,1,1/3 + Ψ3,1,3,−2/3 + 6Φ1,1,3,−2 4 9 / � 4 · 103 1040.3±2.5

Table II: A comparison of models with CKM generated by an extension in the fermion sector,

“fermionic CKM” or “VLQ-CKM”. In nf we always count the two Ψ3,i,j,k as two separate fields,

because both Ψ and Ψ̄ are needed to generate the CKM.

2. Model class [b]: “Fermionic” CKM models

We now turn to a discussion of models with additional fermions, see table II. As discussed

in section II, a non-trivial CKM can be generated in LR models with extensions in the

fermion sector essentially by three kind of fields, corresponding to vector like copies of the

SM fields uc, dc and Q. In the list of 24 different fields shown in table IV in the appendix,

there are in fact several which contain states which can play the role of the VLQs after the

breaking of the LR symmetry.

Consider, for example, the case of u
′c = Ψ′

3̄,1,−2/3. The Ψ′
3̄,1,−2/3 could be generated from

Ψ3̄,1,−2/3 ∈ Ψ̄3̄,1,1,−4/3, Ψ̄3̄,1,2,−1/3 or Ψ̄3̄,1,3,2/3. Similarly, d
′c = Ψ′

3̄,1,1/3 ∈ Ψ̄3̄,1,1,2/3, Ψ̄3̄,1,2,−1/3

or Ψ̄3̄,1,3,2/3, while Q′ = Ψ′
3,2,1/6 ∈ Ψ3,2,1,1/3, Ψ3,2,2,4/3, Ψ3,3,1,−2/3 and Ψ3,2,2,−2/3. In the SM

regime, therefore, different terms from the LR regime can lead to the same effects. We will

consider only the three simplest possibilities here, Ψ′
3,1,1,4/3, Ψ′

3,1,1,−2/3 and Ψ′
3,2,1,1/3, where

we have marked the fields with a prime again to note that they have to be introduced in

vector-like pairs. Other cases can be constructed in a similar manner. For these three fields

the corresponding Lagrangian terms in the LR-regime are:

L = mΨ3,1,1,4/3
Ψ′

3,1,1,4/3Ψ̄′
3̄,1,1,−4/3 + mΨ3,1,1,−2/3

Ψ′
3,1,1,−2/3Ψ̄

′
3̄,1,1,2/3 (14)

+ mΨ3,2,1,1/3
Ψ′

3,2,1,1/3Ψ̄′
3̄,2,1,−1/3 + ȲΨ3,1,1,4/3

Ψ̄′
3̄,1,1,−4/3Φ1,2,1,1Ψ3,2,1,1/3

+ YΨ3,1,1,4/3
Ψ′

3,1,1,4/3Φ1,1,2,−1Ψ3̄,1,2,−1/3 + ȲΨ3,1,1,−2/3
Ψ̄′

3̄,1,1,2/3Φ̄1,2,1,−1Ψ3,2,1,1/3

+ YΨ3,1,1,−2/3
Ψ′

3,1,1,−2/3Φ̄1,1,2,1Ψ3̄,1,2,−1/3 + YΨ3,2,1,1/3
Ψ′

3,2,1,1/3Φ1,2,2,0Ψ3̄,1,2,−1/3,

where Ψ3,2,1,1/3 = Q and Ψ3̄,1,2,−1/3 = Qc correspond to the SM left and right-handed quarks
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in the LR regime. Note, that Φ1,2,2,0 contains the SM-like VEV vu, while for Ψ3,1,1,4/3 and

Ψ3,1,1,−2/3 the corresponding mass terms are generated from the VEVs of Φ1,2,1,1 and Φ1,1,2,−1.

Recall that, as discussed in section II, not all terms are necessary and in principle two terms

(one mass term and one Yukawa term) are sufficient in all cases to generate the desired

structure.

In table II we give some simple example models for these cases: Ψ′
3,1,1,−2/3, Ψ′

3,1,1,4/3 and

Ψ′
3,2,1,1/3. Here, we wrote 2Ψ for Ψ + Ψ̄ simply to get a more compact table. Since we

count these as two different kinds of fields and at least one Φ1,1,3,−2 or Φ1,1,2,−1 is needed to

break the LR symmetry, the minimal nf seems to be three in these constructions. However,

once we impose mLR <∼ 10 TeV, no solution with nf=3 survives, although there are many

solutions with nf=4 and 5. Perhaps the simplest case possible is the model in the first line,

which fulfils all our conditions for the price of just two extra Φ1,1,2,1 and one extra Φ1,1,3,−2.

In general, models which break the LR symmetry via Φ1,1,2,−1 need more copies of fields

to get a consistent model with low mLR, nc≥ 11. Also, it is possible to conserve parity

exactly, as the table shows. However, the model with the smallest nc that we found still

has nc=13. We have not found any model with less than nc=7 for the cases Ψ′
3,1,1,4/3 → uc′

and Ψ′
3,2,1,1/3 → Q′.

