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Abstract

We study the effects of the tensor force, present in modern effective nucleon-nucleon interactions,

in the spin instability of nuclear and neutron matter. Stability conditions of the system against

certain very low energy excitation modes are expressed in terms of Landau parameters. It is

shown that in the spin case, the stability conditions are equivalent to the condition derived from

the spin susceptibility, which is obtained as the zero-frequency and long-wavelength limit of the

spin response function calculated in the Random Phase Approximation. Zero-range forces of the

Skyrme type and finite-range forces of M3Y and Gogny type are analyzed. It is shown that for the

Skyrme forces considered, the tensor effects are sizeable, and tend to increase the spin instability

which appears at smaller densities than in the case that the tensor is not taken into account. On

the contrary, the tensor contribution of finite range forces to the spin susceptibility is small or

negligible for both isospin channels of symmetric nuclear matter as well as for neutron matter. A

comparison with the spin susceptibility provided by realistic interactions is also presented.
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I. INTRODUCTION

The energy density functional theory applied to nuclear systems has experienced quite a

lot of progress in recent times. Using this method, one can succesfully perform systematic

studies of binding energies and one-body properties of nuclei in a very wide region of the

nuclear chart [1]. An often used energy density functional is the one obtained from the

effective Skyrme interaction [2] which has been very useful in describing nuclear properties

both for finite nuclei and also for the equation of state of nuclear and neutron matter [3].

Recently, and in order to improve the power of the energy density functional derived from

the Skyrme interaction, the possibility to incorporate a zero range tensor component to

the effective interaction has been explored [4–7]. In principle, to add tensor components to

the effective nucleon-nucleon interaction seems rather natural. After all, they are a crucial

ingredient of any realistic interaction, able to predict nucleon-nucleon (NN) scattering data

and deuteron properties. In fact, the tensor component of the nucleon-nucleon interaction

is recognized as the responsible for the quadrupolar momentum of the deuteron. However,

the effective Skyrme interactions are built to be used mainly at the mean field level, and

in this approach, the tensor component gives zero contribution to the ground state binding

energy of spin saturated systems, for example symmetric nuclear matter (SNM) or pure

neutron matter (PNM). This fact together with the difficulties to constraint the coupling

constants associated to the tensor force are some of the reasons for which the use of the

tensor forces in the effective interactions has been delayed for a long time. However, one

should keep in mind that the first proposed Skyrme force was already containing tensor

components [8] and that some early calculational efforts were performed almost thirty years

ago [10] to study the effects of the tensor component on the quasi-particle interaction at the

Fermi surface of neutron matter [9] as well as on the location of the single-particle energies of

nuclei [10] based on the Skyrme force parametrization SIII [11]. Presently, the incorporation

of the tensor force is becoming a standard procedure making the effective interaction much

powerful specially in what concerns the calculations of excitation energies and response

functions. Recently, the Lyon group performed a systematic analysis of the effects of a

zero-range tensor component, added to a Skyrme type forces, in the response function of

nuclear and neutron matter to different probes. The study was conducted in the framework

of the Random Phase Approximation (RPA). The responses and the corresponding dynamic
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structure functions have been further analyzed by means of energy weighted sum-rules [12–

14]. These authors have shown that the response of symmetric nuclear matter as well as

of neutron matter are strongly affected by the presence of this extra term in the Skyrme

interaction.

The purpose of the present paper is to perform an explicit calculation of the static spin

response of SNM and PNM in the long wavelength limit for effective interactions containing

tensor components. The calculation is performed in the framework of the RPA fully taking

into account the exchange terms. In the next section, we recover the expressions of the

stability conditions in the spin and isospin channels in terms of some inequalities that the

Landau parameters should respect [15]. In section III, the derivation of the spin susceptibiliy

as the long wavelength limit of the static spin response is discussed in detail. This limit allows

to express the result in terms of the Landau parameters. The qualitative and quantitative

analysis of the tensor effects for different effective forces of zero and finite range is presented

in section IV. Finally, a short summary of the conclusions is given in the last section.

II. STABILITY CONDITIONS AND LANDAU PARAMETERS

An intermediate step towards the calculation of the response of a nuclear system is to

obtain the particle-hole (ph) interaction. Expanding the interaction in Legendre polynomials

Pℓ(k̂1 · k̂2), the ph interaction for SNM is written as

∑

ℓ

Pℓ(k̂1 · k̂2) {fℓ + f ′

ℓ(τ1 · τ2) + gℓ(σ1 · σ2)

+g′ℓ(τ1 · τ2)(σ1 · σ2) + [hℓ + h′

ℓ(τ1 · τ2)]
k2
12

k2
F

S12(k̂12)

∣

∣

∣

∣

ki=kF

}

, (1)

where fℓ, gℓ, . . . are the Landau parameters, which depend on the density through the Fermi

momentum kF , and k12 = k1 − k2 where k1 and k2 are the initial and final hole states

affected by the ph interaction. Notice that the particle and the hole momenta are both at

the Fermi surface and therefore their moduli are equal to the Fermi momentum kF . The

ph interaction thus depends only on the angle (k̂1 · k̂2) between the initial and final hole

momenta. The tensor operator in momentum space is defined as

S12(k̂) = 3(σ1 · k̂)(σ2 · k̂)− (σ1 · σ2) . (2)
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We have followed the convention of Refs. [15, 16], for the definition of the tensor parameters

hℓ, h
′

ℓ. Notice that for PNM, the combinations fℓ+f ′

ℓ(τ1 ·τ2), gℓ+g′ℓ(τ1 ·τ2), and hℓ+h′

ℓ(τ1 ·τ2)
should be replaced with the coefficients f

(n)
ℓ , g

(n)
ℓ , h

(n)
ℓ , respectively. It is customary to deal

with dimensionless parameters Fℓ, Gℓ, . . . , obtained from the previous ones by multiplying

them with the density of states per energy at the Fermi surface N0 = nd
kFm∗

2~2π2 , where nd is

the spin-isospin degeneracy factor, i.e. 4 for SNM and 2 for PNM.

