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Abstract

Within the diffusion Monte Carlo approach, we have determined the structure of isotopically

pure and mixed helium droplets doped with one magnesium atom. For pure 4He clusters, our

results confirm those of M. Mella et al. [J. Chem. Phys. 123, 054328 (2005)] that the impurity

experiences a transition from a surface to a bulk location as the number of helium atoms in the

droplet increases. Contrarily, for pure 3He clusters Mg resides in the bulk of the droplet due to

the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also

obtained the absorption spectrum of Mg around the 3s3p 1P1 ← 3s2 1S0 transition.

PACS numbers: 36.40.-c, 33.20.Kf, 67.60.gj
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I. INTRODUCTION

The solubility of alkaline earth atoms attached to helium droplets has been found to

critically depend on the dopant and on the helium isotope droplets are made of. This is at

clear variance with what happens for alkali atoms, that are all found to reside in a dimple at

the surface of the droplet irrespective of their isotopic composition,1,2 or to impurities that

experience a large attractive interaction with helium as, e.g., inert gas atoms that are found

to reside in the bulk of the droplet. This is a particular yet prominent aspect of a much

broader subject -the physics and chemistry of pristine and doped helium nanodroplets- that

has been reviewed in a series of articles, see e.g. Refs. 3–8 and references therein.

Ancilotto and coworkers9 have provided a solvation criterion for impurities in liquid he-

lium in terms of the dimensionless parameter

λ =
ρ ε re
21/6 σ

, (1)

where ρ and σ are the density and the surface tension of liquid He, respectively, and ε and re

are the well depth and the equilibrium distance of the He-impurity interaction, respectively.

This parameter measures the balance between the energy of the impurity and the surface

energy of the liquid. If λ < 1.9, the impurity sits on the free surface of the fluid and no

solvation occurs. For Mg one has λ = 2.6 for 4He and λ = 4.6 for 3He. Since this criterion

does take into account neither the complexities of the system nor the fine details of the

He-impurity pair potential and it has been established for bulk liquid, it must be taken with

care when the value of λ is fairly close to 1.9, in which case only a detailed calculation may

unveil the solvation properties of a given impurity in He drops.

It has been found experimental and theoretically that Ca atoms solvate in 3He but not

in 4He droplets, and that depending on their isotopic composition, they may reside in the

3He-4He interface that develops in mixed droplets at low temperatures.10–12 The lighter

alkaline earth Mg presents a borderline behavior. Within Density Functional Theory (DFT),

it has been found to solvate in 3He droplets and to be very delocalized in 4He ones.10,13

Previous diffusion Monte Carlo calculations (DMC)14 have yielded the result that Mg is fully

solvated for a critical number of 4He atoms of about N4 = 30. A similar transition from

surface to bulk location of Mg was also found within DFT.13 Experimentally, full solvation

of Mg in 4He droplets has been inferred from the analysis of Laser Induced Fluorescence

(LIF),15 comparing it with LIF experiments on the absorption spectrum of Mg atoms in
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liquid 4He.16,17 More recent Resonant Two-Photon-Ionization (R2PI) experiments18 have

also yielded a bulk location for this impurity.

Since an electron-impact ionization experiment19 carried out in Mg doped 4He drops with

about 104 atoms seems to indicate that magnesium reside at or near the droplet surface,

and some unpublished DMC calculations seem also to point toward a rather surface location

of Mg in 4He droplets,20–22 we have undertaken an independent Monte Carlo analysis of the

structure of these systems aiming at settling this issue, complementing the previous analyses

with a DMC study of 3He and mixed 3He-4He droplets doped with Mg that has not been

previously carried out. The interest in addressing doped mixed helium clusters has been

already stressed.1,12 Very recently, we have studied the structure and absorption spectrum

of Mg in liquid helium mixtures as a function of pressure and isotopic composition.2

This paper is organized as follows. In Sec. II we give some details about the DMC

calculations. In Sec. III we present our results, and in Sec. IV we present a brief summary.