In case of models with VLQs, the constraints from proton decay are relatively easy to

fulfil, see table II. This is simply due to the fact that VLQs add a non-zero ∆(bLR
3 ), by

which mG can be raised to essentially any number desired.

B. “Sliding” LR models

We now turn to the discussion of “sliding-LR” models. These are defined as models where

the unification is independent of the intermediate scale mLR. In (minimal) supersymmetric

extensions of the SM “sliding-LR” models are the only possibility to have a low mLR [24, 27,

28]. However, as we show in this subsection, supersymmetry is not a necessary ingredient

to construct sliding models.

We will discuss in the following just two examples of sliding LR models. The first

one, based on the idea of “split” supersymmetry [8, 9], shows the relation of our non-

supersymmetric sliding models, with the supersymmetric ones discussed in [28]. The second

one is based on a SM extension with vector-like quarks, first mentioned in [10] and recently

discussed in much more detail in [11]. This second example serves to show, how non-SUSY

sliding models can be just as easily constructed as supersymmetric ones.

The sliding conditions can be understood as a set of conditions on the allowed β coefficients

of the gauge couplings in the LR regime [28], assuring that at 1-loop order ∆(αi) at the

GUT scale are independent of the additional particle content in the LR regime. In order to

achieve successful unification, therefore, it is necessary to first add to the standard model

an additional field content at some scale mNP . Although not necessary from a theoretical

point of view, we require that mNP is at a “low” scale, i.e. mNP <∼ 10 TeV, to ensure that
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the models predict some interesting collider phenomenology. We will call this additional

field content “configuration-X” and “SM+X”. A list of simple X-configurations, which when

added to the SM at mNP in the range mNP (few) TeV lead to unification as precise or better

than the one obtained in the MSSM, is given in table VI in the appendix. In this table (at

least) one example for each one of our 24 fields is presented.

As the first example, we will discuss the “split SUSY-like” case, which corresponds to

X = 5Φ1,2,1/2 + 2Φ1,3,0 + 2Φ8,1,0. As is well-known, in split SUSY the sparticle spectrum

is "split" in two regimes: all scalars (squarks, sleptons and all Higgs fields except h0) have

masses at a rather high scale, typically 1010 GeV, while the fermions, gluino (Ψ8,1,0), wino

(Ψ1,3,0), bino (Ψ1,1,0) and the higgsinos (H̃u = Ψ1,2,−1/2, and H̃d = Ψ1,2,1/2) must have

TeV-ish masses. This way GCU is maintained with a ∆(αi) at the GUT scale as small as

is the case in the MSSM (but at a different value of αG). However, while in split SUSY

Φ1,2,1/2 is added at the high scale, for our LR constructions we will need this second Higgs

at a low scale and, therefore, we call this scenario “split SUSY-like”. Note that, while split

SUSY uses fermions at the low scale, GCU can be maintained also with a purely bosonic X,

since only the 2-loop coefficients change (slightly), which can be compensated by a slight

shift in mNP . We note in passing that this particular X has, of course, all the interesting

phenomenology of split SUSY, like a candidate for the dark matter, or a quasi-stable gluino

at the LHC [8].

The quantum numbers of this particular particle content in the LR regime are then:

Φ1,2,1/2 ∈ Φ1,2,2,0, Φ1,3,0 ∈ Φ1,3,1,0 and Φ8,1,0 ∈ Φ8,1,1,0, with the ∆bLR
i coefficients corre-

sponding to this particular X given by:

(∆bLR
3 , ∆bLR

2 , ∆bLR
R , ∆bLR

B−L) = (2, 2, 2/3, 0). (15)

Imposing now the requirement that mG is independent of the intermediate scale mLR,

results in the set of conditions:

∆bLR
3 = ∆bLR

2 ≡ ∆b, (16)

∆bLR
B−L +

3

2
∆bLR

R − 11 =
5

2
(∆b). (17)

Obviously, many different sets of ∆b
′

s can fulfil these conditions and also realize particle

configurations that provide a realistic CKM. To provide just the simplest example, consider

scalar CKM models, class [a.1]. These require at least one copy of Φ1,1,3,0 and Φ1,1,3,−2 each,

as discussed in the previous subsection. The simplest sliding solution for this class is given

by Φ1,1,3,0 + 4Φ1,1,3,−2 with ∆b
′

s = (0, 0, 10/3, 6) (and a mG = 2 × 1016 GeV). In the

LR regime we thus have SM (+ Higgs completed to one bi-doublet) particle content plus

Ψ1,2,2,0 + Ψ1,3,1,0 + Ψ8,1,1,0 + Φ1,1,3,0 + 4Φ1,1,3,−2. Fig. 5 shows the independence of the GCU

from the value of mLR. Note again, that GCU is lost, once mNP is raised above a certain

value, the b.f.p. for mNP , including 2-loop coefficients, being mNP = 1.1 TeV.
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Figure 5: Evolution of the gauge couplings for the sliding-LR model example discussed in the text

based on split SUSY. The plot to the left shows mLR = 10 TeV, while the plot to the right has

mLR = 1010 GeV.