A first observation is the absence of the spin-orbit terms in the particle-hole interaction at

the Fermi surface. One could think that they have been omitted in the interaction. However,

it is easily shown that spin-orbit terms, either zero- or finite-range, are proportional to the

transferred momentum and consequently do not contribute to the Landau parameters.

As we want to concentrate on the effects of the tensor force, we consider only the spin

S = 1 channel. For the sake of simplicity, in the following we will explicitly derive our results

in the isospin channel I = 0 of symmetric nuclear matter. However, the final expressions

are also applicable to the I = 1 channel or to neutron matter by replacing the parameters

Gℓ, Hℓ by G′

ℓ, H
′

ℓ, and G
(n)
ℓ , H

(n)
ℓ , respectively.

The stability of the spherical Fermi surface of nuclear matter against small deformations

can be expressed in terms of the Landau parameters which should fulfill some stability

criteria. As shown in Ref. [15], the inclusion of tensor components in the ph interaction

produces a coupling between the spin-dependent parts, that is, Gℓ terms are coupled to Hℓ

ones. Compact expressions are obtained considering states with good ph angular momentum

J , then the potential part of the free energy for a given J is a 2× 2 matrix with ℓ, ℓ′ values

J ± 1. The stability criterion is given by the condition that these matrices have positive

eigenvalues. The matrices are diagonal if ℓ = ℓ′, and one gets a single stability criterion for

each possible value of J .

We collect here the resulting stability criteria for the lower possible values of ℓ and J .

The first diagonal matrices correspond to the values ℓ = 1, ℓ′ = 1, and one gets

1 +
1

3
G1 −

10

3
H0 +

4

3
H1 −

2

15
H2 > 0 , (3)

1 +
1

3
G1 +

5

3
H0 −

2

3
H1 +

1

15
H2 > 0 , (4)

1 +
1

3
G1 −

1

3
H0 +

2

15
H1 −

1

75
H2 > 0 , (5)
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for J = 0−, 1− and 2−, respectively. The diagonal ℓ = 2, ℓ′ = 2 case gives

1 +
1

5
G2 −

7

15
H1 +

2

15
H2 −

3

35
H3 > 0 , (6)

1 +
1

5
G2 +

7

15
H1 −

2

5
H2 +

3

35
H3 > 0 , (7)

1 +
1

5
G2 −

2

15
H1 +

4

35
H2 −

6

245
H3 > 0 , (8)

for J = 1+, 2+, and 3+, respectively. Obviously, taking all tensor parameters equal to zero,

one recovers the familiar stability conditions Gℓ > −(2ℓ+ 1).

The first two non-diagonal matrices correspond to the coupling between (ℓ = 0, J = 1+)

and (ℓ = 2, J = 1+) modes




1 +G0 −
√
2(H0 − 2

3
H1 +

1
5
H2)

−
√
2(H0 − 2

3
H1 +

1
5
H2) 1 + 1

5
G2 − 7

15
H1 +

2
5
H2 − 3

35
H3



 , (9)

and to the coupling between (ℓ = 1, J = 2−) and (ℓ = 3, J = 2−):




1 + 1
3
G1 − 1

3
H0 +

2
15
H1 − 1

75
H2 −

√
6(1

5
H1 − 6

25
H2 +

3
35
H3)

−
√
6(1

5
H1 − 6

25
H2 +

3
35
H3) 1 + 1

7
G3 − 36

175
H2 +

8
35
H3 − 4

63
H4



 . (10)

Later on, the two sets of inequalities (3–5), (6–8), and the two stability criteria associated to

matrices (9) and (10) will be referred to as ℓ = 1, ℓ = 2, J = 1 and J = 2 sets, respectively.

In Sect. IV, we shall discuss the behavior of these four sets of inequalities as a function of

the density for several effective interactions. In the next section we are going to show that

the stability criteria (9) is in fact related to the spin susceptibility.

III. THE SPIN SUSCEPTIBILITY

In general, the susceptibility of a system is given by the linear response function to the

appropriate external probe. We use the notation χ
(α)
RPA(q, ω) for the response function cal-

culated in the RPA, and χ
(α)
RPA(0) for the corresponding zero-frequency and long-wavelength

limit defining the susceptibility. The same quantities in the mean-field or Hartree-Fock ap-

proximation will be indicated with the subindex (HF). The symbol (α) refers to the quantum

numbers of the ph spin-isospin channel (S,M ; I, Q), with M and Q being the projections

on the selected quantization axis of the spin and isospin operators, respectively. The spin

response is linked to the S = 1 channel, without dynamical terms mixing isospin, and no

charge exchange. Therefore only the quantum number M is relevant in the following.

5



We employ the method and notations presented in Refs. [12, 17, 18] to obtain the

RPA response function. The starting point is the Bethe-Salpeter equation for the Green’s

function, or retarded ph propagator

G
(M)
RPA(q, ω,k1) = GHF (q, ω,k1)

+ GHF (q, ω,k1)
∑

M ′

∫

d3k2
(2π)3

V
(M,M ′)
ph (q,k1,k2)G

(M ′)
RPA(q, ω,k2) , (11)

where

GHF (q, ω,k1) =
θ(kF − k1)− θ(kF − |k1 + q|)
ω + ε(k1)− ε(|k1 + q|) + iη

, (12)

is the Hartree-Fock ph propagator, which is independent on the specific M-channel, and

V
(M,M ′)
ph refers to the matrix elements of the ph interaction. In this notation, ω is the

transferred energy, k1 and k2 are the initial and final hole momenta in the ph interaction,

respectively, and q is the transferred momentum.

The response function in the homogeneous medium is related to the ph Green’s function

by

χ
(M)
RPA(q, ω) = nd

∫

d3k1
(2π)3

G
(M)
RPA(q, ω,k1) . (13)

The HF response function χHF , or Lindhard function, is obtained when the free propagator

GHF is used in Eq. (13). In the following we will often deal with averages similar to the one

appearing in Eq. (13), that will be denoted with the notation 〈G(M)
RPA(k1)〉; the integrated

momentum k1 will be dropped when there is no confusion.

