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We use a 
ontinued fra
tion approximation to 
al
ulate the RPA response fun
tion of nu
lear

matter. The 
onvergen
e of the approximation is assessed by 
omparing with the numeri
ally exa
t

response fun
tion obtained with a typi
al e�e
tive �nite-range intera
tion used in nu
lear physi
s.

It is shown that just the �rst order term of the expansion 
an give reliable results at densities up to

the saturation density value.
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I. INTRODUCTION

There are many physi
al issues that require the knowledge of the response fun
tion of a medium to an external probe.

Well-known examples are the ele
tron s
attering by nu
lei or the propagation of neutrinos in nu
lear matter. In order

to develop a mi
ros
opi
 theory of response fun
tions in �nite nu
lear systems one usually starts by 
onsidering the

limiting 
ase of an in�nite medium. In�nite nu
lear matter as a homogeneous medium made of intera
ting nu
leons

is a very useful and broadly used 
on
ept be
ause of its relative simpli
ity and its 
onne
tion with the bulk part of

atomi
 nu
lei. A popular approa
h 
onsists in using an e�e
tive nu
leon-nu
leon intera
tion adjusted to des
ribe the

nu
lear matter properties in a mean �eld approximation. Then, this mi
ros
opi
 des
ription 
an be extended to �nite

nu
lei.

In a mean �eld framework the nu
lear response fun
tions must take into a

ount the e�e
ts of long-range 
orrelations

by the Random Phase Approximation (RPA) whi
h is the small amplitude limit of a time-dependent mean �eld

approa
h. This is well suited for those ex
itations whi
h 
orrespond to small amplitude vibrations, the most typi
al of

whi
h being the giant resonan
es and the low-lying 
olle
tive states [1℄. For the theory to be 
onsistent, it is ne
essary

that the same e�e
tive nu
leon-nu
leon intera
tion generates the self-
onsistent Hartree-Fo
k (HF) mean �eld and

the RPA 
orrelations whi
h lead to the ex
itations of the system.

There are two types of intera
tions widely used in non-relativisti
 approa
hes, the zero-range Skyrme-type for
es [2℄

and the �nite-range Gogny-type for
es [3℄. Skyrme for
es are very often used be
ause of their relatively simple

analyti
 form whi
h allows for quite 
omplete RPA 
al
ulations in nu
lear matter [4℄ as well as in �nite nu
lei [5, 6℄.

On the other hand, �nite-range for
es require heavier 
omputational e�orts to 
al
ulate RPA responses in nu
lei [7, 8℄.

Furthermore, the only existing methods in this 
ase 
onsist in diagonalizing large size matri
es in 
on�guration spa
e.

It would be useful to have alternative methods su
h as a dire
t 
al
ulation in 
oordinate spa
e or momentum spa
e of

RPA response fun
tions, to avoid the in
reasingly large 
on�guration spa
es. This is possible with Skyrme for
es [9℄

but in the 
ase of �nite range for
es the ex
hange intera
tions 
ompli
ate the problem.

In this work we study an approximation based on a 
ontinued fra
tion expansion of the response fun
tion. Our

aim is to explore a 
al
ulational s
heme whi
h 
an be 
he
ked in in�nite matter and whi
h o�ers prospe
ts for RPA


al
ulations with �nite range for
es in nu
lei. The 
ontinued fra
tion method is known in the literature [10℄ and it

has been used by many authors to study response fun
tions in the quasi-elasti
 regime (see Ref. [11℄ and referen
es

therein). However, it is di�
ult to know where to trun
ate the 
ontinued fra
tion expansion to obtain a desired

a

ura
y. It is possible to 
al
ulate response fun
tions in in�nite matter by performing multipole expansions of the

intera
tion and to have numeri
ally a

urate results [12℄ to evaluate various approximation s
hemes. Therefore, the

present study aims at assessing the speed of 
onvergen
e of the 
ontinued fra
tion expansion applied to the response

fun
tions in nu
lear matter, using as an example a Gogny for
e D1 [3℄. We show that this expansion gives good results

as 
ompared with the numeri
ally exa
t 
al
ulations, even at lowest order.