As in the case of the non-sliding solutions, of course it is also possible to construct

sliding-LR models of class [a.2], the simplest 2-field solution is 2Φ1,1,2,−1 + 20Φ1,1,1,2 with

∆b
′

i = (0, 0, 1/3, 21/2).

As mentioned above, unification in non-SUSY extensions of the SM have been studied

already in [10]. A particular interesting example is the one studied in [11], which adds two

kinds of VLQs to the SM particle content, namely Q′ = Ψ3,2,1/6 and d
′c = Ψ3̄,1,1/3. This

model could, potentially, explain the much discussed enhancement in h → γγ [42, 43]. 10

As our second sliding-LR example, we thus choose X = 2Ψ3,2,1/6 + 2Ψ3,1,1/3 + Φ1,2,1/2,

which in the LR regime corresponds to X = 2Ψ3,2,1,1/3 + 2Ψ3,1,1,2/3, with the Φ1,2,1/2 used

to complete the Φ1,2,2,0. The ∆bLR
i coefficients of this configuration are:

(∆bLR
3 , ∆bLR

2 , ∆bLR
R , ∆bLR

B−L) = (2, 2, 0, 1). (18)

The sliding conditions in this case are the same as above and the simplest solution following

these conditions and allowing to break the LR symmetry correctly is: 2Φ1,1,1,2 + 4Φ1,1,3,−2,

with ∆b
′

i = (0, 0, 8/3, 7). The running of the inverse gauge couplings for this example is

shown in fig. 6.

IV. UNCERTAINTIES IN NEW PHYSICS SCALE AND PROTON HALF-LIFE

One of the aspects of model building for new physics models, rarely discussed in the

literature, are uncertainties. While ideally, of course, predictions such as the existence

of new particles at the TeV scale should be testable over the whole range of the allowed

10 The latest CMS data now gives much smaller h → γγ, see the web-page of CMS public results at:

twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG.
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Figure 6: Evolution of the inverse gauge couplings in the second example of sliding-LR models:

2Ψ3,2,1,1/3 + 2Ψ3,1,1,2/3 + 2Φ1,1,1,2 + 4Φ1,1,3,−2. This example is non-SUSY and with a CKM

explained by VLQs (class [b]).

parameter space, in reality most model builders content themselves with showing that for

some particular choice of parameters consistent solutions for their favorite model exist.

In this section we discuss uncertainties for the predictions of our LR models. In these

models, once we have fixed the particle content of a particular version, there are essentially

three free parameters: mLR, mG and αG. However, since there are also three gauge cou-

plings, with values fixed by experiment, for any given model mLR, mG and αG are fixed

up to some error by the requirement of gauge coupling unification. This results essentially

in two predictions: First, the mass scale, where the gauge bosons of the extended gauge

sector and (possibly) other particles of the model should show up. This scale coincides, of

course, with the range of mLR, as derived from the fit. And, second, derived from mG and

αG, we obtain a range for the predicted half-life of proton decay.

The analysis of this section uses a χ2 minimization, which fits the three measured SM

gauge couplings as functions of the three unknowns. We start by discussing the error

budget. The total error budget can be divided into a well defined experimental error plus

a theory error. For the experimental input we use [44]:

α−1
1 = 58.99 ± 0.020 (19)

α−1
2 = 29.57 ± 0.012

α−1
3 = 8.45 ± 0.050 .

The experimental errors quoted are at the 1-σ confidence level (CL). Note especially the

small value of ∆(α−1
3 ), according to [44], compared to the older value of ∆(α−1

3 ) ≃ 0.14 [45].

Much more difficult to estimate is the theory error. In our discussion presented in

section (III) we have used 1-loop β-coefficients for simplicity. Two-loop β-coefficients for

general non-supersymmetric theories, have been derived long ago [46, 47, 47], see also [48],

and can be easily included in a numerical analysis. However, a consistent 2-loop calculation
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requires the inclusion of the 1-loop thresholds from both, light states at the LR-scale and

heavy states at the GUT scale. While we do fix in our constructions the particle content

in the LR-symmetric phase, we have not specified the Higgs content for the breaking of

SO(10) to the LR group in detail. Thus, the calculation of the GUT scale thresholds is

not possible for us, even in principle. The ignorance of the thresholds should therefore be

included as (the dominant part of) the theoretical error, once two-loop β-coefficients are

used in the calculation.

The 1-loop thresholds are formally of the order of a 2-loop effect and, thus, it seems a

reasonable guess to estimate their size by a comparison of the results using 1-loop and 2-loop

β coefficients in the RGE running. This, however, can be done using different assumptions.

We have tried the following four different definitions for the theory error:

• (i) Perform a χ2
min search at 1-loop and at 2-loop. Consider the difference ∆(α−1

G )th ≃

|(α−1
G )(1−loop) − (α−1

G )(2−loop)| as the theoretical error, common to all αi.