II. METHODS

Quantum Monte Carlo methods aim at solving the Schrödinger equation of a many-body

system with the only knowledge of the inter-particle interaction. In our calculations we

have employed the He-He Aziz potential,23 and the X1Σ Mg-He interaction as obtained by

Hinde.24 For the description of the absorption spectrum described in Sec IIIC, the Σ and Π

Mg-He pair potentials of Ref. 14 have been used. To facilitate the use of these potentials,

we have fitted them (by simulated annealing) to an analytical expression of the kind

VMg−He(r) = Ae−αr−βr2 − F (r)×
(

C6

r6
+

C8

r8
+

C10

r10

)

(2)

F (r) =
{ e−(1−D/r)2 r < D

1 r ≥ D

The parameters are given in Table I. The resulting fits are shown in Fig. 1, together with the

calculated values (indicated with symbols in the figure). It can be seen that the agreement

is excellent. For the sake of comparison, we have also included the He-He interaction used

in this work.

Our DMC calculations are based on a variational or importance sampling wave function.

In that case, one does not solve the Schrödinger equation for the true wave function Ψ(R, t),
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but for the auxiliary function f(R, t) = ΨT (R)Ψ(R, t). The trial wave function ΨT (R)

guides the random walk and minimizes the variance. We have used a rather simple form,

containing the basic required properties, the same as employed in the past to describe a Ca

impurity.12 It is a generalization of the trial function adopted in previous studies on pristine

mixed helium clusters,25,26 and is written as a product of seven terms

ΨT (R) = Ψ44Ψ33Ψ34Ψ4MgΨ3MgD↑D↓ , (3)

where {R} represents the set of 3(N3+N4+1) coordinates of the atoms forming the cluster,

N3(N4) being the number of 3He (4He) atoms. The first five terms are Jastrow factors ΨMN

for each pair (M,N) of different atoms, for which we have chosen the generic form

ΨMN =
∏

i 6=j

exp

(

−
1

2

[

bMN

rij

]νMN

− αMNrij

)

, (4)

where indices i, j run over the corresponding type of atom, and includes a short-range repul-

sion term with parameters bMN and νMN associated with it, and a long-range confining term

with corresponding parameter αMN . The form of the short-range repulsion term was intro-

duced long ago by McMillan27 to describe the homogeneous liquid 4He using a 12-6 Lennard-

Jones interaction. In that case, the values of the two parameters ν and b are fixed by the

short-range behavior of a pair of atoms, and one gets ν = 5, and b = [16µǫ/(25h̄2)]1/10σ6/5,

where µ is the reduced mass for each pair of atoms, and ǫ and σ are the Lennard-Jones

energy and distance parameters, respectively.

Notice that each ΨMN function is explicitly symmetric under the exchange of identical

particles. The antisymmetry required for 3He fermions is incorporated in the Slater deter-

minants D↑ and D↓, related to the spin-up and -down fermions, respectively. Two aspects

should be considered in these determinants, namely the form and the filling of the single

particle orbitals. As in previous works25,26 the determinants have been built up with homo-

geneous monomials of the fermion Cartesian coordinates as xnx

i y
ny

i znz

i , where the subindex i

refers to the particle, and the integer number n = nx + ny + nz defines a “shell”. This kind

of Slater determinant has also been employed for other many-body systems, (see e.g. Ref.

28,29). It turns out that they are of Vandermonde type and, provided that the shells are

filled in an increasing order of n, they can be expressed in terms of products of the relative

coordinates, being thus translationally invariant.28,29 Besides, we have always assumed a

filling scheme in which the total spin is minimum, either 0 or 1/2, for N3 even or odd, re-
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spectively. For some pure 3He clusters, the shell filling has been given in Ref. 26, indicating

the total value of Sz.

For the DMC algorithm we have used the short-time Green function approximation30,31

with an O(τ 3) form.32 For those systems involving nodal surfaces, i.e. for fermions, the fixed

node approximation has been employed.30,33,34 The energy accuracy depends on the quality of

the nodal surfaces of the trial function, which arise from the Slater determinants. Feynman-

Cohen back-flow correlations35 have been incorporated into the scheme by substituting

ri → r̃i = ri +
∑

i 6=j

η(rij)(ri − rj) (5)

in the orbitals of the Slater determinants.36 For the backflow function η(r) we choose the

medium-range form used in Ref. 37, namely η(r) = λ/r3, with the same value of λ = 5 Å3.

These type of correlations give rise to nodal surfaces that provide very accurate results

for different fermionic systems in Quantum Monte Carlo calculations.26,38–43 Pure estimator

results discussed later on are free of the trial wave function bias in the density distributions.

The accuracy of the wave function only affects the rate of the convergence of the calculation.