We now specify a ph interaction described in terms of Landau parameters, as the one

defined in Eq. (1), and limited to the S = 1, I = 0 space. The matrix elements of these ph

interaction in the spin-isospin space are written as

V
(M,M ′)
ph (1, 2) = δ(M,M ′)nd

∑

ℓ

gℓPℓ(k̂1 · k̂2) + nd

∑

ℓ

hℓPℓ(k̂1 · k̂2)S(M,M ′)
T (k̂1, k̂2) , (14)

where

S
(M,M ′)
T (k̂1, k̂2) = 3(−)M (k12)

(1)
−M (k12)

(1)
M ′ − δ(M,M ′)2[1− (k̂1 · k̂2)] . (15)

Following the notation of Ref. [12] we have defined

(k12)
(1)
M =

√

4π

3

(

Y1,M(k̂1)− Y1,M(k̂2)
)

. (16)
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For practical purposes it is convenient to expand the Legendre polynomials and collect

the powers of k̂1 · k̂2. The matrix elements of the ph interaction are thus written as

V
(M,M ′)
ph (1, 2) = δ(M,M ′)

∑

n

An(k̂1 · k̂2)n +
∑

n

Bn(k̂1 · k̂2)n(−)M (k12)
(1)
−M (k12)

(1)
M ′ ,(17)

where An and Bn are combinations of Landau parameters and coefficients of Legendre poly-

nomials. The Bethe-Salpeter equation can then be written as:

G
(M)
RPA(q, ω,k1) = GHF (q, ω,k1) +GHF (q, ω,k1)

∑

n

An〈(k̂1 · k̂2)nG(M)
RPA(q, ω,k2)〉

+ GHF (q, ω,k1)
∑

n

Bn

∑

M ′

〈(k̂1 · k̂2)n(−)M (k12)
(1)
−M (k12)

(1)
M ′ G

(M ′)
RPA(k2)〉 .(18)

Integrating over the momentum k1 one gets the equation for the response function

χ
(M)
RPA(q, ω) = χHF (q, ω) +

∑

n

AnK1(n,M)

+
∑

n

Bn {K2(n,M)−K3(n,M)−K4(n,M) +K5(n,M)} , (19)

where we have defined the functions Ki(n,M) which involve an average over the hole mo-

menta k1 and k2

Ki(n,M) =
∑

M ′

〈GHF (q, ω,k1) (k̂1 · k̂2)nQi G
(M ′)
RPA(q, ω,k2)〉 , (20)

including one of the five quantities:

Qi =

{

δ(M,M ′),
4π

3
Y ∗

1,M(k̂1)Y1,M ′(k̂1),
4π

3
Y ∗

1,M(k̂1)Y1,M ′(k̂2),

4π

3
Y ∗

1,M(k̂2)Y1,M ′(k̂1),
4π

3
Y ∗

1,M(k̂2)Y1,M ′(k̂2)

}

. (21)

Q1 is related to the term multiplying the coefficient An in Eq. (18), and the remaining Qi

to the four contributions involving the coefficients Bn. Writing now

(k̂1 · k̂2)n =

(

4π

3

)n
∑

µ1...µn

Y ∗

1,µ1
(k̂1) . . . Y

∗

1,µn
(k̂1)Y1,µ1

(k̂2) . . . Y1,µn
(k̂2) , (22)

one can see that the averages entering the definitions (20) of the functions Ki(n,M) are

in fact the product of two integrals: one over the momentum k1 involving the propagator

GHF , and the other over the momentum k2 involving the propagator GRPA. Each of these

integrals contain also products of spherical harmonics of order 1 coming from Qi and from

(k̂1 · k̂2)n.
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The response function is thus coupled to other integrals of the RPA Green’s function

weighted with products of spherical harmonics Y1,m(k̂). For instance, one of such integrals

correspond to the function K5(0,M), so that the response function is coupled to

S(M)(q, ω) = nd

4π

3

∑

M ′

〈Y ∗

1,M(k̂)Y1,M ′(k̂)G
(M ′′)
RPA (q, ω,k)〉 . (23)

To write the equation satisfied by this function one should follow the next steps: go back

to the Bethe-Salpeter Eq. (18), multiply both sides with the weighting factor entering the

definition of S(M)(q, ω), take the sum over M ′ and finally integrate over the hole momentum,

to get

S(M)(q, ω) =
1

3
χHF (q, ω) +

∑

n

AnK2(n,M)

+
∑

n

Bn {K2(n,M)−K3(n,M)−K2(n+ 1,M) +K5(n+ 1,M)} . (24)

To obtain the full response function one should proceed in a similar way and write more

coupled equations until a closed algebraic system is obtained. In principle, one should

consider an infinite number of equations, and the solution of the system seems not easy to

obtain. Only restricting the number of Landau parameters, one can expect to get suitable

expressions.

However, as we are only interested in getting the spin susceptibility, we have to calculate

these integrals in the zero-frequency and long-wavelength limit, for which the left hand side

of Eqs. (19) and (24) will be written with the short notation χ
(M)
RPA(0) and S(M)(0), with a

single null argument. As shown in the Appendix, it turns out that in that limit the quantities

Ki(n,M) are linear combinations of only χ
(M)
RPA(0) and S(M)(0), and consequently Eqs. (19)

and (24) form a closed algebraic system.