• (ii) Perform a χ2
min search at 1-loop and at 2-loop. Calculate ∆(α−1

i )th ≃ |(α−1
i )exp −

(α−1
i )(2−loop)| using m1−loop

G as the starting point, but keeping the mLR and α−1
G from

the 2-loop calculation. This generates ∆(α−1
i )th which depend on the group i, but

does not take into account the overall shift on α−1
G caused by the change from 1-loop

to 2-loop coefficients.

• (iii) Perform a χ2
min search at 1-loop and at 2-loop. Calculate ∆(α−1

i )th ≃ |(α−1
i )exp −

(α−1
i )(2−loop)| using m1−loop

G and (α−1
G )1−loop as the starting point, but keeping the mLR

from the 2-loop calculation. This takes into account both, the shift of mG and α−1
G

from 1-loop to 2-loop calculation.

• (iv) Perform a χ2
min search at 1-loop. For the b.f.p. of mG, α−1

G and mLR found,

calculate the values of (α−1
i )(2−loop). Use ∆(α−1

i )th ≃ |(α−1
i )exp − (α−1

i )(2−loop)| as the

error. One should expect this definition to give, in principle, the most pessimistic

error estimate. See, however, the discussion below.

Example shifts (“errors”) in ∆(α−1
i ) determined by the four different methods defined

above and for two particular models, discussed in previous sections, are given in table III.

The first and most important observation is that the theory errors estimated in this way

are always much larger than the experimental errors on the gauge couplings. We would like

to stress, however, that in absolute terms ∆(α−1
G )th ≃ 0.5 corresponds only to a 1 ÷ 2 %

shift in the value of α−1
G , depending on the model. It is found that all four methods lead to

very similar ∆(α−1), but which of the couplings is assigned the smallest error depends on

the method and on the model.

Perhaps more surprising is that method (iv) in the examples shown in the table does

not automatically lead to the largest ∆(α−1
i ) nor to the largest average error, ∆(α−1), in
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Def.: ∆(α−1
1 ) ∆(α−1

2 ) ∆(α−1
3 ) ∆(α−1)

(i) 0.76 0.76 0.76 0.76

(ii) 0.57 0.41 1.18 0.72

(iii) 1.31 0.34 0.40 0.68

(iv) 1.21 0.41 0.40 0.67

Def.: ∆(α−1
1 ) ∆(α−1

2 ) ∆(α−1
3 ) ∆(α−1)

(i) 0.86 0.86 0.86 0.86

(ii) 0.46 0.46 1.18 0.70

(iii) 1.30 0.39 0.30 0.66

(iv) 1.11 0.44 0.22 0.59

Table III: Example shifts (“errors”) in ∆(α−1
i ) for the particular models: SM + Φ1,2,2,0+3Φ1,1,3,0+

2Φ1,1,3,−2 (left) and SM + 2Ψ3,1,1,−2/3 + 2Φ1,2,1,1 + 2Φ1,1,3,−2 (right), see also fig. 2, determined

using the four different methods defined in the text. ∆(α−1) is the mean deviation.

these examples 11. We can attribute this somewhat unexpected result to the correlated

shifts induced by the simultaneous change in mLR and mG in method (iv), which can even

conspire in some models to give an unrealistically small deviation in one particular coupling,

see the value of ∆(α−1
3 ) in the second model shown in table III, for example.

In fig. 7 we then show the χ2 distributions using the four different set of values of ∆(α−1
i )

for the model used in the left panel of table III. Here, the χ2
min (denoted by the cross) and

the corresponding 1, 2- and 3-σ CL contours are shown in the plane (mLR, T1/2), where

T1/2 is the proton decay half-life estimated via eq. (10). While at first glance, the different

methods seem to produce somewhat different results, a closer inspection reveals that the

two main conclusions derived from this analysis are in fact independent of the method.

First, in all four methods the model is excluded by the lower limit for the proton decay

half-live from Super-K [37, 41] data at the one sigma level, but becomes (barely) allowed

at 2-σ CL. And, second, while the model has a preferred value for the mLR scale within the

reach of the LHC, the upper limit on mLR - even at only 1-σ CL! - is very large, between

[5 ×107, 2 ×109] GeV depending on the method. The model could therefore be excluded by

(a) a slight improvement in the theoretical error bar or (b) from an improved limit on the

proton decay, but not by direct accelerator searches. This latter conclusion is, of course, not

completely unexpected, since the value of mLR enters in the analysis only logarithmically

as the difference between mG and mLR.

As fig. 7 shows, in three of the four methods the error in the determination of the T1/2

is around 2 ÷ 2.5 orders of magnitude at one sigma, while in method (ii) - due to the

correlation with mLR - we find approximately T1/2 = 1031+2.8−3.5 y. This is mainly due to

a change in the GUT scale, when going from the 1-loop to the 2-loop β-coefficients. Note,

that the value of mG enters in the fourth power in the calculation of T1/2; thus, an error of

a factor of 100 corresponds only to a shift of a factor of ∆(mG) ≃ 3 in the GUT scale.

