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ordenador cuántico en un futuro todav́ıa lejano, pero ineludible.

El ego cient́ıfico lo garantiza.
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Jan Garćıa, maestro en el arte del cuidado desde el cinismo y la irońıa, gracias.
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Resum

La informació quàntica és un camp relativament jove de la F́ısica, que té com

a objectiu explorar les lleis de la mecànica quàntica per a la transmissió i el

processament de la informació. Com a exemple d’aplicacions es poden esmentar

les comunicacions segures, basades en la distribució de clau quàntica, i algoritmes

quàntics que superen als seus homòlegs clàssics per a un determinat nombre

de problemes. A més, les eines desenvolupades en el context de la informació

quàntica han demostrat ser de gran utilitat per aprofundir en la comprensió dels

sistemes quàntics, per exemple, en el context dels problemes de molts cossos

quàntics.

Una de les principals aplicacions de la potència de la mecànica quàntica en

tasques computacionals és la manipulació de sistemes quàntics al laboratori per

tal de realitzar simulacions quàntiques, i els diferents estudis experimentals s’estan

realitzant en l’actualitat cap aquest objectiu. Especialment prometedores són les

primeres simulacions quàntiques de sistemes atòmics ultrafreds atrapats en xarxes

òptiques, on els resultats superen els càlculs clàssics.

Aquesta tesi aplica eines d’informació quàntica a la descripció i l’estudi de

diversos sistemes quàntics i a processos que succeeixen en un espai discret, és a

dir, en una xarxa. Fins i tot una sola part́ıcula quàntica amb esṕın 1/2 pot donar

lloc a fenomens que difereixen de forma radical de qualsevol analogia clàssica. En

alguns casos, la nostra comprensió dels processos f́ısics és més intüıtiva per al cas

continu, i per tant, el nostre estudi es connecta fins al ĺımit continu adequat.

La tesi s’estructura en dues parts. La primera d’elles s’emmarca en l’estudi

i comprensió d’un algoritme quàntic en particular, el passeig quàntic. Per tal

d’explotar el passeig quàntic i aplicar-lo a la construcció d’algoritmes quàntics,

és important entendre i controlar el seu comportament tant com siga possible.

Una de les caracteŕıstiques analitzades en aquesta tesi és el passeig quàntic

discret en N dimensions des de la perspectiva de les relacions de dispersió. Fent

ús de condicions inicials esteses en l’espai de posicions, s’obté una equació d’ona

en el ĺımit continu. Aquesta equació ens permet d’entendre algunes propietats

conegudes i dissenyar interessants comportaments. Apliquem l’estudi al passeig

quàntic en dos i tres dimensions per a la moneda de Grover, on la relació de
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dispersió presenta punts i interseccions particulars on la dinàmica és especialment

diferent.

D’altra banda, s’analitza el comportament del passeig quàntic com un procés

Markovià. Amb aquest objectiu, s’investiga l’evolució temporal de la matiu densi-

tat redüıda per un passeig quàntic de temps discret en una xarxa unidimensional.

S’analitza la dinàmica de la matriu densitat redüıda en el cas estàndard, sense de-

coherència, i quan el sistema està exposat als efectes de decoherència. Analitzem

el comportament Markovià de l’evolució en el sentit definit en [1] examinant la

distància de traça per a possibles parells de estats inicials com una funció del

temps. Arribem a la conclusió que l’evolució de la matriu densitat redüıda en

el cas lliure és no Markoviana i, quan el nivell de soroll augmenta, la dinàmica

s’aproxima a un procés Markovià.

La segona part d’aquesta tesi proposa una generalització de la coneguda funció

de Wigner per a una part́ıcula que es mou en una xarxa infinita en una dimensió.

L’estudi de la mecànica quàntica en l’espai de fases a través de les distribucions

de quasi-probabilitat s’aplica en molts camps de la f́ısica i la funció de Wigner és

probablement la més utilitzada.

S’estudia la funció de Wigner per a un sistema quàntic en un espai d’Hilbert

discret, de dimensió infinita, tal com una part́ıcula sense spin en moviment en una

xarxa infinita unidimensional. Es discuteixen les peculiaritats d’aquest escenari i

la construcció de l’espai fàsic associat, i es proposa una definició significativa de

la funció de Wigner en aquest cas, a més es caracteritza el conjunt d’estats purs

per als quals la funció de Wigner és no negativa. També ampliem la definició

proposada per incloure un grau intern de llibertat, com ara l’spin.

La dinàmica d’una part́ıcula en una xarxa amb, i sense spin, en diferents ca-

sos, també s’analitza en termes de la funció de Wigner corresponent. Mostrem

solucions expĺıcites en el cas d’evolució hamiltoniana sota un potencial depenent

de la posició que pot incloure un acoblament d’spin, i per a l’evolució governada

per una equació mestra sota alguns simples models de decoherència.

Proposem una mesura de la no-classicitat dels estats en un sistema amb un

espai d’Hilbert discret i infinit que és consistent amb el ĺımit continu. I, en

darrer lloc, discutim la possibilitat d’ampliar el concepte de negativitat de la

funció de Wigner al cas en el qual s’inclou el grau de llibertad d’spin.
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Abstract

Quantum information is a relatively young field of Physics, that aims to exploit

the laws of quantum mechanics for the transmission and processing of informa-

tion. As illustrative applications one can mention secure communications, based

on quantum key distribution, and quantum algorithms that outperform their clas-

sical counterparts for a number of problems. Furthermore, the tools developed

in the context of Quantum Information have proven extremely useful to deepen

the understanding of quantum systems, for instance in the context of quantum

many-body problems.

One of the main applications of the power of quantum mechanics to computa-

tional tasks is the manipulation of quantum systems in the lab in order to perform

quantum simulations, and different experimental approaches are currently being

pursued towards this goal. Especially promising are ultracold atomic systems

trapped in optical lattices, where the first quantum simulations that outperform

the feasible classical calculations have already been realized.

This thesis applies quantum information tools to the description and the study

of several quantum systems and processes that happen on a discrete space, i.e.

on a lattice. Even a single quantum particle with spin 1/2 hopping on a lattice

can give rise to phenomena that dramatically differ from any classical analogy.

In some cases, our understanding of the physical processes is more intuitive for

the continuous case, and hence we connect our study to the proper continuum

limit.

The thesis is structured in two parts. The first one is framed within the study

and understanding of a particular quantum algorithm, namely the quantum walk.

In order to exploit the quantum walk and apply it to the construction of quantum

algorithms, it is important to understand and control its behavior as much as

possible.

One of the features analyzed in this thesis is the discrete time quantum walk

in N dimensions from the perspective of its dispersion relations. Making use of

the spatially extended initial conditions, a wave equation in the continuum limit

is obtained. This equation allows us to understand some known properties, and

to design interesting behaviors. We apply the study to the two and three dimen-
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sional Grover quantum walk, where the dispersion relation presents particular

points and intersections where the dynamics is specially distinct.

On the other hand, we analyze the behavior of the quantum walk as a Marko-

vian process. With this aim, we investigate the time evolution of the chirality

reduced density matrix for a discrete time quantum walk on a one-dimensional

lattice. We analyze the dynamics of the reduced density matrix in the standard

case, without decoherence, and when the system is exposed to the effects of deco-

herence. We analyze the Markovian behavior in the sense defined in [1] examining

the trace distance for possible pairs of initial states as a function of time which

gives us the distinguishability of two states and it is related with the Markovian

behavior of the system. We conclude that the evolution of the reduced density

matrix in the free case is non-Markovian and, as the level of noise increases, the

dynamics approaches a Markovian process.

The second part of this thesis proposes a generalization of the known Wigner

function for a particle moving on an infinite lattice in one dimension. The study

of the quantum mechanics in phase space through quasi-probability distributions

is applied in many fields of physics and the Wigner function is probably the most

commonly used one.

We study the Wigner function for a quantum system with a discrete, infinite

dimensional Hilbert space, such as a spinless particle moving on a one dimensional

infinite lattice. We discuss the peculiarities of this scenario and of the associated

phase space construction, propose a meaningful definition of the Wigner function

in this case, and characterize the set of pure states for which it is non-negative.

We also extended the proposed definition to include an internal degree of freedom,

such as the spin.

The dynamics of a particle on a lattice with and without spin in different cases

are also analyzed in terms of the corresponding Wigner function. We show ex-

plicit solutions for the case of Hamiltonian evolution under a position-dependent

potential that may include a spin coupling, and for the evolution governed by a

master equation under some simple models of decoherence.

We propose a measure of non-classicality for states in the system with a discrete

infinite dimensional Hilbert space which is consistent with the continuum limit.

And we discuss the possibility of extending a negativity concept for the Wigner

function in the case in which the spin degree of freedom is included.
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1.2 Passeig aleatori clàssic . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1 Passeig quàntic en una ĺınea

1.1 Introducció

El passeig aleatori clàssic és un procés estocàstic que té una gran varietat d’aplica-

cions en molts camps i obri camins a resoldre determinats problemes de la f́ısica.

Existeixen exemples que van des de l’estudi del moviment Brownià fins a la

informàtica, on molts algoritmes es basen en passejos aleatoris clàssics. El passeig

quàntic és l’anàleg del passeig aleatori clàssic expressat en termes de la mecànica

quàntica. Una qüestió fonamental de la computació quàntica és determinar si un

ordinador quàntic pot resoldre problemes de forma més ràpida que un ordinador

clàssic, es a dir, ser més eficient que qualsevol algoritme clàssic. A causa del

gran interès i a les moltes aplicacions del passeig aleatori clàssic en el disseny

d’algoritmes, és natural preguntar-se si el passeig quàntic serà una eina útil per

als algoritmes quàntics. Existeixen dos models per descriure el passeig quàntic:

• A temps discret, on l’operador evolució només s’aplica en passos de temps

discret a dos sistemas quàntics: una moneda i un passejant.

• A temps continu, on l’evolució està donada per l’Hamiltonià que descriu el

sistema definit en temps continu.

En ambdós models, el passeig quàntic es porta a terme en gràfics o en xarxes

discretes.

L’estudi del passeig quàntic motivat per les possibles aplicacions en els algo-

ritmes quàntics fou proposat per Ambainis et al. [2] i Aharonov et al. [3] on in-

trodüıren el passeig quàntic a temps discret, i demostraren que el passeig quàntic

sobre una ĺınia s’estén en el temps de forma quadràtica, el que suposa una millora

computacional en temps respecte al passeig aleatori clàssic. D’altra banda, Childs

et al. [4], introdüıren els ”arbres enganxats,” un algoritme on trobaren que un

passejant quàntic partint d’una de les arrels podria trobar l’arrel oposada expo-

nencialment més ràpid que qualsevol algoritme clàssic. E.Farhi i S.Gutmann [5]

introdüıren el passeig quàntic cont́ınu que també presenta una acceleració sobre la
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1 Passeig quàntic en una ĺınea

varietat clàssica. A més, Childs [6] demostrà que la passeig quàntic en temps con-

tinu pot ser considerat computacionalment universal amb qualsevol computació

quàntica codificada en alguns gràfics. Més tard, Lovvet et al. [7] demostraren que

el passeig quàntic a temps discret també és capaç d’aplicar el mateix conjunt de

porta universal i per tant, ambdós, el passeig quàntic a temps continu i discret

són computacionals universals.

En aquesta primera part de la tesi, ens centrem en el passeig quàntic discret.

El terme discret es refereix a l’aplicació del corresponent operador d’evolució del

sistema en temps discret. La part́ıcula també es mou en una xarxa discreta. En

primer lloc, s’introdueixen els principals conceptes, tant del passeig quàntic dis-

cret com del continu però centrant la nostra atenció en passeig quàntic discret.

Després de donar una amplia introducció, ens endinsem en l’estudi del passeig

quàntic N-dimensional mitjançant l’estudi de les relacions de dispersió. Veurem

com aquest estudi ens permet determinar el subsegüent comportament del passe-

jant. En un caṕıtol posterior, s’introdueix el concepte de Markovianitat quàntica,

i s’estudia el comportament no Markovià del passeig quàntic, i com es converteix

en Markovià quan s’introdueixen efectes de decoherència.

1.2 Passeig aleatori clàssic

Un passeig aleatori clàssic discret és un procés estocàstic, i pot ser considerat

com una cadena de Markov que s’introduirà en el caṕıtol 4. En el passeig aleatori

clàssic a temps discret, que és el cas més simple que es pot estudiar, un passejant

es mou en una ĺınia infinita, fent passos a l’esquerra o a la dreta en funció del

llançament d’una moneda amb probabilitats p i q, respectivament (p+ q = 1).

Si tenim en compte el passeig simètric, el passejant tindrà la mateixa prob-

abilitat de saltar a la dreta o a l’esquerra, q = p = 1
2 en cada pas de temps.

Si deixem que evolucione amb el temps, la distribució de probabilitat P (n, t) de

trobar el passejant en el lloc n en el temps t sobre una ĺınia infinita amb una

condició inicial localitzada P (n, t = 0) = δn,0 està donada per
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1.3 Passeig quàntic discret sobre una ĺınea

P (n, t) =
1

2t

(
t
n+t
2

)
(1.1)

Només hi ha probabilitat diferent de zero de trobar el passejant en els llocs que

tenen la mateixa paritat que el nombre de passos t. La distribució de probabilitat

final, l’equació (2.1), és una distribució de probabilitat binomial que es pot aprox-

imar per una distribució gaussiana centrada en n = 0 en el ĺımit t gran. Una de

les caracteŕıstiques més importants a considerar, és la desviació estàndard de la

distribució de probabilitat (magnitud que ens dóna una idea de com de lluny po-

dem trobar al passejant, respecte a la seua posició inicial) que és proporcional al

quadrat del temps d’evolució i estableix la principal diferència amb el seu anàleg

quàntic. En la figura (2.1) es mostren la distribució de probabilitat i la desviació

estàndard del passejant clàssic amb un passeig simètric p = 1
2
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n
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0 200 400 600 800 1000
0
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(b)

Figure 1.1: (a) Distribució de probabilitat clàssica en funció de la posició per a

1000 passos d’evolució. (b) Desviació estàndard de la distribució de

probabilitat en un funció del nombre de passos

1.3 Passeig quàntic discret sobre una ĺınea

El passeig quàntic a temps discret sobre una ĺınia es defineix directament com

l’anàleg del passeig aleatori clàssic. El passejant ha estat substitüıt per una

part́ıcula quàntica i per tant té un nou grau de llibertat: la moneda o quiralitat,

amb un sistema quàntic de dos estats. L’estat del passejant està donat per la seua

posició i el seu estat de quiralitat. Per tant, els principals components del passeig
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1 Passeig quàntic en una ĺınea

quàntic a temps discret són el passejant, és a dir, la part́ıcula quàntica, i la moneda

que hi actuarà. El passejant es troba sobre una ĺınia unidimensional discreta i

es pot moure a als llocs adjacents. L’espai d’Hilbert associat amb la posició del

passejant, HP , té dimension infinita però comptable i està genreat per la base

{| i⟩ : i ∈ Z}, el que ens dóna l’estat de posició per al passejant. La moneda és un

sistema quàntic que es troba en un espai de Hilbert de 2 dimensions HC , generat

per la base {| L⟩, | R⟩}. Per tant, l’espai total d’Hilbert del sistema el dóna el

producte tensorial de l’espai de posició i l’espai de la moneda H = HC ⊗HP .

L’evolució del sistema consisteix en l’aplicació d’un operador evolució sobre la

moneda, seguit d’un operador desplaçament condicional a la totalitat del sistema

quàntic. La transformació més general que es pot escriure actuant sobre l’espai

total d’Hilbert és:

U(θ) = S · (C(θ) ⊗ I) (1.2)

I llavors, l’evolució del passeig quàntic després d’intervals de temps t és:

| ψ(t)⟩ = U t(θ) | ψ(0)⟩ (1.3)

on I és l’operador identitat en l’espai posició, C(θ) és l’operador que actua sobre

la quiralitat, equivalent a llançar la moneda, i S és un operador unitari que

provoca un desplaçament condicional en el sistema donat per

S =| R⟩⟨R | ⊗
∑
n

| n+ 1⟩⟨n | + | L⟩⟨L | ⊗
∑
i

| n− 1⟩⟨n |

S transforma els estats | R⟩⊗ | n⟩ en | R⟩⊗ | n + 1⟩ i els estats | L⟩⊗ | n⟩ en

estats | L⟩⊗ | n− 1⟩ és a dir, el desplaçament en l’espai de la moneda depén del

grau de llibertat de la quiralitat: els estats amb quiralitat dreta es mouen cap a

la dreta, mentre que els estats amb quiralitat esquerra es mouen cap a l’esquerra.

A més, tenim una procés unitari translacionalment invariant. El primer pas en el

passeig quàntic és una rotació en l’espai C(θ) de la moneda, el qual és anàleg al

passeig aleatori clàssic. La transformació unitària C(θ) és arbitrària i un munt

de passejades amb diferents comportaments es poden definir canviant C(θ). Per

tant, la transformació més general, excepte per fases addicionals que es poden

reabsorbir en la definició de l’estat inicial, es pot escriure com

C(θ) =

(
cos θ sin θ

sin θ − cos θ

)
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1.3 Passeig quàntic discret sobre una ĺınea

Si volem obtenir una transformació actuant amb la mateixa probabilitat sobre

la quiralitat, és a dir, un desplaçament a la dreta amb probabilitat 1
2 i un de-

splaçament a l’esquerra amb probabilitat 1
2 cal utilitzar la transformació donada

per la coneguda moneda d’Hadamard per a la qual θ = π/4

H =
1√
2

(
1 1

1 −1

)

Vegem-ho amb un exemple. Suposem que partim d’un estat inicial localitzat

en la posició | 0⟩ i prenem l’estat de la moneda com | R⟩, és a dir, el nostre estat

inicial està donat per | 0⟩⊗ | R⟩. Després d’un pas de temps, (una transformació

en l’espai de la moneda, H, i un translació condicional, S), obtenim

| 0⟩⊗ | R⟩ =| 0⟩ ⊗

 1

0

 H−→

1√
2
| 0⟩ ⊗ (| R⟩+ | L⟩) S−→

1√
2

(| 1⟩⊗ | R⟩+ | −1⟩⊗ | L⟩)

(1.4)

Ja que la probabilitat s’obté del mesurament de les amplituds, el resultat

obtingut es un desplaçament a la dreta amb probabilitat 1
2 i un desplaçament

a l’esquerra, amb una probabilitat 1
2 . Si continuem amb el següent pas de

l’evolució, i mesurem les probabilitats resultants cada vegada que la transformació

U s’aplica, s’obtindria el passeig aleatori clàssic sobre una ĺınia. Per descomptat,

al passeig aleatori quàntic no mesurem en cada iteració. D’aquesta manera la

naturalesa quàntica del sistema sorgeix: es produeix interferència quàntica en

el nostre estat, i apareix l’entrellaçament entre l’espai de la moneda i l’espai de

posició. Com a resultat, el nostre estat és una superposició coherent. Aix́ı que,

si no mesurem, la interferència quàntica causa un comportament completament

diferent. Per il·lustrar-ho veurem les conseqüències després d’uns pocs passos

quan no es mesura. Si comencem en l’estat inicial | ϕini⟩ =| L⟩⊗ | 0⟩
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1 Passeig quàntic en una ĺınea

| ϕini⟩
U−→ 1√

2
(| 1⟩⊗ | R⟩− | −1⟩⊗ | L⟩)

U−→ 1

2
(| 2⟩⊗ | R⟩− | 0⟩ ⊗ (| R⟩− | L⟩)+ | −2⟩⊗ | L⟩)

U−→ 1

2
√

2
(| 3⟩⊗ | R⟩+ | 1⟩⊗ | L⟩+ | −1⟩⊗ | R⟩ − 2 | −1⟩⊗ | L⟩− | −3⟩⊗ | L⟩)

(1.5)

Aquest exemple mostra com la distribució de probabilitat indüıda pel passeig

quàntic difereix del passeig aleatori clàssic. A la taula (2.1) es mostra la dis-

tribució de probabilitat si permetrem que el sistema evolucione durant 5 passos

de temps.

t\n -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1/2 0 1/2

2 1/4 0 1/2 0 1/4

3 1/8 0 5/8 0 1/8 0 1/8

4 1/16 0 5/8 0 1/8 0 1/8 0 1/16

5 1/32 0 17/32 0 1/8 0 1/8 0 5/32 0 1/32

Table 1.1: Probabilitat d’estar a la posició n després de 5 pasos de temps per a

l’estat inicial donat per | ϕini⟩ =| L⟩⊗ | 0⟩

En la figura (2.2) es representa la distribució de probabilitat del passeig quàntic

amb la moneda d’Hadamard partint de l’estat inicial | ϕini⟩ =| L⟩⊗ | 0⟩ després de

1000 passos de temps. Només es mostra la probabilitat de les posicions parelles,

ja que per les senars és zero. És clar que la distribució de probabilitat d’aquest

passeig és molt més complexa que la obtinguda en el passeig aleatori clàssic.
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1.3 Passeig quàntic discret sobre una ĺınea
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Figure 1.2: Distribució de probabilitat del passeig quàntic després de 1000 passos

de temps amb un estat inicial donat per | ϕini⟩ =| L⟩⊗ | 0⟩

Veiem a la figura (2.2) que la distribució de probabilitat és asimètrica. Aquesta

asimetria és a causa que la moneda d’Hadamard tracta les quiralitats (| R⟩ and

| L⟩) de manera diferent, només | L⟩ es multiplica per una fase – 1 i per tant es

produeixen més cancel·lacions (interferència destructiva) per a les contribucions

que es mouen cap a la equerra, mentre que hi ha interferència constructiva per a

les que es mouen cap a la dreta. Hi ha dues maneres d’evitar aquesta asimetria,

una és començar amb un estat que és una combinació de | R⟩ i | L⟩ i assegurar-

nos que no hi interfereixen. Per a això podem partir de l’estat inicial | ϕini⟩ =
1√
2
(| R⟩ + i | L⟩)⊗ | 0⟩ i com la moneda Hadamard no introdueix cap amplada

complexa, el camı́ per | R⟩ serà real, mentre que el camı́ per | L⟩ serà imaginari,

de manera que no hi interfereixen i la distribució de probabilitat serà simètrica.

Una altra forma d’obtenir exactament el mateix resultat és utilitzar la següent

moneda

Y =
1√
2

(
1 i

i 1

)

En la figura (2.3) es representen conjuntament la distribució de probabilitat

per al passeig quàntic i clàssic.
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1 Passeig quàntic en una ĺınea
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Figure 1.3: Comparació entre la distribució de probabilitat del passeig aleatori

quàntic i clàssic després de 1.000 passos de temps. Per al passeig

quàntic hem utiliztat la moneda d’Hadamard començant en l’estat de

la moneda simetric | ϕini⟩ = 1√
2
(| R⟩ + i | L⟩)⊗ | 0⟩.

La desviació estàndard de la distribució de probabilitat és una de les carac-

teŕıstiques més importants del passeig quàntic, estableix la principal diferència

amb el seu anàleg clàssic i es pot utilitzar per dissenyar algoritmes més eficients.

La distribució de probabilitat quàntica és molt més dispersa que la distribució

de probabilitat clàssica, ja que la probabilitat de trobar al passejant prop del

punt de partida és molt baixa. Aquest comportament és contrari al clàssic on

la distribució de probabilitat mostra un pic centrat en l’origen i decau exponen-

cialment. El valor màxim de la distribució de probabilitat del passeig aleatori

clàssic es troba en el centre, n = 0, mentre que els pics màxims de probabilitat

en la versió quàntica són en els extrems n = ± t√
2
. En altres paraules, el passeig

quàntic mostra una propagació baĺıstica, en lloc d’una propagació difusiva. Aque-

stes diferències són causades per l’existència del fenomen d’interferència només

en el cas quàntic.
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1.4 Passeig quàntic a temps continu
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Figure 1.4: Comparació entre la desviació estàndard del passeig aleatori clàssic i

quàntic després de 1000 passos de temps. Per al passeig quàntic hem

utiliztat la moneda d’Hadamard començant en l’estat de la moneda

simetric | ϕini⟩ = 1√
2
(| R⟩ + i | L⟩)⊗ | 0⟩

En la figura (2.4) es representa la desviació estàndard dels passejos aleatori

clàssic i quàntic. Com s’ha esmentat anteriorment, per al cas clàssic la desviació

estàndard creix com l’arrel quadrada del nombre de passos σ ∼
√
t, mentre que

per al cas quàntic creix amb el nombre de passos σ ∼ t. Aquest resultat ha

estat anaĺıticament demostrat per diversos autors [3, 8]. Per tant, per a un

determinat nombre de passos, el passejant quàntic és capaç d’escanejar una part

significativament major de l’espai accessible que el passejant clàssic, i es mou en

una ĺınia quadràticament més ràpid que el passeig aleatori clàssic. Aquest fet

té una forta implicació per als algoritmes, i és una de les raons per les quals el

passeig aleatori quàntic s’ha estudiat en les últimes dècades.

1.4 Passeig quàntic a temps continu

Childs et al. en [4] donaren una definició general del passeig aleatori a temps

continu. Aquesta es basa en una descripció hamiltoniana, en la qual el grau

de llibertat de la quiralitat no és necessari. A causa de la connexió directa

entre els passejos continu clàssic i quàntic, la forma més senzilla d’introduir la

descripció quàntica és començar amb el passeig aleatori clàssic en un gràfic. El

passeig aleatori clàssic a temps continu és un procés Markovià que descriurem

al caṕıtol 4. La idea principal és considerar el conjunt de vèrtexs {1, 2, 3...v} i
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1 Passeig quàntic en una ĺınea

les connexions entre els vèrtexs. Un pas en l’evolució del cas clàssic només és

possible si els vèrtexs estan connectats. Aquestes connexions poden ser definides

per la v × v matriu generadora infinitesimal M :

Mab =


−γ a ̸= b, a i b connectats

0 a ̸= b, a i b no connectats

kγ a = b, k és la valència del vèrtex a

(1.6)

On γ denota la taxa de salt. La probabilitat d’estar en el vèrtex a en el temps

t es descriu com:

dpa(t)

dt
= −

∑
b

Mabpb(t) (1.7)

D’aquesta senzilla manera es pot descriure l’evolució del passeig aleatori clàssic.

Per explicar el passeig quàntic a temps continu és necesari definir dos requer-

iments : l’espai d’Hilbert v-dimensionals generat pels vèrtexs del graf | 1⟩,
| 2⟩,...| v⟩ i l’hamiltonià responsable de l’evolució, els elements de la matriu

del qual es donen per ⟨a | H | b⟩. Ara, l’evolució d’un estat quàntic | ψ(t)⟩ ve

expressat per l’equació de Schrödinger

i
d⟨a | ψ(t)⟩

dt
=
∑
b

⟨a | H | b⟩⟨b | ψ(t)⟩ (1.8)

En una xarxa unidimensional l’Hamiltionià es defineix com

H | n⟩ = − a

∆2
(| n− 1⟩ − 2 | n⟩+ | n+ 1⟩) (1.9)

que és l’aproximació discreta de l’operador d2/dx2, on ∆ és l’espaiat de la

xarxa. D’aquesta manera l’estat evolucionat es pot escriure com

| ψ(t)⟩ = e−iHt | ψ(0)⟩ (1.10)

L’equació (2.10) defineix un passeig quàntic cont́ınu en un gràfic: note que és

continu en el temps i discret en l’espai. En aquest cas, la desviació estàndard

també creix linealment en el temps i quadràticament més ràpid que la difusió

clàssica. Per tant, és més eficaç que el seu contrapart clàssic. És important

esmentar que hi ha una correspondència que transforma el passeig quàntic discret

en continu. Es proposà a [38] i mostrà que prenent un tipus particular de ĺımit

en el passeig quàntic a temps discret s’obtenen dues còpies del continu. Aquest

limit també és vàlid per a dimensions majors.
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1.5 Passeig quàntic discret en l’espai de moments

1.5 Passeig quàntic discret en l’espai de moments

L’evolució unitària del passeig quàntic descrit anteriorment, es pot estudiar tenint

en compte la funció d’ona resultant. Quan describim la posició de la part́ıcula

com un espinor de dos components de les amplituds de la part́ıcula al punt n en

el temps t, la funció d’ona resultant la podem escriure com:

ψ(n, t) =

(
a(n, t)

b(n, t)

)
. (1.11)

amb notació d’operadors: | ψ(n, t)⟩ = a(n, t) | R⟩ + b(n, t) | L⟩. Mitjançant

l’aplicació de l’operador d’evolució Eq. (2.2) l’estat en t+1 es pot relacionar amb

l’estat en el temps anterior t. Llavors, podem descriure la dinàmica de ψ(n, t) en

notació matricial com:

ψ(n, t) =

(
cos θ sin θ

0 0

)
ψ(n+ 1, t) +

(
0 0

sin θ − cos θ

)
ψ(n− 1, t). (1.12)

Si definim:

M+ =

(
cos θ sin θ

0 0

)
M− =

(
0 0

sin θ − cos θ

)
, (1.13)

Per tant,

ψ(n, t+ 1) = M+ψ(n+ 1, t) +M−ψ(n− 1, t) (1.14)

L’equació (2.14) es pot rescriure amb les seues components:

a(n, t+ 1) = a(n+ 1, t) cos θ + b(n+ 1, t) sin θ

b(n, t+ 1) = a(n− 1, t) sin θ − b(n− 1, t) cos θ (1.15)

L’anàlisi del passeig quàntic es redueix a resoldre un sistema de recurrència de

dues dimensions. A causa de la invariància translacional, el passig quàntic té una

simple descripció passant de l’espai de posicions a l’espai de moments, fent ús de

la transformada de Fourier. En aquesta base, seguit el tractament desenvolupat

en [3], el passeig quàntic es pot resoldre fàcilment i és possible tornar a l’espai

real revertint la transformada de Fourier.

Transformada de Fourier a temps discret. La transformada de Fourier

espacial ψ(k, t), de la funció d’ona sobre Z està donada per
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1 Passeig quàntic en una ĺınea

ψ(k, t) =
∑
n

ψ(n, t)eikn

(1.16)

on k ∈ [−π, π] és el vector quasi-moment i la seua inversa està donada per:

ψ(n, t) =
1

2π

∫ π

−π

ψ(k, t)e−ikn

(1.17)

De la mateixa menera, la base es pot definir com:

| k⟩ =
n=∞∑
n=−∞

| n⟩eikn (1.18)

| n⟩ =
1

2π

∫ π

−π

| k⟩e−ikn (1.19)

La dinàmica de l’equació (2.14) es pot escriure com

ψ(k, t) =
∑
n

(M+ψ(n+ 1, t) +M−ψ(n− 1, t))eikn

= e−iknM+

∑
n

ψ(n+ 1)eik(n+1) + eiknM+

∑
n

ψ(n− 1)eik(n−1)

= (e−ikM+ + eikM−)ψ(k, t) (1.20)

Com a resultat, tenim

ψ(k, t+ 1) = Mkψ(k, t)

Mk = e−ikM+ + eikM− =(
e−ik cos θ e−ik sin θ

eik sin θ −eik cos θ

)
(1.21)

L’equació de recurrència en l’espai de Fourier pren la forma simple

ψ(k, t) = M t
kψ(k, 0) (1.22)
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1.5 Passeig quàntic discret en l’espai de moments

on Mk es defineix com l’operador de la moneda en l’espai de moments. El mapa

del passeig quàntic ha passat de ser una equació no local (2.14) en l’espai de

posicions a una equació local (2.21) en l’espai de moments. Això fa que l’anàlisi

de la dinàmica siga més fàcil de resoldre. Per procedir amb la resolució necessitem

conèixer els valors i els vectors propis de la matriu Mk. Si | ϕ1k⟩ i | ϕ2k⟩ són els

vectors propis i λ1k i λ2k els valors propis, podem escriure Mk com:

Mk = λ1k | ϕ1k⟩⟨ϕ1k | +λ2k | ϕ2k⟩⟨ϕ2k |, (1.23)

i per tant, la matriu d’evolució temporal pren la forma

M t
k = (λ1k)t | ϕ1k⟩⟨ϕ1k | +(λ2k)t | ϕ2k⟩⟨ϕ2k | . (1.24)

A causa del fet que Mk és una matriu unitària amb det(Mk) = −1, els valors

propis es poden escriure com λ1k = eiωk i λ2k = ei(π−ωk), on ωk = − arcsin(sin k cos θ)

és la relació de dispersió. En el cas del passeig donat per la moneda d’Hadamard,

Mk =
1√
2

(
e−ik e−ik

eik −eik

)
(1.25)

Els vectors propis corresponents es poden obtenir a través de la diagonalització

de la matriu Mk, Eq. (2.24)

ϕ1k =
1√

2N(k)

(
e−ik

√
2eiωk + e−ik

)
ϕ2k =

1√
2N(π − k)

(
e−ik

−
√

2e−iωk + e−ik

)
(1.26)

on el factor de normalització està donat per

N(k) = (1 + cos2 k) + cos k
√

1 + cos2k (1.27)

A la base de Fourier l’estat inicial està representat per ψ(k, t) = (0, 1)⊺ per a

tot k. Fent ús de les relacions (2.22) i (2.23), la funció d’ona en qualsevol temps

t està donada per

a(k, t) =
1

2
(1 +

cos k√
1 + cos2 k

)eiωkt +
(−1)t

2
(1 − cos k√

1 + cos2 k
)e−iωkt (1.28)

b(k, t) =
e−ik

2
√

1 + cos2k
(eiωkt − (−1)te−iωkt) (1.29)
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1 Passeig quàntic en una ĺınea

Ara, cal tornar a l’espai real, per tant, hem de calcular la transformada de

Fourier inversa. Les funcions d’ona en l’espai real es poden escriure com

a(n, t) =
1 + (−1)n+t

2

∫ π

−π

dk

2π
(1 +

cos k√
1 + cos2k

)e−i(kn+ωkt) (1.30)

b(n, t) =
1 + (−1)n+t

2

∫ π

−π

dk

2π
(

eik√
1 + cos2k

)e−i(kn+ωkt) (1.31)

Aquestes expressions són una solució formal tancada per a la dinàmica del passeig

quàntic amb la moneda d’Hadamard, el problema s’ha resolt amb una expressió

anaĺıtica per a a(n, t) i b(n, t), a pesar que les integrals no es podem resoldre de

forma anaĺıtica. Simulacions numèriques ens permeten obtenir la distribució de

probabilitat per al passeig quàntic i comparar-lo amb el seu contrapart clàssic.

Com era d’esperar a partir de la definició del passeig quàntic, les amplituds per

a n parell a t senar, i per a n senar a t parell són zero.

L’estudi del passeig quàntic en l’espai de moments dóna la posibilitat de predir

i controlar el subsegüent comportament del passeig quàntic mitjançant el coneix-

ement de la relació de dispersió. En el treball presentat per Valcárcel et al [9],

es presenta un estudi sobre la dinàmica del passeig quàntic quan l’estat inicial és

un paquet d’ones proper a alguns dels vectors propis. Explorarem en profunditat

el passig quántic en N-dimensions mitjançant relacions de dispersió al capitol 3.