Finally, in terms of dimensionless Landau parameters the coupled system writes as:

(

1 +G0 −H0 +
2

3
H1 −

1

5
H2

)

χ
(M)
RPA(0) +

(

3H0 − 2H1 +
3

5
H2

)

S(M)(0) = χHF (0) (25)

(

1

3
G0 −

1

15
G2 +

1

3
H0 −

1

15
H1 −

1

15
H2 +

1

35
H3

)

χ
(M)
RPA(0)

+

(

1 +
1

5
G2 +H0 −

17

15
H1 +

3

5
H2 −

3

35
H3

)

S(M)(0) =
1

3
χHF (0) . (26)
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Solving this system, the spin susceptibility can be expressed in terms of the Landau

parameters:

χHF (0)

χ
(M)
RPA(0)

= 1 +G0 −
2 (H0 − 2

3
H1 +

1
5
H2)

2

1 + 1
5
G2 − 7

15
H1 +

2
5
H2 − 3

35
H3

. (27)

Notice that the spin susceptibility is independent of the spin projection M , i.e. the spin

susceptibility is identical for the longitudinal (M = 0) and the transverse (M = 1) channels.

Obviously, it reduces to the familiar spin susceptibility of a Fermi liquid when no tensor

terms (Hℓ = 0) are considered. As mentioned above, this expression for the susceptibility is

also valid both for the isovector channel I = 1 of SNM and for PNM, just replacing the set

of parameters (Gℓ, Hℓ) with (G′

ℓ, H
′

ℓ) and (G
(n)
ℓ , H

(n)
ℓ ), respectively.

In Ref. [19] Fujita and Quader extended the original Landau theory of Fermi liquids to

a ph interaction invariant under a combined rotation in spin and orbital spaces to study

electron systems and heavy fermions. These authors considered a general spin interaction,

including the ordinary tensor one. Solving the kinetic Boltzmann equation they derived the

spin susceptibility in terms of Landau parameters. It turns out that keeping only parameters

Hℓ, their expression coincides with Eq. (27). Along similar lines Olsson et al. [20] calculated

also the spin susceptibility of pure neutron matter starting from the kinetic equation. Besides

the usual tensor contribution, these authors also included two new terms, namely the center

of mass tensor and the crossed vector tensor. In addition, they also used a different definition

of the tensor Landau parameters. Although they do not provide a final experssion for the

spin susceptibility in terms of the Landau parameters we have checked that taking into

account the different definitions employed for the Landau parameters and not considering

the terms of the center of mass tensor and the crossed vector tensor one gets an expression

in agreement with Eq. (27).

Let us turn now to the stability criteria provided by the J = 1 set, which states that the

eigenvalues of the matrix (9) should be positive. For the sake of having a simple notation,

let us denote by M11, M12 = M21 and M22 its matrix elements. Then, the two eigenvalues

of matrix (9) can be written as

λ± =
1

2
(M11 +M22)±

1

2

√

(M11 −M22)
2 + 4M2

12 . (28)

Obviously λ+ ≥ λ−, so in practice the critical density associated to the J = 1 set is defined

by the condition λ− = 0. The spin susceptibility provides an additional stability criterion,
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namely for a stable system it should be positive for all densities, otherwise it undergoes a

spontaneous ferromagnetic transition. The related critical density corresponds to the density

value for which 1/χRPA(0) = 0. Note that the inverse spin susceptibility (27) can be written

in terms of the matrix elements Mij of (9) as

χHF (0)

χ
(M)
RPA(0)

= M11 −M2
12/M22 . (29)

Using Eqs. (28) and (29), it is straightforward to shown that the equalities λ− = 0 and

1/χ
(M)
RPA(0) = 0 are equivalent. Therefore, both conditions define the same critical density,

which is the relevant physical output related to both stability criteria.

IV. RESULTS

A. Skyrme interactions

The zero-range tensor force employed in the current effective interactions is the one

originally proposed by Skyrme [8], and has the following structure:

V T =
te
2

{[

3(σ1 · k′)(σ2 · k′)− (σ1 · σ2)k
′2
]

δ(r1 − r2) + h.c
}

(30)

+
to
2
{[3(σ1 · k′)δ(r1 − r2)(σ2 · k)− [(σ1 · σ2)k

′ · δ(r1 − r2)k]] + h.c.} , (31)

where the operator k = (
−→∇1−

−→∇2)/2i acts on the ket while its adjoint k′ = −(←−∇1−
←−∇2)/2i

acts on the bra. The coupling constants te and to measure the strength of the interaction

in the triplet-even and triplet-odd channels, respectively. It only contributes to the ℓ = 0

Landau parameters, which have a simple expression in terms of the coupling constants of

the interaction:

H0 = N0
k2
F

8
[te + 3to] , (32)

H ′

0 = N0
k2
F

8
[−te + to] , (33)

for symmetric nuclear matter and

H
(n)
0 = N0

k2
F

2
to , (34)

for neutron matter.
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Therefore, for the analysis of the spin-instabilities the only non-vanishing Landau param-

eters are (G0, G1, H0), so that the ℓ = 2 set does not affect the stabilities. In fact, only the

ℓ = 1 and J = 1 sets of inequalities (Eqs. 3-5) are relevant. The former writes

J = 0− : 1 +
1

3
G1 −

10

3
H0 > 0 , (35)

J = 1− : 1 +
1

3
G1 +

5

3
H0 > 0 , (36)

J = 2− : 1 +
1

3
G1 −

1

3
H0 > 0 . (37)

It is worth noting that the lower bound of these inequalities is provided either by the J = 0−

one if H0 ≥ 0 or by the J = 1− one if H0 ≤ 0. Thus the J = 2− inequality plays no role in

the discussion of instabilities. Concerning the J = 2 set, by simple inspection of the matrix

(10) one can see that its eigenvalues are 1+G1/3−H0/3 and 1. The condition on the former

is identical to the previous J = 2− inequality.

The stability conditions associated to the matrix (9) are identical to the condition on the

spin susceptibility (27), which is written as

χHF (0)

χ
(M)
RPA(0)

= 1 +G0 − 2H2
0 . (38)

This result is particularly relevant for pure neutron matter. Indeed, currently used Skyrme

interactions predict that even in the absence of a magnetic field a spontaneous magnetization

arises in pure neutron matter at a critical density which can be as low as ≃ 1.1ρ0 [21–24],

depending on the specific parameterization. Eq. (38) shows that the inclusion of the tensor

interaction results always in a smaller value for the critical density than the one without

tensor terms, and consequently the spontaneous magnetization would appear at densities

closer to ρ0. In the next subsection we shall show that neither finite-range effective interac-

tions [25] nor realistic calculations [26] predict such a spontaneous magnetization in neutron

matter, which therefore should be considered as an artifact of the Skyrme interaction.