In Se
.II we re
all the basi
 features of the 
ontinued fra
tion method applied to the determination of RPA response

fun
tions in an in�nite medium, and we show analyti
ally that it gives the 
orre
t result in the spe
ial 
ase of a

Landau-Migdal intera
tion. In Se
.III we dis
uss the results obtained with a �nite range intera
tion of Gogny type.

Con
lusions are drawn in Se
.IV .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/71027773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0802.3147v1


2

II. FORMALISM

A. General framework

A general two-body intera
tion in momentum representation depends at most on 4 momenta. Be
ause of momentum


onservation there are a
tually 3 independent momenta, in the 
ase of a translationally invariant intera
tion. For the

parti
le-hole (p-h) 
ase we 
hoose these independent variables to be the initial (�nal) momentum k1 (k2) of the hole

and the external momentum transfer q. We follow the notations of Ref. [12℄ and we denote by α = (S, M ; T, Q) the
spin and isospin p-h 
hannels with S=0 (1) for the non spin-�ip (spin-�ip) 
hannel, T=0 (1) the isos
alar (isove
tor)

hannel, M and Q being the third 
omponents of S and T . The matrix element of the general p-h intera
tion in
luding

ex
hange 
an be written as:

V
(α,α′)
ph (q,k1,k2) ≡

〈q + k1,k
−1
1 , (α)|V |q + k2,k

−1
2 , (α′)〉 . (1)

To 
al
ulate the response of a homogeneous medium to an external �eld it is 
onvenient to introdu
e the Green's

fun
tion, or retarded p-h propagator G(α)(q, ω,k1). From now on we 
hoose the z axis along the dire
tion of q. In

the HF approximation the p-h Green's fun
tion is the free retarded p-h propagator [13℄:

GHF(q, ω,k1) =
f(k1) − f(|k1 + q|)

ω + ǫ(k1) − ǫ(|k1 + q|) + iη
, (2)

where ǫ(k) is the HF single-parti
le energy 
orresponding to momentum k, and the Fermi-Dira
 distribution f is

de�ned for a given temperature T and 
hemi
al potential µ as f(k) = [1 + e(ǫ(k)−µ)/T ]−1
. The HF Green's fun
tion

GHF does not depend on the spin-isospin 
hannel α.
To go beyond the HF mean �eld approximation one takes into a

ount the long-range type of 
orrelations by

re-summing a 
lass of p-h diagrams. One thus obtains the well-known RPA [13℄ whose 
orrelated Green's fun
tion

G
(α)
RPA(q, ω,k1) satis�es the Bethe-Salpeter equation:

G
(α)
RPA(q, ω,k1) = GHF(q, ω,k1) + GHF(q, ω,k1)

∑

(α′)

∫

d3k2

(2π)3
V

(α,α′)
ph (q,k1,k2)G

(α′)
RPA(q, ω,k2) . (3)

Finally, the response fun
tion χ(α)(q, ω) in the in�nite medium is related to the p-h Green's fun
tion by:

χ
(α)
RPA(q, ω) = g

∫

d3k1

(2π)3
G

(α)
RPA(q, ω,k1) , (4)

where the spin-isospin degenera
y fa
tor g is 4 in symmetri
 nu
lear matter and 2 in pure neutron matter. In the 
ase

of a system of parti
les without residual intera
tions the free response is obtained by 
al
ulating Eq. (4) with the HF

p-h propagator GHF, thus obtaining the well-known Lindhard fun
tion χHF.

B. Continued fra
tion approximation

A dire
t numeri
al solution of Eq. (3) with a general p-h intera
tion is possible, as it has been shown in Ref. [12℄ for

the Gogny intera
tion. However, su
h a method is spe
i�
ally designed for in�nite systems and it would be interesting

to have an alternative method whi
h 
an be a

urate and at the same time 
an be used in 
al
ulations of �nite systems.

We examine now an approximate way to 
al
ulate the RPA response fun
tion, expressing it as a 
ontinued fra
tion.

