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Continued fration approximation for the nulear matter response funtion
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We use a ontinued fration approximation to alulate the RPA response funtion of nulear

matter. The onvergene of the approximation is assessed by omparing with the numerially exat

response funtion obtained with a typial e�etive �nite-range interation used in nulear physis.

It is shown that just the �rst order term of the expansion an give reliable results at densities up to

the saturation density value.
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I. INTRODUCTION

There are many physial issues that require the knowledge of the response funtion of a medium to an external probe.

Well-known examples are the eletron sattering by nulei or the propagation of neutrinos in nulear matter. In order

to develop a mirosopi theory of response funtions in �nite nulear systems one usually starts by onsidering the

limiting ase of an in�nite medium. In�nite nulear matter as a homogeneous medium made of interating nuleons

is a very useful and broadly used onept beause of its relative simpliity and its onnetion with the bulk part of

atomi nulei. A popular approah onsists in using an e�etive nuleon-nuleon interation adjusted to desribe the

nulear matter properties in a mean �eld approximation. Then, this mirosopi desription an be extended to �nite

nulei.

In a mean �eld framework the nulear response funtions must take into aount the e�ets of long-range orrelations

by the Random Phase Approximation (RPA) whih is the small amplitude limit of a time-dependent mean �eld

approah. This is well suited for those exitations whih orrespond to small amplitude vibrations, the most typial of

whih being the giant resonanes and the low-lying olletive states [1℄. For the theory to be onsistent, it is neessary

that the same e�etive nuleon-nuleon interation generates the self-onsistent Hartree-Fok (HF) mean �eld and

the RPA orrelations whih lead to the exitations of the system.

There are two types of interations widely used in non-relativisti approahes, the zero-range Skyrme-type fores [2℄

and the �nite-range Gogny-type fores [3℄. Skyrme fores are very often used beause of their relatively simple

analyti form whih allows for quite omplete RPA alulations in nulear matter [4℄ as well as in �nite nulei [5, 6℄.

On the other hand, �nite-range fores require heavier omputational e�orts to alulate RPA responses in nulei [7, 8℄.

Furthermore, the only existing methods in this ase onsist in diagonalizing large size matries in on�guration spae.

It would be useful to have alternative methods suh as a diret alulation in oordinate spae or momentum spae of

RPA response funtions, to avoid the inreasingly large on�guration spaes. This is possible with Skyrme fores [9℄

but in the ase of �nite range fores the exhange interations ompliate the problem.

In this work we study an approximation based on a ontinued fration expansion of the response funtion. Our

aim is to explore a alulational sheme whih an be heked in in�nite matter and whih o�ers prospets for RPA

alulations with �nite range fores in nulei. The ontinued fration method is known in the literature [10℄ and it

has been used by many authors to study response funtions in the quasi-elasti regime (see Ref. [11℄ and referenes

therein). However, it is di�ult to know where to trunate the ontinued fration expansion to obtain a desired

auray. It is possible to alulate response funtions in in�nite matter by performing multipole expansions of the

interation and to have numerially aurate results [12℄ to evaluate various approximation shemes. Therefore, the

present study aims at assessing the speed of onvergene of the ontinued fration expansion applied to the response

funtions in nulear matter, using as an example a Gogny fore D1 [3℄. We show that this expansion gives good results

as ompared with the numerially exat alulations, even at lowest order.

In Se.II we reall the basi features of the ontinued fration method applied to the determination of RPA response

funtions in an in�nite medium, and we show analytially that it gives the orret result in the speial ase of a

Landau-Migdal interation. In Se.III we disuss the results obtained with a �nite range interation of Gogny type.

Conlusions are drawn in Se.IV .
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II. FORMALISM

A. General framework

A general two-body interation in momentum representation depends at most on 4 momenta. Beause of momentum

onservation there are atually 3 independent momenta, in the ase of a translationally invariant interation. For the

partile-hole (p-h) ase we hoose these independent variables to be the initial (�nal) momentum k1 (k2) of the hole

and the external momentum transfer q. We follow the notations of Ref. [12℄ and we denote by α = (S, M ; T, Q) the
spin and isospin p-h hannels with S=0 (1) for the non spin-�ip (spin-�ip) hannel, T=0 (1) the isosalar (isovetor)
hannel, M and Q being the third omponents of S and T . The matrix element of the general p-h interation inluding

exhange an be written as:

V
(α,α′)
ph (q,k1,k2) ≡

〈q + k1,k
−1
1 , (α)|V |q + k2,k

−1
2 , (α′)〉 . (1)