In Ref. [27], the ℓ = 1 and J = 1 sets of stability conditions have been analyzed for

symmetric nuclear matter in the spin-isospin channels (1,0) and (1,1). Critical densities were

determined for a variety of Skyrme interactions with tensor contributions whose strength

coupling constants have been fixed in two different ways. In some cases, the tensor force

is simply added to an existing Skyrme parameterization and the tensor parameters have

been fitted to reproduce some specific property. In other cases, tensor parameters have been
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incorporated to the effective force and the fitting procedure is started over, as in the case

of the TIJ set [30]. Interestingly in 28 out from the 41 analyzed parameterizations in Ref.

[27], the smallest critical density is related to the violation of the J = 1 stability criteria,

that is by the condition of Eq. (38), for the isospin I = 1 channel in symmetric nuclear

matter.

A few illustrative examples are presented in Figs. 1 and 2, where the inverse of the spin

susceptibility is plotted as a function of the density. The isoscalar (I = 0) and isovector

(I = 1) channels for SNM are shown in panels (a) and (b), respectively. While, the PNM

inverse susceptibility is displayed on the panel (c). Fig. 1 shows the results for the Skyrme

interaction SIII [11] as well as for SLy5 [33], adding in both cases the tensor terms of Ref. [34]

without modification of the original SIII and SLy5 parameters. The effects of the tensor force

in the spin susceptibility for the isoscalar channel are rather small in the range of densities

considered. No signal of instability in this channel is detected. However, the situation is

different in the isovector channel, where the tensor effects are rather large and the ratio

χHF (0)/χRPA(0) crosses zero at a lower density than the case in which the tensor is not

considered. The presence of the tensor component enhances the problem of spin instability

with the Skyrme forces. The conclusions are similar in the case of PNM, which becomes

ferromagnetic at a much lower density.

Results for the TIJ Skyrme forces corresponding to the parameterizations T44 and T61

are shown in Fig. 2. In these interactions the tensor is taken into account in the global fitting

procedure of the force parameters [30]. The tensor effects on the force T44 are rather small

and for the case of SNM are similar for both isospin channels. The isospin channel I = 1

shows an instability that, as predicted, appears at lower densities when the tensor is taken

into account. For PNM the effect of the tensor is very small and not appreciable in the figure.

T44 produces a ferromagnetic transition in PNM around ρ ∼ 0.3fm−3. In the case of T61,

the tensor effects in the SNM I = 0 channel are negligible. However, in the I = 1 channel

are very large and the spin instability appears at much lower densities. The same is true

in PNM. In conclusion, the incorporation of the tensor force to the Skyrme forces enhances

the problems related to the appearance of the spin instability which appear always at lower

densities than in the case without tensor component. The quantitative effects depend on

the specific force considered through the combinations of the tensor parameters of the force

entering Eqs. (32-34). For instance, in the case of PNM, the small tensor effects for the T44
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interaction are a direct consequence of the small value of H
(n)
0 (see Table I, for kF = 1.7

fm−1) which in turn is a reflection of the very small value of to. Looking at the values of

H
(n)
0 for the other forces permits a quantitative understanding of the observed behavior of

the different Skyrme interactions. Similar arguments, taking the proper combinations of te

and to clarify the size of the tensor contributions to the spin susceptibility of nuclear matter

in the different isospin channels.

B. Finite-range interactions

We analyze two types of finite range effective interactions, both defined in r−space,
that use either Yukawa or Gaussian functions for the radial dependence of the interaction.

Nakada [28] has constructed an effective density dependent finite range force including tensor

and spin-orbit components. In this case, the tensor force is defined in r−space as S12 =

3(~σ1r̂12)(~σ2r̂12)−~σ1~σ2. This interaction is a modification of the so called three-range Yukawa

(M3Y) interaction that was originally derived from a bare NN interaction by fitting Yukawa

functions to a G-matrix [37]. In the present paper we use the parameterization M3Y-P2,

which has been shown to be appropriate both for calculations in uniform systems (nuclear

and neutron matter) and finite nuclei [28].

We also consider the traditional Gogny forces D1S [35] and D1M [36] that have been

recently supplemented with a tensor force by Anguiano et al. [29]. These authors have

added the tensor isospin term of the so called Argonne Av8’ [38]. This potential is built

by removing operatorial components of the full Argonne Av18 potential [39], while the

remaining terms are readjusted to preserve as many lowest-order phase shifts and deuteron

properties as possible. The density dependence of the energy per particle produced by this

family of potentials for nuclear and neutron matter using different many-body techniques

has been recently discussed [40]. In addition, the radial part of this tensor component was

modified by multiplying the radial function of the isospin tensor component of Av8’ by a

factor 1 − exp(−br212) which takes care of the short-range NN correlations [29]. The tensor

component of Argonne Av8’ has a strong short-range structure that prevents from using

the potential in mean field calculations. The multiplicative factor has been shown to be an

efficient way to deal with short-range NN correlations and the resulting effective interaction

has been successfully used in HF and RPA calculations of finite nuclei. The parameter b
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has been adjusted to fit the lowest 0− states of some selected nuclei in a HF plus RPA

description [29].

In Fig. 3 we show the density dependence of the diagonal stability conditions in the

isoscalar channel, corresponding to l = 1, for J = 0−, 1−, 2− (Eqs. 3–5) and to l = 2

for J = 1+, 2+, 3+ (Eqs. 6–8) for symmetric nuclear matter. The (a) panel shows the

results for M3Y-P2 force and the (b) and (c) panels correspond to D1S and D1M Gogny

forces, respectively, supplemented with a tensor force as explained above. The stability

conditions l = 2 are well respected for all interactions in the density range considered in

the figure. However, the l = 1 stability condition has a negative slope as a function of

density, in particular for the D1M Gogny force and the condition l = 1, J = 0− (empty

circles joint by solid line) signals an instability with a critical density close to 0.4 fm−3.