To simplify the writing of the equations we shall employ the following 
onventions. First of all we omit the variables

su
h as q, ω or k as well as indi
es (α), unless ne
essary. For instan
e, equation (3) is written as

GRPA = GHF + GHFVphGRPA . (5)

Se
ondly, for any fun
tion F (k1) depending on a momentum k1 we denote by 〈F 〉 its integrated value over momentum

spa
e. For example,

〈GHF〉 ≡

∫

d3k1

(2π)3
GHF(k1) , (6)
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so that Eq. (4) is simply written as

χRPA = g〈GRPA〉 . (7)

The Bethe-Salpeter equation is an integral equation whi
h 
an, in prin
iple, be solved iteratively

GRPA = GHF + GHFVphGHF + GHFVphGHFVphGHF + . . . (8)

Correspondingly, the RPA response fun
tion is written as

χRPA = χHF + g〈GHF(1)Vph(1, 2)GHF(2)〉 + g〈GHF(1)Vph(1, 2)GHF(2)Vph(2, 3)GHF(3)〉 + · · · (9)

The bra
kets imply integrations over 
hains of variables as shown here.

In Ref. [10℄ an approximation was suggested by de�ning an e�e
tive intera
tion Veff(q, ω, T ) su
h that the RPA

response fun
tion is written as

χRPA =
χHF

1 − VeffχHF
. (10)

In the RPA negle
ting ex
hange (the ring approximation) the e�e
tive intera
tion does not depend on the hole

momenta k1 and k2 so that Eq. (10) is exa
t if one repla
es Veff by Vph. However, it is important to treat dire
t and

ex
hange terms on equal footing, sin
e they are in general of the same order of magnitude. Here, our point of view

di�ers from other works where the dire
t and ex
hange intera
tions are treated on di�erent approximation levels [11℄.

We express the e�e
tive intera
tion as a 
ontinued fra
tion

Veff =
V1

1 − V2χHF

1 −
V3χHF

1 − . . .

. (11)

Ea
h term Vi entering this de�nition is dedu
ed by expanding formally Eqs. (11) and (10) in powers of ViχHF and

identifying with Eq. (9). The expli
it expression for the �rst two terms are:

V1 =
g〈GHFVphGHF〉

(χHF)2
,

V2 =
g〈GHFVphGHFVphGHF〉

V1 (χHF)3
− V1 . (12)

First, one 
an noti
e that the quantities GHF and χHF are 
omplex fun
tions of q, ω and T , and so are the Vi

and the e�e
tive intera
tion Veff . Se
ond, the 
al
ulations of the Vi in the in�nite medium involve only produ
ts of

fun
tions, whi
h is somewhat easier numeri
ally than the full 
al
ulations of response fun
tions where one needs to

perform matrix inversions [12℄. Third, one see that V1 is just the average of the full p-h intera
tion over the squared

free p-h Green's fun
tion. Therefore, the 
ontinued fra
tion approximation 
ould be quite useful for 
al
ulating RPA

response fun
tions if one 
he
ks how a

urate it 
an be for a general intera
tion like the Gogny for
e. This is what

we shall examine in Se
. III.

C. An analyti
al 
ase: the Landau-Migdal intera
tion

The 
onvergen
e of the approximation 
an be expli
itly seen in the s
hemati
 
ase of a p-h intera
tion of the

Landau-Migdal form 
ontaining ℓ = 0 and ℓ = 1 terms:

Vph = g {f0 + f1 cos θ12} (13)

where for brevity the same notation fi is used for the Landau parameters in the four spin-isospin 
hannels. For su
h

an intera
tion the RPA response fun
tion 
an be analyti
ally 
al
ulated (see e.g. Ref. 4):

χRPA =
χHF

1 −

(

f0 +
f1ν

2

1 + F1/3

)

χHF

, (14)
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where ν = ωm∗/(qkF), F1 = f1N0 is the dimensionless Landau parameter and N0 = gm∗kF/(2π2) is the level density
at the Fermi surfa
e, with m∗

being the e�e
tive mass.

To 
ompare with the 
ontinued fra
tion approximation, we have to evaluate Veff using the intera
tion (13). It is

su�
ient to write expli
itly the �rst 3 terms of the expansion of Veff and to obtain the 
omplete series by re
ursion.