As in our previous works on pure and doped mixed helium clusters,12,25,26 we have fixed

the parameters bMN by taking ǫ as the minimum of the interaction, and σ as the distance at

which the interaction is zero. Moreover, we have slightly modified the value of the exponent

ν with respect to the McMillan value. All in all, for all cluster sizes we have used the

following values: νMN = 5.2, b44 = 2.95 Å, b33 = 2.85 Å, b34 = 2.90 Å, b4Mg = 5.831 Å,

and b3Mg = 5.687 Å. Thus, the trial or importance sampling wave function contains only

five free parameters, namely α44, α33, α34, α4Mg, and α3Mg, which have been determined

by minimizing the expectation value of the Hamiltonian. It turns out that for isotopically

pure boson (N3 = 0) or fermion (N4 = 0) clusters, these parameters are well represented

in terms of the number of atoms in the drop, namely α44 = 0.117 − 0.029N
1/3
4 , α4Mg =

0.268− 0.011N
1/3
4 , α33 = 0.020 + 0.006N

1/3
3 , and α3Mg = 0.191 + 0407N

1/3
3 − 0.152N

2/3
3 .

Our DMC calculation is based on an importance sampling function, and therefore the

walkers are generated according to the auxiliary function f(R, t) = ΨT (R)Ψ(R, t). The

natural output corresponds thus to the so called mixed estimator, in which the expectation

value of a given operator is straightforwardly calculated with this probability distribution

function. If such an operator commutes with the Hamiltonian, the mixed estimator is equal

to the exact expectation value of the observable in the asymptotic limit and within the fixed-
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node error. For other observables, as for example radial operators, the mixed estimator is in

general biased by the trial function used for importance sampling. For the reasons mentioned

in the Introduction, we have chosen to obtain unbiased estimates of radial distances for some

4He droplets. In view of the few unbiased available calculations, ours may contribute to the

general discussion of the subject.

Within Quantum Monte Carlo simulations, several schemes have been proposed in the

literature to obtain unbiased—also called pure—estimators of operators that do not com-

mute with the Hamiltonian. In this work we compute pure expectation values by using a

forward walking method. The idea is to recover the exact value by including the factor

Ψ(R, t)/ΨT (R) in the expectation value. This quotient can be obtained starting from the

asymptotic offspring of the walker.44 Therefore a weight proportional to the number of the

future descendant of the walker

W (R) ∝ n(R, t→∞) (6)

needs to be included in the calculation. We have employed the algorithm devised in Ref. 45

to calculate this weight. It makes use of an auxiliary variable associated with each walker

that evolves with it, i.e. it is replicated as many times as the walker and propagates the

local values. With the proper boundary conditions, the final average provides the pure

expectation value. The basis of the method and details on the algorithm can be found in

Refs. 45,46. The pure estimation depends on the size of the block, ∆L, that needs to be

large enough to fulfill the forward walking condition Eq. (6). A study of the convergence as

a function of ∆L is required to fix the block length from which the pure estimator provides

the same value within the statistical error for a given radial operator.

III. RESULTS

A. Structure of Mg@4HeN4
+3HeN3

clusters

For illustrative purposes, the mixed estimator total helium particle densities of the 4He40,

3He20+
4He20 and 3He40 droplets doped with Mg are plotted in Fig. 2. These densities have

been obtained as follows.12 After a simulation running for a long thermalization time, we

have stored a large number of walkers (typically 106) and for each of them the origin is

taken at the center of mass of the helium atoms. Next, a rotation is carried out so that the
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Mg atom lies on the z-axis. In this coordinate system, a projection onto the y = 0 plane is

performed in order to compute the density.

It can be qualitatively seen that, while for 3He40 Mg is fully immersed, for 4He40 it is not.

We will see in Sec IIIC how the distinct helium environment around Mg is reflected in the

absorption spectrum for these three complexes.

Figures 3 and 4 represent the mixed estimator densities corresponding to the doped

droplets 3He8+
4He20 and 3He20+

4He20, respectively. It is interesting to notice that the 3He

component may get in touch with the impurity. This is even so for the N3 = N4 = 20

system, the reason being that the balance between the weak He-He and Mg-He interactions

favors that the Mg atom is not fully coated by 4He for such small droplets and the chosen

composition. The situation changes when N4 increases.47,48

The mixed estimators for the root mean square (rms) radius of the helium cluster and

the Mg impurity are plotted in Fig. 5. We have chosen to refer them to the center-of-mass

of the He droplet instead of the center-of-mass of the He+Mg complex, so that the data

clearly show where the Mg sits with respect to the He moiety.