En aquest context, les ones planes

| ψ(n, t)⟩ = ei(kn−ωt) | ϕk⟩ (1.32)

són solucions del mapa (4.30), on ω és la freqüència del mapa que defineix la

relació de dispersió en el sistema. La velocitat de grup està donada per v
(1,2)
g =

dω/dk(1,2). Quan l’estat inicial és un paquet d’ones en el qual l’estat de la moneda

és un vector propi de la moneda en l’espai de moments, Mk, és a dir,

| ψ(n, 0)⟩ = f (1,2)x eik0n | ϕ(1,2)k0
⟩ (1.33)

on f
(1,2)
x és una envoltant suau, la propagació de la passeig quàntic es regeix per

la velocitat de grup. Per a la moneda Hadamard, ω = − arcsin( 1√
2

sin k) , per

tant, si k0 = ±π/2, llavors vg(±π/2) = 0, i el paquet d’ones ha de romandre en

repòs, mentre que si k0 = 0, la velocitat de grup pren el seu valor màxim i s’ha

de moure amb velocitat màxima. A la figura 2.5 es mostren la relació dispersió i

la velocitat de grup per a aquest cas.
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Figure 1.5: Relació de dispersió (ĺınia blava) i velocitat de grup (ĺınia vermella)

per a la moneda d’Hadamard.

1.6 Propietats asimptòtiques de la funció d’ona

El comportament de la funció d’ona donada per les equacions (2.29) i (2.30)

a temps gran és important per a aplicacions del passeig quàntic a algoritmes

quàntics. Per obtenir el comportament asimptòtic de la funció d’ona resultant és

necessàri enfrontar integrals de la forma

I(α) =
1

2π

∫ π

−π

g(k)eiϕ(k,α)tdk (1.34)

where α = n/t

El mètode de la fase estacionària [10, 11] proporciona coneixement en el com-

portament asimptòtic d’aquest tipus d’integrals quan t tendeix a infinit. Aquest

mètode s’ha fet servir a [8] per trobar la distribució de probabilitat asimptòtica

del passeig quàntic amb la moneda d’Hadamard en un estat inicial donat per

ψ(0, 0) = (0, 1)⊺⊗ | 0⟩. Ells proven el següent teorema:

Theorem 1.6.1. Siga ϵ > 0 qualsevol constant, i α comprès en l’interval (−1√
2

+

ϵ, 1√
2
− ϵ). Llavors, quan t→ ∞, tenim (uniformement en n)

pL(n, t) ∼ 2

π
√

1 − 2α2t
cos2(−ωt+

π

4
− ρ) (1.35)

pR(n, t) ∼ 2(1 + α)

π(1 − α
√

1 − 2α2t
cos2(−ωt+

π

4
) (1.36)

on ω = αρ+ θ, ρ = arg(−B+
√

∆), θ = arg(B+ 2 +
√

∆), B = 2α/(1−α), and

∆ = B2 − 4(B + 1).
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1 Passeig quàntic en una ĺınea

En aquest teorema gairebé tota la probabilitat es concentra en l’interval (−1√
2

+

ϵ, 1√
2
− ϵ). De fet, el valor exacte de la probabilitat en aquest interval és (1− 2ϵ

π −
O(1)
t )

En la figura (2.6) es mostra una comparació entre la distribució de probabil-

itat del passeig quàntic obtinguda mitjançant les equacions (2.34) i (2.35) i la

obtinguda numèricament. En el treball presentat per Venegas podem trobar al-

tres propietats asimptòtiques del passeig quàntic com són els teoremes ĺımits del

passeig quàntic presentats per Konno et al. [12–16].
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Figure 1.6: Comparació entre les dos distribucions de probabilitat, amb

ĺınia vermella es mostra la distribució de probabilitat obtin-

guda numèricament, i amb punts blaus l’obtinguda amb l’anàlisis

asimptòtic.

1.7 Implementacions f́ısiques

S’ha demostrat que molts algoritmes quàntics poden ser constrüıts sobre la base

del passeig quàntic, mostrant una major eficiència que la seua contrapart clàssica,

que són una part essencial de molts algoritmes clàssics. A [17] es presenta un

algoritme de cerca basat en una arquitectura quàntica. Es mostra que aquest

algoritme realitza un oracle de cerca en una base de dades de N elements amb

O(
√
N), produint un augment de la velocitat similar a altres algoritmes de cerca

quàntica. La referència [18] construeix un problema de tipus ”caixa negra” per

a travessar un graf, basat en el passeig quàntic en temps continu que pot ser

resolt exponencialment més ràpid en un ordinador quàntic que en un ordinador
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clàssic. No obstant això, una possible implementació f́ısica encara està en desen-

volupament primerenc. Es necesita un major desenvolupament en la detallada

manipulació d’una part́ıcula quàntica, com poden ser els fotons. Moltes imple-

mentacions experimentals han estat proposades i portades a terme per a un petit

nombre de passos de temps.

La posició del passejant | n⟩ pot ser qualsevol grau discret de llibertat, no

necessàriament ha de ser la posició real en la implementació f́ısica. De la mateixa

manera, l’espai de la moneda no ha de correspondre amb l’sṕın d’una part́ıcula.

Hi ha una gran varietat de propostes, però la següent llista conté les principals:

trampes d’ions, electrodinàmica quàntica i xarxes òptiques.

La primera proposta fou demostrada per Travaglione i Milburn [19] per a

l’execució del passeig quàntic a temps discret ja siga en la ĺınia o el cercle util-

itzant trampes d’ions. La implementació descrita en [20] es basa en un sol ió 9Be1,

confinat en una trampa d’ions en un ressonador coaxial de ràdiofreqüència. Les

posicions | n⟩, es codifiquen en l’estat de moviment de l’ió en el parany, i l’estat

electrònic intern dels ions codifica l’estat de la moneda. La moneda i l’operador

desplaçament es poden realitzar mitjançant l’aplicació de polsos de feix Raman.

La decoherència en l’estat intern de l’ió limita el possible nombre de passos en

aquest esquema.

Sanders et al. [21] introdüıren altre suggeriment per implementar el passeig

quàntic discret en un cercle utilitzant electrodinàmica quàntica en una cavitat.

Els estats de la moneda es codifiquen amb els estats atòmics interns, mentre que

els estats de posició són els modes de la cavitat. El camp de la cavitat pateix

canvis de fase, depenent de l’estat en l’àtom. El temps de decoherència de la

cavitat fa possible que només uns pocs passos de temps puguen ser realitzats.

Dur et al. [22] proposaren una realització experimental del passeig quàntic

discret utilitzant àtoms neutres atrapats en xarxes òptiques. Una xarxa òptica

està formada per la interferència de raigs làser, creant un potencial espacialment

periòdic. Per a cada un dels estats interns d’un àtom neutre (que podria cor-

respondre amb estats hiperfins de l’sṕın nuclear de l’àtom) existeix una xarxa

òptica on es queden atrapats. Els polsos làser s’utilitzen per alterar el seu estat

intern. A continuació, els àtoms es desplacen periòdicament, esquerra o dreta,

depenent de l’estat intern de l’àtom.

Noves propostes s’han fet per implementar majors dimensions del passeig quàntic

com en [23] seguint les idees proposades en [22]. En aquest esquema Roldán i

Soriano [24] proposaren una simulació amb cavitats òptiques, que només fa ús de

recursos clàssics. El camp de la llum pot seguir quatre camins espacials diferents
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1 Passeig quàntic en una ĺınea

que corresponen als estats de la moneda, i el paper del passejant està codificat

amb la freqüència del camp.

La primera aplicació experimental del passeig quàntic en temps continu en un

cercle fou proposada per Du et al. [25]. Utilitzaren un ordinador quàntic que

simula dos qubits amb ressonància magnètica nuclear, i trobaren que la propietat

d’aquest passeig quàntic fortament depén de l’entrellaçament quàntic entre els

dos qubits.

Poc temps després d’aquesta aplicació experimental Mandel et al. [26] mostraren

experimentalment transport coherent d’àtoms neutres en xarxes òptiques fora

del context de la passeig quàntic, però és una bona aplicació de l’operador de-

splaçament del passeig quàntic en temps discret. La primera aplicació del passeig

quàntic a temps discret fou realitzada per Ryan et al. [27]. Utilitzaren un proces-

sador quàntic que simula tres qubits amb ressonància magnètica nuclear d’estat

sòlid en un cercle de 4 vèrtexs en 8 passos de temps. També mostraren la transició

al passeig aleatori clàssic afegint decoherència després de cada pas.

Altres propostes i implementacions f́ısiques s’han realitzat en anys recents.

Dins l’esquema de trampes d’ions, en [28] basant-se en la proposta donada en

[29], s’estudia el passeig quàntic amb ions 25Mg+ en una trampa de Paul lineal

multizona. El nombre de passos es limita a 3 passos. Proposaren un esquema amb

sistemes làser que proporcionen polsos curts i intensos, que permet aconseguir un

nombre arbitrari de pasos d’evolució. A [30] es desenvolupà una realització similar

amb trampes d’ions en l’espai de fases. Es suggeŕı que aquest mètode podria tenir

altres aplicacions en experiments d’òptica quàntica o simulacions quàntiques. Les

inestabilitats en la freqüència del parany dóna la limitació en el nombre de passos.

No obstant això, s’aconsegueixen 23 passos d’evolució.

En els últims anys diferents grups experimentals han realitzat molts exper-

iments. Seguint [19] Matjeschk et al. [31] analitzaren en detall les limitacions

d’aquest protocol. Van explicar la desviació del comportament observat respecte

del passeig quàntic ideal per a diferents realitzacions experimentals tenint en

compte termes d’ordre superior de l’evolució quàntica. A [32] s’ha implemen-

tat e1 passeig quàntic en la ĺınia amb àtoms neutres sobre els llocs d’una xarxa

òptica unidimensional amb dependència sobre l’spin per a 10 passos de temps.

Es controla l’observació de la transició quàntica-clàssica i la funció d’ona final es

caracteritza per la tomografia de l’estat quàntic. Es mostrant un gran control

sobre la coherència i l’estat quàntic final.

En el context del passeig quàntic a temps continu una implementació f́ısica

a [33] demostra la forta correspondència entre passeig quàntic i la propagació
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de la llum en els enreixats de guies d’ones. A causa de les baixes taxes de

decoherència assolides en els experiments d’enreixats de guies d’ones, alegaren

que poden servir com un predilecte esquema experimental, ideal i versàtil per

a l’estudi del passeig quàntic i de algoritmes quàntics. Les guies d’ones també

s’han utilitzat per a l’aplicació del passeig quàntic amb dos passejants utilitzant

fotons entrellaçats [34]. Variant els paràmetres caracteŕıstics de les guies d’ones,

es possible investigar passejos quàntics correlacionats en sistemes desordenats,

i verificar els efectes de la localització d’Anderson. A [35] es realitzà el primer

passeig quàntic en una estructura de guia d’ones 3D amb genüınes entrades no

clàssiques. Estudiaren el passeig quàntic amb diversos pasetjants en 2D en un

xip òptic, que conté una disposició eĺıptica d’acoblament entre les guies d’ona.

Alhora, a [36] s’introdueix una novell geometria tridimensional en un circuit de

guia d’ona per investigar com les diferents estad́ıstiques de les part́ıcules, ja siga

bosònica o fermiònica, influeixen en un passeig quàntic discret de dues part́ıcules.

D’altra banda, a [37] estudiren el passeig quàntic discret en dues dimensions

per a un nombre de 20 pasos d’evolució. Simularen molts sistemes quàntics

diferents utilitzant un xicotet nombre de components òptics simples disposats en

una configuració Mach-Zehnder de trajectòria múltiple. Controlant la quantitat i

el tipus de desodre present en el sistema, mostren les conseqüències dels diferents

efectes ambientals: desodre espacial dinàmic, desfasament dinàmic sense desordre

espacial, i desordre espacial estàtic.

L’experiment d’elecció retardada, proposat per Wheeler [38] i demostrat en

diferents configuracions [39–41] s’utilitzà en un article recent [42]. Aquest exper-

iment consta d’un fotó, viatjant en un interferòmetre de Mach-Zehnder, que pot

o no pot auto-interferir (i per tant es comporta com una ona o una part́ıcula)

depenent de la configuració del propi interferòmetre. En el seu experiment, el

patró d’interferència depén la polarització del fotó, i això es determina després

de que el fotó haja estat detectat. És el primer experiment del passeig quàntic

multidimensional utilitzant un únic fotó i la moneda Grover. Un altre article re-

cent [43] presenta la implementació d’un passeig quàntic òptic de dues dimensions

en una xarxa amb fotons obtinguts a partir de polsos de làser atenuats. Els dos

estats interns de la moneda estan representats per dos polaritzacions d’un fotó,

que es poden moure en quatre camins diferents en una xarxa de fibra depenent

en la seua polarització. Aconsegueixen un passeig quàntic coherent de més de 12

passos i 169 posicions. L’arquitectura experimental es pot generalitzar a més de

dues dimensions.

El passeig quàntic s’ha convertit en una plataforma versàtil per a l’exploració
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d’una àmplia gamma d’efectes topològics no trivials [44–48]. En un article re-

cent [49] es presenta una observació experimental de estructures topològiques,

generades a través de l’aplicació controlada de dues rotacions consecutives, no

commutatives en el passeig quàntic discret amb fotons. Introduint aquestes rota-

cions al llarg de la trajectòria, els permet conduir el sistema entre els diferents

sectors topològics caracteritzats per diferents invariants topològics.
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2 Quantum walk on a line

2.1 Introduction

The classical random walk is a stochastic process that has a huge variety of

applications in many fields and provides insights to many problems in physics.

Examples range from the study of the Brownian motion to computer science,

where many algorithms are based on classical random walks. The quantum walk

(QW) is the analogous of the classical random walk expressed in the quantum

mechanical form. A fundamental question of quantum computation is to deter-

mine if a quantum computer can solve problems faster than a classical computer,

i.e. be more efficient than any classical algorithm. Due to the great interest and

applications of the classical random walk to algorithm design, it is natural to

wonder if the QW will be a useful tool for quantum algorithms.

There are two models of QWs. In the first one, named the discrete time QW,

the operator evolution is only applied in discrete time steps to two quantum

mechanical systems (a coin and a walker). In the second one, the continuous

time QW, the evolution is given by a Hamiltonian which is applied to a system

continuously. In both models, the QW is carried out on discrete graphs or lattices.

The study of the QW motivated by potential applications in quantum algo-

rithms was proposed by Ambainis et al. [2] and Aharonov et al. [3]. They intro-

duced the discrete time QW, and proved that a QW on the line or cycle spreads

in time quadratically faster than the classical random walk. On the other hand,

Childs et al. [4] introduced the “glued trees” graph algorithm, where they found

that a quantum walker starting at one on the roots could find the opposite root

exponentially faster than any classical algorithm. E.Farhi and S.Gutmann [5] in-

troduced the continuous time QW which also present a speedup over the classical

variety. In addition, it has been shown by Childs [6] that the continuous time

QW can be considered as a universal computational primitive with any quantum

computation encoded in some graph. Later on, Lovvet et al. [7] proved that the

discrete time QW is also able to implement the same universal gate set, and thus

both, discrete and continuous time QWs are universal computational primitives.
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In this first part of the thesis, we focus on the discrete time QW. In this case,

the term discrete refers to the application of the corresponding evolution operator

of the system in discrete time steps. The particle also moves in a discrete lattice.

First, we introduce the main concepts of both the discrete and the continuous

time QWs, but focusing our attention on the discrete time QW. After giving a

broad introduction, we move into the study of the N-dimensional discrete time

QW throughout dispersion relations. We will see how this study allows us to

determine the subsequent behavior. In a later chapter, we introduce the concept

of quantum Markovianity, and we study the non-Markovian behavior of the QW,

and how it becomes Markovian when decoherence effects are introduced.

2.2 Classical Random Walk

A classical discrete random walk is a simple case of stochastic process; it can

be seen as a Markov chain that is introduced in chapter 4. In the classical

one-dimensional discrete time random walk, which is the simplest case, a walker

moves on a line, making steps to the left or to the right depending on the toss of

a coin with probability p and q, respectively (p+ q = 1).

If we consider the symmetric walk, the walker has the same probability of

moving either to the right or left, q = p = 1
2 at each time step. If we let it

evolve over time, the probability distribution P (n, t) of finding the walker at

site n at time t on the infinite line with a localized initial condition given by

P (n, t = 0) = δn,0 is:

P (n, t) =
1

2t

(
t
n+t
2

)
(2.1)

There is only non-zero probability of finding the walker at sites that have the

same parity as the number of step t. The final probability distribution, Eq. (2.1),

is a binomial probability distribution which can be approximated by a Gaussian

distribution centered at n = 0 in the large t limit. One of the most important

features to consider, is the standard deviation of the distribution (magnitude
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that gives us an idea of how far, with respect to its initial position, we can

find the walker) which is proportional to the square root of the evolution time

and establishes the main difference with its quantum analogue. The probability

distribution of the classical walker with a symmetric walk p = 1
2 and the standard

deviation of the process are shown in the figure (2.1).
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Figure 2.1: (a) Classical probability distribution as a function of the walker po-

sition on the line for 1000 steps. (b) Standard deviation of the prob-

ability distribution as a function of the number of steps

2.3 Discrete time Quantum Walk on a line

The discrete time QW on a line is defined directly as the analogous of the clas-

sical random walk. The walker is now replaced by a quantum particle with an

additional degree of freedom: the coin or chirality with a two state quantum sys-

tem. Afterwards, the main components of the discrete time QW are the walker,

i.e. the quantum particle, and the coin. The walker is located on a discrete

one-dimensional line and it can be moved on to nearby places. The Hilbert space

associated with the position of the walker has infinite but countable dimensions

HP and is spanned by the basis {| xi⟩ : xi ∈ Z}, giving us the position state for

the walker. The coin is a quantum system living in a 2-dimensional Hilbert space,

HC , spanned by the basis {| L⟩, | R⟩}. Therefore, the total Hilbert space of the

system is given by the tensor product of the position space and the coin space

H = HC ⊗HP .

The evolution of the system consists in applying an evolution operator to the
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coin state followed by a conditional shift operator to the total quantum system.

The most general QW transformation that can be written acting on the total

Hilbert space is given by

U(θ) = S · (C(θ) ⊗ I) (2.2)

And then, the evolution of the QW after t time steps is:

| ψ(t)⟩ = U t(θ) | ψ(0)⟩ (2.3)

where I is the identity operator in the position space, C(θ) is the operator that

acts on the chirality, equivalent to tossing the coin, and S is a unitary operator

which causes a conditional displacement on the system given by

S =| R⟩⟨R | ⊗
∑
n

| n+ 1⟩⟨n | + | L⟩⟨L | ⊗
∑
i

| n− 1⟩⟨n |

S transforms the states | R⟩⊗ | n⟩ into | R⟩⊗ | n+ 1⟩ and the states | L⟩⊗ | n⟩
into states | L⟩⊗ | n − 1⟩ i.e a displacement over the space of the coin that

depends on the degree of freedom of the chirality: states with right chirality

move to the right, while states with left chirality move to the left. Furthermore,

we have a translationally invariant unitary process. The first step in the QW

is a rotation in the coin space C(θ), which is analogous to the classical random

walk, followed by a conditional displacement. The unitary transformation C(θ)

is arbitrary and a lot of walks with different behaviors can be defined by changing

C(θ). Therefore, the most general transformation, except for additional phases

that can be reabsorbed in the definition of the initial state, can be written as

C(θ) =

(
cos θ sin θ

sin θ − cos θ

)
If we want to obtain a transformation acting with the same probability of

chirality, i.e, a displacement to the right with probability 1
2 and a displacement

to the left with probability 1
2 , the known balanced Hadamard coin transformation

given by θ = π/4 can be used:

H =
1√
2

(
1 1

1 −1

)
Let us see it with an example. Assume that we start from an initial localised

state at position | 0⟩ and take the state of the coin as | R⟩, i.e, our initial state is
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2.3 Discrete time Quantum Walk on a line

given by | 0⟩⊗ | R⟩. After one time step, (a transformation on the space of the

coin, H, and the conditional translation, S), we obtain

| 0⟩⊗ | R⟩ =| 0⟩ ⊗

 1

0

 H−→

1√
2
| 0⟩ ⊗ (| R⟩+ | L⟩) S−→

1√
2

(| 1⟩⊗ | R⟩+ | −1⟩⊗ | L⟩)

(2.4)

Since the probability is the result of measuring amplitudes, a shift to the right

with probability 1
2 and a shift to the left with probability 1

2 is obtained. Should we

continue with the next step in the evolution, measuring the resulting probabilities

each time the transformation U is applied, the classical random walk on a line

would be obtained. Of course, in the quantum random walk, we do not measure

at each iteration. In this way the quantum nature of the system arises: quantum

interference occurs in our state and entanglement between coin space and position

space appears. As a result our state is in a coherent superposition. So, if we do

not measure, the quantum interference causes a completely different behavior.

To illustrate this, we are going to see the consequences after a few steps when a

measure is not made. If we start in the initial state | ϕini⟩ =| L⟩⊗ | 0⟩

| ϕini⟩
U−→ 1√

2
(| 1⟩⊗ | R⟩− | −1⟩⊗ | L⟩)

U−→ 1

2
(| 2⟩⊗ | R⟩− | 0⟩ ⊗ (| R⟩− | L⟩)+ | −2⟩⊗ | L⟩)

U−→ 1

2
√

2
(| 3⟩⊗ | R⟩+ | 1⟩⊗ | L⟩+ | −1⟩⊗ | R⟩ − 2 | −1⟩⊗ | L⟩− | −3⟩⊗ | L⟩)

(2.5)

This example shows how the probability distribution induced by the QW differs

from the classical random walk. In the table (2.1) the probability distribution is

shown if we allow the system to evolve during 5 time steps.
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2 Quantum walk on a line

t\n -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1/2 0 1/2

2 1/4 0 1/2 0 1/4

3 1/8 0 5/8 0 1/8 0 1/8

4 1/16 0 5/8 0 1/8 0 1/8 0 1/16

5 1/32 0 17/32 0 1/8 0 1/8 0 5/32 0 1/32

Table 2.1: Probability of being at position n after 5 steps for the initial state

given by | ϕini⟩ =| L⟩⊗ | 0⟩

The probability distribution of the QW with the Hadamard coin is plotted in

figure (2.2), starting in the initial state | ϕini⟩ =| L⟩⊗ | 0⟩ after 1000 time steps.

It only shows the probability for even positions, since for odd positions it is zero.

It is clear that the probability distribution for this walk is much more complicated

than the probability distribution obtained in the classical random walk.

−1000 −500 0 500 1000
0

0.005

0.01

0.015

n

P(n)

Figure 2.2: Probability distribution of the QW after 1000 time steps with a initial

state given by | ϕini⟩ =| L⟩⊗ | 0⟩

We see in figure (2.2) that the probability distribution is asymmetrical. This

asymmetry is due to the fact that the Hadamard coin treats the (| R⟩ and |
L⟩) chiralities in a different way, only | L⟩ is multiplied by a phase −1. More

cancellations (destructive interference) are produced for contributions that move

to the left, while there is constructive interference for the ones that move to the
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2.3 Discrete time Quantum Walk on a line

right. There are two ways to avoid this asymmetry, one of them is to start with

a state that is a combination of | R⟩ and | L⟩ and make sure they do not interfere

with each other. To do this we start with | ϕini⟩ = 1√
2
(| R⟩ + i | L⟩)⊗ | 0⟩ and

because the Hadamard coin does not introduce any complex amplitude, the path

for | R⟩ will be real, while the path for | L⟩ will be imaginary, so that they do

not interfere and the probability distribution will be symmetrical.

Another way to get exactly the same result is to use the following coin

Y =
1√
2

(
1 i

i 1

)
The distribution probability for the classical random walk and the QW are

represented in figure (2.3).
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0.025

0.03

n

Figure 2.3: Comparison between the quantum and classical random walks prob-

ability distribution after 1000 time steps. The QW is evolved using

the Hadamard coin, starting in the symmetric coin state | ϕini⟩ =
1√
2
(| R⟩ + i | L⟩)⊗ | 0⟩.

The standard deviation of the probability distribution is one of the most im-

portant characteristics of the QW. It differs from its classical analogue and can be

used to design a more efficient algorithm. The quantum probability distribution

is far more dispersed than the classical probability distribution, since the prob-

ability of finding the particle near the starting point is very low. This behavior

is opposite to the classical one, whose distribution shows a peak centered at the

origin and exponentially decaying. The maximum value of the probability distri-
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2 Quantum walk on a line

bution of the classical random walk is at the center, n = 0, while the maximum

probability peaks in the quantum version are at n = ± t√
2
.
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Figure 2.4: Comparison between the quantum and classical random walks stan-

dard deviation after 1000 time steps. The QW is evolved using the

Hadamard coin, starting in the symmetric coin state | ϕini⟩ = 1√
2
(|

R⟩ + i | L⟩)⊗ | 0⟩

The standard deviation for the quantum and classical random walk are repre-

sented in figure (2.4). As previously mentioned, for the classical case the standard

deviation grows as the square root of the step number σ ∼
√
t, while for the quan-

tum case it grows as the number of steps σ ∼ t. This result has been analytically

proven by several authors [3, 8]. So, for a given number of steps, the quan-

tum walker is capable of scanning a significantly greater portion of the accessible

space than the classical walker, and moves in a line quadratically faster than

the classical random walk. In other words, the QW shows ballistic propagation,

rather than diffusive spreading. These differences are due to the existence of

the interference phenomenon present in the quantum case. This fact has strong

implications for the algorithms, and is one of the reasons why it has been studied

in the last decades.

2.4 Continuous time Quantum Walk

A general definition of the continuous time QW is given by Childs et al. in

[4]. This definition is based on a Hamiltonian description, and in this case,
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2.4 Continuous time Quantum Walk

the chirality degree of freedom is not needed. The simplest way to introduce this

description is to start with the classical random walk on a graph due to the direct

connection between them. The continuous time random walk is also a Markov

process that we will describe in chapter 4. The main idea is to consider the set of

vertices {1, 2, 3...v} and given connections between them. A jump on a random

classical walk is only possible if the vertices are connected. These connections

can be defined by the v × v infinitesimal generator matrix M :

Mab =


−γ a ̸= b, a and b connected

0 a ̸= b, a and b not connected

kγ a = b, k is the valence of vertex a

(2.6)

Where γ denotes the jumping rate. The probability of being at vertex a at

time t is given by
dpa(t)

dt
= −

∑
b

Mabpb(t) (2.7)

In this simple way the evolution of the classical random walk can be described.

In order to introduce the continuous time QW, there are two requirements to be

defined: the v-dimensional Hilbert space spanned by the vertices of the graph

| 1⟩, | 2⟩,...| v⟩, and the Hamiltonian responsible for the evolution whose matrix

elements are given by ⟨a | H | b⟩. Now, the evolution of a quantum state | ψ(t)⟩
is given by the Schrödinger equation

i
d⟨a | ψ(t)⟩

dt
=
∑
b

⟨a | H | b⟩⟨b | ψ(t)⟩ (2.8)

In a one-dimensional lattice the Hamiltonian can be defined by

H | n⟩ = − a

∆2
(| n− 1⟩ − 2 | n⟩+ | n+ 1⟩) (2.9)

which is just a discrete approximation to the operator d2/dx2, where ∆ is the

lattice spacing. The evolved state can be written as

| ψ(t)⟩ = e−iHt | ψ(0)⟩ (2.10)

Eq. (2.10) defines a continuous time QW on a graph: notice that it is continu-

ous in time and discrete in space. In the continuous case, the standard deviation

also grows linearly in time and quadratically faster than the classical diffusion.

Thus it is more efficient scanning the accessible space than its classical counter-

part. It is important to mention that a correspondence exists to transform the
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2 Quantum walk on a line

discrete time QW into continuous QW as in the classical case. It was proposed

in [50] and shows that two copies of the continuous time QW were obtained tak-

ing a particular kind of continuous time limit in the discrete time QW. It is valid

for one and higher dimensions.

2.5 Discrete time Quantum Walk in momentum

space.

The unitary evolution of the discrete time QW described above can be studied

considering the resulting wave function. Describing the position of the particle

as a two component spinor of amplitudes of the particle being at point n at time

t, with the chirality being right (upper component ) or left ( lower component ),

the resulting wave function is given by:

ψ(n, t) =

(
a(n, t)

b(n, t)

)
. (2.11)

In operator notation: | ψ(n, t)⟩ = a(n, t) | R⟩ + b(n, t) | L⟩. By applying

the evolution operator Eq.(2.2) the state at t + 1 can be related to the state at

previous time, t. Then, the dynamics for ψ can be written in matrix notation as:

ψ(n, t) =

(
cos θ sin θ

0 0

)
ψ(n+ 1, t) +

(
0 0

sin θ − cos θ

)
ψ(n− 1, t). (2.12)

If we define:

M+ =

(
cos θ sin θ

0 0

)
M− =

(
0 0

sin θ − cos θ

)
, (2.13)

thus

ψ(n, t+ 1) = M+ψ(n+ 1, t) +M−ψ(n− 1, t) (2.14)

Eq (2.14) can be written as its components

a(n, t+ 1) = a(n+ 1, t) cos θ + b(n+ 1, t) sin θ

b(n, t+ 1) = a(n− 1, t) sin θ − b(n− 1, t) cos θ (2.15)

Then, the analysis of the QW is reduced to solving a two dimensional recurrence

system. Due to translational invariance, the QW has a simple description in the

Fourier domain. In this basis, following [3] it can easily be solved and then we
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2.5 Discrete time Quantum Walk in momentum space.

can go back to the real space by reverting the Fourier transform.

Discrete Time Fourier Transform. The spatial Fourier transform ψ(k, t), of

the wave function over Z is given by

ψ(k, t) =
∑
n

ψ(n, t)eikn

(2.16)

where k ∈ [−π, π[ is the quasi-momentum vector and its inverse is given by:

ψ(n, t) =
1

2π

∫ π

−π

ψ(k, t)e−ikndk

(2.17)

In the same way, the basis | k⟩ and | n⟩ can be defined as:

| k⟩ =

n=∞∑
n=−∞

| n⟩eikn

| n⟩ =
1

2π

∫ π

−π

| k⟩e−ikndk (2.18)

The dynamics of Eq. (2.14) can be written as

ψ(k, t) =
∑
n

(M+ψ(n+ 1, t) +M−ψ(n− 1, t))eikn

= e−iknM+

∑
n

ψ(n+ 1)eik(n+1) + eiknM+

∑
n

ψ(n− 1)eik(n−1)

= (e−ikM+ + eikM−)ψ(k, t) (2.19)

As a result, we have

ψ(k, t+ 1) = Mkψ(k, t)

Mk = e−ikM+ + eikM− =(
e−ik cos θ e−ik sin θ

eik sin θ −eik cos θ

)
(2.20)

The recurrence in Fourier space takes the simple form

ψ(k, t) = M t
kψ(k, 0) (2.21)

Where Mk is defined as the coin operator in quasi-momentum space. The QW

map has gone from non-local Eq. (2.14) in the space representation to local Eq.
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2 Quantum walk on a line

(2.21) in the momentum representation. It makes the analysis of the dynamics

easier to solve. To proceed with the resolution the eigenvalues and eigenvectors

of Mk should be obtained. If Mk has eigenvectors | ϕ1k⟩, | ϕ2k⟩ and corresponding

eigenvalues λ1k, λ
2
k, it can be can written as:

Mk = λ1k | ϕ1k⟩⟨ϕ1k | +λ2k | ϕ2k⟩⟨ϕ2k |, (2.22)

and then the time evolution matrix has the form

M t
k = (λ1k)t | ϕ1k⟩⟨ϕ1k | +(λ2k)t | ϕ2k⟩⟨ϕ2k | . (2.23)

Due to the fact that Mk is a unitary matrix with det(Mk) = −1, the eigenvalues

can be written as λ1k = eiωk and λ2k = ei(π−ωk), where ωk = − arcsin(sin k cos θ)

is the dispersion relation. In the case of the Hadamard walk,

Mk =
1√
2

(
e−ik e−ik

eik −eik

)
(2.24)

The corresponding eigenvectors can be obtained through the diagonalization

of the matrix Mk, Eq. (2.24)

ϕ1k =
1√

2N(k)

(
e−ik

√
2eiωk + e−ik

)
ϕ2k =

1√
2N(π − k)

(
e−ik

−
√

2e−iωk + e−ik

)
(2.25)

where the normalization factor is given by

N(k) = (1 + cos2 k) + cos k
√

1 + cos2k (2.26)

In the Fourier basis the initial state is represented by ψ(k, t) = (0, 1)⊺ for all k.

Making use of the relations (2.22) and (2.23), the wave function at any time t is

given by

a(k, t) =
1

2
(1 +

cos k√
1 + cos2 k

)eiωkt +
(−1)t

2
(1 − cos k√

1 + cos2 k
)e−iωkt (2.27)

b(k, t) =
e−ik

2
√

1 + cos2k
(eiωkt − (−1)te−iωkt) (2.28)

Now, it is necessary to return to real space. For that, the inverse Fourier

transformation has to be calculated. The wave functions in real space can be

written in the form:

a(n, t) =
1 + (−1)n+t

2

∫ π

−π

dk

2π
(1 +

cos k√
1 + cos2k

)e−i(kn+ωkt) (2.29)
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2.5 Discrete time Quantum Walk in momentum space.

b(n, t) =
1 + (−1)n+t

2

∫ π

−π

dk

2π
(

eik√
1 + cos2k

)e−i(kn+ωkt) (2.30)

These expressions are a closed formal solution for the dynamics of the Quantum

Walk with a Hadamard coin for a particular initial state, the problem has been

solved with a formal expression for a(n, t) and b(n, t), although the integrals

cannot be solved in analytical form. Numerical simulations allow us to obtain the

probability distribution for the QW and compare it with the classical counterpart.

As expected from the definition of the QW, the amplitudes for even n at odd t,

and for odd n at even t are zero.

The study of the QW in momentum space gives the possibility to predict and

to control the subsequent behavior of the QW through the knowledge of the

dispersion relation. In the work presented by Valcárcel et al [9], a study about

the QW dynamics when the initial state is a wavepacket close to some of the

eigenvectors is shown. We explore it in depth for N-dimensions in chapter 3. In

this context, plane waves

| ψ(n, t)⟩ = ei(kn−ωkt) | ϕk⟩ (2.31)

are solutions to the map (2.15), where ωk is the frequency of the map which

defines a dispersion relation in the system. The group velocity is given by v
(1,2)
g =

dω/dk(1,2). When the initial state is a wavepacket in which the coin state is an

eigenvector of the coin in momentum space, i.e,

| ψ(n, 0)⟩ = f (1,2)x eik0n | ϕ(1,2)k0
⟩ (2.32)

with f
(1,2)
x a smooth envelope, the propagation of the QW is governed by

the group velocity. For the Hadamard coin, ω = − arcsin( 1√
2

sin k), hence, if

k0 = ±π/2, then vg(±π/2) = 0 and the wavepacket should stay at rest, while if

k0 = 0, the group velocity is maximal and it should move with maximum velocity.

In figure 2.5 the dispersion relation and the group velocity are plotted.
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Figure 2.5: Dispersion relation (blue line) and group velocity (red line) for the

Hadamard coin.

2.6 Asymptotic properties of the wave function in

the long time limit

The behavior of the wave function Eq. (2.29) and Eq. (2.30) at large times is

important for QW applications to quantum algorithms. To obtain the asymptotic

behavior of the resulting wave function it is necessary to solve integrals of the

form

I(α) =
1

2π

∫ π

−π

g(k)eiϕ(k,α)tdk (2.33)

where α = n/t

The method of stationary phase [10, 11] provides insight in the asympotical

behavior of these kind of integrals as t tends to infinity. This method has been

used in [8] to found the asymptotic probability distribution for the Hadamard

walk with an initial state given by ψ(0, 0) = (0, 1)⊺⊗ | 0⟩. They proof the

following theorem:

Theorem 2.6.1. Let ϵ > 0 be any constant, and α be in the interval (−1√
2

+

ϵ, 1√
2
− ϵ). Then, as t→ ∞, we have (uniformly in n)

pL(n, t) ∼ 2

π
√

1 − 2α2t
cos2(−ωt+

π

4
− ρ) (2.34)

pR(n, t) ∼ 2(1 + α)

π(1 − α
√

1 − 2α2t
cos2(−ωt+

π

4
) (2.35)

38



2.7 Physical implementations

where ω = αρ+ θ, ρ = arg(−B +
√

∆), θ = arg(B + 2 +
√

∆), B = 2α/(1 − α),

and ∆ = B2 − 4(B + 1).