In fig. 8 we show the χ2 distributions, for the model on the right panel of table III, using

11 For the MSSM method (iv) indeed leads to the largest ∆(α−1

i ), see below.
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Figure 7: Contour plot of the χ2 distribution in the plane (mLR, T1/2) for the model: SM +

Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2, using the four different approaches to estimate the theoretical

error, defined in the text: Top row: (i) left and (ii) right, bottom row (iii) left and (iv) right. The

cyan (blue, red) region corresponds to the allowed region at 68 % (95 % and 3-σ) CL. In all four

cases the model is ruled out by proton decay constraints at one sigma, but allowed at 2-σ CL. For

further discussion see text.

two of the four methods for determining ∆(α−1
i ) of table III. The plots for methods (ii) and

(iii) lead to results similar to (i) and (iv), respectively, and are therefore not shown. Again,

mLR is only very weakly constrained in this analysis, but for this model, the b.f.p. of the

GUT scale is much larger, around mG ≃ 1017 GeV, so proton decay provides hardly any

constraints on this model. Note the strong correlation between mLR and mG in the plot
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Figure 8: Contour plot of the χ2 distribution in the plane (mLR, mG) for the model: SM +

2Ψ3,1,1,−2/3 + 2Φ1,2,1,1 + 2Φ1,1,3,−2, using the four different approaches to estimate the theoretical

error, defined in the text: (i) left and (iv) right. Methods (ii) and (iii) lead to results similar to

(i) and (iv), respectively, and are therefore not shown.

on the left, which leads to a much larger “error” bar in the predicted range of the proton

decay half-life for this model, roughly 5 orders of magnitude at one sigma CL.

We have repeated this exercise for a number of different LR models 12, see the appendix

and discussion in the previous section and have always found numbers of similar magnitude.

We have checked, however, that these “large” shifts in ∆(α−1
i ) are not a particular feature

of our LR models. For this check we have calculated ∆(α−1
G )th also for a number of models

with only the SM group up to the GUT scale (see appendix). There, instead of mLR we

used the energy where the new particles appear, call it mNP , as a free parameter. Very

similar values and variations for ∆(α−1
i )th are found in this study too. It may be interesting

to note that the smallest ∆(α−1
G )th we found corresponds to a model which is essentially

like split supersymmetry 13 with a ∆(α−1
G )th of only ∆(α−1

G )th ≃ 0.25. (In methods (ii)-(iv)

the ∆(α−1
G )th vary for this model between 0.05 and 0.78 with a mean of 0.55.) On the

other hand, for the MSSM we find a ∆(α−1
G )th ≃ 0.82 and values of ∆(α−1

i )th even up to

∆(α−1
i )th ≃ 2, depending on which of our four methods is used. Thus, the uncertainties

discussed in this section should apply to practically all new physics models, which attempt

to achieve GCU.

Reducing the theory error on α−1
i will be possible only, if thresholds are calculated

at both new physics scales, mLR and mG. Since this task is beyond the scope of the

12 Among them the two “minimal” LR models discussed in the introduction.
13 This is the first example of SM+X configurations discussed in section III B.
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Figure 9: Allowed range cyan (blue, red) of T1/2 (left) and mLR (right) at 1-, 2- and 3-σ CL as a

function of the error in ∆(α−1). The plot is for the model SM + Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2.

The horizontal line in the left plot is the experimental lower limit [37, 41], while the vertical line

at ∆(α−1) = 0.76 corresponds to the estimated uncertainty in this model using method (i).

present work, in fig. 9 we show plots as a function of the unknown theory error ∆(α−1).

The model considered is excluded by the proton decay constraint at 2-σ CL up to an

error of roughly ∆(α−1) ≃ 0.6, indicating that even a minor improvement in the theory

error can have important consequences for all models with a relatively low GUT scale, say

mG ∼ (1 − 3) × 1015 GeV. On the other hand, in order to be able to fix the LR-scale to a

value low enough such that accelerator tests are possible, requires a much smaller theory

error. The exact value of this “minimal” error required depends on the model, but as can

be seen from fig. 9 theory errors of the order of ∆(α−1
i ) <∼ 0.1 will be necessary.

V. CONCLUSIONS

In this work we attempted to construct a comprehensive list of non-SUSY models with

LR-symmetric intermediate stage close to the TeV scale that may be obtained as simple

low-energy effective theories within a class of renormalizable non-SUSY SO(10) grand uni-

fications assuming some of the components of scalar representations with dimensions up to

126 to be accidentally light. In order to make our way through the myriads of options we

assumed that all such light fields (besides those pushed down by the need to arrange for the

low LR breaking scale) necessary to maintain the SO(10)-like gauge coupling unification

are clustered around the same (TeV) scale.