In 4He droplets the Mg rms radius increases with cluster size for small (N4
<
∼ 25) droplets.

One may infer from this that, for small N4 values, the impurity sits in the outer region of the

droplet. At N4 ≃ 25 the impurity begins to “sink” into the cluster as its rms radius starts

to decrease with increasing cluster size. In 3He droplets no such trend is seen for the Mg

rms radius, which contrarily has a tendency to decrease as the cluster size increases, apart

from the structure around N3 = 14 for whose origin, likely related to shell effects, we have

been unable to find a convincing explanation. These results are consistent with the finding

that Mg is in the bulk of the droplet for any N3 value,10 as Ancilotto’s criterion predicts.

The transition in the Mg location Fig. 5 hints at can be clearly seen in Fig. 6, where the

mixed estimator radial probability distribution of Mg in 4He clusters is shown for several

sizes from N4 = 8 to 30. For small cluster sizes (N4 < 25), the Mg atom is found at the

surface of the droplet. The typical distance between the impurity and the center-of-mass of

the droplet is about 3-4 Å. At N4 = 25 Mg experiences a transition from a surface to a bulk

state in which the probability of finding the impurity inside the droplet becomes significant.

For cluster sizes between N4 = 25 and 29, the impurity is highly delocalized, and for N4 ≥ 30

the Mg atom resides inside the droplet. The typical distance between the impurity and the

center-of-mass of the droplet decreases as the impurity becomes fully solvated. Our results
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thus confirm those of Mella et al.14

Finally, we have employed the pure estimator to determine the radial structure for the

isotopically pure N4 = 8 and 30 droplets. We have found that the differences between pure

and mixed estimators of the radial densities are very small and not worth to be plotted. As

an illustration, we have shown in Fig. 7 the mixed and pure estimations for the rms radius

as a function of the block size ∆L. The stability of the results is apparent, as well as the

quality of our mixed estimator for radial distances. Thus, the conclusions drawn using the

mixed estimator are robust and remain unchanged and accordingly, apart from Fig. 7, the

results discussed in this work have all been obtained using the mixed estimator.

B. Energetics of Mg@4HeN4
+3HeN3

clusters

The calculated DMC ground state energies E(Mg@4HeN4
+3HeN3

) are given in Tables II,

III, and IV for several (N3, N4) combinations. In these Tables we have shown the statistical

error in the last figure obtained in the usual way, as the standard deviation of the mean

value calculated by using the blocking method. The solvation energy of the dopant in the

droplet, defined as

µMg = E(Mg@4HeN4
+3 HeN3

)− E(4HeN4
+3 HeN3

) , (7)

is also given in the Tables. No solvation energy is given for Mg@3HeN3
droplets because pure

3He droplets are unbound for such small sizes25,43,49 and hence the solvation energy is just

the ground state energy of the Mg@3HeN3
complex. At first glance, it is surprising that one

single Mg atom is able to bound any number of 3He atoms, since the Mg-He interaction is

weaker than the He-He one, see Fig. 1. The smaller zero-point energy of Mg together with

the fact that the equilibrium distance is larger for Mg-He than for He-He causes the extra

binding. Thus, the complexes Mg@4HeN4
, Mg@3HeN3

and Mg@4HeN4
+3HeN3

are bound for

any N3 and N4 values.

A comparison between our DMC results for Mg@4HeN4
clusters and other DMC results

from Refs. 14 and 22 is presented in Table V. Mella et al.14 have used a Mg-He interaction

determined at the CCSDT level, and the He-He interaction of Ref. 50. The differences

beyond statistical errors found between our results and theirs could be mostly attributed

to minor differences in the interaction potentials. The agreement with Elhyiani22 -who has
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used the same interactions as in this work- is very satisfactory.

The ground state and Mg solvation energies are presented in Figs. 8 and 9 respectively,

as a function of the total number of He atoms. For the sizes considered here, it can be

seen that the Mg solvation energy does not much change when 3He atoms are added to the

Mg@4HeN4
droplet.

Both ground state and solvation energies are smooth functions of the total number of

helium atoms. It is worthwhile noting that for doped 3He droplets, these energies display

conspicuous oscillations. We have defined the 3He separation energy as

S3He = E(Mg@3HeN3−1)− E(Mg@3HeN3
) , (8)

and have plotted this quantity as a function of N3 in Fig. 10. S3He has a sawtooth structure

similar to that of the atomic ionization energy vs. atomic number.51 The more tightly bound

3He atoms at N3=8 and 20 allows one to identify shell closures, and correlate well with the

local minima in Figs. 8 and 9. A similar result was obtained for Ca.12 This is somewhat

an unexpected result, as 3He droplets doped with Mg atoms look closer to axially than to

spherically symmetric systems. We recall that for spin saturated systems, the first shell

closures of the three-dimensional spherical harmonic oscillator appear for 2, 8, and 20 spin

1/2 fermions.