In this theorem almost all the probability is concentrated in the interval (−1√
2

+

ϵ, 1√
2
− ϵ). In fact, the exact probability value in that interval is (1 − 2ϵ

π − O(1)
t )

In figure (2.6) a comparation between the probability distribution obtained

from Eq.(2.34) and Eq.(2.35) and the probability distribution obtained numer-

ically is shown. In the review presented by Venegas in [51] other asymptotic

properties of the QW can be found, such as the limit theorems for quantum

walks presented by Konno et al. [12–16].

−80 −60 −40 −20 0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

n

P(n)

 

 

Figure 2.6: A comparison between two probability distributions. The red line

shows the probability distribution as obtained numerically, while blue

dots show the one obtained from an asymptotic analysis of the quan-

tum walk. The number of steps in the walk was taken to be 100.

2.7 Physical implementations

It has been proven that many quantum algorithms can be constructed based on

the QWs structure, showing a greater efficiency than their classical counterpart,

which are an essential part of many classical algorithms. In [17] a quantum search

algorithm based on a quantum architecture is presented. It is shown that this al-

gorithm performs an oracle search on a database of N items with O(
√
N) calls to

the oracle, yielding a speedup similar to other quantum search algorithms. Ref-

erence [18] constructs a black box graph traversal problem based on a continuous

time QW that can be solved exponentially faster on a quantum computer than on
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2 Quantum walk on a line

a classical computer. However, a possible physical implementation is still in early

development. Further development in the detailed manipulation of a quantum

particle, such as photons, is needed. Many experimental implementations have

been proposed and carried out for a small number of time steps.

The position of the walker | n⟩ can be any discrete degree of freedom, it does

not need necessarily be the real position in the physical implementation. In the

same way, the coin space does not need to correspond to the spin of a particle.

There is a huge variety of proposals, but the following list contains the main

ones: ion-traps, quantum electrodynamics and optical lattices.

The first proposal was shown by Travaglione and Milburn [19] for implement-

ing the discrete time QW on either the line or the cycle using ion traps. The

implementations are based on a single 9Be1 ion, confined in a coaxial resonator

radio frequency ion trap, as described in [20]. The positions, | n⟩, are encoded

into the motional state of the ion in the trap, and the electronic internal state of

the ion encodes the coin state. The coin and shift operators can be performed by

applying Raman beam pulses. The decoherence in the internal state of the ion

limits the possible number of steps in this scheme.

Another suggestion to implement the discrete time QW on a circle using cavity

quantum electrodynamics was introduced by Sanders et al [21]. The coin states

are encoded into the internal atomic states, whereas the position states are the

cavity modes. The cavity field undergoes phase shifts, depending on the state of

the atom. The decoherence time of the cavity makes it possible only a few time

steps.

Dür et al. [22] proposed an experimental realization of discrete time QWs

using neutral atoms trapped in optical lattices. An optical lattice is formed by

the interference of counter-propagating laser beams, creating a spatially periodic

potential. Different internal states of a neutral atom (they could correspond to

hyperfine states of the nuclear spin of the atom) can be trapped on an optical

lattice. Laser pulses are used to alter their internal state. Then the atoms

periodically shift, left or right, depending on the internal state of the atom. In

the work presented by Knight et al. [52] showed that the discrete time quantum

walk can be understood as an interference phenomenon, can be simulated in a

purely classical implementation, involving nothing more than wave interference

of electromagnetic fields.

New proposals have been made to implement higher dimensional QWs such

as in [23] following the ideas proposed in [22]. In the same scheme Roldán and

Soriano [24] proposed a simulation with optical cavities, which only makes use of
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2.7 Physical implementations

classical resources. There are four different spatial paths that the light field can

follow which correspond to the states of the coin, and the walker role is encoded

into the field frequency.

The first experimental implementation of the continuous time QW on a cir-

cle was proposed by Du et al. [25]. They used a two-qubit nuclear-magnetic-

resonance quantum computer and found that the properties such as uniform

distribution of this QW strongly depends on the quantum entanglement between

the two qubits.

A short time after this experimental implementation Mandel et al. [26] exper-

imentally showed coherent transport of neutral atoms in optical lattices outside

the context of the QWs, although is a nice implementation of the shift operator

of the discrete time QW. The first implementation of the discrete time QW was

done by Ryan et al. [27]. A three-qubit liquid-state nuclear-magnetic-resonance

quantum-information processor has been used on a circle of 4 vertices for 8 time

steps. They also showed the transition to the classical random walk adding de-

coherence after each step.

Other proposals and physical implementations have been made in recent years.

In [28], in the scheme of trapped ions based on the proposal [29], the QW with
25Mg+ ion in a linear multizone Paul trap is studied. The number of time steps is

limited to 3. A scheme for laser systems providing short, intense pulses,allowing

arbitrarily many steps was proposed. In [30] a similar realization with ion traps

in phase space was made. It was suggested that this method might have further

applications in quantum optics experiments or quantum simulations. The insta-

bilities in the trap frequency gives a limitation in the number of steps. However,

23 time steps have been achieved.

In recent years many experiments have been made by experimental groups.

Following [19] Matjeschk et al. [31] analyzed in detail the limitations of this proto-

col. The deviations from the idealized QW for different experimental realizations

and an increasing number of steps have been explained by taking into account

higher-order terms of the quantum evolution. In [32] a QW on the line with single

neutral atoms over the sites of a one-dimensional spin-dependent optical lattice

has been implemented with 10 time steps. The observation of the quantum-to-

classical transition is controlled and the final wave function is characterized by

local quantum state tomography. Its spatial coherence is demonstrated showing

a great control over coherence and the quantum state.

In the context of the continuous time QW, a physical implementation in [33]

demonstrated the strong correspondence between QWs and light propagation
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2 Quantum walk on a line

in waveguide lattices. Due to the low decoherence rates achieved in waveguide

lattices experiments, the authors claimed that it can serve as an ideal and ver-

satile experimental playground for the study of QWs and quantum algorithms.

Waveguides have also been used for implementing the QW with two walkers using

entangled photons [34]. Varying the characteristical parameters of the waveguide

allows one to investigate correlated QWs in disordered systems, and to verify

the effects of Anderson localization. In [35] the first QW in a 3D waveguide

structure with genuine non-classical inputs was performed. They studied the

multi-walker continuous time 2D QW in an optical chip containing an elliptical

arrangement of coupled direct-write waveguides. At the same time, in [36] a novel

three-dimensional geometry for the waveguide circuit is introduced to investigate

how the particle statistics, either bosonic or fermionic, influences a two-particle

discrete time QW.

On the other hand, in [37] the two dimensional discrete time QW for 20 time

step was studied, using a small number of simple optical components arranged

in a multipath Mach-Zehnder-like configuration, which allows them to simulate

many different quantum systems. Controlling the amount and type of disorder

present in the system, they showed the consequences of different environmental

effects: dynamical spatial disorder, dynamical dephasing without spatial disorder,

and static spatial disorder.

The delayed-choice experiment, proposed by Wheeler [38] and demonstrated

in different setups [39–41] was used in a recent article [42]. The delayed-choice

experiment consists of a photon, traveling in a Mach-Zehnder interferometer,

which can or cannot self-interfere (and thus behave as a wave or a particle)

depending on the configuration of the interferometer itself. In their experiment,

the interference pattern depends on the polarization of the photon, which is

determined after the photon has already been detected. It is the first experiment

on multi-dimensional QW with a single-photon source and the first one using the

Grover walk. Another recent article [43] presents the implementation of a two-

dimensional optical QW on a lattice with photons obtained from attenuated laser

pulses. The two internal coin states are represented by two polarization modes of

a photon that can move in four different paths in a fiber network depending on

their polarization. They achieve a coherent QW over 12 steps and 169 positions

The experimental architecture can be generalized to more than two dimensions.

The QW has become a versatile platform for the exploration of a wide range

of nontrivial topological effects [44–48] . In a recent article [49] an experimental

observation of topological structures generated via the controlled implementation

42



2.7 Physical implementations

of two consecutive noncommuting rotations in photonic discrete time quantum

walks is presented. The authors introduce two consecutive non- commuting rota-

tions along the walk that allow them drive the system between topological sectors

characterized by different topological invariants.

The classical random walk is a deterministic process that has a huge variety

of applications in many fields and provides insights to many problems in physics.

Examples range from the study of the Brownian motion to computer science,

where many algorithms are based on classical random walks. The quantum walk

(QW) is the analogous of the classical random walk expressed in the quantum

mechanical form. A fundamental question of quantum computation is to deter-

mine if a quantum computer can solve problems faster than a classical computer,

i.e. be more efficient than any classical algorithm. Due to the great interest and

applications of the classical random walk to algorithm design, it is natural to

wonder if the QW will be a useful tool for quantum algorithms.

There are two models of QWs. In the first one, named the discrete time QW,

the operator evolution is only applied in discrete time steps to two quantum

mechanical systems (a coin and a walker). In the second one, the continuous

time QW, the evolution is given by a Hamiltonian which is applied to a system

continuously. In both models, the QW is carried out on discrete graphs or lattices.

The study of the QW motivated by potential applications in quantum algo-

rithms was proposed by Ambainis et al. [2] and Aharonov et al. [3]. They intro-

duced the discrete time QW, and proved that a QW on the line or cycle spreads

in time quadratically faster than the classical random walk. On the other hand,

Childs et al. [4] introduced the “glued trees” graph algorithm, where they found

that a quantum walker starting at one on the roots could find the opposite root

exponentially faster than any classical algorithm. E.Farhi and S.Gutmann [5]

introduced the continuous QW which also present a speedup over the classical

variety. In addition, it has been shown by Childs [6] that the continuous time

QW can be considered as a universal computational primitive with any quantum

computation encoded in some graph. Later on, Lovvet et al. [7] proved that the

discrete-time QW is also able to implement the same universal gate set, and thus

both, discrete and continuous-time QWs are universal computational primitives.

In this first part of the thesis, we focus on the discrete QW. In this case, the

term discrete refers to the application of the corresponding evolution operator of

the system in discrete time steps. The particle also moves in a discrete lattice.

First, we introduce the main concepts of both the discrete and the continuous

QWs, but focusing our attention on the discrete QW. After giving a broad intro-
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2 Quantum walk on a line

duction, we move into the study of the N-dimensional QW throughout dispersion

relations. We will see how this study allows us to determine the subsequent

behavior. In a later chapter, we introduce the concept of quantum Markovian-

ity, and we study the non-Markovian behavior of the QW, and how it becomes

Markovian when decoherence effects are introduced.
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3 Understanding and controlling

N-dimensional quantum walks via

dispersion relations.

3.1 Introduction

In chapter 2 we introduced the work presented by Valcarcel et al. [9] in which

the dynamics of coined QWs from the perspective of their dispersion relation has

been analyzed. It has been also used for different purposes (see, e.g., [54, 55]).

When the initial state is described by a probability distribution extending over

a finite region in the lattice, the evolution of the QW can be derived, to a good

degree of approximation, from familiar linear partial differential wave equations.

Certainly the use of extended initial conditions has been rare up to now [56],

but we show that they allow us to reach final probability distributions which,

interestingly, can be tailored to some extent. It is also worth mentioning that

extended initial conditions also make a connection with multiparticle quantum

walks for noninteracting particles [57].

The authors in [53] have applied the above viewpoint in studying alternate

QWs [58] in N dimensions. In this chapter we shall carry out, from the disper-

sion relation viewpoint, the study of multidimensional QWs using standard coin

operators. Below we make a general treatment, valid for N dimensions, and illus-

trate our results with the special cases of the Grover two- and three-dimensional

QWs. We notice that the 2D Grover QW has received most of the theoretical

attention paid to multidimensional QWs [16, 17, 59–69].

We shall derive continuous wave equations, whose form depends on the proba-

bility distribution at time t = 0. To the leading order in a derivative expansion,

these equations are partial differential equations that can be written in the form

i
∂A(s) (X, t)

∂t
= −1

2

N∑
i,j=1

ϖ
(s)
ij

∂2A(s)

∂Xi∂Xj
+ · · · , (3.1)
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

with A(s) a continuous amplitude probability, the coefficients ϖ
(s)
ij determined

by the QW dispersion relation properties, and Xi the spatial coordinates in a

reference frame moving with the group velocity (see below for full details).

The accumulated knowledge regarding the solutions of the above continuous

equations allows us, to some extent, for a qualitative estimation of the long term

probability distribution of the QW for particular initial conditions.

We are interested, not in obtaining approximate continuous solutions to the

discrete time QW, but in getting a quick intuition of the QW evolution for dif-

ferent initial probability distributions. This allows, in particular, to reach a de-

sired asymptotic distribution by suitably tailoring the initial (extended) state [9].

Of course, this study will be only approximate (as the continuous solutions are

strictly valid only for infinitely extended initial distributions) but, as we show

below, even for relatively narrow initial distributions the approximation turns

out to be quite accurate. In each case, we will present an exact numerical simu-

lation, obtained from the discrete map of the QW, that illustrates the agreement

with the qualitative analysis described above. As far as we know, this is the first

time that continuous approximations to the discrete time QW are derived for a

multidimensional QW.

The continuous equations we derive, however, cannot be applied near degen-

eracies in the dispersion relations, since in their vicinity the eigensolutions of the

QW vary wildly from point to point. In the two dimensional Grover QW, they

appear under the form of canonical intersections. These canonical intersections

called diabolical points [70–72], determine a type of dynamics similar to that of

massless Dirac fermions or electrons in graphene [53, 73–77] and appear in very

different systems: quantum triangular billiards [70], conical refraction in crystal

optics [71, 72], the already mentioned graphene electrons [73–77], the spectra of

polyatomic molecules [78, 79], optical lattices [80] or acoustic surface waves [81],

just to mention a few. Diabolical points in the dispersion relations play also a

role on the analysis of topological properties of the QW [82].

In three dimensional Grover walk, we also find degeneracies, but of a different

nature. In this chapter we develop in mathematical detail the specific treatment

necessary to study the evolution close to degeneracies, and we apply it to the

two-dimensional Grover walk.
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3.2 N-dimensional discrete time quantum walks. Generalities

3.2 N-dimensional discrete time quantum walks.

Generalities

In the N -dimensional QW the walker moves at discrete time steps t ∈ N across

an N -dimensional lattice of sites x ≡ (x1, . . . , xN ) ∈ ZN . The walker is endowed

with a 2N -dimensional coin which, after a convenient unitary transformation,

determines the direction of displacement. The Hilbert space of the whole system

(walker+coin) has then the form

H = HP ⊗HC, (3.2)

where the position space, HP, is spanned by the basis {|x⟩ ≡ |x1, . . . , xN ⟩ :

xα ∈ Z; α = 1, . . . , N} (⟨x |x′⟩ = δx,x′), and the coin space, HC, is spanned

by 2N orthonormal quantum states {|αη⟩ : α = 1, . . . , N ; η = ±}. Note that α is

associated with the axis and η with the direction. For example, in the popular

one dimensional QW (N = 1) we would have just |1+⟩ and |1−⟩, which are the

equivalent to the |R⟩ and |L⟩ (for right and left) states commonly used in the

literature. This notation is introduced in order to deal easily with an arbitrary

number of dimensions.

The state of the total system at time t is represented by the ket |ψt⟩, which

can be expressed in the form

|ψt⟩ =
∑
x

N∑
α=1

∑
η=±

ψα,η
x,t |x⟩ ⊗ |αη⟩ , (3.3)

where the projections

ψα,η
x,t = (⟨αη| ⊗ ⟨x|) |Ψt⟩ , (3.4)

are wave functions on the lattice. We find it convenient to define, at each point

x, the following ket

|ψx,t⟩ = ⟨x |ψt⟩ =
N∑

α=1

∑
η=±

ψα,η
x,t |αη⟩ , (3.5)

which is an (unnormalized) coin state, so that ψα,η
x,t = ⟨αη | ψx,t⟩. As

∣∣ψα,η
x,t

∣∣2 =

|(⟨αη| ⊗ ⟨x|) |ψt⟩|2 is the probability of finding the walker at (x, t), and the coin

in state |αη⟩, the probability of finding the walker at (x, t) irrespectively of the

coin state is, then,

Px,t =
N∑

α=1

∑
η=±

∣∣ψα,η
x,t

∣∣2 = ⟨ψx,t |ψx,t⟩ , (3.6)
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

where we used the fact that
∑N

α=1

∑
η=± |αη⟩ ⟨αη| is the identity in HC. Clearly∑

x Px,t = 1 because
∑

x |x⟩ ⟨x| is the identity in HP.

The dynamical evolution of the system is ruled by

|ψt+1⟩ = Û |ψt⟩ , (3.7)

where the unitary operator

Û = D̂ ◦
(
Î ⊗ Ĉ

)
(3.8)

is given in terms of the identity operator in HP, Î, and two more unitary oper-

ators. On the one hand Ĉ is the so-called coin operator (an operator in HC),

which can be written in its more general form as

Ĉ =
N∑

α,α′=1

∑
η,η′=±

Cα,η
α′,η′ |αη⟩

⟨
α′
η′

∣∣ , (3.9)

where the matrix elements Cα,η
α′,η′ ≡ ⟨αη| Ĉ

∣∣α′
η′

⟩
can be arranged as a 2N × 2N

unitary square matrix C. On the other hand D̂ is the conditional displacement

operator in H

D̂ =
∑
x

N∑
α=1

∑
η=±

|x + ηuα⟩ ⟨x| ⊗ |αη⟩ ⟨αη| , (3.10)

where uα is the unit vector along direction xα; note that, depending on the coin

state |αη⟩, the walker moves one site to the positive or negative direction of xα
if η = + or η = −, respectively.

Projecting (3.7) onto ⟨x| and using (3.4) and (3.8)–(3.10) we get straightfor-

wardly

|ψx,t+1⟩ =

N∑
α=1

∑
η=±

|αη⟩ ⟨αη| Ĉ |ψx−ηuα,t⟩ , (3.11)

which further projected onto ⟨αη| leads to

ψα,η
x,t+1 =

N∑
α′=1

∑
η′=±

Cα,η
α′,η′ψ

α′,η′

x−ηuα,t. (3.12)

Equation (3.11), or equivalently (3.12), is the NDQW map in position represen-

tation; it shows that, at each (discrete) time, the wavefunctions at each point are

coherent linear superpositions of wavefunctions at neighboring points at previous
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3.2 N-dimensional discrete time quantum walks. Generalities

time, the weights of the superposition being given by the coin operator matrix

elements Cα,η
α′,η′ . Next we proceed to derive the solution of map (3.12).

Given the linearity of the map and the fact that it is space-invariant (Cα,η
α′,η′

do not depend on space) a useful technique here is the spatial Discrete Fourier

Transform (DFT), which has been used many times in QW studies (see, for

example, [3]). First we define the DFT pair∣∣∣ψ̃k,t

⟩
≡
∑
x

e−ik·x |ψx,t⟩ , (3.13)

|ψx,t⟩ ≡
∫

dNk

(2π)
N
eik·x

∣∣∣ψ̃k,t

⟩
, (3.14)

where k = (k1, . . . , kN ) and kα ∈ [−π, π] is the (quasi-)momentum vector [83].

Applying the previous definitions to the map (3.11) we readily get∣∣∣ψ̃k,t+1

⟩
= Ĉk

∣∣∣ψ̃k,t

⟩
, (3.15)

where we defined a coin operator in the quasi-momentum space

Ĉk ≡
N∑

α=1

∑
η=±

|αη⟩ ⟨αη| Ĉe−iηkα , (3.16)

kα = k · uα, whose matrix elements read

⟨αη| Ĉk

∣∣α′
η′

⟩
≡ (Ck)

α,η
α′,η′ = e−iηkαCα,η

α′,η′ . (3.17)

Projection of (3.15) onto ⟨αη| and use of (3.16,3.17) leads to

ψ̃α,η
k,t+1 =

N∑
α′=1

∑
η′=±

e−iηk·uαCα,η
α′,η′ ψ̃

α′,η′

k,t . (3.18)

Hence the nonlocal maps (3.11,3.12) become local in the momentum represen-

tation (3.15,3.18). This allows solving formally the QW dynamics very easily

because map (3.15) implies ∣∣∣ψ̃k,t

⟩
=
(
Ĉk

)t ∣∣∣ψ̃k,0

⟩
, (3.19)

and hence the eigensystem of Ĉk (or of Ck in matrix form) is most useful for

solving the problem, as we do next.
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As the operator Ĉk is unitary, its eigenvalues have all the form λ
(s)
k = exp

(
−iω

(s)
k

)
,

s = 1, . . . , 2N , with ω
(s)
k real. We will need to know the Ĉk eigenstates too,{∣∣∣ϕ(s)k

⟩}2N

s=1
. Once the eigensystem of Ĉk is known, implementing (3.19) is triv-

ial: Given an initial distribution of the walker in position representation |ψx,0⟩
we compute its DFT

∣∣∣ψ̃k,0

⟩
via (3.13), as well as the projections

f̃
(s)
k =

⟨
ϕ
(s)
k

∣∣∣ψ̃k,0

⟩
, (3.20)

so that
∣∣∣ψ̃k,0

⟩
=
∑

s f̃
(s)
k

∣∣∣ϕ(s)k

⟩
. Now recalling (3.19) we arrive to

∣∣∣ψ̃k,t

⟩
=

2N∑
s=1

e−iω
(s)
k tf̃

(s)
k

∣∣∣ϕ(s)k

⟩
, (3.21)

where we used λ
(s)
k = exp

(
−iω

(s)
k

)
, while in position representation we get, using

(3.14),

|ψx,t⟩ =

2N∑
s=1

∣∣∣ψ(s)
x,t

⟩
, (3.22)

∣∣∣ψ(s)
x,t

⟩
=

∫
dNk

(2π)
N
e
i
(
k·x−ω

(s)
k t

)
f̃
(s)
k

∣∣∣ϕ(s)k

⟩
. (3.23)

Hence the QW is formally solved: all we need is to compute the eigensystem of

Ĉk and the initial state in reciprocal space
∣∣∣ψ̃k,0

⟩
, which determines the weight

functions f̃
(s)
k through (3.20).

Equation (3.22) shows that the QW dynamics corresponds to the superpo-

sition of 2N independent walks, labeled by s. According to (3.23) the ω
(s)
k ’s

are the frequencies of the map, each of which defines a dispersion relation in

the system (2N in total). Note as well that what we have done in the end

is to decompose the QW dynamics in terms of plane waves. In particular, if

f̃
(s)
k = δ(N) (k− k0), what means that

∣∣∣ψ̃k,0

⟩
is different from zero only for

k = k0,
∣∣∣ψ(s)

x,t

⟩
= (2π)

−N
exp

[
i
(
k0 · x−ω(s)

k0
t
)] ∣∣∣ϕ(s)k0

⟩
, which is an unnormaliz-

able plane wave and thus unphysical.

In order to avoid possible confusions, to conclude this initial part we state that

the ordering of the coin base elements we will be using in the matrix representa-

tions of operators and kets is |1+⟩ , |1−⟩ , . . . |N+⟩ , |N−⟩.
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3.3 Continuous wave equations for spatially

extended initial conditions

In this section we describe the evolution of spatially extended initial conditions

that are close to the plane waves we have introduced. We define such spatially

extended states as those having a width which is appreciably larger than the

lattice spacing (taken as unity in this work). This type of initial states are

wavepackets which are easily expressed in reciprocal space,

∣∣∣ψ̃k,0

⟩
=

2N∑
s=1

F̃
(s)
k−k0

∣∣∣ϕ(s)k0

⟩
, (3.24)

where k0 is a reference (carrier) wavevector, chosen at will,
∣∣∣ϕ(s)k0

⟩
are the associ-

ated eigenvectors, and F̃
(s)
k is a narrow function of k, centered at k = 0 (F̃

(s)
k−k0

is centered at k = k0) and having a very small width ∆k(s) ≪ π 1. Notice that

we have chosen an initial coin state which is independent of k. From here one

must distinguish between regular points, where eigenvectors
∣∣∣ϕ(s)k

⟩
have a smooth

dependence on k close to k0, and degeneracy points, where eigenvectors have wild

variations around them, as we will see later.

According to (3.14) the initial condition (3.24) reads in position representation

|ψx,0⟩ = eik0·x
2N∑
s=1

F
(s)
x,0

∣∣∣ϕ(s)k0

⟩
, (3.25)

where

F
(s)
x,0 =

∫
dNk

(2π)
N
ei(k−k0)·xF̃

(s)
k−k0

(3.26)

is a wide and smooth function of x because F̃
(s)
k is concentrated around k = 0.

Hence in real space our initial condition consists of a coin state
∣∣∣ϕ(s)k0

⟩
equal at

1 Obviously this width will be different, in general, along different directions in k-space.

However we are just interested in an order-of-magnitude estimate for ∆k(s). To be con-

servative this width can be taken as the largest standard deviation of
∣∣∣F̃ (s)

k

∣∣∣2 in any

direction or, more formally, as the largest eigenvalue of the covariance matrix σ, such

that
(
σ2

)
ij

=
∫
dNk

(
ki − k̄i

) (
kj − k̄j

)
ρ
(s)
k with ρ

(s)
k =

∣∣∣F̃ (s)
k

∣∣∣2 / ∫ dNk
∣∣∣F̃ (s)

k

∣∣∣2 and

k̄i =
∫
dNkkiρ

(s)
k , i, j ∈ {1, . . . , N}. In our case k̄i = 0 as F̃

(s)
k is assumed to be centered

at the origin, hence F̃
(s)
k−k0

is centered at k0. Indeed it is this condition that determines

the value of k0
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

all points, multiplied by the carrier exp [i (k0 · x)] and by a wide and smooth

function of space, F
(s)
x,0. We see then that the type of initial conditions we are

dealing with are very close to the plane waves of momentum k0 of the QW, given

by eik0·x
∣∣∣ϕ(s)k0

⟩
.

3.3.1 Regular points

For regular points (i.e., far from degeneracies) the initial condition (3.24) deter-

mines the weight functions (3.20) as

f̃
(s)
k =

∑
s′

F̃
(s′)
k−k0

⟨ϕ(s)k | ϕ(s′)
k0

⟩ = F̃
(s)
k−k0

+O
(

∆k(s)
)
, (3.27)

where we took into account that the eigenvectors
∣∣∣ϕ(s)k0

⟩
vary smoothly around

k = k0 and that only for k ≈ k0 the function F̃
(s)
k−k0

is non-vanishing. Note that

we cannot make such an approximation in the case of degeneracy points because

of the strong variations of the eigenvectors around them.

Now, the system will evolve according to (3.23). Approximating the eigenvector∣∣∣ϕ(s)k

⟩
appearing in (3.23) by

∣∣∣ϕ(s)k0

⟩
using the same arguments as before, the

partial waves
∣∣∣ψ(s)

x,t

⟩
can be written as∣∣∣ψ(s)

x,t

⟩
= F

(s)
x,t exp

[
i
(
k0 · x−ω(s)

k0
t
)] ∣∣∣ϕ(s)k0

⟩
+O

(
∆k(s)

)
, (3.28)

F
(s)
x,t =

∫
dNk

(2π)
N

exp
(

i
[
(k− k0) · x−

(
ω
(s)
k − ω

(s)
k0

)
t
])

× F̃
(s)
k−k0

, (3.29)

where we have defined new functions
{
F

(s)
x,t

}2N

s=1
. Note that, at t = 0,

∣∣∣ψ(s)
x,0

⟩
=

F
(s)
x,0 exp [i (k0 · x)]

∣∣∣ϕ(s)k0

⟩
, in agreement with (3.25).

The problem is then solved if functions
{
F

(s)
x,t

}2N

s=1
are determined. Instead

of doing so by brute force, i.e. by integrating –maybe numerically– Eq. (3.29),

what we do now is to look for a continuous wave equation that, by comparison

with other known cases, sheds light onto the expected behavior of the QW. In

order to test the quality of our analysis based on our continuous equations and

the knowledge of the dispersion relations, we will present some plots that are

obtained directly by iteration of Eq. (3.12) without any approximation.

To avoid confusion, we introduce a function F (s) (x, t) of continuous real argu-

ments exactly in the same way as in (3.29) as there is nothing forbidding such
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a definition. We have then F
(s)
x,t = F (s) (x, t) for x ∈ ZN and t ∈ N. In order

to simplify the derivation we rewrite Eq. (3.29) by making the variable change

k − k0 → k. Finally, as for the limits of integration (originally from −π to +π

for each dimension), we extend them from −∞ to +∞ in agreement with the

continuous limit. We then have

F (s) (x, t) ≡
∫

dNk

(2π)
N

exp
[
i
(
k · x−

[
ω
(s)
k0+k − ω

(s)
k0

]
t
)]

× F̃
(s)
k . (3.30)

Let us obtain the (approximate) wave equation. First we take the time deriva-

tive of (3.30) and get

i∂tF
(s) (x, t) =

∫
dNk

(2π)
N

exp
[
i
(
k · x−

[
ω
(s)
k0+k − ω

(s)
k0

]
t
)]

×
[
ω
(s)
k0+k − ω

(s)
k0

]
F̃

(s)
k . (3.31)

Then we Taylor expand the function
[
ω
(s)
k0+k − ω

(s)
k0

]
(except in the exponent:

otherwise large errors at long times would be introduced) around k = 0,

ω
(s)
k0+k − ω

(s)
k0

=
N∑
i=1

ϖ
(s)
i ki +

1

2!

N∑
i,j=1

ϖ
(s)
ij kikj + · · · , (3.32)

where

ϖ
(s)
i = ∂ω

(s)
k0+k/∂ki

∣∣∣
k=0

= ∂ω
(s)
k /∂ki

∣∣∣
k=k0

=
[
v(s)
g (k0)

]
i
, (3.33)

ϖ
(s)
ij = ∂2ω

(s)
k0+k/∂ki∂kj

∣∣∣
k=0

= ∂2ω
(s)
k /∂ki∂kj

∣∣∣
k=k0

, (3.34)

etc. In the latter equation, v
(s)
g (k0) = ∇kω

(s)
k

∣∣∣
k=k0

is the group velocity at the

point k = k0 (see discussion below). Now it is trivial to transform the so-obtained

right hand side of Eq. (3.31) as a sum of spatial derivatives of F (s) (x, t), leading

to the result

i
∂F (s) (x, t)

∂t
= −iv(s)

g (k0) · ∇F (s) − 1

2!

N∑
i,j=1

ϖ
(s)
ij

∂2F (s)

∂xi∂xj
+ · · · , (3.35)
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

which is the sought continuous wave equation. One should understand that, in

general, few terms are necessary on the right hand side of Eq. (3.35) because

F (s) (x, t) is a slowly varying function of space, as commented.

The first term on the right hand side of the wave equation is an advection

term, implying that the initial condition F
(s)
0 (x) ≡ F (s) (x, 0) is shifted in time

as F (s) (x, t) = F
(s)
0

(
x− v

(s)
g (k0) t

)
without distortion, to the leading order. In

fact we can get rid of this term by defining a moving reference frame X such that

X = x− v(s)
g (k0) t, A(s) (X, t) = F (s) (x, t) , (3.36)

and then Eq. (3.35) becomes

i
∂A(s) (X, t)

∂t
= −1

2

N∑
i,j=1

ϖ
(s)
ij

∂2A(s)

∂Xi∂Xj
+ · · · , (3.37)

which is an N -dimensional Schrödinger-like equation, to the leading order. This

means that the evolution of the wave packet consists of the advection of the

initial wave packet at the corresponding group velocity and, on top of that, the

wavefunction itself evolves according to (3.37). Equation (3.37) is a main result

of this chapter as it governs the nontrivial dynamics of the QW when spatially

extended initial conditions, as we have defined them, are considered. It evidences

the role played by the dispersion relations as anticipated: For distributions whose

DFT is centered around some k0, the local variations of ω around k0 determine

the type of wave equation controlling the QW dynamics.

A few additional remarks: First, if the initial condition only projects onto one

of the sheets of the dispersion relation (hence the sum in s in (3.24) reduces to

a single element), all F (s) (X, t) will be zero, except the one corresponding to

the chosen eigenvector. This means that the coin state is preserved along the

evolution, to the leading order. Second, if the initial state projects onto several

eigenvectors the probability of finding the walker at (x, t), irrespectively of the

coin state, follows from (3.6), (3.22) and (3.28), and reads

Px,t =
∑
s

∣∣∣F (s)
x,t

∣∣∣2 =
∑
s

∣∣∣A(s) (X, t)
∣∣∣2 , (3.38)

to the leading order, where we used ⟨ϕ(s)k0
| ϕ(s′)

k0
⟩ = δs,s′ . Hence Px,t is just

the sum of partial probabilities: there is not interference among the different

sub-QW’s.
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Finally, one might consider an initial condition consisting in a linear combi-

nation of initial terms of the form Eq. (3.25), each having a different k0. It is

easy to see that we can generalize the above treatment to this case, each term

evolving in accordance to the corresponding k0: Of course, this situation may

show a more complicated behavior arising from interference effects among the

different terms. We have not considered this richer evolution here, and we have

restricted ourselves to a simpler study, where the evolution can be traced back

to the analysis of the dispersion relation around a single k0 point.

3.3.2 Degeneracy points

This case requires special care because there are eigenvectors of the QW that vary

strongly around the degeneracy, forbidding the very initial approximation taken

in the case of regular points, namely Eq. (3.27). Given the singular nature of the

problem we will try to give a rather general (but not fully general) theory here:

We will present a treatment that covers the case of (hyper-) conical intersections.

These appear in the 2D Grover walk (as we will see in the next section), in the

3D Alternate QW [53] (that will not be treated here) and, very likely, in some

other cases. The basic assumptions are: (i) There are just two (hyper-)sheets in

the dispersion relation that display a conical intersection at k = kD (diabolical

point) and we label them by s = 1, 2 for the sake of definiteness; and (ii) There

are other sheets, degenerate with the diabolical ones at k = kD, whose associated

frequencies ω
(s)
k are constant around the diabolical point.

In order to alleviate the notation we will denote by ωD the value of the degen-

erate frequencies at k = kD

ωD = ω
(1)
kD

= ω
(2)
kD
. (3.39)

Notice that there can be other sheets with ω
(s̸=1,2)
kD

= ωD (as it happens with ω
(3)
kD

in the 2D Grover map).

We consider an initial wave packet defined in reciprocal space by∣∣∣ψ̃k,0

⟩
= F̃k−kD |Ξ⟩ , (3.40)

where |Ξ⟩ is an eigenstate of the coin operator Ĉk at k = kD, and F̃k−kD is again

a narrow function centered at k = kD. In the position representation this initial

condition reads, see (3.14),

| ψx,0⟩ = eikD·xFx,0 |Ξ⟩ , (3.41)
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

where Fx,0 =
∫

dNk
(2π)N

ei(k−kD)·xF̃k−kD is the DFT of F̃k. Hence, as in the regular

case, |Ξ⟩ represents the state of the coin at the initial condition. Clearly |Ξ⟩ is

not unique because of the degeneracy. We do not use the notation
∣∣∣ϕ(s)kD

⟩
but

instead |Ξ⟩ because the former are ill defined, as we have seen in the example of

the 2D Grover walk.

The initial condition (3.40) determines the weight functions (3.20) as

f̃
(s)
k = F̃k−kD⟨ϕ

(s)
k | Ξ⟩. (3.42)

We will assume that |Ξ⟩ does not project on regular sheets (those not degenerate

with the conical intersection); otherwise those projections will evolve as described

in the previous case of regular points. This is equivalent to saying that, in the

remainder of this subsection, all sums on s will be restricted to sheets that are

degenerate at the conical intersection.