Remarkably enough, the vast number of settings that pass all the phenomenological
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constraints (in particular, the compatibility with the quark and lepton masses and mixings,

the current proton lifetime limits, perturbativity and gauge coupling unification) can be

grouped into a relatively small number of types characterised, in our classification, by the

extra fields underpinning the emergence of the SM flavour structure. Needless to say, the

popular low-scale LR alternatives to the MSSM such as, e.g., split-SUSY, simple extensions

of the mLR and/or mΩLR models, are all among these.

In the second part of the study we elaborate in detail on the theoretical uncertainties

affecting the possible determination of (not only) the LR scale from the low-energy observ-

ables focusing namely on the impact of different definitions of the χ2 reflecting the generic

incapability of the simplistic bottom-up approach to account for most of the details of the

full top-down analysis. To this end, we perform a numerical analysis of a small set of

sample scenarios to demonstrate how difficult it is in general to extrapolate the low-energy

information over the “desert” to draw any strong conclusion about the viability of the un-

derlying unified theory without a detailed account for, e.g., the GUT-scale thresholds and

other such high-scale effects. Nevertheless, within the bottom-up approach employed in this

study the character of our results is inevitably just indicative and further improvements

are necessary before drawing any far-fetched conclusions. To this end, the simple classifi-

cation of the basic potentially realistic schemes given in Sect. III may be further improved

in several directions, among which perhaps the most straightforward are, e.g., the viability

of arranging the considered spectra in specific SO(10) GUTs, their perturbativity beyond

the unification scale, etc.
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Appendix A: List of fields

Table (IV) gives transformation properties under the group SU(3)c×SU(2)L ×SU(2)R ×

U(1)B−L for all representations of SO(10) up to dimension 126. For the sake of convenience

only, we also give names of certain representations, which have been used in the literature

before.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scalar χ χc Ω Ωc Φ

Fermion B̃ L Lc Σ Σc G̃ δd δu Q Qc

SU(3)C 1 1 1 1 1 1 8 1 3 3 6 6 3 3

SU(2)L 1 2 1 3 1 2 1 1 1 1 1 1 2 1

SU(2)R 1 1 2 1 3 2 1 1 1 1 1 1 1 2

U(1)B−L 0 +1 -1 0 0 0 0 +2 −2
3 +4

3 +2
3 −4

3 +1
3 +1

3

SO(10)

Origin

1

54

45

16 16 45 45

10

120

126

45

54
120

10

126

120

45 120 54 16 16

15 16 17 18 19 20 21 22 23 24

Scalar ∆ ∆c

Fermion

SU(3)C 8 1 1 3 3 3 6 6 1 3

SU(2)L 2 3 1 2 3 1 3 1 3 2

SU(2)R 2 1 3 2 1 3 1 3 3 2

U(1)B−L 0 -2 -2 +4
3 −2

3 −2
3 +2

3 +2
3 0 −2

3

SO(10)

Origin
120 126 126

120

126

120

126

120

126
126 126 54

45

54

Table IV: Naming conventions and transformation properties of fields in the left-right symmetric

regime (not considering conjugates). The charges under the U(1)B−L group shown here were

multiplied by a factor
√

8
3 . The hypercharge is defined by: Y = T R

3 + (B−L)
2 . B̃ and G̃ correspond

to the bino and gluino respectively. Symbols in the lines called "Scalar" and "Fermion" quote

names used for these fields in the literature.

Appendix B: LR unification: simple configurations

The breaking of the LR symmetry to the SM : LR → SM requires the presence of one

of the fields: Φ1,1,3,−2 or Φ1,1,2,−1. All configurations contain then at least one of these fields

and also one bi-doublet Φ1,2,2,0 (to complete “SM+ bi-doublet” basic field content). Table V
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Extra field Configuration ∆b
′