It is worth to mention, that in the case of the isovector channel, the stability conditions

are all well respected in the range of densities explored. The same is true for neutron

matter, whose stability conditions show a smooth behavior as a function of density, being

the minimum value about 0.75 which in the scale of the magnitudes we are analyzing can

be safely considered far from zero. Therefore we do not show these conditions explicitly.

In Fig. 4 we report the inverse of the nuclear matter spin susceptibility in the isoscalar

channel for the same three effective interactions. To see the effect of different order Landau

parameters we report the results obtained with Eq. (27) in which we turn on successively

the different Landau parameters. Empty circles indicate the results obtained with only G0.

The curves incorporate the effect of the different Hℓ’s when they are turned on (see the

figure caption). No signals of instability are observed in any of these effective forces. In the

M3Y-P2 case, the results are not affected by the Landau parameters associated to the tensor

force and basically coincide with the ones obtained by just considering the central Landau

parameter G0. For the Gogny forces, the final results with all the Landau parameters

involved are very close to the results obtained by using only G0. The largest deviations

from the full results are obtained by using G0, H0. Therefore one should use the Landau

parameters up to ℓ = 3 to obtain a meaningful converged result.

Results in the isovector channel in symmetric nuclear matter are shown in Fig. 5 for the

same three finite-range effective interactions. The slope as a function of density is negative

for all three effective forces, being larger for the Gogny forces. The effects of the tensor

component are rather small and all the results obtained by successively turning on the
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different multipolar order of the Landau parameters stay very close to each other and to the

calculations with only G′

0. In the case of D1M, the inverse of the spin susceptibility signals

an instability that appears at a density close to ρ = 0.45 fm−3.

We turn now to the discussion of the results of the finite-range forces for neutron matter.

The density dependence of the inverse of the spin susceptibility for neutron matter is shown

in Fig. 6. The effects of tensor force are very small. The density slope is positive for the

Gogny forces and no sign of instability is present. In the case of M3Y-P2 the slope is

negative but the value of the inverse magnetic susceptibility remains always positive with

no sign of instability in the density region considered. For these forces we can conclude that

the combinations of H
(n)
ℓ parameters entering Eq. (27) are rather small and affect very little

to the behavior of the spin susceptibility. In all cases, the results obtained by using only

G
(n)
0 provide a reliable evaluation of the spin susceptibility.

To understand better the size of the effects of the tensor Landau parameters in the spin

susceptibility and to gain physical insight in the preceding discussions, in Table I we report

the neutron matter Landau parameters at kF = 1.7 fm−1 for the different effective forces

discussed along the paper.

As previously mentioned, concerning the Skyrme forces the only Hℓ different from zero

is ℓ = 0. The values of H
(n)
0 for T44 and T61 explain why the tensor effects are so small for

T44 and sizeable for T61 (see Fig. 2). In the case of SLy5 and SIII, both H
(n)
0 are negative

and relatively large (see Fig. 1), and the tensor effects are important.

The finite range forces provide a relatively small values of H
(n)
ℓ . This is particularly true

for M3Y-P2, where the final result of the spin susceptibility is dominated by G
(n)
0 . For the

Gogny forces, although they are small they decrease very little with l and as mentioned

above, one should use all Hℓ up to l = 3 (which are the ones entering Eq. (27)) to have a

converged result for the spin susceptibility.

Finally, in Fig. 7 we show the spin susceptibility of neutron matter in units of the free

susceptibility as a function of density, for some of the effective interactions discussed in the

paper and compare the results with microscopic calculations obtained with the Auxiliary

Field Monte Carlo (AFMC) methods for the Argonne Av6’ [41] and results obtained within

the framework of Correlated Basis Functions (CBF) with the Reid-6 interaction [42].

The density dependence of these microscopic results is smooth and similar for both cases,

being the Monte Carlo results the lowest ones. Around saturation density, both effective

15



and realistic forces provide results relatively close. However the density dependence of the

contact interaction (SLy5) is completely different and grows very fast, in agreement with

the instability shown in Fig. 1. The finite range of the effective interactions allows for a

more realistic density dependence, which is rather flat for M3Y-P2 and D1S-T and with a

negative slope for D1M-T.

We also show results at kF = 1.7 fm−1 obtained from the recently evaluated Landau

parameters based on a microscopic calculation within the framework of chiral effective-field-

theory [43]. These authors considered the contributions from two-nucleon forces, derived at

the N3LO approximation, and computed in a many-body perturbation theory to first and

second order. In addition they included also the leading-order from the N2LO chiral three-

nucleon force. In any case, the ph interaction at the Fermi surface can be expressed in terms

of the Landau parameters. Therefore, knowing the Landau parameters one can always use

Eqs. (27) to calculate the spin susceptibility. We calculate it using the Landau parameters

obtained at first order (Table IV of this reference) from the N3LO interaction which is

however submitted to a renormalization process in order to be used at this low-order in the

perturbation theory. We also include the result using the Landau parameters reported in

Table VI of this reference, which are calculated up to second-order in the perturbation theory

and include the effects of N2LO chiral three-body forces. In both cases, the effects of the

tensor on the spin susceptibility are very small, and the results are safely reproduced using

only G
(n)
0 . Around this density, all results are relatively close. The first order calculation

with N3LO produces a spin susceptibility close to the Monte Carlo results with the Argonne

potential. Taking into account the three-body forces and higher orders in the perturbation

theory one gets a slighlty larger value of the spin-susceptibility closer to the finite range

effective interactions.