Definition (3.42) poses no problem but for k = kD. However, as this is a single

point (a set of null measure) its influence on the final result, given by integrals

in k, is null 2.

A main difference with the regular case is seen at this stage because there

is not any choice of the initial coin state |Ξ⟩ making that only one value of

s be populated (remind that
∣∣∣ϕ(s)k

⟩
vary strongly around k = kD). This has

consequences as we see next.

Now the system will evolve according to (3.23). The partial waves
∣∣∣ψ(s)

x,t

⟩
read

now ∣∣∣ψ(s)
x,t

⟩
= ei(kD·x−ω

D
t)
∣∣∣F(s)

x,t

⟩
(3.43)∣∣∣F(s)

x,t

⟩
=

∫
dNk

(2π)
N

exp
[
i
(
k · x−

[
ω
(s)
kD+k − ωD

]
t
)]

× F̃k ⟨ϕ(s)kD+k | Ξ⟩ | ϕ(s)kD+k⟩, (3.44)

where we made the variable change k − kD → k, and extended the limits

of integration to infinity as corresponding to the continuous limit. Note that

ω
(s̸=1,2)
kD

−ω
D

= 0 according to assumption (ii) above. As in the regular case, the

evolution has a fast part, given by the carrier wave ei(kD·x−ω
D
t), and a slow part

(both in time and in space) given by
∣∣∣F(s)

x,t

⟩
.

2 The only problematic case would be when F̃k−k0
equals the Dirac delta δN (k− kD). This

is however an unphysical case as it represents an unnormalizable state.
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Note that the previous approximations reproduce the correct result at t = 0,

Eq. (3.41), upon using that
∑

s

∣∣∣ϕ(s)kD+k

⟩⟨
ϕ
(s)
kD+k

∣∣∣ is very approximately the unit

operator in the degenerate subspace, to which |Ξ⟩ belongs.

It is important to understand that the vector (coin) part of the state evolves in

time in this diabolical point situation, because more than one of the sheets that

become degenerate at the conical intersection become necessarily populated, i.e.

there are at least two s values for which ⟨ϕ(s)kD+k | Ξ⟩ ̸= 0, unlike the regular case.

Finding a wave equation in this case is by far more complicated than in the reg-

ular case, as the vector part of
∣∣∣F(s)

x,t

⟩
depends on time (because

∣∣∣ϕ(s)kD+k

⟩
cannot

be approximated by
∣∣∣ϕ(s)kD

⟩
), unlike the regular case where it can be approximated

by the constant vector
∣∣∣ϕ(s)k0

⟩
, see (3.28). We will not try deriving such a wave

equation but conform ourselves with trying to understand the evolution of the

system under the assumed conditions.

What we can say is that the frequency offsets
[
ω
(s=1,2)
kD+k − ωD

]
in (3.44) are

conical for small k (i.e. in the vicinity of the diabolical point, which is the region

selected by F̃k); in other words,
[
ω
(s=1,2)
kD+k − ωD

]
≈ ±ck, where c is the group

speed (the modulus of the group velocity) and k = |k|; see the 2D Grover walk

case in Eq. (3.52), where c = 1/
√

2. For the rest of sheets we have assumed

ω
(s̸=1,2)
kD

− ωD = 0. Hence we can write, from (3.44)

∣∣∣F(s=1,2)
x,t

⟩
=

∫
dNk

(2π)
N

exp [i (k · x∓ ckt)] × F̃k⟨ϕ(s)kD+k | Ξ⟩ | ϕ(s)kD+k⟩, (3.45)

while the rest of partial waves verify∣∣∣F(s̸=1,2)
x,t

⟩
=

∫
dNk

(2π)
N

exp [i (k · x)] × F̃k⟨ϕ(s)kD+k | Ξ⟩ | ϕ(s)kD+k⟩ =
∣∣∣F(s̸=1,2)

x,0

⟩
,

(3.46)

which is a constant, equal to its initial value. Hence, the projection of the initial

state onto the sheets of constant frequency does not evolve, as expected, leading

to a possible localization of a part of the initial wave packet. We thus consider

in the following that ⟨ϕ(s̸=1,2)
kD+k | Ξ⟩ = 0.

Regarding the sheets s = 1, 2 we cannot progress unless we assume some prop-

erty of the eigenvectors
∣∣∣ϕ(s)kD+k

⟩
. We will assume that

∣∣∣ϕ(s=1,2)
kD+k

⟩
(for k close to

zero, i.e. around the diabolical point) depend just on the angular part of k (let

us call it Ω) but not on its modulus k. We also restrict ourselves to cases in which
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

F̃k only depends on k (spherical symmetry), i.e. F̃k = F̃k. Hence we write the

integral in (3.45) in (N -dimensional) spherical coordinates as∣∣∣F(s=1,2)
x,t

⟩
= (2π)

−N
∫

dk exp (∓ickt) kN−1F̃k

∣∣∣E(s)
x (k)

⟩
, (3.47)∣∣∣E(s)

x (k)
⟩

=

∫
dNΩ exp (ik · x) ⟨ϕ(s)kD+k | Ξ⟩ | ϕ(s)kD+k⟩, (3.48)

where we wrote dNk = kN−1dkdNΩ and dNΩ is the N -dimensional solid angle

element.

As we mentioned at the end of the previous subsection, one might also study

more complicated initial situations, by combining initial terms, each consisting on

a different k0. As an example, assume that k0 can take two different values k01

and k02. We can face different situations. If both values are far from degeneracies,

the discussion of subsection 3.3.1 applies. If one of them, say k01, shows a

degeneracy, the treatment developed on the present subsection has to be taken

into account for that particular term in the initial state. Finally, one can have a

situation in which both values are close to each other and lie close to a degeneracy

point k01 ≃ k02 ≃ kD. This case might lead to very complicated behaviors,

which are beyond the scope of this thesis (in fact, as we show later, even an

initial condition consisting on a single value k0 close to a degeneracy can give

rise to very reach phenomena).

Up to here the theory is somehow general. However we cannot progress unless

we particularize to some special case. We shall do this below for the 2D Grover

walk.

3.4 Application to the 2D Grover QW

So far we have derived general expressions for the N–dimensional QW. In this

section we consider the special case of the two–dimensional QW using the Grover

coin operator.

3.4.1 Diagonalization of the 2D Grover map: Dispersion
relations and diabolical points

The so-called Grover coin of dimension 2N has matrix elements Cα,η
α′,η′ = 1/N −

δα,α′δη,η′ . In the present case (N = 2), the corresponding matrix Ck (3.17), with
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3.4 Application to the 2D Grover QW

k = (k1, k2), has the form

Ck =
1

2


−e−ik1 e−ik1 e−ik1 e−ik1

eik1 −eik1 eik1 eik1

e−ik2 e−ik2 −e−ik2 e−ik2

eik2 eik2 eik2 −eik2

 , (3.49)

whose diagonalization yields the eigenvalues λ
(s)
k = exp

(
−iω

(s)
k

)
with

ω
(1)
k = π + Ωk, ω

(2)
k = π − Ωk, ω

(3)
k = π, ω

(4)
k = 0, (3.50)

where

Ωk = arccos

[
1

2
(cos k1 + cos k2)

]
∈ [0, π] . (3.51)

Note that adding a multiple integer of 2π to any of the ω’s does not change

anything because time is discrete and runs in steps of 1, see (3.23).

We see, according to (3.50), that the last two eigenvalues λ
(3,4)
k = exp

(
−iω

(3,4)
k

)
=

−1, 1 do not depend on k, and the first two eigenvalues λ
(1,2)
k = exp

(
−iω

(1,2)
k

)
=

− exp (∓iΩk) are complex-conjugate of each other, hence we can choose Ωk ∈
[0, π] without loss of generality. A plot of the dispersion relations (3.50) is given

in Fig.3.1, where five degeneracy points (the origin and the four corners, see

also Fig.3.2) are observed with 3-fold degeneracies. Moreover the frequencies

±Ωk have a conical form (diabolo-like) at those degeneracies and this is why we

call them diabolical points, in analogy to other diabolos found in different sys-

tems [70–74, 78–81]. At the central diabolical point the degeneracy is between

ω
(s=1,2,4)
k , while at the corners it is between ω

(s=1,2,3)
k .

For the sake of later use we note that the frequency Ωk reads, close to the

diabolical point k = 0,

Ωk ≃ k√
2
− k3 cos (2θ)

48
√

2
+O

(
k5
)
, (3.52)

where k = k (cos θ, sin θ). This means that, very close to the diabolical point, the

frequency Ωk actually has a conical dependence on the wavenumber. Later we

will understand the consequences of the existence of these points.

The fact that ω
(s=3,4)
k are constant causes that

∣∣∣ψ(s=3,4)
x,t

⟩
, see (3.23), do not

have a wave character; only
∣∣∣ψ(s=1,2)

x,t

⟩
are true waves. Hence propagation in the

2D Grover walk occurs only if the initial condition projects onto subspaces 1 or
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

Figure 3.1: (Main Figure): Dispersion relation sketch around the diabolic point.

The value of ω/π is plotted for the different sheets (i.e., different

eigenvalues). The middle (flat) surface corresponds to ω
(3)
k = π, the

surface with values ranging from 1 to 2 corresponds to ω
(1)
k . The bot-

tom plane is associated with ω
(4)
k and the surface with values ranging

from 0 to 1 corresponds to ω
(2)
k . (Inset): Detail of ω

(1)
k and ω

(2)
k

around the origin (orange and blue curves, respectively) for k2 = 0 as

a function of k1, showing the intersection at the diabolical point.
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3.4 Application to the 2D Grover QW

Figure 3.2: Vector plot of the group velocity (shown as arrows), superimposed to

a density plot of the velocity modulus Eq. (3.51).

2; otherwise the walker remains localized. This explains why strong localization

in the 2D Grover map is usually observed, as first noted in Ref. [61]. All this can

be put more formally in terms of the group velocity vg (k) of the waves in the

system, given by the gradient (in k) of the wave frequency. The group velocity, as

in any linear wave system, has the meaning of velocity at which an extended wave

packet, centered in k-space around some value k0, moves (there are other effects

affecting extended wavepackets which we analyze below). In our case ω
(s=3,4)
k

are constant, hence their gradient is null: these eigenvalues entail no motion. On

the contrary ω
(s=1,2)
k depend on k (3.50,3.51) and then define non null group

velocities:

v(1,2)
g (k) = ±∇kΩk, (3.53)

where the plus and minus signs stand for s = 1, 2, respectively. Using (3.51)

these velocities become

v(1,2)
g (k) = ± (sin k1, sin k2)√

4 − (cos k1 + cos k2)2
. (3.54)

Hence the maximum group velocity modulus in the 2D Grover walk is 1√
2
, as

can be easily checked and is obtained, in particular, along the diagonals k2 = ±k1.
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This is the maximum speed at which any feature of the QW can propagate. Figure

3.2 displays a vector plot of v
(1,2)
g (k) where a number of interesting points (in

k space) is revealed: On the one hand there are points of null group velocity,

located at k = (0,±π) and at k = (±π, 0), in correspondence with the saddle

points observed in Fig 3.1. On the other hand there are five singular points at

k = (0, 0) as well as at the four corners. These points are singular because the

group velocity is undefined at them (they look like sources or sinks). We note

that these points coincide with the diabolical points in Fig 3.1.

We find it worth mentioning that in two–dimensional QWs with coin operators

other that the Grover, diabolical points are also found, as we have checked by

using the DFT coin [59] that displays several conical intersections. In this case

of the DFT coin none of the four leaves of the dispersion relation is constant.

We mention too that a behavior very similar to that of the 2D Grover walk is

found in the Alternate QW [53], except for the fact that in this last case there

are no constant surfaces in the dispersion relation (and hence no localization

phenomena).

3.4.2 Eigenvectors

The eigenvectors of the 2D Grover walk matrix (3.49) are given by [16]. Use of

these eigenvalues in (3.23) allows finally to compute the state of the system at

any time.

Whenever k is not close to a diabolical point these eigenvectors vary smoothly

around k. Here we just want to study the behavior of the eigenvectors close

to the diabolical point at k = kD ≡ (0, 0) –at the corners the conclusions are

similar. We find it convenient to use polar coordinates (k1, k2) = (k cos θ, k sin θ).
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Performing the limit for k → 0 we find

ϕ
(1)
k =

1

2
√

2


1 +

√
2 cos θ

1 −
√

2 cos θ

−1 −
√

2 sin θ

−1 +
√

2 sin θ

 ,

ϕ
(2)
k =

1

2
√

2


1 −

√
2 cos θ

1 +
√

2 cos θ

−1 +
√

2 sin θ

−1 −
√

2 sin θ

 ,

ϕ
(3)
k =

1√
2


sin θ

− sin θ

cos θ

− cos θ

 , ϕ
(4)
k =

1

2


1

1

1

1

 . (3.55)

Hence, close to the diabolical point kD, there are three eigenvectors, corre-

sponding to s = 1, 2, 3, displaying a strong azimuthal dependence, while ϕ
(4)
k is

constant around kD (its variations are smooth and hence tend to zero as k → kD).

Thus, even if only ϕ
(1)
k and ϕ

(2)
k participate in the conical intersection and define

the diabolical point, ϕ
(3)
k is also affected by this feature because it is associated

with eigenvalue λ
(3)
k = −1, which is degenerate with λ

(s=1,2)
kD

. The fact that the

diabolical point is singular is easy to understand: depending on the direction we

approach to it the eigenvectors of the problem are different.

Just at the diabolical point λ
(s=1,2,3)
k = −1 and hence there is a 3D eigen-

subspace formed by all vectors orthogonal to the fourth eigenvector, namely

ϕ
(4)
kD

= 1
2 col (1, 1, 1, 1), which is equal to ϕ

(4)
k : see (3.55). A sensible choice for

these eigenvectors follows from noting that ϕ
(1)
k +ϕ

(2)
k in (3.55) is independent of

the azimuth and is orthogonal to ϕ
(4)
k . Hence one of the basis elements for this

3D degenerate subspace can chosen as

ϕD =
ϕ
(1)
k + ϕ

(2)
k√

2
=

1

2
col (1, 1,−1,−1) , (3.56)

which has the outstanding property of being the single vector that projects, close

to the diabolical point kD, only onto ϕ
(s=1,2)
k , i.e. onto the eigenspaces of the

diabolo. As for the other two eigenvectors we just impose their orthogonality

with ϕD and ϕ
(4)
kD

and we choose them arbitrarily as

ϕ′
D

=
1√
2

col (1,−1, 0, 0) , ϕ′′
D

=
1√
2

col (0, 0,−1, 1) . (3.57)
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Note that we are using a ”primed” notation instead of keeping the notation

with the label s, except for s = 4, because none of these eigenvectors keeps

being an eigenvector for k ̸= kD (only for special directions θ) and hence there

is no sense in attaching any of these eigenvectors to a particular sheet of the

dispersion relation. To conclude we list the projections of these eigenvectors onto

the eigenvectors (3.55) in the neighborhood of kD:

⟨ϕD | ϕ(1)k ⟩ = ⟨ϕD | ϕ(2)k ⟩ = 1√
2
, ⟨ϕD | ϕ(3)k ⟩ = 0,

⟨ϕ′
D
| ϕ(1)k ⟩ = −⟨ϕ′

D
| ϕ(2)k ⟩ = cos θ√

2
, ⟨ϕ′

D
| ϕ(3)k ⟩ = − sin θ,

⟨ϕ′′
D
| ϕ(1)k ⟩ = −⟨ϕ′′

D
| ϕ(2)k ⟩ = sin θ√

2
, ⟨ϕ′′

D
| ϕ(3)k ⟩ = cos θ,

(3.58)

and ⟨ϕ
D

∣∣∣ϕ(4)k

⟩
=
⟨
ϕ′

D

∣∣∣ϕ(4)k

⟩
=
⟨
ϕ′′

D

∣∣∣ϕ(4)k

⟩
= 0. All this has strong consequences

on the QW dynamics near kD as we will show below.

3.4.3 Continuous wave equations

In order to illustrate how the evolution of the QW can be controlled via an

appropriate choice of the initial conditions, we will show some results obtained

numerically from the evolution of the 2D quantum walk with the Grover opera-

tor. Unless otherwise specified, the initial profile in position space is a Gaussian

centered at the origin with cylindrical symmetry (independent of s ):

| ψx,0⟩ = eik0·xFx,0 |ϕ⟩ , (3.59)

where |ϕ⟩ represents the initial state of the coin, and

Fx,0 = N e−
x2
1+x2

2
2σ2 , (3.60)

with x = (x1, x2), which implies that in the continuous limit we also have a

Gaussian, in momentum space, centered at k0 = (k1, k2). Here, N is a constant

that guarantees the normalization of the state. In the numerics, we have taken

a sufficiently large value σ = 50 for the Gaussian, so as to make it possible the

connection with the continuous limit, although we will also discuss the situation

for smaller values of σ in order to show the robustness of the results.

Let us first consider a simple case having k1 = k2 = π/2, with an initial

coin state 1√
2
(| ϕ(1)k0

⟩+ | ϕ(2)k0
⟩), where | ϕ(1)k0

⟩ = 1√
2

col (1, 0,−1, 0) and | ϕ(2)k0
⟩ =

1√
2

col (0, 1, 0,−1) that projects on the s = 1 and s = 2 branches with equal

weights. The group velocity is given by v
(s)
g (k0) = ±( 1

2 ,
1
2 ), respectively for
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3.4 Application to the 2D Grover QW

s = 1, 2, implying that the original Gaussian will split into two pieces that will

move along the diagonal of the lattice in opposite directions, as shown in Fig.

3.3. It must be noticed that, since the second derivatives vanish at this point

(ϖij = 0), the Gaussian distribution moves with no appreciable distortion. On

the right bottom panel of this figure, we show the result for σ = 5 and we observe

that, in this case, the results obtained for large σ are very robust even for such a

low value of σ.

However, if we choose an initial value k0 close to the origin, then the second

derivatives take a large value, with the consequence that now the two pieces

experience a considerable distortion along the line perpendicular to the line of

motion, as can be seen from Fig. 3.4, where k1 = k2 = 0.01π, implying a

curvature ϖij ≃ 7.96 in the perpendicular direction.

In this case, at variance with the case considered in Fig.3.3, we have to face a

peculiar situation, as the distribution is now peaked around a value close to the

diabolical point kD = (0, 0). As far as the initial distribution does not contain

this point with a significant probability (i.e., for a large value of σ), the behavior

will be as described above. However, if σ decreases below a certain limit, the

evolution is dominated by the singular behavior of the diabolic point (to be

studied in detail in the next subsection). This transition is clearly observed in

Fig.3.5, where the resulting evolution is depicted as σ is increased from σ = 5 to

σ = 30, the latter subpanel already showing a close resemblance with the result

in Fig. 3.4. Distributions initially centered around non-singular points, however,

are much more robust against a smaller σ, as previously shown in Fig. 3.3.

A completely different situation arises when k0 corresponds to one of the saddle

points (such as the one located at ksp = (0, π)). As the group velocity vanishes

at that point, i.e., v
(1,2)
g (k0) = (0, 0), the center of the probability distribution

is expected to remain at rest but will spread in time analogously to diffracting

optical waves, as Eq. (3.37) reduces to the paraxial wave equation of optical

diffraction [84]. In our case, by considering s = 1 as the initial coin state, one

finds ϖ11 = −1/2, ϖ12 = ϖ21 = 0, ϖ22 = 1/2. Therefore, Eq. (3.37) becomes

i
∂A(1) (X, t)

∂t
= −1

4

∂2A(1)

∂X2
1

+
1

4

∂2A(1)

∂X2
2

. (3.61)

This wave equation is similar to that of paraxial optical diffraction [84], differing

from it in that the sign of spatial derivatives are different for the two spatial

directions. Hence this hyperbolic equation describes a situation in which there

is diffraction in one direction and anti-diffraction in the other direction, as it
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

Figure 3.3: Probability distribution, as a function of the dimensionless (x1, x2)

position and for the three times t=0, 400, 800. The initial condition

(3.59) is given by the coin state |ϕ⟩ = 1√
2
(| ϕ(1)k0

⟩+ | ϕ(2)k0
⟩) with

k1 = k2 = π/2. (Top panel): 3D plot; the central peak corresponds

to t = 0, and produces two symmetric peaks that move away from

the origin: Each pair of symmetric peaks corresponds to a different

value of the time t. (Bottom panel): Top view of the previous figure,

both for σ = 50 (left) and σ = 5 (right). The numbers indicate, in

each case, the value of time for different snapshots.
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Figure 3.4: Probability distribution, as a function of the dimensionless (x1, x2)

position and for the three times t=0, 400, 800. The initial condition

(3.59) is given by the coin state |ϕ⟩ = 1√
2
(| ϕ(1)k0

⟩+ | ϕ(2)k0
⟩) with

k1 = k2 = 0.01π. (Top panel): 3D plot; as in Fig. 3, the central

peak corresponds to t = 0, and produces two symmetric distributions

that move away from the origin: Each pair of symmetric distributions

corresponds to a different value of the time t. (Bottom panel): Top

view of the previous figure, showing the value of the corresponding

times.
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

Figure 3.5: Same as Fig. 3.4, corresponding to four different values of σ. From

left to right and from top to bottom: σ = 5, σ = 10, σ = 20 and

σ = 30, respectively. The initial condition (3.59) is given by the

coin state |ϕ⟩ = 1√
2
(| ϕ(1)k0

⟩+ | ϕ(2)k0
⟩) and k1 = k2 = 0.01π. The

distribution is shown for three times t=0, 400, 800. The central peak

corresponds to t = 0, and expands from the origin in a manner that

depends on the value of σ. For σ = 5 and σ = 10, the probability

distribution has an almost cylindrical shape for each value of time.

As σ is increased, the probability distribution becomes similar to the

one found (for each value of t) in Fig. 3.4.
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3.4 Application to the 2D Grover QW

happens in certain optical systems [85]. This causes that the cylindrical symme-

try proper of diffraction is replaced by a rectangular symmetry. Basing on the

analogy with diffraction, it is possible to tailor the initial distribution in order

to reach a desired asymptotic distribution as we already demonstrated in the

one-dimensional QW [9]. Hence if we want to reach a final homogeneous (top

hat) distribution, we must use an initial condition of the form [9, 84]

Fx,0 = N eik0·xe−
x2
1+x2

2
2σ2 sinc (x1/σ0) sinc (x2/σ0) , (3.62)

with sinc (x) = sin (πx) /πx and σ0 a constant that accounts for the width of the

distribution. In Fig. 3.6 we observe the evolution of the Grover walk with the

above initial condition and the initial coin
∣∣∣ϕ(1)k0,0

⟩
= 1

2
√
2
col (1 + i, 1 + i, 1 − i, 1 − i),

equal for all populated sites. The figure shows a final distribution that is quite

homogeneous along most of its support, except in its outer borders, where it

shows a smooth but rapid fall out (the ratio σ/σ0 has been chosen to optimize

the result [9]). This is the expected result, but Fig. 3.6 also shows a central peak

that has been cut for a better display, the height of this central peak being quite

large (around 1.5 · 10−5 ) as compared to the plateau (around 4 · 10−7). The

existence of that central peak is a consequence of the common initial coin |ϕk0,0⟩.
This coin state guarantees that the initial distribution projects just onto the rel-

evant branch of the dispersion relation at its central spatial frequency but, as the

width of the distribution is finite, for the larger values of |k− k0| it will provide a

non–negligible projection onto the static branches of the dispersion relation and

the localized part of these projections are what we see as a central peak in Fig.

3.6.

3.4.4 Dynamics at the diabolical points

In this case N = 2, dNΩ = dθ, with θ the azimuth, and

∣∣∣E(s)
x (k)

⟩
=

∫ 2π

0

dθ exp (ik · x) ⟨ϕ(s)kD+k | Ξ⟩ | ϕ(s)kD+k⟩. (3.63)

We remind that here |Ξ⟩ is assumed to project just onto
∣∣∣ϕ(s=1,2)

kD+k

⟩
. This means

that |Ξ⟩ coincides with |ϕD⟩, see (3.56). According to the projections (3.58) and
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

Figure 3.6: Probability distribution as a function of the dimensionless (x1, x2)

position at time t=9000, for initial conditions at the saddle

point k0 = (0, π). The coin initial state is | ϕ
(1)
k0

⟩ =
1

2
√
2

col (1 + i, 1 + i, 1 − i, 1 − i), and the starting space distribution

as given by Eq. (3.62). We have taken a value σ0 = 15 for this simu-

lation. The central peak has been cut for a better display of the rest

of the features.
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to the vectors (3.55) we can write, in matrix form,

E(s)
x (k) =

1

4

∫ 2π

0

dθ exp (ik · x)


1 ±

√
2 cos θ

1 ∓
√

2 cos θ

−1 ∓
√

2 sin θ

−1 ±
√

2 sin θ

 , (3.64)

where the upper (lower) sign in ± or ∓ corresponds to s = 1(2), respectively, and

we remind that k = (k cos θ, k sin θ). Upon writing k · x = kx cos (θ − φ), where

x = x (cosφ, sinφ) and performing the integral we arrive to

E(s)
x (k) =

π

2


J0 (kx) ± i

√
2J1 (kx) cosφ

J0 (kx) ∓ i
√

2J1 (kx) cosφ

−J0 (kx) ∓ i
√

2J1 (kx) sinφ

−J0 (kx) ± i
√

2J1 (kx) sinφ

 , (3.65)

where Jn are the Bessel functions of the first kind of order n. Using this result

in (3.47) we get, in matrix form,

F
(s)
x,t = (2π)

−2
∫

dk exp (∓ikct) kF̃kE
(s)
x (k) . (3.66)

Let us compute the probability of finding the walker at some point, regardless

the coin state, as given by (3.6), (3.22), (3.43) and (3.66). After simple algebra

we obtain

Px,t =
∑
s,s′

[
F

(s)
x,t

]†
· F(s′)

x,t =
[
p
(0)
x,t

]2
+
[
p
(1)
x,t

]2
, (3.67)

where

p
(0)
x,t = (2π)

−1
∫ ∞

0

dk cos (kct)J0 (kx) kF̃k, (3.68)

p
(1)
x,t = (2π)

−1
∫ ∞

0

dk sin (kct)J1 (kx) kF̃k, (3.69)

are amplitude probabilities. We see that the spatial dependence of the probability

amplitude on the azimuth φ in (3.66,3.65) disappears when looking at the full

probability Px,t. This means that a coin-sensitive measurement of the probability

should display angular features.

As a summary of what we know up to here about the neighborhood of the

diabolical point, we can say that when the initial coin |Ξ⟩ coincides with |ϕD⟩,
see (3.56), we predict (i) no localization and, (ii) when the initial wave packet Fx,0
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

is radially symmetric (it only depends on x = |x|), an evolution of the probability

Px,t that keeps the radial symmetry along time, according to (3.67,3.68,3.69).

Equations (3.68) and (3.69) describe the evolution of the probability of an

initial wave packet centered at a diabolical point and with radial symmetry. The

actual probability Px,t can be computed from them numerically, but little can

be said in general. In order to gain some insight we consider next the relevant

long time limit, which turns out to be analytically tractable. First of all it is

convenient to scale the radial wavenumber k to the (loosely defined) width of the

initial state in real space, Fx,0, which we denote by σ. Accordingly we define

κ = σk so that (3.68) and (3.69) become

p
(0)
x,t =

(
2πσ2

)−1
∫ ∞

0

dκ cos

(
ct

σ
κ

)
J0

(x
σ
κ
)
κf̃κ, (3.70)

p
(1)
x,t =

(
2πσ2

)−1
∫ ∞

0

dκ sin

(
ct

σ
κ

)
J1

(x
σ
κ
)
κf̃κ, (3.71)

where f̃κ = F̃k=κ/σ is non null only for κ ≲ 1. Hence when ct ≫ σ, cos
(
ct
σ κ
)

and sin
(
ct
σ κ
)

are strongly oscillating functions of κ, around zero, what would

make p
(0,1)
x,t to vanish. However in the integrals defining such amplitude prob-

abilities other oscillating functions, J0
(
x
σκ
)

and J1
(
x
σκ
)
, appear. Thus it can

be expected that when the oscillations of the latter and the ones of the former

are partially in phase, a non null value of the integrals is got. According to the

asymptotic behavior of Jn (z) at large z, Jn (z) ≈
√

2/πz cos (z − nπ/2 − π/4)

for z ≫
∣∣n2 − 1/4

∣∣ [86], this partial phase matching occurs when x ≈ ct, which

is expected from physical considerations. Hence we are led to consider the limit

x = ct + σξ, with ct ≫ σ, where ξ is the scaled radial offset with respect to ct,

in which case (3.70) and (3.71), after expressing the products of trigonometric

functions as sums, become

p
(0)
x,t = p

(1)
x,t

≈
(
2πσ2

)−1
√

σ

2πct

∫ ∞

0

dκ sin (κξ + π/4)
√
κf̃κ =

(2π)
−1
/
√

2πct

∫ ∞

0

dk sin (kσξ + π/4)
√
kF̃k, (3.72)

to the leading order, where the approximation follows from disregarding highly

oscillating terms. As an application of this result we consider next the Gaussian

case F̃k = 2σ
√
π exp

(
−1

2σ
2k2
)
, where σ is the standard deviation of the initial
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probability in real space, Eq. (3.60). We readily obtain

p
(0)
x,t = p

(1)
x,t =

1

8
√
σct

e−ξ2/4 ×
{
ξ
√
|ξ|
[
I−1/4

(
ξ2/4

)
− I3/4

(
ξ2/4

)]
+
ξ2I5/4

(
ξ2/4

)
−
(
ξ2 − 2

)
I1/4

(
ξ2/4

)√
|ξ|

}
, (3.73)

where ξ = x−ct
σ and In is the modified Bessel function of the first kind of order

n. The total probability Px,t ≡ P (ξ) follows from using (3.73) in (3.67), from

which we observe that the initial width σ acts only as a scale factor for the height

and shape of the probability at long times (ct ≫ σ). A plot of the probability

can be seen in Fig. 3.8, where two unequal spikes, whose maxima are located at

ξ = −1.74623 and at ξ = 0.550855, separated by a zero at ξ = −0.765951, are

apparent. We remind that x = ct+σξ is a radial coordinate, hence these maxima

correspond to two concentric rings separated by a dark ring. The situation is

fully analogous to the so-called “Poggendorff rings” appearing in the paraxial

propagation of a beam incident along an optic axis of a biaxial crystal, a situation

in which a conical intersection (a diabolical point) is present. Remarkably the

result we have obtained for Px,t fully coincides with that described in [71] whose

Fig. 7 is to be compared to our Fig. 3.8.

As an example that illustrates the above features, we have studied the evolution

of a state of the form Eq. (3.60) for the diabolic point kD = (0, 0), and a coin

state as defined in Eq. (3.56). As seen from Fig. 3.7, the probability distribution

keeps its cylindrical symmetry while it expands in position. It can also be seen

from this figure that the general features remain valid for a wider distribution (in

k space) corresponding to σ = 5, even if the distribution in spatial coordinates is

narrower for a given time step. The Poggendorff rings can be appreciated in Fig.

3.8, which shows a radial cut of the previous figure. We also plot for comparison

our analytical result, as obtained form Eqs. (3.67) and (3.73) , which shows a

good agreement with the (exact) numerical result, as can be seen from this figure.

All these features crucially depend on the choice of the coin initial conditions, as

clearly observed when these conditions are chosen differently. As an example, we

show in Fig. 3.9 the evolution after 200 time steps, of the probability distribution

when we start from a state, also centered around the diabolic point, but the vector

coin is now
∣∣∣ϕ(2)kD

⟩
with θ = π/2. Most of the probability is directed along the

positive x2 axis, which corresponds to the choice of θ. In fact, by changing the

value of this parameter one can, at will, obtain a chosen direction for propagation.
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

Figure 3.7: (Top panel): Probability distribution as a function of the dimension-

less (x1, x2) position, at time t = 400. The initial condition is given

by Eq. (3.56) around the diabolic point kD = (0, 0), with σ = 50.

(Bottom panel): Top view of the previous figure with σ = 50 (left)

and σ = 5 (right), but now at time t = 100.
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Figure 3.8: Radial cut, with x2 = 0, for the top panel of Fig. 3.7 (blue, dotted

curve), showing the Poggendorff rings (see the text for explanation).

Also shown for comparison is our analytical result, as obtained form

Eqs. (3.67) and (3.73) (solid, red curve).

Figure 3.9: Probability distribution as a function of the dimensionless (x1, x2)

position, at time t = 200. The initial condition is given by
∣∣∣ϕ(2)kD

⟩
around the diabolic point with θ = π/2 .
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3.5 Application to the 3D Grover QW

In this section we briefly analyze the three–dimensional Grover QW in order to

illustrate similarities and differences with the two–dimensional case. In 3D, the

Grover-coin operator reads

C =
1

3



−2 1 1 1 1 1

1 −2 1 1 1 1

1 1 −2 1 1 1

1 1 1 −2 1 1

1 1 1 1 −2 1

1 1 1 1 1 −2


, (3.74)

and the diagonalization of the corresponding matrix Ck (3.17), with k = (k1, k2, k3),

yields six eigenvalues λ
(s)
k = exp

(
−iω

(s)
k

)
with

ω
(1,2)
k = ±Ω

(+)
k , ω

(3,4)
k = ±Ω

(−)
k , ω

(5)
k = 0, ω

(6)
k = π, (3.75)

where

cos Ω
(±)
k = −1

3

 ∑
i=1,2,3

cos ki±

√√√√ j>i∑
i=1,2,3

(cos2 ki − cos ki coskj)

 . (3.76)

Remember that adding a multiple integer of 2π to any of the ω’s does not change

anything because time is discrete and runs in steps of 1. This implies that ω = −π
and ω = π represent the same frequency.

The graphical representation is more complicated in the 3D case: Plots of the

dispersion relations (3.75) for particular values of k3 and for particular values of

ω are given in Figs. 3.10 and 3.11, respectively.

A large variety of propagation properties can be expected depending on the

particular region in k-space that the initial distribution occupies. Notice the

existence of two constant dispersion relations, ω
(5,6)
k , which will give rise to lo-

calization phenomena, as already discussed in the 2D case.

There exist several degeneracies in the above dispersion relations, appearing in

the crossings of several dispersion curves. For ω = π, there is a 5-fold degeneracy

at k = 0, where ω
(j)
k = π for j = 1, 2, 3, 4, 6. There is also a 3-fold degeneracy

occurring when k takes the form k = k|| ≡ kei, where ei is one of the vectors of

the canonical basis in R3(i.e., k|| has two null components and an arbitrary third

component), where ω
(j)
k = π for j = 1, 2, 6. For ω = 0 these degeneracies migrate
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Figure 3.10: Representations of the Grover 3D six dispersion relation surfaces for

k3 = 0 (left), π/2 (center), and π (right).
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Figure 3.11: Representations of the Grover 3D isofrequency surfaces, as obtained

from Ω
(+)
k in the first octant of the Brillouin zone for ω = 0.95π (a),

0.8π (b), 0.6π (c), 0.4π (d), 0.2π (e), and 0.05π (f). For ω = π the

two dispersion relation coincides with the cube axes and the cube

origin, whilst for ω = 0 they have migrated to the opposite side of

the cube.
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to the corners and borders, respectively, of the first Brillouin zone, see Fig. 3.11.

The frequencies Ω
(±)
k , close to the degeneracies for ω = π, read

cos Ω
(±)
k

∣∣∣
k=0

≃ −1 +
1

6
|k|2 ∓ 1

6

√
|k|4 − 3

(
k2xk

2
y + k2xk

2
z + k2yk

2
z

)
+O

(
k4
)
.