To alulate the response of a homogeneous medium to an external �eld it is onvenient to introdue the Green's

funtion, or retarded p-h propagator G(α)(q, ω,k1). From now on we hoose the z axis along the diretion of q. In

the HF approximation the p-h Green's funtion is the free retarded p-h propagator [13℄:

GHF(q, ω,k1) =
f(k1) − f(|k1 + q|)

ω + ǫ(k1) − ǫ(|k1 + q|) + iη
, (2)

where ǫ(k) is the HF single-partile energy orresponding to momentum k, and the Fermi-Dira distribution f is

de�ned for a given temperature T and hemial potential µ as f(k) = [1 + e(ǫ(k)−µ)/T ]−1
. The HF Green's funtion

GHF does not depend on the spin-isospin hannel α.
To go beyond the HF mean �eld approximation one takes into aount the long-range type of orrelations by

re-summing a lass of p-h diagrams. One thus obtains the well-known RPA [13℄ whose orrelated Green's funtion

G
(α)
RPA(q, ω,k1) satis�es the Bethe-Salpeter equation:

G
(α)
RPA(q, ω,k1) = GHF(q, ω,k1) + GHF(q, ω,k1)

∑

(α′)

∫

d3k2

(2π)3
V

(α,α′)
ph (q,k1,k2)G

(α′)
RPA(q, ω,k2) . (3)

Finally, the response funtion χ(α)(q, ω) in the in�nite medium is related to the p-h Green's funtion by:

χ
(α)
RPA(q, ω) = g

∫

d3k1

(2π)3
G

(α)
RPA(q, ω,k1) , (4)

where the spin-isospin degeneray fator g is 4 in symmetri nulear matter and 2 in pure neutron matter. In the ase

of a system of partiles without residual interations the free response is obtained by alulating Eq. (4) with the HF

p-h propagator GHF, thus obtaining the well-known Lindhard funtion χHF.

B. Continued fration approximation

A diret numerial solution of Eq. (3) with a general p-h interation is possible, as it has been shown in Ref. [12℄ for

the Gogny interation. However, suh a method is spei�ally designed for in�nite systems and it would be interesting

to have an alternative method whih an be aurate and at the same time an be used in alulations of �nite systems.

We examine now an approximate way to alulate the RPA response funtion, expressing it as a ontinued fration.

To simplify the writing of the equations we shall employ the following onventions. First of all we omit the variables

suh as q, ω or k as well as indies (α), unless neessary. For instane, equation (3) is written as

GRPA = GHF + GHFVphGRPA . (5)

Seondly, for any funtion F (k1) depending on a momentum k1 we denote by 〈F 〉 its integrated value over momentum

spae. For example,

〈GHF〉 ≡

∫

d3k1

(2π)3
GHF(k1) , (6)
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so that Eq. (4) is simply written as

χRPA = g〈GRPA〉 . (7)

The Bethe-Salpeter equation is an integral equation whih an, in priniple, be solved iteratively

GRPA = GHF + GHFVphGHF + GHFVphGHFVphGHF + . . . (8)

Correspondingly, the RPA response funtion is written as

χRPA = χHF + g〈GHF(1)Vph(1, 2)GHF(2)〉 + g〈GHF(1)Vph(1, 2)GHF(2)Vph(2, 3)GHF(3)〉 + · · · (9)

The brakets imply integrations over hains of variables as shown here.

In Ref. [10℄ an approximation was suggested by de�ning an e�etive interation Veff(q, ω, T ) suh that the RPA

response funtion is written as

χRPA =
χHF

1 − VeffχHF
. (10)

In the RPA negleting exhange (the ring approximation) the e�etive interation does not depend on the hole

momenta k1 and k2 so that Eq. (10) is exat if one replaes Veff by Vph. However, it is important to treat diret and

exhange terms on equal footing, sine they are in general of the same order of magnitude. Here, our point of view

di�ers from other works where the diret and exhange interations are treated on di�erent approximation levels [11℄.

We express the e�etive interation as a ontinued fration

Veff =
V1

1 − V2χHF

1 −
V3χHF

1 − . . .