The integrations involving GHF have to be 
arried out in the Landau limit, i.e. q = 0, but �nite ν. We get:

V1 = f0 + f1ν
2

(15)

V2 = −
1

3

f1F1ν
2

V1χHF
(16)

V3 =
1

9

f1F
2
1 ν2

V1V2χ2
HF

− V2 (17)

It is worth noti
ing that dire
t and ex
hange terms have been treated on the same footing in 
al
ulating the Vi's. Of


ourse for f1 = 0 only V1 is needed and one gets the exa
t result. The e�e
tive intera
tion is

Veff = V1 + V1V2χHF +
(

V1V2V3 + V1V
2
2

)

χ2
HF + . . .

= f0 + f1ν
2

{

1 +

(

−
1

3
F1

)

+

(

−
1

3
F1

)2

+ . . .

}

= f0 +
f1ν

2

1 + 1
3F1

. (18)

One 
an see that this Veff leads to the exa
t result (14) for the RPA response fun
tion.

III. RESULTS FOR A GOGNY INTERACTION

In this se
tion we apply the 
ontinuous fra
tion method to 
al
ulate response fun
tions in in�nite symmetri


matter for a realisti
 
ase, using the Gogny e�e
tive intera
tion D1 [3℄. We 
hoose this parametrization be
ause at

the mean �eld level there is a 
ompensation between the dire
t and the density-dependent 
ontributions. Thus, it

may be expe
ted that the relative 
ontribution of the ex
hange term will be somehow enhan
ed. The purpose is to

demonstrate the feasibility and rapid 
onvergen
e of the method. We only present results at T = 0, for whi
h the

e�e
ts of the residual intera
tion are stronger.

The task of 
al
ulating the Vi's involves 
arrying out integrals over an in
reasing number of variables. We �nd


onvenient to use a multipole expansion of both the HF propagator GHF and the p-h intera
tion Vph, as we did in

the numeri
ally exa
t 
al
ulation of Ref. [12℄:

GHF(q, ω,k1) =
∑

ℓ

Gℓ(q, ω, k1)Yℓ0(1) ,

Vph(q,k1,k2) =
∑

ℓ,m

vℓ(q, k1, k2)Y
∗

ℓm(1)Yℓm(2) . (19)

This allows to get rid of all integrations over angles and we are left with only integrals over the absolute values of

momenta. For instan
e, we have

V1 =
g

(χHF)2

∑

ℓ

〈GℓvℓGℓ〉 , (20)

where the integrals impli
it in the bra
kets refer now to the moduli ki. Similar expressions 
an be obtained for other

Vi's.

We 
an have an idea of the 
onvergen
e rate by 
omparing the fun
tions V1χHF and V2χHF. This is shown in Fig. 1

for the 
ase of a momentum transfer q=27 MeV. Noti
e that the s
ale used to plot V2χHF is about a fa
tor of ten

larger than that of V1χHF. It 
an be seen that the imaginary parts of V2χHF are 
lose to zero for the four spin-isospin


hannels. The real parts are generally small 
ompared to 1, but the situation seems less favorable in the 
hannel

(S, T ) = (0, 0). From the behavior shown in Fig.1 one 
an expe
t a rapid 
onvergen
e of the 
al
ulated responses

already at the level of V2, although perhaps slower in the 
ase of the (0, 0) 
hannel.
We now examine the strength fun
tions

S(q, ω) = −
1

π
Imχ(q, ω) (21)
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FIG. 1: (Color online) Real (solid line) and imaginary (dashed line) part of V1χHF (top row) and V2χHF (bottom row) for D1

intera
tion in nu
lear matter at saturation density ρ0. The transferred momentum is q=27 MeV. The (S, T ) 
hannels are shown
in ea
h panel.

obtained at various levels of approximation, as 
ompared with the dire
t numeri
al solution of Eq. (3) presented

in Ref. [12℄. In Figs. 2-3 we show the RPA strength fun
tions for two values of the momentum transfer, at about

kF/10 and kF. The �rst order gives a reliable des
ription of the strentgh fun
tion for all 
hannels ex
ept (0, 0) as

expe
ted from the previous analysis. For the (0, 0) 
hannel it is ne
essary to in
lude the se
ond order. Noti
e that the

agreement is independent of the value of q, as no expansion in powers of q has been done. Indeed, as it 
an be seen

in Eq. (11) the 
onvergen
e of the approximation for the e�e
tive intera
tion does not rely on q but on the fun
tions

ViχHF.
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FIG. 2: (Color online) RPA Strength fun
tion (open diamonds) 
ompared with 
ontinuous fra
tion approximation (1st order:

dotted line, 2nd order: dashed line) 
al
ulated with Gogny D1 intera
tion in symmetri
 nu
lear matter, at saturation density

ρ0 and momentum transfer q=27 MeV. The thin lines represent the un
orrelated HF strengths.