(3.77)

In the case that k takes the form k = k|| ≡ kei, we obtain

cos Ω
(+)
k = −1 (3.78)

cos Ω
(−)
k = −1

3
(1 + 2 cos k) (3.79)

which shows the above-mentioned degeneracy.

We see that the point degeneracy occurring at k = 0, cos Ω
(+)
k = −1, is not a

true diabolical point because, for fixed frequency, the dispersion relation has not

spherical symmetry (hence the dispersion relation surface is not a hyperdiabolo).

This implies that the theory developed in Sec. III.B cannot be applied to this

case. (We notice, however, that it can be applied when coins different to the

Grover one are used as it occurs, for example, in the Alternate 3D QW, where

true 3D diabolical points exist [53].)

Its not difficult to see that the group velocities

v(1,2,3,4)
g (k) = ±∇kΩ

(±)
k , (3.80)

have now the expression

(
v(1,2)
g (k)

)
i

= ∓
(2 cos Ω

(+)
k +

∑
j ̸=i cos kj) sin ki

2
(

3 cos Ω
(+)
k +

∑
j cos kj

)
sin Ω

(+)
k

, (3.81)

(
v(3,4)
g (k)

)
i = ∓

(2 cos Ω
(−)
k +

∑
j ̸=i cos kj) sin ki

2
(

3 cos Ω
(−)
k +

∑
j cos kj

)
sin Ω

(−)
k

, (3.82)

and v
(5,6)
g (k) = 0.

We see that the extrema of the dispersion relations for branches 1,2,3 and 4

giving points of null velocity (those for which a Schrödinger type equation is a

priori well suited for extended initial conditions) occur, in particular, when all

sin ki = 0. At some of these points we find the just discussed degeneracies, hence
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at them a Schrödinger type equation is not appropriate. However, some of the

points of null velocity do not correspond to degeneracies, in particular those k

with two null components and the third one equal to ±π. Consider, for example,

the point k0 = (0, 0,±π) at which Ω
(+)
k presents degeneracies but not Ω

(−)
k , which

takes the value Ω
(−)
k = arccos 1/3. In order to particularize the wave equation

(3.1) to this case we must calculate the nine coefficients

ϖ
(3,4)
ij = ± ∂2Ω

(−)
k /∂ki∂kj

∣∣∣
k=k0

, (3.83)

which turn out to be ϖ
(3,4)
11 = ϖ

(3,4)
22 = −ϖ(3,4)

33 /4 = ∓1/4
√

2 the rest being zero.

Hence the continuous description in this case is given by

i
∂A(3,4)

∂t
= ± 1

8
√

2

(
∂2

∂X2
1

+
∂2

∂X2
2

− 4
∂2

∂X2
3

)
A(3,4), (3.84)

which exhibits an anisotropic diffraction (diffraction in the (X1, X2) plane and

anti-diffraction, with a different coefficient, in theX3 direction). For k0 = (π, 0, 0)

and k0 = (0, π, 0) the result is the same after making the changes X1 → X3 and

X2 → X3, respectively. Eq. (3.84) can be solved via a Fourier transform method.

For a starting Gaussian profile as given below, the solution will factorize in three

one dimensional functions of the form

e
− ix2

2tϖ+2iσ2

√
σ2 − itϖ

(3.85)

(except for an overall constant), where ϖ is any of the coefficients ϖij that appear

in Eq. (3.84), and x represents one of the coordinates Xi with i = 1, 2, 3. This

implies a characteristic time scale t ∼ σ2/|ϖ| for the Gaussian to broaden.

We now show two examples that illustrate the above results. As in the 2D

cases, we start with an initial condition (3.41) defined by a Gaussian shape

Fx,0 = N eik0·xe−
x2
1+x2

2+x2
3

2σ2 , (3.86)

with N an appropriate constant defining the normalization, and |Ξ⟩ a constant

(position-independent) vector in the coin space, which is chosen to be one of the

eigenvectors of the matrix Ck (3.17) at the point k = k0. We have not explored

those cases where k0 lies at, or very close to, any of the degeneracies discussed

above. The problem at these points seems to be much more involved than in the

2D case. For example, the extension of the eigenvectors obtained in [16] to this

case encounters a singular behavior at the axis (which are degeneracy lines). One
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3.5 Application to the 3D Grover QW

Figure 3.12: Top view of the probability distribution in position space on the

x2 = 0 plane (left) and on the x1 = 0 plane (right) for a time step

t = 125. The initial distribution is given by Eqs. (3.41) and (3.86),

with k0 = (0.1, 0.2, 0.3)π and |Ξ⟩ the eigenvector of the coin operator

corresponding to s = 3.

needs to carefully take care of the appropriate limit as one approaches these lines,

and perform a systematic study in order to find the relevant linear combinations

providing a sensible time evolution. Such a study is beyond the scope of this

thesis.

We first start with a value k0 = (0.1, 0.2, 0.3)π that lies far from any degeneracy

or points with zero group velocity. For s = 3, the group velocity is v
(3)
g (k0) =

(−0.028,−0.232,−0.704). In Fig. 3.12 we show two different views corresponding

to the evolved probability distribution. Within the timescale displayed on this

Figure, the initial Gaussian has not appreciably broaden, and we can instead

observe the motion of the center of the wave packet according to what is expected

from the group velocity. A somehow opposite behavior is observed if we choose

a point giving a zero velocity, such as k0 = (0, 0, π). As described above, we

expect no motion of the center and a broadening which depends on the axis we

choose. This broadening can be approximately described by Eq. (3.84) and, for

the values of σ we are assuming here, one needs to follow the time evolution

during a considerably larger time scale. As a consequence, higher order effects

neglected in deriving Eq. (3.84) may accumulate. In Fig. 3.13 we show two

different radial cuts of the 3D probability distribution. As observed from this

Figure, the accumulated discrepancy between the exact numerical evolution and
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3 Understanding and controllingN -dimensional quantum walks via dispersion relations.

Figure 3.13: Two different radial cuts of the evolved probability distribution, rep-

resented by P (r), where r is the coordinate along the cut, at t = 1000

when the initial distribution is a spherically symmetric Gaussian

function with σ = 20, with k0 = (0, 0, π) and |Ξ⟩ the eigenvector of

the coin operator corresponding to s = 3. The figure also shows for

comparison the analytical result as obtained from Eq. (3.84). The

curve with red symbols corresponds to a cut along the x3 axis, to

be compared with the analytical approximation (yellow curve). The

curve with blue symbols is the plot for a cut along the x3 axis, to

be compared with the analytical approximation (green).
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3.5 Application to the 3D Grover QW

the approximated analytical Eq. (3.84) may depend on the spatial direction.

However, given all these considerations, we see that our derived analytical result

gives a reasonable description for the main features of the time evolution, even

in 3D.
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4 Quantum Walks and

Non-Markovian behavior

4.1 Introduction

There are many phenomena in nature for which the variables that describe them

vary irregularly or randomly with time. Such processes are called stochastic

processes. The study of stochastic processes is very important in the field of

physics since there are many phenomena that depend on time in complex ways,

such as the Brownian motion of a particle. These processes can be described by

all the different states that a system can occupy, and its evolution through the

transitions from one state to another. Markovian processes are a type of widely

studied stochastic processes. Such processes are characterized by the fact that

the transitions at a given time depend only on the value of the random variables

at that time, and not on the previous history. The classical random walk is an

example of a Markovian process that has found applications in many fields.

In quantum mechanics, the concept of Markovianity can be applied to the

evolution of some open quantum system interacting with an environment. Im-

portant physical processes leading to decoherence can be analyzed by means of

simple Markovian models. This is often the case in quantum optics where, under

some reasonable assumptions, the time evolution of an open system can be de-

scribed by a (non-unitary) master equation, written as a Lindblad equation [87].

In this chapter, we briefly introduce the concept of Markovianity and non-

Markovianity both for discrete and continuous time classical systems. The con-

cept of Markovianity and non-Markovianity in quantum systems is also discussed.

The quantification of non-Markovianity remains an open question, and hence

many different measures have been proposed. Next, the asymptotic QW be-

havior with and without decoherence is studied. To this end, we make use of

the method proposed in Ref. [88] which was designed to characterize the non-

Markovian behavior in quantum systems.
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4 Quantum Walks and Non-Markovian behavior

4.2 Classical Markovian processes

4.2.1 Discrete Time Markov Chains

A stochastic process is a collection of random values used to represent the evo-

lution of some random variable, or system, over time. Let Xn, n = 0, 1, 2, 3... be

a variable corresponding to a discrete time stochastic process with a state space

S. Let P (A|B) be the conditional probability which measures the probability of

an event A, given that another event B has occurred. This process is called a

Markov chain if, for all times n ⩾ 0 and all states i0, i1...in ∈ S,

P (Xn+1 = in+1|Xn = in, Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = in+1|Xn = in)

(4.1)

In this case, the probabilities associated with future states depend solely on

the current state, they do not depend on any previous state of the system. In

this sense, the process is called memoryless. The conditional probabilities pij =

P (Xn+1 = j|Xn = i) are named the single-step transition probabilities and give

the conditional probability of transitions from state xn = i to state xn+1 =

j within one time-step. The single step transition probabilities pij(n) can be

written as a transition probability matrix,

P (n) =


p11(n) p12(n) ... p1n(n)

...

...

pn1(n) pn2(n) ... pnn(n)


P (n) satisfies the following properties:

0 ⩽ pij(n) ≤ 1 (4.2)

n∑
j=1

pij = 1 (4.3)

Any matrix satisfying Eqs. (4.2-4.3) is called a Markov or Stochastic matrix. A

Markov chain is said to be time-homogeneous if, for all states i and j, it satisfies

that,

P (Xn+1 = j|Xn = i) = P (Xn+m+1 = j|Xn+m = i) = pij (4.4)

This implies that the transition probability matrix P (n) is independent of n.
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4.2 Classical Markovian processes

The Sojourn Time

It is possible that the system remains in state i at the next step if the diagonal

elements of the transition matrix P are different from zero. Let Ti be the sojourn

time or holding time of the state, i.e. the time spent in state i, before moving to

state j. The probability that the systems remains in state i after one time-step

is pii. The transition probability to a different state j is then given by,∑
i̸=j

pij = 1 − pii

The sojourn time at state i is itself a random variable, with the following

probability distribution

P (Ti = n) = (1 − pii)p
(n−1)
ii

This probability has a geometric distribution with parameter 1 − pii. The

geometric distribution is the only discrete distribution that has the memoryless

property. This result is only valid when the Markov chain is time-homogeneous.

Higher order transition probabilities. The Chapman-Kolmogorov equations

The m-step transition probability p
(m)
ij , is the probability of moving from state i

to state j after m steps. For a homogeneous discrete time Markov chain, given

0 < l < m , p
(m)
ij satisfies

p
(m)
ij = P (Xm = j|X0 = i) =

∑
k

P (Xm = j,Xl = k|X0 = i) =∑
k

P (Xm = j|Xl = k,X0 = i)P (Xl = k|X0 = i) =∑
k

P (Xm = j|Xl = k)P (Xl = k|X0 = i) =
∑
k

p
(m−l)
kj p

(l)
ik (4.5)

Eq. (4.5) is called Chapman-Kolmogorov Equation.

It is possible to write any m-step homogeneous transition probability matrix

as the product of l-step and (m − l)-step transition probability matrices. Let

π(0) be the row vector of the initial probability distribution of the Markov chain.

Then the probability after the first time step is given by the product of π(0)P ,

π(1) = π(0)P
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4 Quantum Walks and Non-Markovian behavior

In general, after n steps,

π(n) = π(n−1)P = π(0)P (n)

Notice that calculating transition probabilities is computationally equivalent

to computing powers of the transition matrix.

4.2.2 Continuous Markov process

A stochastic process {X(t) : t ≥ 0} is called a continuous-time Markov chain if

for all t ≥ 0, s ≥ 0, i, j, k ∈ S, and 0 ≤ u ≤ s we have

P (X(s+ t) = j|X(s) = i,X(u) = k) = P (X(s+ t) = j|X(s) = i) = pij(s, t)

(4.6)

pij gives the probability that the system which was in state i, changes to state

j, after a time interval t. If the continuous Markov chain is homogeneous, the

transition probabilities only depend on the time difference

pij(τ) = P (X(s+ τ) = j|X(s) = i)

To be able to describe the evolution of the system, we need the rates per unit

time qij(t) at which transitions occur. The continuous Markov chain is charac-

terized by a matrix of transition rates Q(t), related to the transition probabilities

by

qij(t) = lim
∆t→0

pij(∆t)

∆t

In matrix notation

Q(t) = lim
∆t→0

P (∆t) − I

∆t
(4.7)

For an homogeneous continuous-time Markov chain the transition rates qij are

independent of time.

The Sojourn time

Let Ti be the random variable corresponding to the time that the system stays

in the state i before a transition to another state occurs. By time homogeneity,

we assume that the process starts out in state i. For s ≥ 0 the event {Ti > s} is

equivalent to the event {X(u) = i for 0 ≤ u ≤ s}. Similarly, for s, t ≥ 0 the
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4.2 Classical Markovian processes

event {Ti > s + t} is equivalent to the event {X(u) = i for 0 ≤ u ≤ s + t}.

Therefore,

P (Ti > s+ t|Ti > s)

= P (X(u) = i for 0 ≤ u ≤ s+ t|X(u) = i for 0 ≤ u ≤ s)

= P (X(u) = i for s < u ≤ s+ t|X(u) = i for 0 ≤ u ≤ s)

= P (X(u) = i for s < u ≤ s+ t|X(s) = i)

= P (X(u) = i for 0 < u ≤ t|X(0) = i)

= P (Ti > t), (4.8)

where the second equality follows from the simple fact that P (AB|A) = P (B|A),

where we let A = {X(u) = i for 0 ≤ u ≤ s} and B = {X(u) = i for s <

u ≤ s+ t}. The third equality follows from the Markov property and the fourth

equality follows from time homogeneity. Multiplying the Eq.(4.8) by P (Ti > s)

we obtain:

P (Ti > s+ t|Ti > s)P (Ti > s) = P (Ti > t|Ti > s)P (Ti > s) (4.9)

In other words

P (Ti > s+ t) = P (Ti > t|Ti > s)P (Ti > s) (4.10)

if F (t) = P (Ti > t)

F (s+ t) = F (t)F (s) (4.11)

The exponential function F (t) = e−µt is the only function that satisfies Eq. (4.11)

and is the only continuous distribution that has the memoryless property. Thus

the sojourn time must be exponentially distributed. After the sojourn time, the

system makes a transition into state j according to the transition probability pij ,

regardless of the past. Each time this happens through a new Ti, independent of

the past, determines a new time the system will spend in state i.

Higher order transition probabilities. The Chapman-Kolmogorov equations

For a non-homogeneous continuous-time Markov chain, the Chapman-Kolmogorov

Equation Eq. (4.5) is easy to obtain using the Markov property. When the

continuous-time Markov chain is homogeneous, the Chapman-Kolmogorov equa-

tion can be written in matrix form as

P (u+ t) = P (u)P (t) (4.12)
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4 Quantum Walks and Non-Markovian behavior

Recalling the derivation of the probability transition matrix and the definition

of Q, Eq.(4.7) we define,

dP

dt
= lim

∆t→0

P (t+ ∆t) − P (t)

∆t
=

lim
∆t→0

P (t)P (∆t) − P (t)

∆t
=

lim
∆t→0

P (t)
P (∆t) − I

∆t
=

P (t)Q (4.13)

Eq. (4.13) is known as the forward Kolmogorov differential equation. If we

change the side on which we factorize P (t), we obtain the backward Kolmogorov

differential equation dP
dt = QP (t).

The solution to the equation (4.13) under the condition P (0) = I is uniquely

given by:

P (t) = eQt =
∑
k

(Qt)k

k!
(4.14)

Therefore, if we know Q we can work out the transition probability matrix

for any future time. As in the discrete case, we can write the row vector of the

probability distribution after evolution as a function of the transition probability

matrix and the row vector of the initial probability distribution:

π(t) = π(0)P (t). (4.15)

We can regard Eq. (4.15) as the evolution of a classical dynamical map i.e., the

evolution of the probability vector π(0) can be described by a time dependent

stochastic matrix P (t). If we take into account Eq. (4.12) and the fact that P (t)

is by itself a stochastic matrix, then the classical map is divisible, later we will

gain in-depth knowledge about this concept.

4.3 Classical Semi-Markovian and non-Markovian

processes

Semi-Markovian processes can be understood as a generalization of a Markov

chain. The transitions are governed by a transition probability matrix, and the

next state to be occupied depends only on the current state and not on the full

history of the process. In this sense, the process is still memoryless. However
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semi-Markovian processes differ from the Markovian processes in that the transi-

tion probability depends on the amount of time the process has already spent in

that state. In a semi-Markovian process the time spent in each state may follow

any arbitrary distribution. If the sojourn time Ti, does not have an exponential

distribution as in the case of continuous Markov chain, nor a geometric distribu-

tion as in the case of discrete Markov chain but rather a general distribution, then

the process is called semi-Markovian process. In contrast, in a non-Markovian

process, the transition probability does depend on the initial probability vector

and thus the process can not be considered memoryless.

4.4 Open Quantum systems and Quantum

Markovian processes

The common approach to the description of open quantum systems consists in

separating the total system in two parts, the quantum system of interest and

the environment, which are coupled to each other, and together form a closed

quantum system that is assumed to follow an unitary evolution [87]. Consider

a composite system formed by the system of interest S and the environment

E. The Hilbert space of the total system is given by the tensor product of the

Hilbert space of the system HS and the Hilbert space of the environment HE ,

H = HS ⊗ HE . The total Hamiltonian is the sum of the Hamiltonian of each

systems plus a term HI responsible for the interaction between the system and

the environment,

H(t) = HS ⊗ IE + IS ⊗HE +HI(t)

The matrix ρ represents the physical state of the total system, it is a positive

definite trace class operator on H with unit trace, i.e, ρ ≥ 0 which means that

ρ is self-adjoint with non-negative eigenvalues, and trρ = 1. The states of the

subsystem S and E are given by the partial trace over HS and HE ,

ρS = trEρ; ρE = trSρ;

For the subsystem S, it is possible to write the evolution of the density matrix

using the von Neumann equation:

d

dt
ρS(t) = −itrE [H(t), ρ(t)] (4.16)

However, studying the dynamics of the reduced system with the exact equation

(4.16) is not always easy. Some approximations are usually done to render the

problem tractable.
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4 Quantum Walks and Non-Markovian behavior

If initially the system and the environment are uncorrelated, ρSE(0) = ρS(0)×
ρE(0), the evolution of the subsystem S can be expressed as

ρS(t) = V (t, 0)[(ρS(0))] ≡ trE{U(t, 0)[ρSE(0)]U†(t, 0)} (4.17)

For the homogeneous-time case, equation (4.17) defines a map from the space

B(HS) of density matrix states of the reduced system into itself.

V (t, 0) : B(HS) → B(HS) (4.18)

This map, describing the state change of the open system over time, is called a

dynamical map. It is easy to check that it preserves trace and Hermiticity

[V (t, 0)[A]]† = V (t, 0)[A†] (4.19)

and

trS{V (t, 0)[A]} = trS{A} (4.20)

Additionally, V (t, 0) maps positive operators to positive operators, so that V (t, 0)ρ

is a valid density operator for any input density operator ρ

A ≥ 0 → V (t, 0)[A] ≥ 0 (4.21)

This property remains true if the operation is applied to any part of the total

system and then is said to be completely positive. Consider any possible extension

of HS to the tensor product HS ⊗HA; then V (t, 0) is completely positive on HS
if V (t, 0) ⊗ IA is positive for all such extensions.

In general, a quantum process of an open system is given by a completely pos-

itive and trace-preserving (CPT) quantum dynamical map. There is a specially

interesting subclass of maps, called Markovian process, where, additionally, the

following semigroup composition law is satisfied

V (t1, 0)V (t2, 0) = V (t1 + t2, 0) (4.22)

If a dynamical map follows this law with both V (t1) and V (t2) being completely

positive, the dynamical map is called divisible. In this case the map V (t) can be

written as

V (t) = eLt

where L is the generator of the semigroup. The reduced density matrix is easily

obtained as a first-order differential equation,

d

dt
ρS(t) = LρS(t). (4.23)
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4.5 Quantum non-Markovian processes

Eq. (4.23) represents a Markovian master equation. The most general time-

independent infinitesimal generator L of a quantum dynamical semigroup [89, 90]

for the case of finite dimensional Hilbert space, is a super-operator which has the

following form,

LρS = −i[H, ρS ] +

N2−1∑
k=1

γk(AkρSA
†
k − 1

2
A†

kAkρS − 1

2
ρSA

†
kAk) (4.24)

where N is the dimension of the Hilbert space HS . The commutator with the

Hamiltonian of the system H represents the unitary part of the evolution. The

operators Ak are the Lindblad operators describing the decay modes of the sys-

tem, and γk ≥ 0 are the corresponding decay rates. This equation characterizes

a quantum dynamical semigroup which describes a Markovian process.

This kind of description is appropriate for physical systems in which the time

scales for the decay of environmental correlations are smaller than the character-

istic time scale of the system evolution: and one can neglect memory effects in the

environment. This approximation allows to treat the evolution of the subsystem

as a Markovian process and write the dynamics of the reduced system in terms

of a quantum dynamical semigroup.

4.5 Quantum non-Markovian processes

In order to apply a quantum Markovian master equation to describe the evolution

of the system, we have to perform some approximation to ensure that the process

is memoryless. However, in many open quantum systems there are evidences of

strong memory effects, in particular in the case when there is strong coupling

between the system and the environment. Due to those problems, the study by

means of the dynamical semigroup becomes tricky. Different techniques have been

thus developed to derive master equations beyond the Markovian approximation.

Following the projection operator technique developed by Nakajima-Zwanzig in

Ref. [91, 92], a natural non-Markovian generalization of Eq. (4.23) would result

in an integrodifferential master equation,

d

dt
ρS(t) =

∫
dτK(τ)ρS(t− τ), (4.25)

which takes into account memory effects through the memory kernel K(τ).

The rate of change of the state ρ(t) at time t then depends on its whole history.
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4 Quantum Walks and Non-Markovian behavior

However, even if analytical solutions can be achieved, the generalized master

equations becomes soon too complicated. An alternative approach is desirable.

It is possible to obtain a first order differential equation for the reduced den-

sity matrix of the system through an alternative approach, called the time-

convolutionless projection operator technique (TCL) [93]. The goal of the TCL

is to achieve an equation of motion which is local in time, in contrast to the

Nakajima-Zwanzing equation, which is non-local in time. In this case, the re-

duced density matrix of the system ρs(t) is given by the master equation

d

dt
ρS(t) = LρS = −i[H, ρS ] +

N2−1∑
k=1

γk(t)[Ak(t)ρS(t)A†
k(t)

−1

2
A†

k(t)Ak(t)ρS(t) − 1

2
ρS(t)A†

k(t)Ak(t)] (4.26)

Where H(t) is the Hamiltonian of the system, Ak(t) are the Lindblad opera-

tors describing the decay modes of the system, and γk(t) are the corresponding

decay rates. For arbitrary time-dependent operators H(t) and Ak(t), and for

γk(t) ≥ 0 equation (4.26) yields a completely positive dynamical transforma-

tions, in which the evolution over any time interval is completely positive, and

can be considered as a time-dependent quantum Markovian process. However,

in the non-Markovian case, the rates γk(t) have oscillations and take negative

values. The memory effects are taken into account through the sign of the γk(t)

and reflect the flow of information between the system and the environment.

It is always possible to write the composition law

V (t2, t1)V (t1, 0) = V (t2, 0) (4.27)

and the map

V (t2, t1) = T e
∫ t2
t1

L(t′)dt′ (t2 ≥ t1 ≥ 0) (4.28)

where T is the time-ordering operator. When this time local master equation

describes a Markovian process, the dynamical map V (t2, t1) is trace-preserving

and completely positive. However, in the non-Markovian case, the dynamical

map V (t2, t1), may not be completely positive due to the negative rate, γk(t).

Therefore a quantum dynamical semigroup is not generated.

It is worth stressing that the master equation (4.26) produces physical states,

it preserves the positivity of the density matrix. It is necessary that V (t2, 0)

be completely positive to be a dynamical map, however, V (t2, t1) may not be

completely positive.
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Due to the negative decay rates, one can see that Eq (4.28) violates the

complete positivity, and then divisibility. Several approaches to quantify non-

Markovianity are based on these features, divisibility and complete positivity of

the dynamical maps, although there is no single measure of non-Markovianity.

Non-Markovian behavior is attracting a lot of attention due to the need to

control applications on quantum technologies. Whit this goal in mind, several

methods to define the limit between Markovian and non-Markovian quantum dy-

namics and several proposed measures to assess the degree of memory have been

developed. In this thesis we will follow a method recently introduced in Ref. [88].

The measure, that takes into account the divisibility of the map matching a di-

rect equivalence between divisibility and positive rates in the time-local master

equations, is based on the trace distance, which quantifies the distinguishability

of quantum states, and can be interpreted in terms of the information flow be-

tween the open system and its environment. The measure takes nonzero values

whenever there is a flow of information from the environment back to the open

system. It has already been used in different contexts [94].

4.6 Operator sum representation

Useful for our discussion is the operator sum representation of the dynamical

maps. We are focusing, as described above, on the dynamical evolution of a

subsystem S. We assume that the system and the environment start in a product

state ρS ⊗ ρE , and there are no correlations between them. A partial trace over

the environment can be performed to obtain the reduced state of the system:

ε(ρ) = trE [U(ρS ⊗ ρE)U†] (4.29)

We can rewrite the Eq. (4.29) in terms of operators acting on the Hilbert space

of the system HS . Let | µ⟩E be an orthonormal basis for HE , and consider that

the initial state of the environment is given by a pure state | 0⟩E , then

ε(ρ) =
∑
µ

E⟨µ | U(ρS⊗ | 0⟩EE⟨0 |)U† | µ⟩E =
∑
µ

MµρSM
†
µ (4.30)

where Mµ ≡ E⟨µ | U | 0⟩E is an operator on the state space of the system S.

Equation (4.30) defines a liner map ε that takes linear operators to linear opera-

tors. Equation (4.30) is known as the Kraus representation or the operator sum

representation, and the set of operators {Mµ} are known as the Kraus operators

or operation elements for the quantum operation ε. Since we can perform the
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4 Quantum Walks and Non-Markovian behavior

partial trace in any basis, the operator sum representations, of a given superop-

erator, ε is not unique. Notice that, if there is only one term in the operator sum

representation, we then have an unitary evolution of ρS . Superoperators provide

us a formalism for studying decoherence, i.e. the evolution of pure states into

mixed states.

4.7 Discrete time Quantum Markovian and

non-Markovian processes

As in the case of the continuous time quantum evolution, when the evolution of

the system can not be expressed by an unitary evolution due to the fact that our

system is composed by two subsystems which interact with each other, we are

talking about open systems and we need a more sophisticated description. In

the case of discrete time evolution of the system, the dynamics of open systems

is also given by the mathematical tool of semigroup of completely positive (CP)

trace-preserving dynamical maps.

The map ε : ρ → ρ′ that transforms a density matrix ρ into a density matrix

ρ′, has to satisfy the following properties to be trace-preserving and completely

positive

1. ε is linear ε(λρ1 + (1 − λ)ρ2) = λε(ρ1) + (1 − λ)ε(ρ2)

2. ε preserves hermiticity ρ′† =
∑

µMµρ †M†
µ = ρ

3. ε is trace-preserving tr(ρ′) =
∑

µ tr(ρM
†
µMµ) = tr(ρ) = 1

4. ε is completely positive

Given the initial condition ρ(0) for the system, we can then write the successive

evolutions of the system as ρ(t) = εt(ρ(0)) where εt indicates t applications of

the map. Hence, the evolution obeys a forward composition law and is called a

discrete time quantum dynamical semigroup. Therefore, trace-preserving com-

pletely positive maps describe general dynamics. When Mµ does not depend on

the past states the dynamical map ε represent a discrete time Markovian process.

One can generalize the process for a time dependent CP map ε(t), and then

the map is Markovian if ε(t) is divisible. We can write this condition as

ε(t) = εtε(t− 1) (4.31)

with some sequence of CP maps ε1ε2..., εt. To be clear, we require that
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4.8 Quantum Walks and non-Markovian behavior

ε(1) = ε1, ε(2) = ε2ε1, ε(3) = ε3ε2ε1 (4.32)

If ε(t) is not divisible, i.e., such a sequence ε1ε2..., εt does not exist, then the

process is non-Markovian.

4.8 Quantum Walks and non-Markovian behavior

The asymptotic behavior of the QW has been recently investigated focusing on

the chirality or spin reduced density matrix, obtained when the position degree

of freedom is traced out [95–98]. This matrix has a long-time limit that depends

on the initial conditions. One finds thus the following situation: the dynamical

evolution of the QW is a unitary process, however the asymptotic behavior of the

reduced density matrix has some properties which are shared by some diffusive

Markovian processes. This allows to amalgamate concepts such as thermody-

namic equilibrium with the idea of a system that follows a unitary evolution.

Refs. [96, 98] have developed a thermodynamic theory to describe the QW equi-

librium between the position and chirality degrees of freedom; it is possible to

introduce the concept of temperature for an isolated quantum system that evolves

in a composite Hilbert space (i.e. the tensor product of several subspaces). Addi-

tionally, Ref. [96] has shown that the transient behavior towards thermodynamic

equilibrium is described by a master equation with a time-dependent population

rate.

In this section we study the asymptotic QW behavior with and without de-

coherence, and exploit the measure proposed in Ref. [88] to evaluate its non-

Markovianity. We show that, without decoherence, the reduced density matrix

dynamics has a clear time dependence and a well-defined limit, that can be cal-

culated in terms of the initial conditions. This corresponds, when comparing the

evolution of two different initial states, to a reduced asymptotic trace distance.

The introduction of decoherence translates, as the long-time limit is concerned,

into a trivial result, since all states evolve towards the maximally decohered state

(proportional to the identity matrix).

The evolution during the first time steps of the QW features an interesting

phenomenon, i.e. the presence of oscillations in the trace distance between pairs

of states, which is interpreted as a signature of a non-Markovian process. Such

oscillations occur both with and without decoherence, even though they become

more and more attenuated as the level of noise increases. In agreement with
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4 Quantum Walks and Non-Markovian behavior

our observations for the asymptotic limit, the trace distance tends to zero when

decoherence affects the system.

4.9 Asymptotic reduced density matrix for the QW

The density matrix of the quantum system is

ρ(t) = |Ψ(t)⟩⟨Ψ(t)|. (4.33)

To study the Hadamard QW time dependence on the initial conditions, we take

the initial state of the walker as sharply localized at the origin with pure state of

chirality, thus

|Ψ(0)⟩ = |0⟩ ⊗ |Φ0⟩ . (4.34)

Here

|Φ0⟩ =

(
cos γ

2

eiφ sin γ
2

)
, (4.35)

with γ ∈ [0, π] and φ ∈ [0, 2π] defining a point on the three-dimensional Bloch

sphere. In this case the initial density matrix is

ρ(0) = |0⟩ ⟨0| ⊗ |Φ0⟩ ⟨Φ0| , (4.36)

where

|Φ0⟩ ⟨Φ0| =

(
cos2 γ

2
e−iφ

2 sin γ
eiφ

2 sin γ sin2 γ
2

)
. (4.37)

In order to use the affine map approach [99, 100], Eq. (4.37) can be transformed

to express the two-by-two matrix as a four-dimensional column vector, obtaining

|Φ0⟩ ⟨Φ0| = r0I + r1σ1 + r2σ2 + r3σ3

=


r0
r1
r2
r3

 =
1

2


1

cosφ sin γ

− sinφ sin γ

cos γ

 , (4.38)

with σi (i = 1, 2, 3) the Pauli matrices, and

ri =
1

2
tr((|Φ0⟩ ⟨Φ0|)σi). (4.39)
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The reduced density operator is defined as

ρc(t) = trs(ρ(t)) =

∞∑
x=−∞

⟨x|ρ(t)|x⟩, (4.40)

where the partial trace is taken over the positions. Following the method intro-

duced in Ref. [99] and generalized in Ref. [100], Eq. (4.40) can be transformed

into

ρc(t) =

π∫
−π

dk

2π
Lt
k(|Φ0⟩ ⟨Φ0|), (4.41)

with Lk the superoperator defined as

Lk =


1 0 0 0

0 0 sin 2k cos 2k

0 0 − cos 2k sin 2k

0 1 0 0

 . (4.42)

In order to obtain the eigenvalues of Lk, it is necessary to find the eigenvalues of

the following associated matrix

Mk =

 0 sin 2k cos 2k

0 − cos 2k sin 2k

1 0 0

 . (4.43)

The eigenvalues of Eq. (4.43) are

λ1 = 1, λ2 = ei(α+π), λ3 = e−i(α+π), (4.44)

where

cosα =
1

2
(1 + cos 2k) = (cos k)2. (4.45)

The corresponding eigenvectors are

→
v1 =

 v11
v21
v31


=

√
2 cos k√

3 + cos 2k

 1

(1 − cos 2k)/ sin 2k

1

, (4.46)
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→
v2 =

 v12
v22
v32


=

1

N2

 ei(α+π)

−(ei(α+π) − 2 cos 2k)/(2 sin 2k)

1

, (4.47)

→
v3 =

 v13
v23
v33


=

1

N3

 e−i(α+π)

−(e−i(α+π)−2 cos 2k)/(2 sin 2k)

1

, (4.48)

with N2 and N3 normalization factors. It is now straightforward to obtain (Lk)
t

using the diagonal expression for Lk, that is

(Lk)t = B


1 0 0 0

0 1 0 0

0 0 eit(α+π) 0

0 0 0 e−it(α+π)

B†. (4.49)

Here, B is the eigenvector matrix

B =


1 0 0 0

0 v11 v12 v13
0 v21 v22 v23
0 v31 v32 v33

 , (4.50)

and B† its conjugate transpose. Substituting Eq. (4.50) into Eq. (4.49) and

exploiting the stationary phase theorem to neglect the oscillatory terms e±it(α+π)

when time goes to infinity, one finds the following asymptotic equation

(Lk)
t −→


1 0 0 0

0 |v11|2 v11v
∗
21 v11v

∗
31

0 v21v
∗
11 |v21|2 v21v

∗
31

0 v31v
∗
11 v31v

∗
21 |v31|2

 . (4.51)
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4.9 Asymptotic reduced density matrix for the QW

The reduced density matrix in the asymptotic regime,
∼
ρc, can be calculated using

Eq. (4.41) as

∼
ρc ≡ lim

t→∞
ρc(t) = limt→∞

π∫
−π

dk
2πL

t
k |Φ0⟩ ⟨Φ0| . (4.52)

In order to work out this expression, it is necessary to solve the following integrals

π∫
−π

|v11|2

2π
dk = 1 − 1√

2
, (4.53)

π∫
−π

|v21|2

2π
dk =

√
2 − 1, (4.54)

π∫
−π

|v31|2

2π
dk = 1 − 1√

2
, (4.55)

π∫
−π

v11v
∗
31

2π
dk = 1 − 1√

2
, (4.56)

π∫
−π

v11v
∗
21

2π
dk =

π∫
−π

v21v
∗
31

2π
dk = 0. (4.57)

Therefore, we obtain analytically the QW reduced density matrix in the asymp-

totic regime,

∼
ρc =


r0(

1 − 1√
2

)
(r1 + r3)(√

2 − 1
)
r2(

1 − 1√
2

)
(r1 + r3)



=
1

2


1(

1 − 1√
2

)
(cosφ sin γ + cos γ)(√

2 − 1
)

sinφ sin γ(
1 − 1√

2

)
(cosφ sin γ + cos γ)

 . (4.58)

Going back to the 2 × 2 matrix formalism, the reduced density matrix in the

asymptotic regime can be finally written as

∼
ρc =

(
ΠL Q0

Q∗
0 ΠR

)
, (4.59)

101



4 Quantum Walks and Non-Markovian behavior

where

ΠL =
1

2

[
1 +

(
1 − 1√

2

)
(cosφ sin γ + cos γ)

]
,

ΠR =
1

2

[
1 −

(
1 − 1√

2

)
(cosφ sin γ + cos γ)

]
,

Q0 =
1

2

(
1 − 1√

2

)
[(cosφ sin γ + cos γ) −i

√
2 sinφ sin γ

]
. (4.60)

4.10 QW map equation

The aim of this section is to study the populations of the reduced density matrix

for the standard (decoherence-free) QW. Using Eq. (4.33), and Eq. (4.40), this

matrix is expressed as

ρc(t) =

(
PL(t) Q(t)

Q∗(t) PR(t)

)
, (4.61)

where

PL(t) =

∞∑
k=−∞

|ak(t)|2 , (4.62)

PR(t) =
∞∑

k=−∞

|bk(t)|2 , (4.63)

Q(t) ≡
∞∑

k=−∞

ak(t)b∗k(t). (4.64)

The global chirality distribution (GCD) is defined as the distribution[
PL(t)

PR(t)

]
, (4.65)

with PR(t) + PL(t) = 1.