. (11)

Eah term Vi entering this de�nition is dedued by expanding formally Eqs. (11) and (10) in powers of ViχHF and

identifying with Eq. (9). The expliit expression for the �rst two terms are:

V1 =
g〈GHFVphGHF〉

(χHF)2
,

V2 =
g〈GHFVphGHFVphGHF〉

V1 (χHF)3
− V1 . (12)

First, one an notie that the quantities GHF and χHF are omplex funtions of q, ω and T , and so are the Vi

and the e�etive interation Veff . Seond, the alulations of the Vi in the in�nite medium involve only produts of

funtions, whih is somewhat easier numerially than the full alulations of response funtions where one needs to

perform matrix inversions [12℄. Third, one see that V1 is just the average of the full p-h interation over the squared

free p-h Green's funtion. Therefore, the ontinued fration approximation ould be quite useful for alulating RPA

response funtions if one heks how aurate it an be for a general interation like the Gogny fore. This is what

we shall examine in Se. III.

C. An analytial ase: the Landau-Migdal interation

The onvergene of the approximation an be expliitly seen in the shemati ase of a p-h interation of the

Landau-Migdal form ontaining ℓ = 0 and ℓ = 1 terms:

Vph = g {f0 + f1 cos θ12} (13)

where for brevity the same notation fi is used for the Landau parameters in the four spin-isospin hannels. For suh

an interation the RPA response funtion an be analytially alulated (see e.g. Ref. 4):

χRPA =
χHF

1 −

(

f0 +
f1ν

2

1 + F1/3

)

χHF

, (14)
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where ν = ωm∗/(qkF), F1 = f1N0 is the dimensionless Landau parameter and N0 = gm∗kF/(2π2) is the level density
at the Fermi surfae, with m∗

being the e�etive mass.

To ompare with the ontinued fration approximation, we have to evaluate Veff using the interation (13). It is

su�ient to write expliitly the �rst 3 terms of the expansion of Veff and to obtain the omplete series by reursion.

The integrations involving GHF have to be arried out in the Landau limit, i.e. q = 0, but �nite ν. We get:

V1 = f0 + f1ν
2

(15)

V2 = −
1

3

f1F1ν
2

V1χHF
(16)

V3 =
1

9

f1F
2
1 ν2

V1V2χ2
HF

− V2 (17)

It is worth notiing that diret and exhange terms have been treated on the same footing in alulating the Vi's. Of

ourse for f1 = 0 only V1 is needed and one gets the exat result. The e�etive interation is

Veff = V1 + V1V2χHF +
(

V1V2V3 + V1V
2
2

)

χ2
HF + . . .

= f0 + f1ν
2

{

1 +

(

−
1

3
F1

)

+

(

−
1

3
F1

)2

+ . . .

}

= f0 +
f1ν

2

1 + 1
3F1

. (18)

One an see that this Veff leads to the exat result (14) for the RPA response funtion.

III. RESULTS FOR A GOGNY INTERACTION

In this setion we apply the ontinuous fration method to alulate response funtions in in�nite symmetri

matter for a realisti ase, using the Gogny e�etive interation D1 [3℄. We hoose this parametrization beause at

the mean �eld level there is a ompensation between the diret and the density-dependent ontributions. Thus, it

may be expeted that the relative ontribution of the exhange term will be somehow enhaned. The purpose is to

demonstrate the feasibility and rapid onvergene of the method. We only present results at T = 0, for whih the

e�ets of the residual interation are stronger.

The task of alulating the Vi's involves arrying out integrals over an inreasing number of variables. We �nd

onvenient to use a multipole expansion of both the HF propagator GHF and the p-h interation Vph, as we did in

the numerially exat alulation of Ref. [12℄:

GHF(q, ω,k1) =
∑

ℓ

Gℓ(q, ω, k1)Yℓ0(1) ,

Vph(q,k1,k2) =
∑

ℓ,m

vℓ(q, k1, k2)Y
∗

ℓm(1)Yℓm(2) . (19)

This allows to get rid of all integrations over angles and we are left with only integrals over the absolute values of

momenta. For instane, we have

V1 =
g

(χHF)2

∑

ℓ

〈GℓvℓGℓ〉 , (20)

where the integrals impliit in the brakets refer now to the moduli ki. Similar expressions an be obtained for other

Vi's.

We an have an idea of the onvergene rate by omparing the funtions V1χHF and V2χHF. This is shown in Fig. 1

for the ase of a momentum transfer q=27 MeV. Notie that the sale used to plot V2χHF is about a fator of ten

larger than that of V1χHF. It an be seen that the imaginary parts of V2χHF are lose to zero for the four spin-isospin

hannels. The real parts are generally small ompared to 1, but the situation seems less favorable in the hannel

(S, T ) = (0, 0). From the behavior shown in Fig.1 one an expet a rapid onvergene of the alulated responses

already at the level of V2, although perhaps slower in the ase of the (0, 0) hannel.
We now examine the strength funtions