V. SUMMARY AND CONCLUSIONS

We have critically analyzed the stability conditions of homogeneous nuclear and neutron

matter against several low energy excitation modes of the Fermi sphere which are expressed

in terms of the Landau parameters. In particular, we have concentrated on the spin in-

stabilities associated to spin 1. We have explicitly calculated the limit of zero-energy and

zero-momentum transferred of the spin response of nuclear matter and neutron matter within
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the Random Phase Approximation. This limit gives the spin susceptibility of the system,

which can be expressed in terms of the corresponding Landau parameters. One interest-

ing conclusion, that to our knowledge has not been discussed before, is that the instability

condition obtained from the spin susceptibility is equivalent, i.e. provides the same critical

density, to the one obtained by the stability conditions emerging from the requirement that

the ground state should be stable respect to ph fluctuations with J = 1+. In the presence of

the tensor force that corresponds to a coupling between fluctuations with quantum numbers

l = 0 and l = 2. The effect of the contact tensor component added to Skyrme type effective

forces is rather large in the triplet spin channel in nuclear symmetric matter. It has been

shown that the critical densities related to the spin instability transition are smaller when

the tensor component is taken into account.

In general, the finite range effective forces provide a spin susceptibility with less or no sign

of instabilities. At variance with the results obtained with Skyrme forces, all finite-range

effective forces considered in the paper provide Landau parameters such that the effect of the

tensor component in the spin susceptibility is very small. In the particular case of neutron

matter, the density behavior of the spin susceptibility is close to the one emerging from the

realistic forces. Finally, the results obtained from the Landau parameters provided by the

Chiral forces for neutron matter at a density near to the saturation density of nuclear matter

are close to all previous results around that density. The effects of the tensor force in the

magnetic susceptibility when using these interactions are almost negligible.
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Appendix A

As a previous step we require the knowledge of the functions:

αi = 〈cosi θ GHF 〉 . (A1)
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The limit ω = 0, q = 0 of these integrals is easily calculated, with the result α2i+1 = 0 and

α2i = −
1

2i+ 1

N0

nd

. (A2)

Let us consider now the integrals over the momentum k1 entering the definition of

Ki(n,M). They factorize in an average over k1 of the propagator GHF multiplied by a

certain number of spherical harmonics Y1,m(k̂1) times an average over k2 of the propagator

G
(M ′)
RPA multiplied also by a certain number of spherical harmonics Y1,m(k̂2). First we pay

attention to the average over k1. In this limit, ω = 0, q = 0, any integral containing an odd

number of spherical harmonics, Y1,m(k̂1) , reduces to a combination of α2i+1 and thus it is

equal to zero. One has to consider only integrals containing an even number of spherical

harmonics. As the propagator GHF is independent of the azimuthal angle φ, the integrand

reduces to the product of a certain number of factors |Y1,1|2 and |Y1,0|2. This fixes the parity
of the index n entering the definition of Ki(n,M).

Once counted the number of times each of these terms appears, one has to write the

integrand as products of sin2 θ and cos2 θ contained in the spherical harmonics. The integral

over k1 reduces to a linear combination of α2i, which eventually is proportional to α0.

Afterwards, the remaining integrals over k2 can also be grouped and simplified by taking

adavantage of the relations sin2+cos2 = 1 or
∑

m |Y1m|2 = 3/4π. They reduce to either

χRPA(0) or S
(M)(0), i.e. the quantities we are interested in. The final result is:

K1(2n,M) =
1

2n+ 1
α0χ

(M)
RPA(0) , (A3)

K2(2n,M) =
1

(2n+ 1)(2n+ 3)
α0χ

(M)
RPA(0) +

2n

(2n+ 1)(2n+ 3)
α0S

(M)(0) , (A4)

K3(2n+ 1,M) =
1

2n+ 3
α0S

(M)(0) , (A5)

K4(2n+ 1,M) =
1

2n+ 3
α0S

(M)(0) , (A6)

K5(2n,M) =
1

2n+ 1
α0S

(M)(0) . (A7)

The Eqs. (19) and (24) reduce then to the closed system:

χ
(M)
RPA(0) = χHF (0) +

∑

n

{

A2n

2n+ 1
+

B2n

(2n+ 1)(2n+ 3)

}

α0χ
(M)
RPA(0)

+
∑

n

{

2nB2n

(2n+ 1)(2n+ 3)
− 2B2n+1

2n+ 3
+

B2n

2n+ 1

}

α0S
(M)(0) (A8)
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S(M)(0) =
1

3
χHF (0) +

∑

n

{

A2n +B2n

(2n+ 1)(2n+ 3)
− B2n+1

(2n+ 3)(2n+ 5)

}

α0χ
(M)
RPA(0)

+
∑

n

{

2n(A2n +B2n)

(2n+ 1)(2n+ 3)
+

B2n − B2n+1

2n+ 3
− 2(n+ 1)B2n+1

(2n+ 3)(2n+ 5)

}

α0S
(M)(0) .(A9)

The sums over n have been done using MATHEMATICA, and one gets the results

∑

n

{

A2n

2n+ 1
+

B2n

(2n+ 1)(2n+ 3)

}

= g0 − h0 +
2

3
h1 −

1

5
h2

∑

n

{

2nB2n

(2n+ 1)(2n+ 3)
− 2B2n+1

2n+ 3
+

B2n

2n + 1

}

= 3h0 − 2h1 +
3

5
h2

∑

n

{

A2n +B2n

(2n+ 1)(2n+ 3)
− B2n+1

(2n+ 3)(2n+ 5)

}

=
1

3
g0 −

1

15
g2 +

1

3
h0 −

1

15
h1 −

1

15
h2 +

1

35
h3

∑

n

{

2n(A2n +B2n)

(2n+ 1)(2n+ 3)
+

B2n − B2n+1

2n+ 3
− 2(n + 1)B2n+1

(2n+ 3)(2n+ 5)

}

=
1

5
g2 + h0 −

17

15
h1 +

3

5
h2 −

3

35
h3

Note that in this limit, the contributions of Landau parameters with ℓ > 3 cancel out exactly.
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041301(R) (2009).