s mG T1/2

Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2 (0, 1
3 , 11

3 , 3) 2 × 1015 1033±2.5

Φ1,2,2,0 + Φ1,1,3,0 + 3Φ1,1,3,−2 (0, 1
3 , 3, 9

2) 2 × 1015 1033±2.5

Φ1,2,1,1 2Φ1,2,2,0 + 2Φ1,1,3,0 + 4Φ3,1,1,−2/3 + Φ1,2,1,1 + 2Φ1,1,3,−2 (2
3 , 5

6 , 10
3 , 47

12 ) 8 × 1015 1035±2.5

Φ1,1,2,−1 Φ1,2,2,0 + 2Φ1,1,3,0 + 2Φ1,1,2,−1 + 2Φ1,1,3,−2 (0, 1
3 , 10

3 , 7
2) 2 × 1015 1033±2.5

Φ1,3,1,0 Φ1,2,2,0 + Φ1,1,3,0 + Φ1,3,1,0 + 3Φ1,1,3,−2 (1, 1, 3, 9
2) 3 × 1016 1037±2.5

Φ8,1,1,0 2Φ1,2,2,0 + Φ1,1,3,0 + Φ8,1,1,0 + 2Φ1,1,3,−2 (1, 2
3 , 8

3 , 3) 4 × 1017 1042±2.5

Φ1,1,1,2 Φ1,2,2,0 + 2Φ1,1,3,0 + 2Φ1,1,1,2 + 2Φ1,1,3,−2 (0, 1
3 , 3, 4) 2 × 1015 1033±2.5

Φ3,1,1,−2/3 2Φ1,2,2,0 + Φ1,1,3,0 + 5Φ3,1,1,−2/3 + 2Φ1,1,3,−2 (5
6 , 2

3 , 8
3 , 23

6 ) 1 × 1017 1039±2.5

Φ3,1,1,4/3 3Φ1,2,2,0 + Φ1,1,3,0 + 4Φ3,1,1,4/3 + 2Φ1,1,3,−2 (2
3 , 1, 3, 17

3 ) 2 × 1015 1033±2.5

Φ6,1,1,2/3 2Φ1,2,2,0 + Φ1,1,3,0 + Φ6,1,1,2/3 + 2Φ1,1,3,−2 (5
6 , 2

3 , 8
3 , 10

3 ) 1 × 1017 1039±2.5

Φ6,1,1,−4/3 2Φ1,2,2,0 + 3Φ1,1,3,0 + Φ6,1,1,−4/3 + Φ1,1,3,−2 (5
6 , 2

3 , 10
3 , 17

6 ) 1 × 1017 1039±2.5

Φ3,2,1,1/3 Φ1,2,2,0 + Φ1,1,3,0 + 2Φ3,1,1,−2/3 + Φ3,2,1,1/3 + 3Φ1,1,3,−2 (2
3 , 5

6 , 3, 59
12 ) 8 × 1015 1035±2.5

Φ3,1,2,1/3 Φ1,2,2,0 + Φ1,1,3,0 + Φ3,1,2,/3 + 2Φ1,1,3,−2 (1
3 , 1

3 , 17
6 , 37

12 ) 3 × 1016 1037±2.5

Φ8,2,2,0 4Φ1,2,2,0 + 3Φ1,1,3,0 + Φ8,2,2,0 + 3Φ1,1,3,−2 (4, 4, 8, 9
2) 3 × 1016 1037±2.5

Φ1,3,1,−2 Φ1,2,2,0 + Φ1,1,3,0 + 2Φ8,1,1,0 + 2Φ1,3,1−2 + 2Φ1,1,3,−2 (2, 5
3 , 7

3 , 6) 4 × 1017 1042±2.5

Φ3,2,2,4/3 Φ1,2,2,0 + Φ1,1,3,0 + Φ8,1,1,0 + 2Φ3,2,2,4/3 + Φ1,1,3−2 (7
3 , 7

3 , 4, 11
3 , 41

6 ) 3 × 1016 1037±2.5

Φ3,3,1,−2/3 Φ1,2,2,0 + Φ1,1,3,0 + 2Φ8,1,1,0 + Φ3,3,1,−2/3 + 4Φ1,1,3−2 (5
2 , 7

3 , 11
3 , 13

2 ) 1 × 1017 1037±2.5

Φ3,1,3,−2/3 2Φ1,2,2,0 + 2Φ1,1,3,0 + Φ3,1,3,−2/3 + Φ1,1,3,−2 (1
2 , 2

3 , 14
3 , 2) 8 × 1015 1035±2.5

Φ6,3,1,2/3 Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ8,1,1,0 + Φ6,3,1,2/3 + 5Φ1,1,3,−2 (9
2 , 13

3 , 17
3 , 17

2 ) 1 × 1017 1039±2.5

Φ6,1,3,2/3 2Φ1,2,2,0 + Φ1,1,3,0 + 3Φ1,3,1,0 + Φ6,1,3,2/3 + 2Φ1,1,3,−2 (5
2 , 8

3 , 20
3 , 4) 8 × 1015 1035±2.5

Φ1,3,3,0 2Φ1,2,2,0 + 3Φ1,1,3,0 + 3Φ8,1,1,0 + Φ1,3,3,0 + 2Φ1,1,3,−2 (3, 8
3 , 6, 3) 4 × 1017 1042±2.5

Φ3,2,2,−2/3 Φ1,2,2,0 + 1Φ1,1,3,0 + 3Φ3,1,2,1/3 + Φ3,2,2,−2/3 + Φ1,1,3,−2 (5
3 , 4

3 , 25
6 , 29

12 ) 4 × 1017 1042±2.5

Table V: Simple LR configurations which can explain [a.1] scalar CKM. One of the bi-doublets

Φ1,2,2,0 is already considered in the basic field content (SM+bi-doublet). mG and T1/2 have been

calculated at 1-loop. The first two configurations correspond to the minimal solutions, each one

with the basic [a.1] scalar CKM field content.

shows the simplest LR configurations for [a.1] scalar CKM (where the necessary fields are:

Φ1,1,3,0, Φ1,2,2,0, Φ1,1,3,−2 or Φ1,1,2,−1) for each one of the fields presented in table IV.
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Appendix C: SM-X extended unification: simple configurations

It is possible to achieve one-step unification of the SM coupling constants withing non-

SUSY models. This is performed adding to the SM a new particle content at scale mNP .