It is shown in Ref. [95] that the GCD satisfies the following map[
PL(t+ 1)

PR(t+ 1)

]
=

(
cos2 θ sin2 θ

sin2 θ cos2 θ

)[
PL(t)

PR(t)

]
+ Re [Q(t)] sin 2θ

[
1

−1

]
. (4.66)
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We observe that, if the “interference term”

Re [Q(t)] sin 2θ

[
1

−1

]
(4.67)

in Eq. (4.66) is neglected, the time evolution of the GCD could be described by

a classical Markovian process. The two-dimensional matrix(
cos2 θ sin2 θ

sin2 θ cos2 θ

)
(4.68)

can be interpreted as the corresponding transition probability matrix for a Markov

chain, since it satisfies the necessary requirements: all its elements are positive

and the sum over the elements of any column or row is equal to one. However

Q(t) (together with PL(t) and PR(t)) is a time-dependent function. This implies

that the map defined by Eq. (4.66) does not correspond to a classical Markovian

process. It is important to stress that, here, we are just analyzing the GCD

(i.e. the left and right populations of the chiral degree of freedom) in terms of

classical Markovian behavior. A study of quantum Markovianity requires, on the

other hand, to consider the evolution of the complete matrix ρc(t) and will be

performed in section 4.12.

In spite of the time dependence manifested by Eq. (4.66), the GCD does

possess a long-time limiting value, as obtained in previous section. Eq. (4.66)

can be used to derive a consistency condition relating ΠL, ΠR, and Q0, by taking

the limit t→ ∞. One then finds[
ΠL

ΠR

]
=

1

2

[
1 + 2Re(Q0)/ tan θ

1 − 2Re(Q0)/ tan θ

]
. (4.69)

When θ = π/4, Eq. (4.69) agrees with the expressions given by Eq. (4.60). This

interesting result shows that the long-time probability to find the system with left

or right chirality only depends on the asymptotic interference term. Although

the dynamical evolution of the QW is unitary, the evolution of its GCD has an

asymptotic limit, a feature which is characteristic of a diffusive behavior. The

situation is even more surprising if we compare our case with the case of the

QW on finite graphs [101], where it is shown that there is no convergence to

a stationary distribution. In order to quantify how much the asymptotic limit

keeps track of the initial state, we use the trace distance

D(ρ1 − ρ2) =
1

2
tr|ρ1 − ρ2|,
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4 Quantum Walks and Non-Markovian behavior

which gives us a measure for the distinguishability of two quantum states. Here,

|ρ| =
√
ρ†ρ. We calculate this quantity for two reduced density matrices (in

the chiral space) that correspond to two different initial states of Eq. (4.37).

Following the notation defined in Eq. (4.61), we write

ρ1(t) − ρ2(t) =

(
P1L(t) − P2L(t) Q1 (t) −Q2 (t)

Q∗
1 (t) −Q∗

2 (t) P1R(t) − P2R(t)

)
. (4.70)

We now evaluate the trace distance between the asymptotic reduced density

matrices for the QW without decoherence while, in next section, we extend the

investigation to the scenario that takes into account decoherence introduced by

broken links. Considering two different initial conditions, the difference between

their asymptotic reduced density matrices is

ρ̃12 =

(
Π1L − Π2L Q10 −Q20

Q∗
10 −Q∗

20 Π1R − Π2R

)
. (4.71)

Therefore, the distance between the asymptotic reduced density matrices is de-

fined as

D(ρ̃12) =
1

2
tr |ρ̃12| . (4.72)

After some algebra, taking into account Eq. (4.69) with θ = π/4, the asymptotic

trace distance can be expressed, in terms of the initial conditions, as

D(ρ̃12) =

√
2 [Re (Q10 −Q20)]

2
+ [Im (Q10 −Q20)]

2
. (4.73)

Here, Re(Q0) (Im(Q0)) is the real (imaginary) part of Q0, and Q0 is given by Eq.

(4.60). In order to study the dependence on the initial conditions, we consider

the evolution of pairs of independent states under the QW map. We fix the initial

conditions for the first state and study Eq. (4.73) by considering different points

on the Bloch sphere as the initial conditions for the second state.

Figures 4.1 and 4.2 show our results in two non-equivalent scenarios. As can be

seen from these figures, the asymptotic trace distance has a non trivial behavior

as a function of the second state, once the first one is fixed. The left panel gives

an idea on how much the trace distance is reduced (the minimum reduction being

of the order of 1/2 in the case represented in Fig. 4.1, whereas lower values are

reached for the parameters that correspond to Fig. 4.2). The contour levels can

be mapped to the points of the Bloch sphere associated with the second state

(right panel), thus providing a closer relationship to physical states. As we see

by comparing the two figures, changing the first state does not translate into a

simple rotation of the Bloch sphere representation, the reason being that the coin

operator does not commute with arbitrary rotations.

104



4.10 QW map equation

0

1 0

1

2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϕ

γ/π
ϕ

/π

−1
0

1
−1

0
1

−1

−0.5

0

0.5

1

xy

z

Figure 4.1: Left panel: Asymptotic trace distance as a function of the angles γ

and φ, representing the initial conditions of ρ2. The initial conditions

of ρ1 are given by γ = 0. Right panel: The contour levels correspond-

ing to the left panel are mapped to the Bloch sphere, using the same

color convention.
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Figure 4.2: Same as Fig. 4.1, but now the initial conditions for ρ1 are given by

γ = π/4 and φ = π.
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4.11 Asymptotic density matrix with decoherence

We now study the dynamics of the reduced density matrix for the QW under

the effect of decoherence. We exploit the model, known as broken links, that was

proposed for the first time in Ref. [102] and analyzed in the frame of previous

section in Ref. [100]. It induces decoherence in both degrees of freedom, coin

and position. Similar results to those presented here can also be found for other

decoherence models.

At each time step t, the state of the links in the line is defined. Each link

has a probability p of breaking in a given time step. Clearly, for p = 0, the ideal

decoherence-free QW is recovered. During the movement stage, if the walker is in

a site with both the links on right and left broken (this happens with probability

p2), the walker does not move. With probability (1−p)2 both links are not broken

and, in this case, the evolution normally occurs. With probability p(1 − p) only

one link is broken and the walker is forced to move to the other direction. Notice,

however, that the limit p −→ 1 implies that the walker is forced to stay at the

initial position, since the links with neighboring sites are broken with probability

one (or close to one), and only the coin operator acts. This limit is no longer

connected with the QW and, for this reason, we restrict ourselves to small values

of p.

Reference [100] obtains the superoperator Lk that determines the dynamical

evolution of the QW with broken links

Lk =


1 0 0 0

0 0 e f + p2

0 0 p2 − f e

0 1 − 2p −2g −2h

 , (4.74)

where

e = (1 − p)
2

sin 2k,

f = (1 − p)
2

cos 2k,

g = p (1 − p) sin k,

h = p (1 − p) cos k. (4.75)

The dynamics of the reduced density matrix is again described by Eq. (4.52) but
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now Lk is given by Eq. (4.74). Redefining Mk as

Mk =

 0 e f + p2

0 p2 − f e

1 − 2p −2g −2h

 , (4.76)

its eigenvalues {λi : i = 1, 2, 3} satisfy |λi| < 1 for 0 < p < 1. If A is the matrix

constructed from the eigenvectors of Mk, and Λ the diagonal matrix with the

corresponding eigenvalues as elements, it is straightforward to prove that

lim
t→∞

M t
k = lim

t→∞
(AΛtA†) = 0. (4.77)

In this case Eq. (4.52) gives us

∼
ρc =

π∫
−π

dk

2π


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




r0
r1
r2
r3

 . (4.78)

In other words, going back to the formalism of 2×2 matrices, the reduced density

matrix in the asymptotic regime is simply

∼
ρc =

1

2

(
1 0

0 1

)
, (4.79)

regardless of the initial state. Thus, in the presence of noise, the trace distance

between any two different initial states approaches zero, i.e.

lim
t→∞

D(ρ1(t) − ρ2(t)) = 0. (4.80)

4.12 Short-time behavior

So far we have investigated the properties of the reduced density matrix in the

long-time regime. We have obtained a well-defined limit for both the decoherence-

free scenario and the case with decoherence. We now discuss the situation where

one considers not the asymptotic limit but a finite number of steps in the QW.

Our study, as before, is focused on the time evolution of D(ρ1 − ρ2).
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Figure 4.3: Trace distance, as a function of the number of time steps, between the

whole density matrices (dashed lines) and between the corresponding

reduced density matrices (solid lines). The initial state ρ1(0) is de-

fined by Eq. (4.37) with γ = 0, while ρ2(0) with γ = π. Different

values of the decoherence parameter p have been considered.

The measure of quantum non-Markovianity given by Ref. [88] is based on the

rate of change 1 of the trace distance

σ(t, ρ1,2(0)) =
d

dt
D(ρ1(t) − ρ2(t)). (4.81)

Figure 4.3 shows the time evolution of the trace distance, both for the whole

density matrices and for the corresponding reduced density matrices. We have

taken, as initial conditions, the pair of states giving the maximum value of the

measure (see below). If one starts from a different pair of states, the curves look

qualitatively similar, although the overall scale is smaller.

We have considered various values of the decoherence parameter p, the case

p = 0 corresponding to the absence of decoherence. Without decoherence, the

QW evolves unitarily, so the trace distance between two total states is preserved.

If p > 0, the evolution for the total state is clearly Markovian, as indicated

by a monotonous decrease in the trace distance (this happens of course for any

possible pair of initial states). The reduced density matrices, however, show a

completely different behavior. Analyzing first the case p = 0, we observe the

presence of oscillations. In other words, the trace distance increases during some

1 For the QW considered here, t takes only discrete values t ∈ N, therefore time derivatives

and integrals in time have to be understood as finite differences and sums.
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Figure 4.4: Contribution to the non-Markovianity measure, as a function of the

number of time steps, evaluated for the pair of initial states ρ1(0) and

ρ2(0) that maximizes the integral in Eq. (4.82). Different values of

the decoherence parameter p have been considered.

time intervals, giving a positive value of σ in Eq. (4.81). As discussed in Ref. [88],

this feature is a clear signature of a quantum non-Markovian process. We notice

that the amplitude of these oscillations decreases with t. For values p > 0, we also

observe the presence of such oscillations. In fact, the curves look similar during

the first time steps. However, as t increases, the oscillations are more strongly

damped than in the decoherence-free case. This effect is even more pronounced

for larger values of p. In addition to these features, we also notice that the trace

distance goes asymptotically to zero, consistently with our results in section 4.9.

To obtain a quantitative idea about the degree of the non-Markovianity ob-

served in the previous plots, the authors in Ref. [88] suggest, as a figure of merit,

the accumulated area of the trace distance variation for those time intervals where

the trace distance is increasing, which amounts to calculating

Nmax = max
ρ1,ρ2

∫
σ>0

σ(τ, ρ1,2(0))dτ. (4.82)

The maximization is performed over all the possible pairs of initial states ρ1(0)

and ρ2(0). We have checked numerically that the pair of states maximizing Eq.

(4.82) is the same both with and without decoherence, and corresponds to the

North and South poles of the Bloch sphere. We have verified, by performing sev-

eral numerical simulations, that this does not depend either on the total number

of time steps considered or on the value of p. We have therefore plotted in Fig.
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Figure 4.5: Contribution to the non-Markovianity measure, as a function of the

decoherence parameter, calculated for the pair of initial states ρ1(0)

and ρ2(0) that maximizes the integral in Eq. (4.82), and for the time

interval [0, 200].

4.4 the value

N(t) =

∫
σ>0;τ∈[0,t]

σ(τ, ρ1,2(0))dτ, (4.83)

evaluated for this pair of initial states. N(t) can be seen as the contribution to the

non-Markovianity measure in the time window [0, t]. Even if in the time window

allowed by our computational power it is not possible to evaluate (if any) the

asymptotic value of N(t) for t → ∞ (i.e. the non-Markovianity measure Nmax)

in the decoherence-free case, the results reported in Fig. 4.4 give already a very

precise picture of how the decoherence affects the degree of non-Markovianity

of the coin evolution. The non-Markovianity is stronger as the magnitude of

decoherence decreases, with the largest value of its measure corresponding to the

decoherence-free case. This feature is clearly shown in Fig. 4.5, where we have

plotted the contribution to the non-Markovianity measure Nmax calculated for

the time interval [0, 200] as a function of p, for the North-South pair of states.

110



Part II

Wigner function
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5 Introduction to quantum

mechanics in phase space

In classical mechanics the state of a particle is completely determined if its po-

sition and momentum are known, i.e, all the information about the state of a

particle can be represented as a point in phase space. The state of a particle

with n degrees of freedom can be described by a point in 2n dimensional phase

space and the configuration of the total system is decribed by the generalized

coordinates q⃗ = (q1, q2, ..., qn) and p⃗ = (p1, p2, ..., pn) where q is the position co-

ordinate and p the conjugate momentum coordinate. The evolution of a particle

is described by the Hamiltonian function H(q⃗, p⃗, t). A function ρ(q⃗, p⃗) giving the

density probabilty to find the particle in one point of the phase space can be

defined and then, ρ(q⃗, p⃗)dnqdnp denotes the probability that the system be in a

volume element dnqdnp on the phase space. In this scheme the Liouville equation

governs the evolution of ρ(p, q; t) in time t.

In quantum mechanics the description of a system is represented by a state

vector in the complex Hilbert space or by a density matrix, and the evolution of

the state is generated by a self-adjoint Hamiltonian operator acting in the Hilbert

space according to the Schrödinger equation. The description of quantum me-

chanics in phase space can not be easily transferred due to the impossibility to

extend the concept of a density probability function since the non-commutative

character of position and momentum variables and the uncertainty principle. The

precision which allows us to know a state must satisfy the uncertainty principle

∆p∆q ≥ ℏ/2. However, it is possible to construct a quasi-probability distri-

bution, which in conceptual and operational terms is equivalent to the classical

probability functions. One of the most used quasi-probability distributions in

phase space is the Wigner function.

The formalism of Wigner functions and the formulation of quantum mechanics

in phase space have been used since the early days of quantum physics. Originally

motivated by the attempt to describe quantum effects in thermal ensembles by

Wigner in 1932 [103], various quasi-probability distribution functions have been
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5 Introduction to quantum mechanics in phase space

developed and applied to many different fields in quantum physics, as alterna-

tive formalisms which provide useful computational tools and facilitate physical

insight into the quantum nature of states [104, 105]. In particular, in the field

of quantum optics, the phase-space descriptions of quantum states have found

extensive application. Specially interesting from the experimental point of view

is the ability to reconstruct the Wigner function (and thus the quantum state)

from measurements of the electromagnetic field quadratures, thus making it a

very powerful tool for state tomography [106–108]. Remarkably, the fact that the

Wigner function is not positive definite has itself a practical use, since the nega-

tive volume in phase space has been proposed as a measure of non-classicality of

the state [109].

In analogy to the classical situation, in which a state can be completely de-

scribed in terms of its phase-space density, a quantum state can also be entirely

characterized by its Wigner function, and the expectation values of all observables

can be computed as a sum over the whole phase-space weighted by this function.

In contrast to the classical case, in the quantum scenario probability distribu-

tions cannot be defined simultaneously over position and momentum. Thus the

Wigner function is not a true probability distribution, as it becomes apparent

by the fact that it can adopt negative values. Instead, it can be interpreted as

a quasi-probability distribution whose marginals reproduce the true probability

distributions over single observables. Operators and dynamics can also be ac-

commodated in the phase-space picture [110], so that quantum mechanics can be

entirely formulated in this framework.

The second part of this thesis consists in the definition of the Wigner function

for a quantum system with a discrete, infinite dimensional Hilbert space

such as a spinless particle moving on an one dimensional lattice. We discuss

the peculiarities of this scenario and of the associated phase space construction,

propose a meaningful definition of the Wigner function in this case, and charac-

terize the set of pure states for which it is non-negative. Later, we extend the

definition of a Wigner function to include an extra degree of freedom such as a

spin 1/2 particle that moves on an infinite one-dimensional lattice. Using these

definitions, we study the dynamics of the particle subject to a potential in both

cases: for a particle with spin and for a spinless particle. In order to establish

a clear comparison with our research, we start by reviewing the definition of the

Wigner function in continuous space.
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5.1 Continuous Wigner Function

5.1 Continuous Wigner Function

In Wigner’s formulation, the quantum description of a system S is based on the

density matrix ρ, which contains all the physical information of the system. For

a quantum one-dimensional system in continuous space, the Wigner function can

be written [103] as 1.

Wc(x, p) =
1

π

∫ ∞

−∞
dy⟨x+ y|ρ|x− y⟩ e−i2py, (5.1)

where ρ is the density matrix of the system, and |x⟩ represents the eigenbasis of

the position operator, X̂

It is also possible to define the Wigner function axiomatically [106]. The fun-

damental properties that it must satisfy are usually formulated as follows.

1. Reality: due to the hermiticity of the density matrix, the Wigner function

is required to be real.

2. Projection: the integral of the Wigner function along any direction, (α, β),

in phase space, yields the probability distribution for the outcomes of mea-

suring the observable αX̂ + βP̂ , being P̂ the momentum operator. In par-

ticular, then, the marginal distributions for position and momentum can

be obtained, respectively.2

3. Inner product: the inner product of two states, given by their density

operators, ρ1 and ρ2, can be computed from their Wigner functions as

tr (ρ1ρ2) = 2π
∫
dxdpW1(x, p)W2(x, p) where W1 and W2 are the Wigner

functions of ρ1 and ρ2, respectively

From these properties, other features of the Wigner function can be derived, such

as the following ones.

• The expectation value of any observable can be reconstructed from the

knowledge of the Wigner function,

tr
(
ρÔ
)

= 2π

∫
dxdpWO(x, p)W (x, p),

where WO(x, p) ≡ 1
π

∫∞
−∞ dy⟨x+ y|Ô|x− y⟩ e−i2py is the Wigner represen-

tation of the operator Ô.

1 We use natural units, such that ℏ = 1.
2 In the rest of the thesis, unspecified integral (or sum) limits will be understood as extending

over the whole range of the integrated (summed) variable. as
∫
dpW (x, p) = P (x) and∫

dxW (x, p) = P (p).
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5 Introduction to quantum mechanics in phase space

• Following from property 2, the Wigner function is normalized when inte-

grated over the whole phase space,
∫
dxdpW (x, p) = 1.

The Wigner function can also be constructed from the phase-point operators,

defined for all points in the phase space as

A(x, p) ≡ 1

π
D(x, p)ΠD(x, p)†, (5.2)

where D(x, p) = e−i(xP̂−pX̂) are displacement operators and Π | x⟩ =| −x⟩ is

the parity reflection. The phase-point operators form a complete set, spanning

all Hermitian operators. In particular, the Wigner function corresponds to the

coefficients of the density matrix in this basis,

W (x, p) = tr (ρA(x, p)) , (5.3)

so that the full state can be reconstructed by

ρ =

∫
dxdpW (x, p)A(x, p). (5.4)

Properties equivalent to (1)-(3) can be formulated for phase-point operators,

leading to an equivalent definition of the phase space. According to these prop-

erties the operators A(x, p) should be Hermitian and satisfy an orthogonality

condition, and integrating A(x, p) along a line in phase space must yield a pro-

jector.

The Wigner-Weyl formalism establishes a bijective correspondence between a

classical phase space function, F (x, p), and a quantum observable F̂ (X̂, P̂ ). In

order to quantize the classical phase space function F (x, p), the Wigner-Weyl

formalism establishes that the first step is to write F (x, p) in terms of its Fourier

expansion

F (x, p) =

∫ ∫
dσdτf(σ, τ)ei(σx+τp) (5.5)

Now, to construct the corresponding operator for F (x, p), the variables x and

p have to be replaced by the respective quantum operators

F̂ (X,P ) =

∫ ∫
dσdτf(σ, τ)ei(σX+τP ). (5.6)

As an example, we show the Wigner-Weyl quantization of the product xp.

Using the inverse of Eq. (5.5) in Eq.(5.6) we obtain

F̂ (X̂, P̂ ) =

∫ ∫ ∫ ∫
dxdpdσdτF (x, p)ei(σ(X̂−x)+τ(P̂−p)) (5.7)
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5.1 Continuous Wigner Function

Making use of the Weyl map expressed in terms of the integral kernel matrix

elements

⟨x | F̂ (X̂, P̂ ) | y⟩ =
1

2π

∫
dpeip(x−y)F (

x+ y

2
, p) (5.8)

We have

⟨x | F̂ (X̂, P̂ ) | y⟩ =
1

2π

∫
dpeip(x−y)x+ y

2
p =

−i
2π

x+ y

2

∂

∂x

∫
dpeip(x−y) =

−i
2π

x+ y

2

∂

∂x
2πδ(x− y) =

x+ y

2

∂

∂x
⟨x | y⟩ =

x+ y

2
⟨x | P̂ | y⟩

= ⟨x | P̂ X̂ + X̂P̂

2
| y⟩ (5.9)

The Wigner function and the Weyl transformation are inverse of each other.

In this sense, the Wigner function associates to each quantum operator, a corre-

sponding phase space function.

Besides the Wigner function, other probability distributions have been defined.

The differences in their construction are based on the definition of the phase space

operators. For the definition of the Wigner function, a symmetric ordering of the

operators P̂ and X̂ for the displacement operator is used, D(x, p) = e−i(xP̂−pX̂).

It is also possible to use an anti-normal or normal ordering of the operator. For

a normal ordering, D(x, p) = eixP̂ eipX̂ the Glauber-Sudarshan or P distribution

can be generated and for an anti-normal ordering D(x, p) = eipX̂eixP̂ the Husimi

or Q distribution can be generated.

The P distribution was proposed by Glauber and Sudarshan [111, 112] for a

representation of the electromagnetic field. It was formulated as a description of

a statistical mixture of coherent states, and for these states it is analogous to a

classical probability distribution since it is positive. For other states, however, it

can take negative values and therefore it can also be considered as a indication of

non-classicality [113, 114]. The P distribution can be interpreted as a weighted

mixture of coherent states.

The Husimi or Q distribution proposed by Husimi [115] is built from the di-

agonal matrix elements of the density operator in the coherent state set. Notice,

however, that coherent states form an overcomplete basis for the Hilbert space,

therefore they do not constitute an orthonormal basis. Due to the fact that the

coherent states form an overcomplete basis, the Q distribution can characterize

any state. The Q function is strictly non-negative and it does not reproduce the

correct marginal distributions.
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6 Wigner function for a particle in

an infinite lattice

6.1 Discrete finite case

The original definition, and the applications mentioned above make use of a

Wigner function defined in continuous space. It is nevertheless possible to in-

troduce also a sensible Wigner function for systems on a discrete space. A valid

generalization of the Wigner function to the case of a discrete Hilbert space in-

volves generalizing the concept of phase space and the definition of phase point

operators. Several approaches have been proposed in the literature for the case of

a finite dimensional, periodic Hilbert space. Here we briefly describe the two main

alternatives, emphasizing their relation to the continuous case, and we establish

the basis for our definitions (see [105, 116] for more comprehensive reviews).

Wootters [117] generalized the definition of the Wigner function to discrete

periodic Hilbert spaces of prime dimension, N . In Wootter’s original construc-

tion the phase space was a two dimensional N × N array, indexed by integers.

Complete sets of parallel lines in this phase space, or striations, which are de-

fined using arithmetics modulo N , were associated to projective measurements.

For more general cases, such as power of prime dimensions or composite systems

with both discrete and continuous degrees of freedom, the phase space could be

constructed as a Cartesian product of the fundamental pieces.

A related, more general construction, valid for systems whose dimension is an

integer power of a prime number, was put forward in [118]. In the general con-

struction the discrete phase space has also size N × N , and was labelled by a

finite field. To give a physical interpretation to the discrete phase space, each line

is assigned to a pure quantum state. The set of all lines parallel to a given one

corresponds to an orthogonal basis, and the distinct sets are mutually unbiased

basis [119]. This assignment of states to lines determines the particular definition

of the Wigner function for the system, which is therefore not unique. Although

closely connected to quantum information concepts and useful to describe sys-
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6 Wigner function for a particle in an infinite lattice

tems of n qubits [120, 121], the lack of a unique physical interpretation and the

restriction to dimensions which are powers of primes makes this approach less

appropriate for the kind of system we want to describe.

k

m nl

Figure 6.1: Graphical representation of the phase space for an infinite one-

dimensional lattice. The momentum-like coordinate is continuous

and periodic, k ∈ [−π, π[, and the position-like coordinate is discrete,

labelled by integer values, m.

Leonhardt [122] introduced another definition, more closely connected to the

continuous construction, in which the labels of the phase space axis could be

connected to discrete position and momentum base of the physical system. For

the case of an odd dimensional system, the discretized version of the continuous

definitions is enough to obtain a valid definition of the Wigner function. However,

in the case of even dimensional Hilbert spaces, the naive discretization does not

suffice to guarantee a Wigner function with the desired properties. Instead, half-

odd labels had to be introduced between the integer points of the phase space

axis, so that the size of the grid has to be increased to 2N × 2N (see also [123]

for a discussion).

A similar approach was pursued in [124], where the construction followed from

the definition of discrete phase-point operators and was then applied to the anal-

ysis of quantum algorithms [125]. In [126], this approach was also combined with
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6.2 Definition of the Wigner function in the infinite discrete lattice

Wootters’ prescription to compose degrees of freedom and employed for the study

of quantum teleportation. Our approach builds up on this construction, easily

connected to the physical interpretation of the continuous phase space.

Another scenario studied in the literature that relates closely to our construc-

tion is that of a pair of quantum variables, the angular momentum and an-

gle [127–129]. The structure of the associated phase space is completely analogous

to the one in our problem (see figure 6.1). As discussed in [127], the choice of a

Wigner function in that case is not unique, but different Wigner representations

are possible for the same system. The prescription presented in the following

section can be seen as an alternative to that in [127], which offers the advan-

tage of a more compact expression that can be computed explicitly for some

interesting cases and a more direct connection to the Wigner functions for the

finite-dimensional case discussed above.

As we will see in the following section, the phase space associated with our

problem possesses the topological structure S1×Z, where S1 represents the unit

circle. In the continuous case, the phase space becomes R × R. The problem

of studying a phase space with this kind of topology has been a recurrent topic

since the beginning of quantum mechanics, due to the presence of the angular

variable running on S1, the difficulty being motivated by the fact that the angle

is a multivalued or discontinuous variable (see [130, 131], and references therein,

for a review). Thus, if one faces the quantization of such a phase space as a

starting point, one has to cope with these problems. Another interesting feature

that arises as a consequence of the quantization procedure is the possibility of

a fractional orbital angular momentum, a theoretical possibility that may find

an experimental correspondence in scenarios such as Bloch waves in ideal crys-

tals or the Aharanov–Bohm and fractional quantum Hall effects. In this thesis,

we are mostly concerned with the properties of the Wigner function on the infi-

nite lattice, as an alternative to the standard quantum approach; see the above

references for a detailed study of the quantization of the corresponding phase

space.

6.2 Definition of the Wigner function in the infinite

discrete lattice

We consider here a single particle moving on a discrete one-dimensional lattice,

with inter-site spacing a. We can define a discrete position basis, given by or-

thonormal states |n⟩, with n ∈ Z. Its Fourier transform defines then a quasi-
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6 Wigner function for a particle in an infinite lattice

momentum basis, |q⟩ =
√

a
2π

∑
n e

iqna|n⟩, which can be restricted to the first

Brillouin zone, q ∈ [−π
a ,

π
a [.

Unlike the discrete cases considered above, the Hilbert space of this system

is not periodic and has infinite dimension. The continuum limit is recovered as

a→ 0, and 1√
a
|n⟩ → |x = na⟩. We may require that the Wigner function for this

system, besides fulfilling the defining properties, also reproduces in that limit the

usual one for a particle in the continuum, (5.1).

In [122, 124] the problems in the direct discretization of Eq.(5.2) were connected

to the fact that, in the case of even dimensions, such a definition does not generate

enough number of independent operators. We may thus wonder whether the fact

of having an infinite dimensional system is enough to solve this problem. However,

the direct discretization of (5.2), in spite of producing an infinite number of

operators, does not suffice either in this case to obtain a Wigner function that

fulfills the desired properties in the case of interest as we see now.

Here we follow closely the construction of [124], starting with a definition of the

discrete phase space and the associated phase-point operators that then produce

the Wigner function. A direct discretization of the phase-point operators leads

to

Adirect(m, k) =
1

2π
U2mΠ̂V (−2k

a
)ei2km, (6.1)

where U is the discrete translation operator, shifting the lattice by one site,

Um|n⟩ = |n + m⟩, and V (q) is the continuous momentum translation, defined

by its action on the momentum basis as V (q′)|q⟩ = |q + q′⟩. Notice the hybrid

character of the phase space in this case, with discrete and unbounded values

of m and continuous, periodic k ∈ [−π, π[. It is easy to see that Adirect has

periodicity π in the momentum coordinate, Adirect(n, k± π) = Adirect(n, k). The

Wigner function following from these phase-point operators does not fulfill the

defining properties. In particular, summing over positions does not produce the

correct marginal. Instead,∑
n

Wdirect(n, k) ∝
⟨
k
a |ρ|

k
a

⟩
+
⟨
k+π
a |ρ|k+π

a

⟩
. (6.2)

As a consequence, the resolution in k is not enough to retrieve all the information

on the state from the Wigner function (see [122, 123] for a discussion of this effect).

The problem does not appear if we integrate over the momentum coordinate,

and is thus an effect arising purely from the discrete character of the position

basis. It is not surprising, then, that the strategy in [124], consisting in doubling

the number of points in the phase space, serves us to define also here an appro-

priate set of phase-point operators. In our case, the doubling should only affect
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6.2 Definition of the Wigner function in the infinite discrete lattice

the position coordinate, and is equivalent to adopting the definition

A(m, k) =
1

2π
UmΠ̂V (−2k

a )eimk. (6.3)

In the position basis, the phase-point operators can then be written as A(m, k) =
1
2π

∑
n |m− n⟩⟨n|e−i(2n−m)k, and the Wigner function for our system reads

W (m, k) ≡ tr [ρA(m, k)] =
1

2π

∑
n

⟨n|ρ|m− n⟩e−i(2n−m)k. (6.4)

This corresponds to a phase space with the structure depicted in figure 6.1, where

the m coordinate takes integer values, whereas k is continuous and periodic,

taking values in [−π, π[. Notice that (m, k) cannot be directly interpreted as

discrete positions, and quasimomentum. Instead, they have to be understood as

labels of the phase space points. To make the distinction clear, we reserve symbols

m and k for the phase space and n, q for the position and quasimomentum states

of the lattice. We observe that the Wigner function in (6.4) restricted to even

values of m is equivalent to the straightforward discretization from (6.1).

Although the periodicity of A(m, k) is now 2π, it is important to notice that

not all the operators are independent. Indeed, A(m, k ± π) = (−1)mA(m, k),

from which it follows

W (m, k ± π) = (−1)mW (m, k). (6.5)

It is easy to check that the definition (6.4) fulfills the main properties we

require from a valid Wigner function. In particular it is real, as follows from the

Hermiticity of (6.3). The inner product property (3) is also easy to check, given

operators Â and B̂,

2π
∞∑

m=−∞

∫ −π

+π

dkWA(m, k)WB(m, k) = tr
(
ÂB̂
)
, (6.6)

In a very similar way, we obtain the explicit expression of the density operator

in terms of the Wigner function,

ρ = 2π
∑
m

∫ +π

−π

dkW (m, k)A(m, k). (6.7)

Due to the relation (6.5), the orthogonality relation between phase-point op-

erators adopts the following form,

tr⟨A(m1, k1)A(m2, k2)⟩ =
1

4π
δm1m2⟨δ(k1 − k2) + (−1)m1Θ(k2)δ(k1 − k2 + π)⟩.

+(−1)m1Θ(−k2)δ(k1 − k2 − π),(6.8)
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where Θ(k) is the Heaviside step function. To obtain this relation we made use of∑
n e

ink = 2π
∑

r δ(k+2πr), where the sum runs over all r ∈ Z. Eq. (6.8) reflects

the fact that operators associated to phase space points whose k coordinate is

shifted by π are not independent, but differ only in a phase.

We may also compute the marginal distributions of (6.4), and obtain

+∞∑
m=−∞

W (m, k) = 1
a ⟨

k
a |ρ|

k
a ⟩, (6.9)

and ∫ +π

−π

dkW (m, k) =
∑
n

δm,2n⟨n|ρ|n⟩. (6.10)

The last equations make evident the distinction between the coordinates of the

momentum space points, m ∈ Z, k ∈ [−π, π[, and the position and quasimo-

mentum bases, | n⟩, | q⟩. The k coordinate is adimensional and does not directly

represent a momentum value, but is connected to q = k/a. The spatial label m in

phase-space is only connected to a discrete position, s, for even values , m = 2s,

while the odd values of m are analogous to the odd half-integer phase space grid

points in [122, 124].

Keeping these considerations in mind, we can take the continuum limit that

transforms our discrete lattice into real space. This limit is attained by letting

a → 0, with na → x ∈ R. With this prescription, we can easily see that the

continuum limit of Eq. (6.4) yields (up to a proportionality factor) the proper

continuum Wigner function,

W (m, k) →
a→0

1

2
Wc(y =

ma

2
, q =

k

a
) =

1

2π

∫ +∞

−∞
dz⟨ma

2
+ z | ρ | ma

2
− z⟩e−i2z k

a , (6.11)

as can be checked from the definition (5.1) after a simple change of variable.