[8] T.H.R. Skyrme, Nucl. Phys. 9, 615 (1958).

[9] P. Haensel and J. Dabrowski, Nucl. Phys. A 254, 211 (1975).

[10] F. Stancu, D.M. Brink, and H. Flocard, Phys. Lett. B68, 108 (1977).

[11] M. Beiner, H. Flocard, N. Van Giai, and Ph. Quentin, Nucl. Phys. A 328, 29 (1975).

[12] D. Davesne, M. Martini, K. Bennaceur, and J. Meyer, Phys. Rev. C 80, 024314 (2009); ibid.84

059904 (2011).

19



[13] A. Pastore, D. Davesne, Y. Lallouet, M. Martini, K. Bennaceur, and J. Meyer, Phys. Rev. C

85, 054317 (2012).

[14] A. Pastore, M. Martini, V. Buridon, D. Davesne, K. Bennaceur, and J. Meyer, Phys. Rev. C

86, 044308 (2012).
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0 1 2 3

SIII F -0.864 -0.297

G -0.164 1.325

H -0.779

SLy5 F -0.251 -1.173

G 0.099 1.173

H -0.504

T44 F -0.220 -1.151

G -0.373 1.643

H 0.027

T61 F -0.204 -1.125

G -0.839 2.104

H -0.601

M3Y-P2 F -0.557 -0.366 -0.176 -0.108

G 0.426 0.087 0.018 -0.001

H 0.026 0.049 -0.498 0.034

D1ST F -0.469 -0.159 -0.131 -0.056

G 0.462 0.171 0.129 0.054

H 0.112 0.240 0.244 0.204

D1MT F -0.354 -0.474 0.187 0.082

G 0.308 0.040 0.151 0.053

H 0.090 0.200 0.219 0.194

TABLE I: Landau parameters for neutron matter at kF=1.7 fm−1 for the different effective forces

considered in the paper.
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FIG. 1: (Color online) Inverse of the spin susceptibility respect to the inverse Hartree-Fock spin

susceptibility as a function of density for the Skyrme interactions SIII (the solid line includes the

tensor effects and the full circles are without) and SLy5 (the dot-dashed line include the tensor

effects and the triangles are without). Panels (a) and (b) correspond to symmetric nuclear matter

in the singlet and triplet isospin channels respectively. Panel (c) shows the results for neutron

matter.
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FIG. 2: (Color online) Inverse of the spin susceptibility respect to the inverse Hartree-Fock spin

susceptibility as a function of density for the Skyrme interactions T44 (the solid line includes the

tensor effects and full circles are without) and T61 (the dot-dashed line include the tensor effects

and the triangles are without). Panels (a) and (b) correspond to symmetric nuclear matter in the

singlet and triplet isospin channels respectively. Panel (c) shows the results for neutron matter.
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FIG. 3: (Color online) Instability inequalities of Eqs.(3–8) for the singlet isospin channel as a

function of density for symmetric nuclear matter obtained for the finite range interactions: (a)

M3Y-P2, (b) Gogny-D1S and (c) Gogny-D1M. Solid, dashed and dotted lines all with empty

circles correspond to L = 1, J = 0−, 1− and 2− respectively. Solid, dashed and dotted lines all

with full diamonds correspond to L = 2, J = 1+, 2+ and 3+. The effects of the tensor forces are

included in all cases.
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FIG. 4: Inverse of the spin susceptibility respect to the inverse Hartree-Fock spin susceptibility

in the singlet isospin channel for symmetric nuclear matter as a function of density for the finite

range effective forces including the tensor component: (a) M3Y-P2, (b) Gogny D1S and (c) Gogny

D1M. Empty circles stand for the results taking into account only G0 in the Eq.27 , with all H’s

equal to zero. Then the different curves incorporate step by step the effects of the H’s. Curve

with up triangles (G0,H0), triangle oriented to the left (G0,H0,H1), triangles oriented to the right

(G0,H0,H1,H2) and the solid line stands for the full RPA calculation.
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FIG. 5: Inverse of the spin susceptibility respect to the inverse Hartree-Fock spin susceptibility

in the triplet isospin channel for symmetric nuclear matter as a function of density for the finite

range effective forces including the tensor component: (a) M3Y-P2, (b) Gogny D1S and (c) Gogny

D1M. Empty circles stand for the results taking into account only G′
0 in the Eq. 27, with all H ′’s

equal to zero. Then the different curves incorporate step by step the effects of the H ′’s. Curve

with up triangles (G′
0,H

′
0), triangle oriented to the left (G′

0,H
′
0,H

′
1), triangles oriented to the right

(G′
0,H

′
0,H

′
1,H

′
2) and the solid line stand for the full RPA calculation.
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FIG. 6: Inverse of the spin susceptibility respect to the inverse Hartree-Fock spin susceptibility

for neutron matter as a function of density for the finite range effective forces including the tensor

component: (a) M3Y-P2, (b) Gogny D1S and (c) Gogny D1M. Empty circles stand for the results

taking into account only G
(n)
0 in the Eq. 27, with all H(n)’s equal to zero. Then the different curves

incorporate step by step the effects of the H(n)’s. Curve with up triangles (G
(n)
0 ,H

(n)
0 ), triangle

oriented to the left (G
(n)
0 ,H

(n)
0 ,H

(n)
1 ), triangles oriented to the right (G

(n)
0 ,H

(n)
0 ,H

(n)
1 ,H

(n)
2 ) and

the solid line stand for the full RPA calculation.
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FIG. 7: (Color Online) Spin susceptibility of neutron matter measured respect to the free spin sus-

ceptibility as a function of density for several interactions containing tensor forces. SLy5 (squares),

M3Y-P2 (solid line), Gogny D1ST (dashed), Gogny D1MT (Dashed-dashed-dot), Av6’-AFDMC

(full circles joint by dots) and Reid6-CBF (empty squares joint by dots).
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