However, as the density in
reases the 
onvergen
e is deteriorating. In Fig. 4 are plotted the strength fun
tions S(0,0)

and the fun
tions V1χHF, V2χHF at density ρ = 2ρ0 in the (0, 0) spin-isospin 
hannel. It 
an be seen that V2χHF is no

longer small as 
ompared to V1χHF and 
onsequently, a reliable strength fun
tion should require at least the in
lusion

of third order terms in the e�e
tive intera
tion. On the other hand, for densities smaller than ρ0 the approximation

Veff = V1χHF is su�
ient to get a

urate results. Of 
ourse, the spe
i�
 
onvergen
e found in ea
h 
hannel (S, T )
depends on the spe
i�
 intera
tion used.

Let us remind that the present approximation is not related to the relative importan
e of the dire
t and ex
hange


ontributions to the parti
le-hole intera
tion. Had the ex
hange term be small as 
ompared to the dire
t one, a good

approximation for the response fun
tion 
ould be obtained by treating exa
tly the 
ontribution of the latter and using

some approximation for the 
ontribution of the former term. This is not the 
ase for the D1 intera
tion, as it 
an

be seen in Table 1. The expli
it expressions of these terms are given in Ref. [12℄. As the ex
hange term depends on

momenta k1, k2 and their relative angle, in the Table are plotted the monopole 
ontributions at the Fermi surfa
e

(k1 = k2 = kF), for two values of q.
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FIG. 3: (Color online) Same as Fig.2, for q=270 MeV.
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FIG. 4: (Color online) Same as Figs. 1 and 2 for the 
hannel (0, 0) and for ρ = 2ρ0.

IV. CONCLUSIONS

We have examined the e�
ien
y of the 
ontinuous fra
tion method for 
al
ulating RPA response fun
tions in in�nite

nu
lear matter using a typi
al �nite range e�e
tive for
e. This issue originates from the need of having self-
onsistent

theoreti
al predi
tions of nu
lear responses 
al
ulated with realisti
 intera
tions.

We have found that, with the Gogny intera
tion D1 the 
ontinued fra
tion method is very e�
ient and the exa
t

RPA response fun
tions in the 4 spin-isospin 
hannels are well reprodu
ed already at �rst order. This is true when the

nu
lear density is of the order of, or less than the saturation density value. At higher densities it be
omes ne
essary to

in
lude se
ond and higher order terms. The rate of 
onvergen
e is 
ontrolled by the de
rease of the terms of su

essive

orders ViχHF. In our expansion the dire
t and ex
hange intera
tions are always treated on equal footing. This is

important sin
e in the nu
lear 
ase usually there o

urs a strong 
an
ellation of two large numbers, see Table I.

The en
ouraging results obtained in in�nite nu
lear matter open the way to important developments. For example,

the 
ontinuous fra
tion method for response fun
tions provides a simpler way to evaluate the propagation of neutrinos

in dense matter su
h as inside neutron stars. The a

ura
y of results is under 
ontrol by the rate of de
rease of

the su

essive terms ViχHF. In �nite nu
lei, response fun
tions 
an be 
al
ulated 
onsistently with realisti
 e�e
tive

intera
tions without diagonalizing RPA matri
es of extremely large dimensions. This 
an be of some advantage for

studying heavy and/or deformed nu
lei.
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(S,T) 
hannel (0,0) (0,1) (1,0) (1,1)

q (MeV) 27 135 27 135 27 135 27 135

v
(D)
ℓ=0(q) 885 1129 -363 -459 845 798 -46 -146

v
(E)
ℓ=0(k1,2 = kF) -1147 -1147 917 917 -420 -420 583 583

TABLE I: Dire
t (D) and ex
hange terms (E) in MeV.fm

−3
of the D1 p-h intera
tion in nu
lear matter, for ρ = ρ0 and angular

momentum ℓ=0.
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