Together with the discussion above, this result shows how the proper contin-

uum limit is attained in the phase space coordinates. Indeed, as the spacing

is decreased, ma
2 → x and k

a → q. The Wigner function is a quasi-probability

distribution, and the physically meaningful quantities are given by integrals over

the phase space. The measure of the integration must be modified according to

this change of variables, so that we obtain the correspondence, for the integral

over any region of the phase space,
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6.3 Non-classicality of states: negativity of the Wigner function

∑∫
dkW (m, k) −→

a→0

∫
dy

∫
dqW (y, q). (6.12)

6.3 Non-classicality of states: negativity of the

Wigner function

The fact that the Wigner function is not positive definite over the phase space

is interpreted as a quantum feature, since it follows from the incompatibility

of quantum observables. This property has been applied to separate quantum

states from classical ones. In the continuous case, it is known that the only

pure states with non-negative Wigner function are Gaussian states [132]. The

classification is not so clear for mixed states, where nevertheless some bounds are

known for states with positive Wigner function [133]. From a quantitative point

of view, the volume of the negative part of the Wigner function can be used as

a measure of non-classicality [109]. More recently, it has been shown that the

smallest distance to a state with positive Wigner function can also be used to

measure the non-classicality of a state, without needing full tomography [134].

In the context of discrete systems the negativity of the Wigner function has also

been explored, but the different prescriptions discussed in the previous section

lead to different conclusions. For the direct discretization, a discrete version of

Hudson’s theorem was proven by Gross [135, 136] for the case of a Hilbert space

with odd dimension. In that case the only pure states with non-negative Wigner

functions are stabilizer states. For the class of discrete Wigner functions defined

as in [118] a characterization was given in [137], where the set of non-negative

states was identified with the convex hull of stabilizer states when the Hilbert

space dimension was small. Another scenario studied in the literature, which

closely relates to our construction, is that of a pair of quantum variables, angular

momentum and angle, and their associated phase space [127, 128] which has the

same mixed discrete continuous structure of (6.1). For that case, it has been

shown that the only states with non-negative Wigner functions are those of well

defined angular momentum.

For the situation studied in this thesis, a similar reasoning to that in [127]

leads to the conclusion that a pure state has a non negative Wigner function if

and only if it is a state of well defined position in the lattice, i.e. the components

of the state vector in the position basis are given by a delta function (see the

section 6.4.1 for details).
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6 Wigner function for a particle in an infinite lattice

With our definition, however, phases (6.5) imply that any state with a non-

vanishing Wigner function on some phase space point with odd-valued position-

like coordinate, W (m = 2s + 1, k) ̸= 0, will necessarily have a contribution of

opposite sign at points (m, k±π). These signs are fundamental in order to ensure

that the Wigner function reproduces the momentum and position probability

distributions, but are not related to the quantumness of the different states.

Therefore a naive calculation of the volume of the negative part of the function,

i.e. applying the discrete version of the definition in [109], will not be a valid

measure of non-classicality, as it would result in a non-vanishing value even for

states expected to be classical, such as the discrete version of Gaussian states.

A similar phenomenon has been observed in different contexts. In the field

of signal analysis, where Wigner functions have also been widely employed, the

discrete time Wigner distribution shows similar features, which are related to

aliasing [138], and various alternative definitions have been proposed to construct

alias-free distributions, and to allow a reconstruction of the continuum time signal

from a discrete sample. In the context of finite dimensional quantum systems, a

proposal for a ghost free Wigner function was put forward in [139]. In all such

cases, the negative values of the Wigner function respond to the very structure of

the discretized phase space and not to the features of the state or the signal. We

would thus like to define a new quantity which serves to estimate non-classicality

of states in our system, and allows for a connection to the well-defined continuum

limit. In particular, we expect that this non-classicality measure vanishes for all

Gaussian states, so as to reproduce the well-known continuum limit, and that

it does not include the spurious negative parts from the extended phase space.

Notice that these criteria can be considered necessary, but not sufficient for a

sensible definition of such measure.

The definition (6.4) leads to a discrete Wigner function which contains two

images, one in each half of the momentum domain. According to (6.5), they

have the same magnitude, but on odd position-like coordinates m, their sign is

reverted, as can be seen in (6.3) for the case of a pure Gaussian state. Although

in the continuum limit (6.4) reduces to the original expression for the Wigner

function, and the second, ghost image disappears, we would like to have a quantity

that characterizes the non-classicality of discretized states. In particular, we

require that the criterion is consistent with that for the analogous continuous

states, in the cases when such exist.

The so-called ghost image exhibits alternating signs between even and odd

space-like coordinates (see, for instance 6.4a), while the regular image is smooth.
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6.4 Particular cases

In the continuum limit, a single value x corresponds to a pair of even and odd

discrete values of the space-like coordinate in the phase space, and the oscillating

image vanishes. We would thus like to use as a measure of the non-classicality

the negativity restricted to the regular image. However its position in the phase

space plane is not fixed, but changes with momentum shifts. A momentum

displacement, q0, translates into a displacement q0a in the k coordinate. As the

lattice spacing vanishes the regular image lies on the central region of the phase

space, while the ghost image is pushed towards the edge, which in the continuum

is mapped to infinity.

Instead of trying to locate the regular image, so as to restrict the sum to

the corresponding phase-space region, we may apply a filter that eliminates the

spurious sign oscillations from odd values of m, and effectively produces two

copies of the regular image. We thus define the following quantity,

η(ρ) ≡
+∞∑

m=−∞

∫ +π

−π

dk
[
|W (s)(m, k)| −W (s)(m, k)

]
, (6.13)

where W (s) is the result of filtering out the sign oscillations for odd m. If the

filtering is perfect, in the continuum limit η(ρ) will yield twice the negativity of

the Wigner function as defined in [109].

Different filtering operations can be tried to this aim. In particular, we propose

to use a sign-averaged Wigner function, defined by

W (s)(m, k) ≡
{
W (m, k) m even

χ(m, k)|W (m, k)| m odd,
(6.14)

with χ(m, k) = sign[2 sign(W (m− 1, k)) + sign(W (m, k)) + 2 sign(W (m+ 1, k))],

i.e. the even components are unchanged, and the sign of the odd ones is corrected

according to a majority criterion that takes into account the sign of the two closest

neighboring even points 1. This produces approximately two copies of the regular

image (see 6.4b), so that η(ρ) is equivalent to twice the negativity restricted to

the half space where this image is supported.

6.4 Particular cases

To illustrate the definitions introduced in the previous sections, we explicitly

compute here the Wigner functions and negativities for several pure states.

1 The factor 2 takes care of the situation when one of the adjacent even points has vanishing

W (m, k).
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6 Wigner function for a particle in an infinite lattice

6.4.1 Localized state

We may consider the simplest case, in which the position of the particle is well

defined, |Ψδ⟩ = |n0⟩, so that, in position basis, ⟨n|Ψδ⟩ = δnn0 . The Wigner

function can then be computed exactly,

Wδ(m, k) =
1

2π
δm 2n0 . (6.15)

This function, represented in figure 6.2, is non-negative everywhere, so that

η(δ) = 0.

As a mentioned before, the only state with positive Wigner function is a delta

function. The following proof this affirmation. Analogous to the result in [127]

for a conjugate pair of angle and angular momentum variables, with the present

definition the Wigner function of a pure state is non negative if and only if it is

an eigenstate of the discrete position operator, i.e. ⟨n|Ψ⟩ = δnn0 . The first part

of the theorem is trivial, since the Wigner function of a localized state (6.15) is

non negative.

To show the converse, let us assume a pure state with non-negative Wigner

function, W (m, k) ≥ 0, ∀m ∈ Z, k ∈ [−π, π[. From 6.5 it follows that the Wigner

function can only be non-vanishing on points of the phase space with even space-

like coordinate, m = 2n,

W (2n+ 1, k) = 0 ∀n ∈ Z. (6.16)

The rest of the demonstration follows closely that in [127], and we sketch it

here only for completeness, with the proper modifications to match the definition

in (6.4).

The proof relies on the following two lemmas, proven in [127], for complex

periodic functions and their (discrete) Fourier transform.

1. Let g(q) be a continuous, complex, 2π−periodic function. If its Fourier

transform is non-negative, then the integration kernel g(q − q′) is non-

negative.

2. Given a function f : Z → C, if its inverse Fourier transform has constant

modulus, then
∑

n∈Z f(n)f∗(n+m) = 0, ∀m ̸= 0.

It is easy to see that, for a pure state, the Wigner function can be written as

W (m, k) =
1

2π

∫ π/a

−π/a

dqeiqmaψ̃(k
a + q)ψ̃∗(k

a − q) (6.17)

128



6.4 Particular cases

where ψ̃(k) = ⟨k|ψ⟩ are the components of the state in the quasi-momentum basis.

It is thus the Fourier transform of the function g(q) = 1
a
√
2π
ψ̃((k + q)/a)ψ̃∗((k −

q)/a). From lemma 1,
∫ π

−π
dq′χ∗(q)g(q − q′)χ(q′) ≥ 0 for any χ. In particular,

requiring the inequality for all functions χ(q) = a1δ2π(q − c1) + a2δ2π(q − c2),

where δ2π(q) ≡
∑

r∈Z δ(q − 2rπ), a1,2 ∈ C, c1,2 ∈ R, implies

|ψ̃(q)|2 ≥ |ψ̃(q + ∆)||ψ̃(q − ∆)|, ∀∆ ∈ R, q ∈ [−π
a ,

π
a [. (6.18)

This requires that |ψ̃(q)| is constant, so that also |g(q)| must be constant. Ap-

plying now lemma (2)∑
j

W (m, k)W (m+ j, k) = 0 ∀j ̸= 0. (6.19)

So that, for a given value of k, there can at most be a single space-like component,

m0(k), for which the Wigner function does not vanish. Combining this with

(6.16), we obtain that such component must be even, m0(k) = 2n0(k), so that,

using normalization, W (m, k) = 1
2π δm,2n0(k).

It only remains to be shown that this component is the same for all values of

k. This can be seen, as in [127], by making use of the expression for the Wigner

function for a product in terms of individual Wigner functions,

Wϱ2ϱ1(m, k) =
1

2π

∑
m1,m2

∫ π

−π

dk1

∫ π

−π

dk2Wϱ1(m+m1, k + k1)

Wϱ2(m+m2, k + k2)ei(m2k1−m1k2). (6.20)

In particular, taking ρ1 = ρ2 ≡ ρ, the pure state we are considering, for which

W (m, k) = 1
2π δm,2n0(k), and looking at the (real) component for m = 2n0(0) ≡

2n0, k = 0,

4π2 =

∫ π

−π

dk1

∫ π

−π

dk2 cos (2k2[n0(k1) − n0] − 2k1[n0(k2) − n0]) . (6.21)

To fulfill this equality, the argument of the cosine has to be an integer multiple

of 2π for all values of k1,2, which is only possible if n0(k) = n0 ∀k, and thus

W (m, k) =
1

2π
δm,2n0 . (6.22)

Using 6.7 it is easy to show that the pure state corresponding to this Wigner

function is |Ψδ⟩ = |n0⟩.
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6 Wigner function for a particle in an infinite lattice

Figure 6.2: Wigner function for a state localized at the origin n0 = 0, assuming

a = 1. Notice that a plane projection of the phase space is repre-

sented, although it is periodic in k, and the edges k = ±π have to be

identified.

6.4.2 Gaussian state

In the case of continuous degrees of freedom, Gaussian states play a fundamental

role. In particular, pure Gaussian states are the only pure states with non nega-

tive Wigner function [132]. It makes then sense to consider the discretization of

a state Ψ(x) = 1

(σ
√
π)

1
2
e−

(x−x0)2

2σ2 eiq0x, namely |ΨG⟩ = 1
N

∑
n e

− (n−n0)2

2σ2 eiq0na|n⟩,
for n0 ∈ Z being σ ≡ σ/a the width measured in units of the lattice spacing. The

correct normalization in the discrete case, N2 =
∑

n e
− (n−n0)2

σ2 ≡ θ3(0, e−
1
σ2 ), is

expressed in terms of the Jacobi theta function, defined as θ3(z, q) ≡
∑

n q
n2

e2izn

for complex arguments q, z, with |q| < 1 [140].

The Wigner function for this state can also be computed exactly,

WG(m, k) =
1

2π
ei(k−q0a)me−

(m−n0)2+n2
0

2σ2
θ3(k − q0a+ i m

2σ2 , e
− 1

σ2 )

θ3(0, e−
1
σ2 )

, (6.23)

and shown in figure 6.3 for the particular case σ = 2, n0 = 0, q0 = 0. The figure

shows clearly the regular image, centered around k = 0, and the ghost image,

exhibiting the sign oscillations on odd sites. If we consider instead a displaced

Gaussian, with q0 ̸= 0, the whole figure is correspondingly shifted in momentum

space, as shown in figure 6.4a. To illustrate the meaning of the sign-averaged

function defined in (6.14), we also plot it in figure 6.4b for this state. Obviously,

η(ΨG) = 0 for any pure Gaussian state.
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6.4 Particular cases

Figure 6.3: Wigner function for a discretized Gaussian state with σ = 2, q0 = 0

and n0 = 0, taking a = 1.

Figure 6.4: Wigner function (top) for a discretized Gaussian state identical to

that in (6.3) with a displacement in momentum q0a = π/3. On the

bottom, the sign-averaged Wigner function (6.14).

131



6 Wigner function for a particle in an infinite lattice

The cases discussed above are limited to pure states. Indeed, in the continuum

case, also mixed Gaussian states have a non-negative Wigner function. We have

also studied numerically the discretized version of a general single-mode Gaussian

state in coordinate representation [141],

⟨n | ρG | n′⟩ =
1

NρG

e
−a
2 n2− a∗

2 n′2+cnn′
, (6.24)

where NρG
= Θ3(0, e−Re(a)+c). For this state the Wigner function reads

WρG(m, k) =
1

2πΘ3(0, e−Re(a)+c
)eikme

−a∗2
2 Θ3(k+i(a∗+c)

m

2
, e−Re(a)−c). (6.25)

We computed the value of η for varying parameters a, c and found no state with

η different from zero, within the numerical precision of our calculation. Although

the study is not exhaustive, and there could still exist some mixed Gaussian state

for which the non-negativity property is not satisfied in the discrete case, it serves

as an additional consistency check for the proposed measure.

6.4.3 Superposition of deltas

The Gaussian case has vanishing negativity, as expected from its correspondence

in the continuum limit. It actually includes the case of a localized state, too,

which can be interpreted as a Gaussian in the limit of a vanishing width, σ.

Superpositions of such states will instead have more quantum features.

We may in particular consider an arbitrary superposition of two localized

states, such as |Ψ2δ⟩ = 1√
1+|α|2

∑
n (δnn1 + αδnn2) |n⟩, for any n1 ̸= n2 ∈ Z

and α ∈ C. The corresponding Wigner function can be easily calculated,

W2δ(m, k) =
1

2π(1 + |α|2)

{
δm,2n1 + |α|2δm,2n2 + 2|α|δm,n1+n2 cos[∆n k + ϕ]

}
,

(6.26)

where ϕ is the phase of the complex coefficient α, and ∆n = n2 − n1. In this

case, the Wigner function vanishes everywhere except for three particular values

of the space-like phase space coordinate, namely m = 2n1, 2n2, n1 + n2. Figure

6.5 shows the particular case of n1 = −n2 = 4, α = 1.
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6.4 Particular cases

Figure 6.5: Wigner function for the superposition of two deltas located at n1 =

−n2 = 4, assuming lattice spacing a = 1. The function vanishes ev-

erywhere except on three isolated strips, colored purple in the figure.

It is easy to see that W
(s)
2δ (m, k) = W2δ(m, k), since none of the terms changes

sign under (6.14). Indeed, the first two terms are non-vanishing only on even

values of m, while the last term can be supported on odd m if n1 and n2 have

different parity, but in that case, W2δ(m± 1, k) = 0. Therefore, we can analyti-

cally compute the quantity 6.13 as

η(Ψ2δ) =
∑
m

∫ π

−π

[|W (m, k)| −W (m, k)]dk

=
|α|

π(1 + |α|2)

∫ π

−π

dk [| cos(∆nk + ϕ)| − cos(∆nk + ϕ)]

=
4|α|

π(1 + |α|2)
, (6.27)

independent of the separation between the localized states, ∆n, and reaching its

maximum value, ηmax(Ψ2δ) = 2/π, for |α| = 1.

6.4.4 Superposition of Gaussian states

Another family of states for which the Wigner function defined above can be

computed analytically is that of superpositions of pure Gaussian states. We may

consider an arbitrary superposition of two discretized pure Gaussian states,

|Ψ2G⟩ =
1

N
∑
n

{
e
− (n−n1)2

2σ2
1 eiq1na + αe

− (n−n2)2

2σ2
2 eiq2na

}
|n⟩, (6.28)
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6 Wigner function for a particle in an infinite lattice

for arbitrary n1,2 ∈ Z, q1,2 ∈ [−π/a, π/a[ and α ∈ C. For such state, the Wigner

function can be expressed as a sum

W2G = W1 + |α|2W2 + αW12 + α∗W21, (6.29)

where W1 and W2 are (up to the normalization factor) equivalent to the Wigner

function of a single Gaussian (6.23), while W12 and W21 contain the crossed

terms,

W12(m, k) =
1

πN 2
ei(k−q2a)me

− n2
1

2σ2
1 e

− (m−n2)2

2σ2
2

×θ3

(
k − a q1+q2

2 + i
(

m−n2

2σ2
2

+ n1

2σ2
1

)
, e

−σ2
1+σ2

2
2σ2

1σ2
2

)
, (6.30)

and W21 = W12(1 ↔ 2).

In the symmetric case, α = 1, n1 = −n2 ≡ n0, σ1 = σ2 ≡ σ, q1 = q2 = 0, the

above expression adopts the compact form

W2G(m, k) =
eikm

πN 2
e−

m2

2σ2

{
e−

n2
0

σ2 cosh
mn0

σ2
+ cos(2kn0)

}
× θ3

(
k + i

m

2σ2
, e−

1
σ2

)
,

with N 2 = 2(1 + e−n2
0/σ

2

)θ3(0, e−1/σ2

). Using the properties of the θ3 function,

we can further simplify the expression, so that, for even m = 2s,

W2G(2s, k) =
e−

s2

σ2

πN 2
θ3(k, e−

1
σ2 )

{
e−

n2
0

σ2 cosh
2sn0
σ2

+ cos(2kn0)

}
, (6.31)

and for odd m = 2s+ 1,

W2G(2s+ 1, k) =
eik

πN 2
e−

(s+1/2)2

σ2 e−
1

4σ2 θ3(k +
i

2σ2
, e−

1
σ2 )

×
{
e−

n2
0

σ2 cosh
(2s+ 1)n0

σ2
+ cos(2kn0)

}
. (6.32)
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Figure 6.6: Wigner function (top) for the symmetric superposition of two Gaus-

sian states with center in ±n0, for n0 = 6, and width σ = 1.5, assum-

ing lattice spacing a = 1. The bottom panel shows the sign-averaged

W (s), for comparison.

In the limit σ → 0, (6.31) results in the expression for the superposition of two

localized states discussed in the previous section, while (6.32) vanishes.

Figure 6.6a shows the full Wigner function for the particular case n0 = 6,

σ = 1.5. The central part, around k = 0, corresponds to the regular image,

showing the usual Gaussian peaks and a central interference region. This survives

in the continuum limit, giving rise to a genuine negativity. The ghost image in

this case lives on the half phase-space with larger momenta, and exhibits the

characteristic sign oscillation when moving along the space-like axis. The sign

average defined in (6.14) transforms this image in a copy of the genuine one, as

shown in figure 6.6b, so that η(Ψ2G) will be twice the negativity of the regular

image.

Although there is no closed analytical expression for the non-classicality η(Ψ2G),
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6 Wigner function for a particle in an infinite lattice

even in the simplest case discussed above, we can compute it numerically, as

shown in figure 6.7a for the symmetric superposition of two Gaussian states of

the same width, centered at ±n0 and with momentum displacements, q1 = 0 and

q2 ≡ q0. As shown in the plot, η vanishes only for n0 = 0 and q0 = 0, π, when

the situation reduces to a single Gaussian. For small distances, 2n0, the value of

η depends on n0 and q0, while for larger separations it becomes less sensitive to

q0, and soon enough it reaches its maximal value, and stays constant. As shown

in figure 6.7b, this asymptotic value is sensitive to the Gaussian width only when

the latter is comparable to the lattice spacing. When σ is large enough, instead,

the asymptotic negativity is constant. In the limit σ → 0, on the other hand, the

negativity for a superposition of two deltas is recovered.
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Figure 6.7: Negativity of a superposition of two discretized Gaussian states of the

same width. The left plot shows the case σ = 1.2, as a function of

their half-distance, n0, and the relative momentum displacement, q0,

taking a = 1. On the right, we show the asymptotic value reached

for varying width, σ.
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6.5 Definition of the Wigner function in the infinite

discrete lattice for a particle with spin

We are interested in the phase space description of a spin 1/2 particle that is

allowed to move on an infinite 1D lattice. A paradigmatic example is the quantum

walk, where a particle moves along the sites of a 1D lattice.

We now would like to incorporate the additional degree of freedom arising from

the spin of the particle. As discussed previously, there are different approaches in

the literature to describe finite dimensional Hilbert spaces, such as the spin of a

particle. One can combine both degrees of freedom (spin and spatial) by a tensor

multiplication of the corresponding point operators, as done in [142] for angular

momentum and spin states. Our choice consists in defining a Wigner function

matrix as already introduced in [143] ( a similar treatment is made in [144]).

We consider the Hilbert space H = Hl ⊗ Hs, where Hl stands for the motion

on the lattice, and Hs describes the spin states. The composed Hilbert space is

spanned by the basis | n, α⟩ ≡| n⟩⊗ | α⟩; with n ∈ Z and α ∈ 0, 1 designate the

eigenvectors of the σz Pauli matrix (these states might also correspond to the

computational basis of a qubit, or to the levels of a two level system). Following

similar steps to [143], we introduce the following definition for the Wigner matrix

Wαβ(m, k) ≡ 1

2π

∑
n

⟨n, α|ρ|m− n, β⟩e−i(2n−m)k. (6.33)

We then have a set of four functions Wαβ(m, k), α, β = 0, 1 forming a 2 × 2

matrix. Each function, as before, is defined on the phase space of points (m, k),

with m ∈ Z, and k takes values in [−π, π[. A similar definition can be made for

any operator O acting on H:

WO
αβ(m, k) ≡ 1

2π

∑
n

⟨n, α|O|m− n, β⟩e−i(2n−m)k. (6.34)

Unlike the spatial variables, where the relationship with phase space points is non

trivial, there is a direct correspondence between spin indices in the state of the

system and indices in the matrix Wigner function. This implies that operations

on the spin space, such as rotations, change of basis or interactions with a spin-

dependent force, as studied below, become more transparent using the matrix

Wigner function than other kind of representations for the spin. Moreover, the

definition Eq. (6.33) keeps a closer analogy, for pure states, to the relativistic

Wigner function used in Quantum Field Theory. For such states one has ρ =
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6 Wigner function for a particle in an infinite lattice

|Ψ⟩ ⟨Ψ| and we can write

Wαβ(m, k) ≡ 1

2π

∑
n

Ψα(n)Ψ∗
β(m− n)e−i(2n−m)k (6.35)

with Ψα(n) ≡ ⟨n, α |Ψ⟩. In the continuum limit, the functions Ψα(n) can be

interpreted as the components of a Pauli spinor or a Dirac spinor. In this case,

Eq. (6.35) can be related to the relativistic Wigner function already mentioned.

Some of the properties discussed in section 6.2, can be easily generalized for

the matrix Wigner function.

• We have

Wβα(m, k) = W ∗
αβ(m, k), (6.36)

which implies that the matrix Wigner function in Hermitian.

• The normalization condition becomes∑
α

∑
m

∫ +π

−π

dkWαα(m, k) = 1. (6.37)

• Also,

Wαβ(m, k ± π) = (−1)mWαβ(m, k). (6.38)

• Given two operators C, D and their corresponding Wigner matricesWC
αβ(m, k),

WD
αβ(m, k) one has

2π
∑
α,β

∞∑
m=−∞

∫ +π

−π

dkWC
αβ(m, k)WD

βα(m, k) = tr (CD) . (6.39)

• A complete knowledge of the Wigner function can be used to reconstruct

the density operator ρ:

⟨α|ρ|β⟩ = 2π
∑
m

∫ +π

−π

dkWαβ(m, k)A(m, k). (6.40)

• The marginal distributions of (6.33) are related to matrix elements of the

density operator

+∞∑
m=−∞

Wαβ(m, k) = 1
a ⟨

k
a , α|ρ|

k
a , β⟩, (6.41)
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and ∫ +π

−π

dkWαβ(m, k) =
∑
n

δm,2n⟨n, α|ρ|n, β⟩. (6.42)

As already discussed in section 6.2, these equations reflect the distinction be-

tween the coordinates of the phase space points, m ∈ Z, k ∈ [−π, π[, and the

position and quasimomentum bases, n, q. The k coordinate is adimensional and

does not directly represent a momentum value, but is connected to q = k/a. The

spatial label m in phase-space is only connected to a discrete position, s, for even

values, m = 2s, while the odd values of m are analogous to the odd half-integer

phase space grid points in [122, 124].

6.6 Particular cases

In order to obtain some insight about the characteristics of the matrix Wigner

function Eq. (6.33), we will give the explicit form it takes for some particular

cases.

6.6.1 Product state

We start by considering a product state of spatial and spin degrees of freedom

ρ = ρL ⊗ ρS , (6.43)

where ρL represents a general state on the lattice, and ρS is an arbitrary spin

state. In this case, we readily obtain

Wαβ(m, k) = WL(m, k)⟨α|ρS |β⟩, (6.44)

with

WL(m, k) ≡ 1

2π

∑
n

⟨n|ρL|m− n⟩e−i(2n−m)k. (6.45)

6.6.2 Superposition of two deltas

Let us consider the Wigner function for the state formed by a superposition of

two localized states at lattice sites |n1⟩ and |n2⟩ with n1 ̸= n2 ∈ Z

| Ψ2δ⟩ =
1√

1+ | α |2
(|n1⟩ | 0⟩ + α |n2⟩ | 1⟩), (6.46)
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6 Wigner function for a particle in an infinite lattice

where α is an arbitrary complex number that represents the relative weight of

the state |n2⟩. For α = 1 we obtain a Schrödinger-cat state. The corresponding

Wigner function can be easily calculated. Written in matrix form in the above

spin basis,

W (m, k) =
1

2π(1+ | α |2)

(
δm,2n1 α∗e−ik(n1−n2)δm,n1+n2

αeik(n1−n2)δm,n1+n2 | α |2 δm,2n2

)
(6.47)

In this case, the Wigner matrix is zero everywhere except for three particular

values of the space-like phase coordinate, m = 2n1, 2n2, n1 + n2. It is inter-

esting to compare the structure provided by Eq. (6.47) with the corresponding

superposition of two localized states without spin, given by

| Ψno spin
2δ ⟩ =

1√
1+ | α |2

(|n1⟩ + α |n2⟩). (6.48)

In that case, the Wigner matrix is a scalar function

Wno spin
2δ (m, k) =

1

2π(1 + |α|2)

{
δm,2n1 + |α|2δm,2n2

+2|α|δm,n1+n2 cos[∆n k + ϕ]} , (6.49)

where ϕ is the phase of the complex coefficient α, and ∆n = n2−n1. One observes

the different terms in (6.49) appear distributed on different matrix positions in

Eq. (6.47). In particular, the out of diagonal term in (6.47) corresponds to the

interference, oscillating term in (6.49). This term plays an interesting role related

to the non positivity of the Wigner function. We will return to this point later.

6.6.3 Superposition of two Gaussian states

The superposition of two discretized pure Gaussian states with orthogonal spin

components is another interesting state for which the Wigner matrix defined in

this thesis can be computed analytically. Such a state is defined as

|Ψ2G⟩ =
1√
2N

∑
n

{
e−

(n−a)2

2σ2 | 0⟩ + e−
(n−b)2

2σ2 | 1⟩
}
|n⟩, (6.50)

for arbitrary a, b ∈ Z, σ ∈ R+. For such state, the Wigner function can be

expressed as a matrix in the same {|0⟩ , |1⟩} basis
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6.7 Negativity

W (m, k) =
1

2

(
Wa(m, k) Wab(m, k)

W ∗
ab(m, k) Wb(m, k)

)
(6.51)

where

Wl(m, k) =
1

2πN 2
e−

l2+(m−l)2

2σ2 eikmθ3(k +
im

2σ2
, e−

1
σ2 ), l = a, b (6.52)

Wab(m, k) =
1

2πN 2
e−

a2+(m−b)2

2σ2 eikmθ3(k +
i(m− b+ a)

2σ2
, e−

1
σ2 ) (6.53)

with N =

√
θ3(0, e−

1
σ2 ) the normalization constant. The Jacobi theta func-

tion θ3(z, q) is defined as θ3(z, q) ≡
∑

n q
n2

e2izn for complex arguments q, z,

with |q| < 1 [140]. As in the previous example, we find an important difference

with the Wigner function for the case without spin, since the components in the

scalar function appear here distributed as the components of the matrix Wigner

function. In the limit a = −b ≫ σ with σ → 0 we recover the result for the two

deltas (6.47) corresponding to the case n1 = −n2 = a and α = 1.

Figure 6.8 shows the four components of the Wigner matrix for a two-Gaussian

state, as given by Eqs. (6.51-6.53). One can immediately observe on each com-

ponent the presence of a secondary image that reflects the property Eq. (6.5)

discussed for the definition for a spinless particle.

6.7 Negativity

We previously discussed that in the context of continuous variables, it is well

known that the Wigner function may present some zones in phase space where

it is negative. This is interpreted as an indication of quantumness, in the sense

that the state would not have a classical analogous.

The positive character of the Wigner function has also been studied for discrete

systems. In the finite dimensional case, and for odd dimension, Gross showed

[135] that the only pure states with positive Wigner function are stabilizer states.

The presence of negative values in the Wigner function has been in this case

connected to a quantum resource, related to a possible quantum speedup [121,
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6 Wigner function for a particle in an infinite lattice

Figure 6.8: Matrix components of the Wigner function for two Gaussians, as given

by Eqs. (6.51-6.53). Panel a) represents Wa(m, k), panel b) is the

real part of Wab(m, k), while the imaginary part is plotted on panel

c). Finally, panel d) shows the Wb(m, k) component. In these plots,

a = −b = 6 and σ = 1.5.
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6.7 Negativity

137] or the non-simulability of certain quantum computations involving states

with non-positive Wigner function [145, 146].

In the case of spin 1
2 , the Wigner function defined by Wootters [117] has been

used to establish a separability criterion for a system of two particles [147]. A

connection between entanglement and negative Wigner functions was established

also in [134] for two particles in a continuous space, when the state is a hyperradial

s-wave.

We have studied in the previous section 6.3 that even without the additional

degree of freedom, the discreteness of the Hilbert space causes the appearance of

spurious negative terms in the Wigner function, which do not correspond directly

to non-classical features of the state, but are due to the structure of the discrete

phase space itself. Nevertheless, we have [148] introduce a modified negativity

measure which excludes such negative contributions and contains information

about the quantumness of the states, consistent with the continuum limit.

The discussion above indicates that the meaning of a negativity measure will

strongly depend on the definition used for the Wigner function and on the char-

acteristics of the system. It is nevertheless worth investigating what the natural

extension of the negativity will be when we consider a particle in a discrete lattice

and include the spin degree of freedom.

Obviously, if we start with our definition (6.33) and trace the spin, we are

left with a scalar Wigner function representing the state of the spatial degree of

freedom, which in general will be mixed. To this function we can immediately

apply the definition of negativity discussed in 6.3. Our purpose, however, is to

define a negativity η(ρ) that preserves some spin information.

An alternative is to define a negativity for the Wigner function with spin, as

introduced in [149],

η(ρ) =
∑
n

∫ π

−π

[||W (m, k) ||1 −Tr(W (m, k))]dk =
∑
n

∫ π

−π

||W (m, k) || dk − 1,

(6.54)

where || A ||1≡ Tr
√
A†A is the trace norm of matrix A, and the second equality

follows from normalization. We can easily check that this quantity fulfills the

following desirable properties

1. It reduces to Eq. (6.13) for product states in the continuum limit, with

Wc(x, p) obtained from WL(m, k) (see 6.44);

2. It is invariant under rotations in spin space.
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6 Wigner function for a particle in an infinite lattice

The first property is also satisfied by the negativity computed after tracing out

the spin.

The second property, on the other hand, can be illustrated with the following

example. We consider an electron, subject to an external magnetic field. To

simplify, the electron is confined to a site on the lattice, so that its state is

factorisable. The effect of the magnetic field manifests on the precession of the

spin, which continuously changes the spin state of the electron. This property

ensures that the value of the negativity is not influenced by the precession. In

other words, simply changing the spin direction will not alter the negativity

properties of the Wigner matrix. Notice that, for some alternative definitions

of the Wigner function for a particle with spin [117], the function can contain

negative values in the phase space for some states, while being completely positive

for other states.

We can further explore the significance of the definition (6.54) by considering

different examples. We may then investigate, as in [147], whether this quantity

holds information about the entanglement in the state.

We start by analysing the cat state, | ψ⟩ = 1√
1+|β|2

(| a⟩ |σ1⟩ + β | b⟩ | σ2⟩)
where a, b ∈ Z label two different sites on the lattice, β ∈ C is a constant, and

{|σ1⟩ , |σ2⟩} are two arbitrary, orthogonal spin states. The negativity of this state

takes the form: η = 2|β|
1+|β|2 . It is easy to check that in this case the entanglement

and the negativity have the same behavior.

However, this is not a generic behavior, as illustrated by the Werner state [150],

ρ = 1−z
4 I + z | ψ⟩⟨ψ |, where | ψ⟩ = 1√

2
(| a⟩ | 0⟩+ | b⟩ | 1⟩ and a, b ∈ Z label

two different sites on the lattice. This state is entangled whenever z ≥ 1
3 . The

Wigner matrix for this state takes the form

W (m, k) =

(
1+z
4 Waa(m, k) + 1−z

4 Wbb(m, k) z
2Wab(m, k)

z
2Wab(m, k) 1−z

4 Waa(m, k) + 1+z
4 Wbb(m, k)

)
,

(6.55)

with the definition Wln(m, k) = 1
2π δm,l+ne

−ik(l−n) and l, n ∈ {a, b}. The corre-

sponding negativity is simply η(ρ) = z. This result implies that for these states,

entanglement and negativity are not correlated.

Another scenario where this quantity might carry a clear physical meaning

can be found in the context of decoherent dynamics. Indeed, we will show in

section 7.3 how for some simple models, the negativity (6.54) keeps track of the

disappearance of coherence due to dissipation.

Although it is obvious from this discussion that in the presence of spin the

negativity does not have the clear unique physical meaning it has in the purely
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6.7 Negativity

spatial case (either continuous or discrete), the quantity η introduced here may

be useful to characterize some features of the quantum state or the dynamics,

specially when the study is restricted to particular families of states. The topic

is nevertheless far from being closed, and could be the subject of further debate.
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7 Dynamics in the discrete Wigner

function

The Wigner function formalism can be used, not only to allow for a description of

a given state, but also to analyze the dynamics, and to visualize it in phase space.

Our purpose is to study the motion of a particle on a lattice in terms of the cor-

responding Wigner function. We start from the simplest case, which corresponds

to the spinless particle, and then move to a more general situation,where a parti-

cle with spin may be subject to a spin-dependent potential. The time evolution

will be first considered with continuous time, a situation that can be applied to

most problems in physics, and can be described by the Von Neumann equation.

This equation of motion can be generalized for the Wigner matrix and we solve

this equation in some simple cases. Finally, we study the effect of decoherence

for the system we are studying. We show how one can make use of the Wigner

matrix to investigate the dynamics that appear in some discrete time problems,

and consider the particular example of the quantum walk. As before, we show

the effect that decoherence may have on such problems.