C. Absorption spectrum of Mg in4HeN4
+3HeN3

clusters

It is well-known that the shift and width of the electronic transitions of impurities in

helium droplets are very sensitive to their environment and for this reason this technique

is often employed to study their structure.5,7 We have calculated the dipole absorption

spectrum of Mg as described in Ref. 12. The line shape of the electronic transition is

determined as

I(ω) ∝
∫

dR|Ψgs(R)|
2δ(ω + Vgs(R)− Vex(R)) , (9)

where {R} refers to the positions of the atoms, and Vgs and Vex are, respectively, the ground

and excited states potential energy surfaces. We recall that we have used the Mg-He X1Σ

interaction of Ref. 24 for the ground state and the 1Π and 1Σ potentials of Ref. 14 for the

excited states. To compute I(ω) for a given value of ω, one has to diagonalize a 3×3 matrix

to determine the three components of the absorption line, each one arising from a different
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potential energy surface, i.e., eigenvalue of the excited energy matrix. We refer the reader

to Refs. 52–56 and references therein for the details.

The DMC calculation provides us with a set of walkers {Rj} representing the instanta-

neous position of each atom in the cluster. These walkers have been used for determining

the one-body densities presented before and can be also employed to obtain the absorption

spectrum replacing
∫

dR|Ψgs(R)|
2 by a sum over {Rj} in the above equation, so that a

mixed estimator of I(ω) has been obtained. This is the same approximation employed for

the calculation of the radial densities here studied finding no significant differences with

their pure estimator values.

As an illustrative example, the absorption spectrum of Mg is plotted in Fig. 11 for three

selected (N3, N4) combinations with N3 +N4 = 40. The spectra are referred to that of Mg

in the gas phase. As for other impurities, the long tail at high frequencies arises from the

very repulsive contribution of the 1Σ pair potential. The largest atomic shift corresponds

to the 4He droplet and the smallest one to the 3He droplet, the one corresponding to the

mixed droplet lies in between.

The relative value of the shifts is easy to understand from the appearance of the helium

densities shown in Fig. 2. Roughly speaking, the larger the density around the impurity,

the larger the shift. For N3 + N4 = 40, Mg is fairly coated by helium and the value of

the saturation density plays a significant role in the actual value of the shift. Since the

saturation density is larger for 4He than for 3He this explains the relative position of the

three absorption lines.

IV. SUMMARY

Using a DMC approach, we have found that a Mg atom in a 4He droplet experiences

a transition from a surface to a bulk location for N4 ≥ 26. For larger 4He droplets, the

impurity resides in the bulk of the droplet. This conclusion has been drawn not only using

the mixed estimator inherent to the importance sampling approach, but also using a pure

estimator approach free from this bias. This finding agrees with the result obtained by Mella

and coworkers,14 with which only minor quantitative differences are found.

Due to the light mass of this alkaline earth atom and its weak interaction with helium,

Mg impurities are found to be very delocalized inside droplets containing several thousand
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4He atoms,13 as those of interest in recent experiments.18,19 In the case of 3He, we have

found that Mg is always in the bulk of the 3He droplet, as determined by previous DFT

calculations.10 To the best of our knowledge, the present calculations are the only DMC ones

available for this system and for isotopically mixed helium droplets doped with Mg as well.

For mixed droplets, we have found the well-known scenario47,48 that 3He and 4He atoms

are distributed around the impurity into a onion-like shell structure, with 4He atoms coating

the Mg impurity. This happens once the number of 4He atoms is large enough to fully cover

the dopant. For small N4 values, it may appear that some 3He is in contact with the Mg

atom, which is again a consequence of the surface location of Mg in small 4He clusters. We

want to point out, however, that distinguishing surface from volume regions in such small

systems is largely arbitrary.