S(q, ω) = −
1

π
Imχ(q, ω) (21)
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FIG. 1: (Color online) Real (solid line) and imaginary (dashed line) part of V1χHF (top row) and V2χHF (bottom row) for D1

interation in nulear matter at saturation density ρ0. The transferred momentum is q=27 MeV. The (S, T ) hannels are shown
in eah panel.

obtained at various levels of approximation, as ompared with the diret numerial solution of Eq. (3) presented

in Ref. [12℄. In Figs. 2-3 we show the RPA strength funtions for two values of the momentum transfer, at about

kF/10 and kF. The �rst order gives a reliable desription of the strentgh funtion for all hannels exept (0, 0) as

expeted from the previous analysis. For the (0, 0) hannel it is neessary to inlude the seond order. Notie that the

agreement is independent of the value of q, as no expansion in powers of q has been done. Indeed, as it an be seen

in Eq. (11) the onvergene of the approximation for the e�etive interation does not rely on q but on the funtions

ViχHF.
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FIG. 2: (Color online) RPA Strength funtion (open diamonds) ompared with ontinuous fration approximation (1st order:

dotted line, 2nd order: dashed line) alulated with Gogny D1 interation in symmetri nulear matter, at saturation density

ρ0 and momentum transfer q=27 MeV. The thin lines represent the unorrelated HF strengths.

However, as the density inreases the onvergene is deteriorating. In Fig. 4 are plotted the strength funtions S(0,0)

and the funtions V1χHF, V2χHF at density ρ = 2ρ0 in the (0, 0) spin-isospin hannel. It an be seen that V2χHF is no

longer small as ompared to V1χHF and onsequently, a reliable strength funtion should require at least the inlusion

of third order terms in the e�etive interation. On the other hand, for densities smaller than ρ0 the approximation

Veff = V1χHF is su�ient to get aurate results. Of ourse, the spei� onvergene found in eah hannel (S, T )
depends on the spei� interation used.

Let us remind that the present approximation is not related to the relative importane of the diret and exhange

ontributions to the partile-hole interation. Had the exhange term be small as ompared to the diret one, a good

approximation for the response funtion ould be obtained by treating exatly the ontribution of the latter and using

some approximation for the ontribution of the former term. This is not the ase for the D1 interation, as it an

be seen in Table 1. The expliit expressions of these terms are given in Ref. [12℄. As the exhange term depends on

momenta k1, k2 and their relative angle, in the Table are plotted the monopole ontributions at the Fermi surfae

(k1 = k2 = kF), for two values of q.
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FIG. 3: (Color online) Same as Fig.2, for q=270 MeV.
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FIG. 4: (Color online) Same as Figs. 1 and 2 for the hannel (0, 0) and for ρ = 2ρ0.

IV. CONCLUSIONS

We have examined the e�ieny of the ontinuous fration method for alulating RPA response funtions in in�nite

nulear matter using a typial �nite range e�etive fore. This issue originates from the need of having self-onsistent

theoretial preditions of nulear responses alulated with realisti interations.

We have found that, with the Gogny interation D1 the ontinued fration method is very e�ient and the exat

RPA response funtions in the 4 spin-isospin hannels are well reprodued already at �rst order. This is true when the

nulear density is of the order of, or less than the saturation density value. At higher densities it beomes neessary to

inlude seond and higher order terms. The rate of onvergene is ontrolled by the derease of the terms of suessive

orders ViχHF. In our expansion the diret and exhange interations are always treated on equal footing. This is

important sine in the nulear ase usually there ours a strong anellation of two large numbers, see Table I.

The enouraging results obtained in in�nite nulear matter open the way to important developments. For example,

the ontinuous fration method for response funtions provides a simpler way to evaluate the propagation of neutrinos

in dense matter suh as inside neutron stars. The auray of results is under ontrol by the rate of derease of

the suessive terms ViχHF. In �nite nulei, response funtions an be alulated onsistently with realisti e�etive

interations without diagonalizing RPA matries of extremely large dimensions. This an be of some advantage for

studying heavy and/or deformed nulei.
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(S,T) hannel (0,0) (0,1) (1,0) (1,1)

q (MeV) 27 135 27 135 27 135 27 135

v
(D)
ℓ=0(q) 885 1129 -363 -459 845 798 -46 -146

v
(E)
ℓ=0(k1,2 = kF) -1147 -1147 917 917 -420 -420 583 583

TABLE I: Diret (D) and exhange terms (E) in MeV.fm

−3
of the D1 p-h interation in nulear matter, for ρ = ρ0 and angular

momentum ℓ=0.
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