7.1 Dynamics for a particle without spin in

continuous time

Let us consider a spinless particle moving on a lattice under the influence of a

potential V that depends on the lattice site. We concentrate on the following

Hamiltonian

H = J(T+ + T−) + V, (7.1)

that appears as a consequence of the tight-binding approximation in crystals,

where the parameter J is a characteristic of the system which is related to the

hoping probability of an electron to the nearest neighbor, and the displacement

operators T± are defined by T± | n⟩ =| n± 1⟩. Notice that the Hamiltonian (7.1)
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7 Dynamics in the discrete Wigner function

can also be considered as a discretized version of

Hcont = − ∇2

2M
+ V (x) (7.2)

(with M the mass of the particle) if one defines J = − 1
2Ma2 .

The wave function can be written as ψ(n, t), with t the time, so that the

Schrödinger equation

i
∂

∂t
ψ(n, t) = J [ψ(n+ 1, t) + ψ(n− 1, t) − 2ψ(n, t)] + Vnψ(n, t), (7.3)

with Vn ≡ ⟨n | V | n⟩. The last term inside the brackets in Eq. (6.4) can be easily

reabsorbed into the definition of the coefficients Vn (it can be also understood as

a term proportional to the identity in the Hamiltonian, thus contributing only as

a position-independent phase as time evolves). Therefore we omit that term.

It is straightforward to derive an evolution equation satisfied by the Wigner

function for the above problem. We begin with the von Neumann equation for

the density operator
∂

∂t
ρ(t) = −i[H, ρ(t)], (7.4)

Making use of (6.4) one arrives to

∂

∂t
W (m, k, t) = 2J sin k [W (m+ 1, k, t) −W (m− 1, k, t)] −

i

2π

∑
l

e−i(2l−m)k(Vl − Vm−l)⟨l | ρ(t) | m− l⟩, (7.5)

where we have explicitly showed the time dependence of ρ and W (m, k) for the

sake of clarity.

Let us consider that V (x) is a continuous and infinitely derivable function. In

this case, one can obtain a closed form of the above expression for the Wigner

function, as showed in the Appendix. As a result, one arrives to the following

expression

∂

∂t
W (m, k, t) = 2J sin k [W (m+ 1, k, t) −W (m− 1, k, t)] +

∞∑
s=0

(−1)sa2s+1

22s(2s+ 1)!

d2s+1V (x)

dx2s+1

∣∣∣∣ x=ma/2
∂2s+1W (m, k, t)

∂k2s+1
. (7.6)
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7.1 Dynamics for a particle without spin in continuous time

It must be noticed that Eq. (7.6) also holds for the Wigner matrix (6.33)

if we introduce the spin of the particle, by simply replacing W (m, k, t) −→
Wαβ(m, k, t), since none of the spatial operations in this equation can affect

the spin indices.

Before we go on, we will consider the continuous limit (a→ 0) of Eq. (7.6). In

this limit, our Wigner function has to be replaced by the corresponding function

Wc(x, q, t) following the prescription followed in the previous chapter.

W (m, k, t) −→
a→0

1

2
Wc(x =

ma

2
, q =

k

a
, t). (7.7)

By replacing J = − 1
2Ma2 and substituting (7.7) in (7.6), and taking the limit

(a→ 0), one obtains the equation

∂

∂t
Wc(x, q, t) +

q

M

∂

∂x
Wc(x, q, t) =

∞∑
s=0

(−1)s

22s(2s+ 1)!

d2s+1V (x)

dx2s+1

∣∣∣∣ x=ma/2
∂2s+1Wc(x, q, t)

∂q2s+1
. (7.8)

Eq. (7.8) is the equation of motion for the Wigner function under the effect of an

external potential V (x) in continuous space, where q represents the momentum

of the particle (ranging from −∞ to ∞) (see, for example [104]).

As an interesting particular case, we will study the particular case of a linear

potential, i.e. V (x) = λx, with λ a real constant. Eq. (7.6) adopts a simple form

∂

∂t
W (m, k, t) = 2J sin k [W (m+ 1, k, t) −W (m− 1, k, t)] + λa

∂

∂k
W (m, k, t).

(7.9)

To solve this equation, we perform a Fourier transformation on the variable m

by introducing the function

W̃ (q, k, t) ≡ 1√
2π

∑
m

eiqmW (m, k, t), (7.10)

the new variable q taking values on the interval [−π, π[. With the help of this

function, we can rewrite Eq. (7.10) as

∂

∂t
W̃ (q, k, t) = −4iJ sin k sin qW̃ (q, k, t) + λa

∂

∂k
W̃ (q, k, t). (7.11)

The change of function

W̃ (q, k, t) ≡ e−
4iJ cos k sin q

λa f(q, k, t) (7.12)
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leads to the following equation for the function f(q, k, t):

∂

∂t
f(q, k, t) = λa

∂

∂k
f(q, k, t), (7.13)

which implies that the function f(q, k, t) must be of the form f(q, k, t) = g(q, k+

λat), with g(q, k) an unknown function that can be determined by the initial

(t = 0) condition in Eq. (7.12), giving

g(q, k) = e
4iJ cos k sin q

λa W̃ (q, k, 0). (7.14)

We finally obtain, after some algebra

W̃ (q, k, t) = exp[−8i
J

λa
sin(k +

λat

2
) sin(

λat

2
) sin q]W̃ (q, k + λat, 0). (7.15)

To derive an expression for the Wigner function, we need the inverse relation of

Eq. (7.10), given by

W (m, k, t) =
1√
2π

∫ π

−π

dqe−iqmW̃ (q, k, t), (7.16)

and make use of the formula [151]

Jn(z) =
1

2π

∫ π

−π

dqe−inqeiz sin q, (7.17)

where n ∈ Z, z ∈ C, and Jn(z) are the Bessel functions of the first kind. After

substituting Eq. (7.15) into (7.16) we arrive to the final expression

W (m, k, t) =
∑
l

Jm−l

[
−8

J

λa
sin(k +

λat

2
) sin

λat

2

]
W (l, k + λat, 0). (7.18)

Notice that, in the latter equation, the argument k + λat is to be understood

modulo 2π. Using this fact, one can readily obtain that the above solution

exhibits a time periodicity

W (m, k, t+
2π

λa
) = W (m, k, t), (7.19)

which corresponds to the well known phenomenon of Bloch oscillations, that can

be observed for electrons confined in a periodic potential (the lattice) subject

to a constant force, as for example a constant electric field. The corresponding

frequency ωB =| λ | a is precisely what is expected for our linear potential

V (x) = λx.
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7.1 Dynamics for a particle without spin in continuous time

Directly related to the above treatment, it appears quite natural to attempt a

parallelism with a situation that describes the dynamics of a particle under the ef-

fect of a constant gravitational field, V (x) = mggx, where mg is the gravitational

mass and g the acceleration of gravity. Notice that, for the following discussion

to make sense, one should design a physical system that is described by this po-

tential, and that Eq. (7.3) can be considered as a discretized approximation to

(7.2), with J = − 1
2Ma2 . We will return to this discussion later.

We find it convenient to use the symbol mi instead of M to represent the

inertial mass, and to recover the Planck constant. We observe that the argument

of the Bessel functions in Eq. (7.18) depends upon the combination

− J

λa
=

ℏ2

2mimgga3
≡ 1

(kga)3
, (7.20)

where kg ≡ (
2mimgg

ℏ2 )1/3 is a characteristic wave vector that modulates the spatial

dependence of energy eigenstates in a gravitational field in continuous space [152].

As the authors of this work discuss, this is one of the possible effects of quantum

particles under the effect of gravity, where various combinations of (powers of)

mg and mi may appear depending on the problem under consideration, thus

paving the way to measuring these two quantities independently.

The dynamics on the lattice we just considered offers a similar perspective.

The time evolution in Eq. (7.18) is governed by the product kga, which involves

the lattice spacing as a new parameter, thus allowing an extra degree of freedom

in the design of experiments, if they are performed on a lattice instead of in

continuous space. However, one has to be careful about this point: Only if

the design of the experiment is such that J and V (x) correspond to the above

hypothesis, the previous discussion can make sense.

To illustrate the behavior of the Wigner function, we plotted in figure 7.1 sev-

eral snapshots obtained by evolving an initial Gaussian state of the form (6.23).

The time evolution is governed by Eq. (7.18). One observes several features on

this plot. First, the position of the maximum shows oscillations for the variable

m, as corresponding to the Bloch oscillations discussed above, while variable k

evolves linearly (and periodically) with time. During the evolution, the Wigner

function also experiences a distortion that is similar to the one observed in con-

tinuous space [152]. One also observes the presence of a secondary image which

manifests as vertical strips.
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7 Dynamics in the discrete Wigner function

Figure 7.1: Snapshots corresponding to the time evolution of the Wigner function,

as given by Eq. (7.18) with an initial Gaussian state of the form (6.23)

with a = 3 and σ = 2. The parameters of the Hamiltonian are J = 1

and λa = 1. The labels indicate different values of time.
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7.2 Dynamics for a particle with spin in continuous time

7.2 Dynamics for a particle with spin in continuous

time

Our purpose is to analyze the dynamics for a particle with spin, and compare

it with the spinless case studies in the previous section. To do so, we need to

introduce some spin-dependent potential, otherwise the different components in

the Wigner matrix will evolve exactly in the same way, and the results of the

previous section apply. In order to make this comparison as close as possible, we

will consider the time evolution under the effect of a Hamiltonian of the form

H = J(T+ + T−) + σzV, (7.21)

where V is, as before, a site-dependent scalar potential. It is possible to obtain

an evolution equation, similar to (7.6), when the particle is subject to the above

Hamiltonian in the lattice. This derivation is made in the Appendix, the main

difference with the spinless case being that the diagonal and off-diagonal compo-

nents of the Wigner matrix evolve differently. In what follows, we concentrate on

the particular example of a discretized linear potential Vn = λan, with λ a real

constant. Then, Eq. ( 9.6) particularizes to

∂

∂t
Wαα(m, k, t) = 2J sin k [Wαα(m+ 1, k, t) −Wαα(m− 1, k, t)] +

(−1)αλa
∂

∂k
Wαα(m, k, t), (7.22)

and

∂

∂t
Wαβ(m, k, t) = 2J sin k [Wαβ(m+ 1, k, t) −Wαβ(m− 1, k, t)] −

i(−1)αλamWαβ(m, k, t), (7.23)

(valid for α ̸= β).

The first equation can be easily solved by comparison to (7.9). We only have

to perform the replacement λ −→ (−1)αλ. Therefore, we can write the solution

using the same procedure as in the case with no spin, to obtain

Wαα(m, k, t) =
∑
l

Jm−l

[
−8

J

λa
sin(k + (−1)α

λat

2
) sin

λat

2

]
Wαα(l, k + (−1)αλat, 0). (7.24)
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7 Dynamics in the discrete Wigner function

The same comments made in the previous section hold here: Wαα(m, k, t) is

periodic in time, with frequency given by ωB =| λ | a . Eq. (7.23) can be solved

by introducing a Fourier transform, as made with (7.9). We arrive, after some

algebra, at

Wαβ(m, k, t) = e(−1)αimλat
2

∑
l

e(−1)αilλat
2

Jm−l

[
−8

J

λa
sin k sin

λat

2

]
Wαβ(l, k, 0). (7.25)

(valid when α ̸= β).

To illustrate the evolution of the Wigner matrix elements under the effect of

the Hamiltonian (7.21) with a linear potential, we followed this evolution for

an initial separable state of the form (6.44), with ρS defined by the pure state
1√
2
(|0⟩+ |1⟩) and WL(m, k) corresponding to a Gaussian state, given by (c.f. Eq.

(6.52))

WL(m, k) =
1

2πN 2
e−

a2+(m−a)2

2σ2 eikmθ3(k +
im

2σ2
, e−

1
σ2 ) (7.26)

and N =

√
θ3(0, e−

1
σ2 ) the normalization constant. The results are presented in

figure 7.2, which shows different snapshots of the diagonal componentsW00(m, k, t)

and W11(m, k, t) of the Wigner matrix. We observe that both components present

similar features to the case without spin, plotted in figure 7.1. However, they

evolve differently on the m axis: Initially, the W00(m, k, t) component moves to

the left, while the W11(m, k, t) component moves to the right, as a consequence

of the different time dependence (−1)αλat in (7.24), a phenomenon which is rem-

iniscent of the splitting into two beams on the Stern-Gerlach experiment, where

the basic piece of the interaction is analogous to (7.21).

Decoherence

Another dynamical scenario of great relevance for the study of quantum systems

is the presence of decoherence, which can be caused by interaction with the

environment. In the following we show how the Wigner function formalism we

are discussing accommodates also such situation. In particular, we explore some

typical cases, in which the spin structure of the Wigner matrix allows a simple

visualization of the decoherence effects.
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7.2 Dynamics for a particle with spin in continuous time

Figure 7.2: The two panels show the diagonal components of the Wigner matrix

at four different times (labeled by the corresponding t), for a particle

subject to the interaction Hamiltonian (7.21) in a lattice. Left panel

corresponds to W00(m, k, t), whereas right panel shows W11(m, k, t).

The initial state is a separable state (see the main text for explana-

tion) with a = 3, σ = 2. The parameters of the interaction Hamilto-

nian are J = λa = 1.
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7 Dynamics in the discrete Wigner function

We consider the case where the interaction with the environment can be de-

scribed by a Lindblad-type equation [153]

∂

∂t
ρ = −i[H, ρ] +

∑
k

γk(AkρA
†
k − 1

2
A†

kAkρ−
1

2
ρA†

kAk), (7.27)

whereAk are the Lindblad operators, and γk represent the corresponding coupling

constants.

If these operators act only on the spin space, the Lindbland (noise) term Eq.

(7.27) immediate translates in an analogous equation for the Wigner matrix. In

other words, under this hypothesis we can write for the Wigner matrix

∂

∂t
W (m, k, t) =

∂

∂t
W (m, k, t)|H +∑

k

γk(AkW (m, k, t)A†
k − 1

2
A†

kAkW (m, k, t) − 1

2
W (m, k, t)A†

kAk). (7.28)

In the latter equation, ∂
∂tW (m, k, t)|H denotes the contribution of the Hamilto-

nian to the dynamics (without decoherence), and we used a matrix notation, so

that spin indices are omitted.

As a simple example, let us consider the case when we only have a Lindblad

operator A1 = σz with γ1 ≡ γ. We then have

∂

∂t
W (m, k, t) =

∂

∂t
W (m, k, t)|H +

(
0 −2γW01(m, k, t)

−2γW10(m, k, t) 0

)
,

(7.29)

which solution can be readily obtained, and expressed as

W (m, k, t) =

(
W00(m, k, t)|H e−2γtW01(m, k, t)|H

e−2γtW10(m, k, t)|H W11(m, k, t)|H

)
. (7.30)

In other words, in this example decoherence leaves the diagonal terms unaltered,

while the off-diagonal terms are exponentially damped with time.

Our second example is provided by the Lindblad operator A1 = σx with γ1 ≡ γ.

In this case, Eq. (7.28) becomes

∂

∂t
W (m, k, t) =

∂

∂t
W (m, k, t)|H +

γ

(
W11(m, k, t) −W00(m, k, t) W10(m, k, t) −W01(m, k, t)

W01(m, k, t) −W10(m, k, t) W00(m, k, t) −W11(m, k, t)

)
. (7.31)
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7.3 Dynamics for a particle with spin in discrete time

This set of equations can be solved by elementary operations. We concentrate on

the diagonal terms, for which the final solution reads

W00(m, k, t) =
1

2
(1 + e−2γt)W00(m, k, t)|H +

1

2
(1− e−2γt)W11(m, k, t)|H , (7.32)

W11(m, k, t) =
1

2
(1− e−2γt)W00(m, k, t)|H +

1

2
(1 + e−2γt)W11(m, k, t)|H . (7.33)

Similar equations can be obtained involving W01(m, k, t) and W10(m, k, t). As a

result, in the limit t −→ ∞ both W00(m, k, t) and W11(m, k, t) become an equally

weighted mixture (the same happens with the off-diagonal terms).

7.3 Dynamics for a particle with spin in discrete time

Quantum walk

The examples studied in the previous section arise as a consequence of the con-

tinuous interaction of a particle with an external potential acting on the lattice.

However, we can envisage some situations in which we act on the particle with

subsequent short pulses, or via some actions that appear suddenly, but regularly

in time. A paradigmatic example of this kind is provided by the quantum walk.

The QW dynamics can be described entirely in terms of the Wigner matrix [149],

via a recursion formula that relates W (m, k, t + 1) to other components of this

function at time t. Using Eq. (2.2) one obtains, after some algebra:

W (m, k, t+ 1) = MRW (m− 2, k, t)M†
R + e−2ikMRW (m, k, t)M†

L

+e2ikMLW (m, k, t)M†
R +MLW (m+ 2, k, t)M†

L, (7.34)

where ML = (|L⟩⟨L|)C(θ) and ML = (|R⟩⟨R|)C(θ). A complete analysis of the

time evolution in phase space with the help of the Wigner function can be found

in [149]. Notice that a different definition of the Wigner function was used in [125]

for the reduced density matrix of the walker (after tracing the coin) to the study

of the evolution and the effects of decoherence for the quantum walk.

The time evolution of the component W00 can be seen on Fig. 7.3. One

can observe an intricate structure, arising from interference effects. Notice, for

example, the similarity with the threads mentioned in [154]. It is interesting

to mention that, although the Wigner function expands in space, as the walker

distribution broadens, it keeps the same structure. The rest of components of

the Wigner function show a similar appearance.
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7 Dynamics in the discrete Wigner function

Figure 7.3: Contour plots showing the time evolution of theW00 component of the

Wigner function starting the QW from the localized state | ϕini⟩ =
1√
2
(| R⟩+ i | L⟩)⊗ | 0⟩. From left to right, the sub figures correspond

to t = 0, t = 100 and t = 500, respectively.
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7.3 Dynamics for a particle with spin in discrete time

Decoherence in discrete time

The Wigner function formalism can easily accommodate the description of the

general transformation of the quantum state via a completely positive (CP) map.

In particular, we consider here trace preserving maps. These could, for instance,

represent a decoherent QW process, with Kraus operators modeling the interac-

tion of the system with the environment. The discrete evolution is represented

by

ρ(t+ 1) =
∑
i

Eiρ(t)E†
i , (7.35)

where Ei are Kraus operators with the property
∑

iE
†
iEi = I. As an example,

we analyze two simple models of decoherence which are applied as projective

measurements in the different degrees of freedom of the system. The first model is

defined as projectors in spin space, while the second model is defined by projecting

in the lattice sites. We use the notation Πi to designate the different projectors,

which satisfy Π†
i = Πi and ΠiΠj = δijΠi. With probability p, the system is

projected onto the spin (or space) basis, so that Eq. (7.35) will be rewritten as

ρ(t+ 1) = (1 − p)ρ(t) + p
∑
i

Πiρ(t)Πi. (7.36)

By iteration of the above equation and making use of the properties of projectors,

one can derive the following formula relating the final and initial density operators

of the system,

ρ(t) = (1 − p)tρ(0) + [1 − (1 − p)t]
∑
i

Πiρ(t)Πi. (7.37)

We start from a state consisting of superposition of two deltas with orthogonal

spin components, Eq. (6.46) with α = 1. For the first projective model we apply

the spin projectors Πi = |i⟩ ⟨i|, i = 0, 1, while for the site projection they are

given by Πn = |n⟩ ⟨n| , n ∈ Z. The iterated density operator ρ(t) that is obtained

from Eq. (7.37) is the same in both cases, the reason being the spin and position

entanglement structure in Eq. (6.46). The result is

ρ(t) =
1

2

(
| n1⟩⟨n1 | (1 − p)t | n1⟩⟨n2 |

(1 − p)t | n2⟩⟨n1 | | n2⟩⟨n2 |

)
. (7.38)

The corresponding Wigner matrix becomes
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7 Dynamics in the discrete Wigner function

W (m, k, t) =
1

4π

(
δm,2n1 (1 − p)tδm,n1+n2e

−ik(n1−n2)

(1 − p)tδm,n1+n2e
ik(n1−n2) δm,2n2

)
.

(7.39)

Thus, as a consequence of the projective measurements, the non-diagonal com-

ponents in the Wigner matrix (7.39) tend to zero with time. This was expected

from the intuitive idea that these components appear from interference between

the two spin states in Eq. (6.46) (or, correspondingly, between the two occupied

positions): Once decoherence acts, this kind of interference is reduced and the

responsible terms are consequently diminished. Interestingly, these interference

terms are non positive and tend to disappear as decoherence is acting.

It is thus reasonable to study how the negativity, η, changes under these effects

of decoherence. To do so, we consider this very simple situation, in which the

initial state subject to decoherence is the double delta and restrict ourselves to

the discrete time dynamics with decoherence arising from projections on spin

or lattice sites. Similar qualitative conclusions can be drawn if we allow for a

continuous time dynamics, or if we consider a double Gaussian state (6.50) and

introduces projective measurements on the lattice states, although calculations

are more involved. A simple application of (6.54) to Eq. (7.39) leads to the result

η(t) = (1 − p)t (7.40)

for the negativity as a function of time. This simple result can be interpreted as

the damping of the out-of-diagonal terms in Eq. (7.39). As time goes on, these

interference terms tend to fade away, and one is left with an incoherent state with

a positive Wigner function. This transition from a coherent superposition to an

incoherent one is, of course, a well known phenomenon in the theory of open

quantum systems which shows as a change in the nature of the Wigner function

that is monitored by our definition of the corresponding negativity.
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8 Conclusions

In the first part of this thesis, different aspects of the QW have been studied.

In chapter 3 we have formally solved the standard multidimensional QW, taking

into account extended initial conditions of arbitrary shape and width. In the

limit of large width, the continuous limit is particularly well suited and clearly

reveals the wave essence of the walk. The use of the dispersion relations is the

central argument behind this view as their analysis allows a great deal of insight

into the propagation properties of the walk, and even tailoring of the initial state

in order to reach a desired asymptotic distribution, as we have demonstrated.

We must insist here that our goal was not to obtain approximate solutions to

the QW, thus quantifying their degree of accuracy, but rather to get qualitative

insight into the long term solutions. The equations we have derived will be quite

accurate for wide initial conditions, but the interesting point is that they provide

a good qualitative description for relatively narrow initial distributions, specially

far from degeneracies.

We have also shown that the two-dimensional Grover QW exhibits diabolical

points in the dispersion relation, and have analyzed in detail the dynamics around

this point, closely connecting the Grover walk with the phenomenon of conical

refraction [71, 72]. In the three–dimensional Grover walk we have found other

types of degeneracies whose influence on the dynamics we have not illustrated.

The detailed study of the construction of the eigenvectors providing a clear qual-

itative interpretation turns out to be much more complicated in the 3D than in

the 2D case, and we leave this extensive study for a future work.

It is worth stressing that the asymptotic distributions found in the continuous

limit, valid for extended initial distributions, can be qualitatively reached for not

very broad distributions, say σ ∼ 5, and this should be easy to implement in

systems such as the optical interferometers of Ref. [43, 155]. An exception to this

general rule are those distributions which are peaked close to the diabolic point,

since in this case a broad distribution will be dominated by the singular nature

of that point.

We would like to point out, on the one hand, that the multidimensional QW

can be viewed as a simulator of a large variety of linear differential equations
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8 Conclusions

depending on the particular region of the dispersion relation that governs the

evolution of the initial wave–packet. On the other hand, we stress that continuous

approximations to the QW must follow the dispersion relation if they are to be

taken as good approximations.

In chapter 4 we have analyzed both the short-time behavior and the asymptotic

limit of the chiral density matrix for the discrete time QW on a one-dimensional

lattice. We have found that this reduced system shows clear features which can

be associated to a non-Markovian evolution. First, we have considered the case

where the QW proceeds without decoherence. The chiral density matrix possesses

a well-defined asymptotic limit in time. This allows us to calculate the limiting

value of the trace distance for pairs of different initial states, which gives us the

distinguishability of the states and then the presence of memory effects in the

system.

We have studied the effect of decoherence, modeled as the random presence

of broken links on the lattice. The case with decoherence possesses a trivial

asymptotic limit, since all states converge to (one half of) the identity, so that

the trace distance between pairs of them always tends to zero and then, no

memory of the initial state remains.

The short-time behavior of the reduced system features quite interesting re-

sults. One observes the presence of oscillations in the trace distance for reduced

matrices that correspond to two different initial states, a phenomenon that clearly

indicates a non-Markovian time evolution. These oscillations appear even when

the system does not suffer from decoherence, and they are damped as the number

of time steps increases, thus allowing for a convergence of the trace distance, in

accordance with our previous observations. As the level of noise becomes larger,

the amplitude of the oscillations is also reduced, for a given number of time steps.

In addition, the trace distance approaches asymptotically zero, as already pre-

dicted from our long-time analysis. The contribution to the non-Markovianity

measure reported in Eq. (4.82), as a function of the number of time steps, then

tends to a value that decreases as the level of decoherence increases.

We have found and characterized a non-Markovian behavior for a relatively

simple and yet non-trivial system as the coin in a QW on a line. The results that

we have presented for the particular model of decoherence chosen here can also be

found for other models, as the one investigated in Ref. [97]. They can provide a

step forward in our understanding of phenomena like the transition from unitary

to diffusive processes and of the thermalization of quantum systems, and thus

deserve further attention.
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In the second part of this thesis, in chapter 6, we have extended the formalism

of the Wigner function to the case of a quantum system with a discrete, infinite

dimensional Hilbert space. For instance, this would be the case for a spinless

particle moving on a one dimensional lattice. The prescription presented here

appears to be the natural one for this problem, as it satisfies the defining math-

ematical properties of the phase-space representation and recovers the correct

continuum limit for vanishing lattice spacing.

The quantification of non-classicality, as signaled by the negative part of the

Wigner function in the case of continuous degrees of freedom, has to be redefined

in this case to exclude negative contributions due to the structure of the discrete

phase space itself. We have proposed a negativity measure for this case, and have

illustrated it with the explicit results for localized and Gaussian states, and for

superpositions of each. Our results support the meaningfulness of this measure

to characterize the states of a particle on a one-dimensional lattice.

A natural extension of this work is to combine the phase space introduced here

with additional degrees of freedom, such as internal ones for the particle, or to

extend it to the case of several particles or dimensions. Wootter’s prescription

[117] to construct composite phase spaces by combining the phase-space point

operators of different degrees of freedom via their tensor product can be applied

in this case.

We have elaborated the previously introduced Wigner formalism for a particle

in an infinite 1D lattice, in order to account for the presence of an additional,

finite-dimensional, degree of freedom. We introduce a definition for the Wigner

matrix that incorporates the spin of the particle. We have illustrated the con-

struction of the Wigner matrix by analyzing first some simple static examples,

like the “Schrödinger cat” double delta or two-Gaussian states. For these states,

the position and spin variables are entangled, and this entanglement manifests in

a particular structure of the Wigner matrix. Finally, we have explored a possible

extension of the concept of negativity, as defined for the scalar WF, to the spin

1/2 case.

While it is not evident what the physical meaning of such negativity might

be in general, the quantity we propose fulfills a number of physically sound con-

ditions, and carries well-defined physical information in restricted scenarios. In

particular, we have illustrated how for given families of states it can be connected

to entanglement, although Werner states show this is not the general case. For

simple decoherence scenarios, this negativity can track the loss of coherence, as

was shown in chapter 7. We think that it is worth studying further the relation-
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8 Conclusions

ship of the Wigner description to the quantum properties of general states in a

lattice.

As for other cases, in which the phase-space formalism can also account for the

dynamics of the system, it would be possible to formulate the evolution of such

system fully in terms of its Wigner function, and to study the time evolution

of the proposed negativity measure η. Although the examples presented in this

thesis are focused on pure states, the same concepts apply also to mixed states.

In chapter 7, we described the dynamics on the phase space associated to this

problem.

We have studied the time evolution of the Wigner function for some simple

cases. We have explicitly shown the equation governing the evolution of the

Wigner function for a general space-dependent potential. This equation, how-

ever, can only be exactly solved for some special cases, as we have done for the

case of a linear potential, where one recovers the well known phenomenon of

Bloch oscillations. A similar statement is valid for a Hamiltonian that can be

factored as a scalar part and a spin operator. We have obtained the equation

of motion for a general scalar term, and solved it in the linear case, what allows

us to compare with the dynamics in the spinless case. The presence of a “spin

dependent force” introduces new features on the dynamics that manifest in phase

space. To complete the above description, we have incorporated the role of de-

coherence which, for some simple examples, can be implemented for the Wigner

matrix in a closed form.

Although we have concentrated, for simplicity, on the case where such addi-

tional degree of freedom corresponds to a spin 1/2, one can envisage more general

situations where higher spins, or different properties, such as the polarization of a

photon, are considered. As we have shown, the matrix formalism is specially well

suited to describe the interaction of the particle with a spin-dependent Hamil-

tonian on a fixed basis, and keeps a close resemblance to the relativistic WF

formalism [156, 157], a fact that might be useful in the investigation of the non

relativistic limit of a given problem.

In some physical situations, the interaction appears as short pulses acting on

the particle, a paradigmatic example being the Quantum Walk. It is possible to

analyze the role of decoherence also in these cases, and we have analyzed a simple

example for the double delta state, when decoherence appears as projections

either on the spatial or in the original spin basis. We have shown that both type

of mechanisms produce the same effect, which translates into a damping of the

off-diagonal matrix components.
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9 Appendix A. Dynamics of the

Wigner function for a particle

subject to a potential

We will derive the differential equation that is obeyed by the Wigner matrix in

two cases: I) A particle interacting with a position-dependent potential V (x) and

II) A spin 1/2 particle under the effect of a spin-position Hamiltonian of the form

(7.21).

I) Particle interacting with a position-dependent

potential V(x)

We start with the Hamiltonian defined in (7.1). The interaction in this case

only affects the phase space variables (m, k), therefore spin indices can be omit-

ted for the moment, but can be recovered in the final expression by replacing

W (m, k, t) −→ Wαβ(m, k, t). Of course, for a spinless particle no replacement is

necessary.

The evolution equation is obtained from the von Neumann equation for the

density operator (7.4). Using the properties of the T± operators one obtains

(7.5).

∂

∂t
W (m, k, t) = 2J sin k [W (m+ 1, k, t) −W (m− 1, k, t)] +D, (9.1)

where

D ≡ − i

2π

∑
l

e−i(2l−m)k(Vl − Vm−l) ⟨l|ρ(t)|m− l⟩ . (9.2)

We assume that V (x) is continuous and infinitely derivable at any point. Re-

membering that Vl = V (la), we Taylor expand both Vl and Vm−l around the
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9 Appendix A. Dynamics of the Wigner function for a particle subject to a potential

point m
2 a, so that

D = − i

2π

∑
l

e−i(2l−m)k
∞∑
p=0

ap

p!

dpV (x)

dxp

∣∣∣∣ x=ma/2

(2l −m)p

2p
[1 − (−1)p] ⟨l|ρ(t)|m− l⟩ . (9.3)

With the help of the Wigner function definition, Eq. (6.33), one arrives to

D = −i
∞∑
p=0

ap

p!

dpV (x)

dxp

∣∣∣∣∣x=ma/2
1

(−2i)p
[1 − (−1)p]

∂pW (m, k, t)

∂kp
. (9.4)

Notice that even values of p do not contribute in the above sum, so we restrict

ourselves to odd values p = 2s+1 with s ∈ N. After simplifying, we finally obtain

∂

∂t
W (m, k, t) = 2J sin k [W (m+ 1, k, t) −W (m− 1, k, t)] +

∞∑
s=0

(−1)sa2s+1

22s(2s+ 1)!

d2s+1V (x)

dx2s+1

∣∣∣∣ x=ma/2
∂2s+1W (m, k, t)

∂k2s+1
. (9.5)

II) Spin 1/2 particle under the effect of a

spin-position Hamiltonian

We now develop an equation of motion for a spin 1/2 particle which is subject

to a spin position dependent interaction given by Eq. (7.21). Following similar

steps to the previous case, and making use of σz |α⟩ = (−1)α |α⟩, α = 0, 1, one

gets

∂

∂t
Wαβ(m, k, t) = 2J sin k [Wαβ(m+ 1, k, t) −Wαβ(m− 1, k, t)] +Dαβ , (9.6)

with

Dαβ ≡ − i

2π

∑
l

e−i(2l−m)k
[
(−1)αVl − (−1)βVm−l

]
⟨n, α|ρ|m− n, β⟩. (9.7)

After expanding Vl and Vm−l around the point m
2 a as before, we arrive to

Dαβ = − i

2π

∑
l

e−i(2l−m)k
∞∑
p=0

ap

p!

dpV (x)

dxp

∣∣∣∣ x=ma/2

(2l −m)p

2p
(−1)α[1 − (−1)p(−1)α+β ] ⟨l|ρ(t)|m− l⟩ . (9.8)
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In terms of the Wigner matrix,

Dαβ = −i
∞∑
p=0

ap

p!

dpV (x)

dxp

∣∣∣∣ x=ma/2

1

(−2i)p
(−1)α[1 − (−1)p(−1)α+β ]

∂pWαβ(m, k, t)

∂kp
. (9.9)

In order to determine the values of p that contribute to the above sum, one has

to consider two different cases.

If α = β, only odd values p = 2s + 1 with s ∈ N have to be considered, and

one is lead to

Dαα = (−1)α
∞∑
s=0

(−1)sa2s+1

(2s+ 1)!

1

22s
d2s+1V (x)

dx2s+1

∣∣∣∣ x=ma/2
∂2s+1Wαα(m, k, t)

∂k2s+1
, (9.10)

whereas for the off-diagonal elements α ̸= β we have now only the contribution

from even values of p = 2s, and we can easily obtain

Dαβ = −2i(−1)α
∞∑
s=0

(−1)sa2s

(2s)!

1

22s
d2sV (x)

dx2s

∣∣∣∣ x=ma/2
∂2sWαβ(m, k, t)

∂k2s
. (9.11)
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[37] J. Svoziĺık, R. de J. León-Montiel, and J. P. Torres. Implementation of a

spatial two-dimensional quantum random walk with tunable decoherence.

Phys. Rev. A, 86:052327, Nov 2012. 23, 42

[38] Weeler and Zurec. Quantum theory and measurament. Princenton univer-

sity press, Princton, NJ, 1984. 23, 42

[39] Yoon-Ho Kim, Rong Yu, Sergei P. Kulik, Yanhua Shih, and Marlan O.

Scully. Delayed “Choice” Quantum Eraser. Phys. Rev. Lett., 84:1–5, Jan

2000. 23, 42

[40] Alberto Peruzzo, Peter Shadbolt, Nicolas Brunner, Sandu Popescu, and

Jeremy L. O’Brien. A Quantum Delayed-Choice Experiment. Science,

338(6107):634–637, 2012. 23, 42

172



Bibliography

[41] Florian Kaiser, Thomas Coudreau, Pérola Milman, Daniel B. Ostrowsky,
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[43] Andreas Schreiber, Aurél Gábris, Peter P. Rohde, Kaisa Laiho, Martin
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[81] Daniel Torrent and José Sánchez-Dehesa. Acoustic Analogue of Graphene:

Observation of Dirac Cones in Acoustic Surface Waves. Phys. Rev. Lett.,

108:174301, Apr 2012. 46, 59

[82] Takuya Kitagawa. Topological phenomena in quantum walks: elementary

introduction to the physics of topological phases. Quantum Information

Processing, 11(5):1107–1148, 2012. 46

[83] O M Friesch, I Marzoli, and W P Schleich. Quantum carpets woven by

Wigner functions. New Journal of Physics, 2(1):4, 2000. 49

176



Bibliography

[84] J W Goodman. Introduction to Fourier Optics. Englewood, CO: Roberts

and Company, 2005. 65, 69

[85] Stanis Kolpakov, Adolfo Esteban-Mart́ın, Fernando Silva, Javier Garćıa,
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