The DMC walkers have been employed to calculate the dipole absorption line taking as

a case of study three selected clusters with N3 + N4 = 40. We have found that the atomic

shift is different enough for the studied configurations. This result only pertains to small

mixed droplets. Indeed, when the number of 4He atoms in the droplet is large enough, the

shift will be insensitive to the actual composition of the droplet, as the 3He component will

be distributed into a shell distant from the impurity, whose absorption line will quickly tend

to that of Mg in liquid 4He.16,17
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TABLE I: Parameters of the fit to the calculated Mg-He pair potentials. The values are such that

Eq. (2) yields the pair potential in K when the distance r is expressed in Å.

X1Σ (Ref. 24) 1Π (Ref. 14) 1Σ (Ref. 14)

A 1.16902 × 107 1.1308 × 105 8.6195 × 103

α 3.0188 1.6555 0.00291

β − 0.17578 0.14011

D 10.002 9.3539 21.075

C6 1.9454 × 104 2.0241 × 105 −

C8 1.04717 × 107 − −

C10 − 3.5046 × 108 2.3161 × 1010
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TABLE II: Ground state energies of Mg@4HeN4
and Mg solvation energy (in K).

N4 Ground state energy µMg

8 -15.91 (1) -10.80 (2)

20 -52.46 (2) -18.52 (7)

21 -55.99 (2) -19.23 (5)

22 -59.35 (2) -19.62 (6)

23 -62.84 (2) -19.85 (7)

24 -66.44 (2) -20.33 (9)

25 -70.07 (2) -20.57 (8)

26 -73.75 (2) -20.99 (9)

27 -77.46 (2) -21.46 (9)

28 -81.13 (2) -21.89 (9)

29 -84.87 (2) -22.17 (7)

30 -88.74 (2) -22.63 (10)

40 -128.96 (3) -25.83 (12)
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TABLE III: Ground state energies of Mg@4HeN4
+3HeN3

and Mg solvation energy (in K).

N4 N3 Ground state energy µMg

2 2 -5.312 (6) -5.201 (6)

8 8 -28.77 (2) -16.89 (2)

20 8 -69.73 (4) -23.03 (4)

8 20 -43.13 (2) -22.62 (3)

20 20 -88.51 (5) -26.25 (6)
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TABLE IV: Ground state energies of Mg@3HeN3
(in K).

N3 Ground state energy N3 Ground state energy

2 -1.887 (2) 13 -9.31 (1)

3 -2.544 (3) 14 -9.67 (1)

4 -3.312 (3) 15 -10.64 (1)

5 -4.206 (4) 16 -11.61 (1)

6 -5.124 (4) 17 -12.76 (1)

7 -6.141 (5) 18 -13.89 (1)

8 -7.266 (5) 19 -15.19 (1)

9 -7.666 (6) 20 -16.45 (1)

10 -8.055 (7) 21 -16.820 (1)

11 -8.508 (7) 40 -33.57 (3)

12 -8.885 (8)
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TABLE V: Comparison of several DMC results for Mg@4HeN4
clusters.

Cluster energy (K) Mg solvation energy (K)

N4 This work Ref. 14 Ref. 22 This work Ref. 14 Ref. 22

8 -15.91 (1) -15.91 (1) -10.80 (2) -10.76 (1)

20 -52.46 (2) -51.64 (1) -18.52 (7) -18.49 (1)

25 -70.07 (2) -69.04 (1) -70.15 (6) -20.57 (8) -25.03 (4) -20.93 (9)

30 -88.74 (2) -87.41 (1) -22.63 (10) -26.89 (4)

40 -128.96 (3) -126.51 (3) -25.83 (12) -25.39 (4)
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FIG. 1: (Color online) Pair potentials used in this work. The symbols correspond to the results

of Hinde24 for the ground state (left panel) and Mella et al.14 for the excited states (right panel).

The lines correspond to the parameterizations given in Table I. The Aziz He-He potential23 has

also been plotted in the left panel (solid line).
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FIG. 2: (Color online) Three-dimensional views of the total He atom density for three droplets

doped with Mg. From top to bottom: 4He40,
3He20+

4He20, and
3He40.
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FIG. 3: (Color online) Atomic density of the mixed drop with N4 = 8, N3 = 20. The contour plots

of 3He and 4He densities are separately displayed at the top of the figure. The darker the region,

the higher the density. The three-dimensional plot of the same densities is displayed at the bottom

of the figure, with the same plot box as in the top contours.
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FIG. 4: (Color online) Same as Fig. 3 for N4 = 20, N3 = 20.

23



0 4 8 12 16 20 24 28 32 36 40

N

0

2

4

6

8

R
ad

ia
l
d
is

ta
n
ce

(Å
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