This particle content can be as simple as the configurations shown in table VI, which

added to the SM lead “SM + X” models that unify equal or even better than the MSSM.

Therefore, for each one of the fields in table IV (in the SM version) one of the simplest X

configurations is obtained as follows: α−1
2 (mG)−α−1

1 (mG) < 0.9 (unification equal or better

that the MSSM) and 1015 < mG < 1018 GeV in order to obtain proton life times allowed

by the actual bounds.
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Extra field Configuration ∆b
′

s mG

Φ1,2,1/2 Φ1,2,1/2 + 4Φ3,2,1/6 + 4Φ3,1,1/3 (1
2 , 13

6 , 2) 3 × 1016

5Φ1,2,1/2 + 2Φ1,3,0 + 2Φ8,1,0 (1
2 , 13

6 , 2) 3 × 1016

Φ3,2,1/6 3Φ3,2,1/6 ( 1
10 , 3

2 , 1) 2 × 1015

4Φ3,2,1/6 + 2Φ3,1,−1/3 ( 4
15 , 2, 5

3) 8 × 1015

Φ3,1,2/3 4Φ3,1,2/3 + 2Φ1,2,1/2 + 5Φ3,2,1/6 (43
30 , 17

6 , 17
3 ) 2 × 1015

4Φ3,1,2/3 + Φ1,2,1/2 + 5Φ1,3,0 + 3Φ8,1,0 (7
6 , 7

2 , 11
3 ) 4 × 1017

Φ3,1,−1/3 4Φ3,1,−1/3 + Φ1,2,1/2 + 4Φ3,2,1/6 (1
2 , 13

6 , 2) 3 × 1016

4Φ3,1,−1/3 + 4Φ1,2,1/2 + 3Φ1,3,0 + 2Φ8,1,0 (2
3 , 8

3 , 8
3 ) 1 × 1017

Φ1,1,−1 3Φ1,1,−1 + 3Φ1,2,1/2 + 3Φ1,3,0 + 2Φ8,1,0 ( 9
10 , 5

2 , 2) 2 × 1015

Φ1,1,−1 + 2Φ1,3,0 + 2Φ8,2,1/2 (9
5 , 4, 4) 1 × 1017

Φ3,1,0 3Φ1,3,0 + 2Φ8,1,0 (0, 2, 2) 1 × 1017

Φ8,1,0 2Φ8,1,0 + 3Φ1,3,0 (0, 2, 2) 1 × 1017

Φ6,1,1/3 2Φ6,1,1/3 + 3Φ1,3,0 ( 4
15 , 2, 5

3) 8 × 1015

Φ6,1,−2/3 2Φ6,1,−2/3 + Φ6,3,1/3 + Φ3,2,−5/2 (23
10 , 9

2 , 9
2) 1 × 1017

Φ8,2,1/2 Φ8,2,1/2 + 3Φ3,2,1/6 + Φ1,2,1/2 (1, 3, 3) 1 × 1017

Φ1,3,−1 3Φ1,3,−1 + 3Φ1,3,0 + 4Φ8,2,1/2 (9
5 , 4, 4) 1 × 1017

Φ1,1,−2 2Φ1,1,−2 + 2Φ3,3,−1/3 + 3Φ8,1,0 (2, 4, 4) 1 × 1017

Φ3,2,7/6 Φ3,2,7/6 + 2Φ1,3,0 + 3Φ8,2,1/2 + 2Φ1,3,−1 (16
3 , 22

3 , 22
3 ) 1 × 1017

Φ3,3,−1/3 Φ3,3,−1/3 + Φ1,3,−1 + 2Φ8,1,0 (4
5 , 8

3 , 5
2 ) 3 × 1016

Φ3,1,−4/3 5Φ3,1,−4/3 + 2Φ6,3,1/3 + 2Φ8,1,0 (92
15 , 8, 47

6 ) 3 × 1016

Φ6,3,1/3 Φ6,3,1/3 + Φ6,1,4/3 + Φ8,2,1/2 (10
3 , 16

3 , 16
3 ) 1 × 1017

Φ6,1,4/3 Φ6,1,4/3 + Φ6,3,1/3 + Φ8,2,1/2 (10
3 , 16

3 , 16
3 ) 1 × 1017

Φ3,2,−5/6 Φ3,2,−5/6 + 4Φ1,3,0 + 3Φ8,1,0 (5
6 , 19

6 , 10
3 ) 4 × 1017

Table VI: Simple X configurations which lead “SM+X” unification at mG: [1015, 1018] GeV. The

first two configurations correspond to the examples described in section III B. Note that fields

Φ3,1,−1/3, Φ3,1,−4/3, and Φ3,3,−1/3 are potentially dangerous for d=6 proton decay, see section II.
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