VNIVERSITAT I VALENCIA

DEPARTAMENT D’OPTICA

INVERSE NONLINEAR DESIGN IN SILICON
WAVEGUIDES

DOCTORAL THESIS
David Castellé Lurbe
September 2014



o=
o=




VNIVERSITAT I VALENCIA

DEPARTAMENT D’OPTICA

INVERSE NONLINEAR DESIGN IN SILICON
WAVEGUIDES

Tesi desenvolupada al
Programa de Doctorat en Fisica per

DAvVID CASTELLO LURBE

dirigida per

Pror. ENRIQUE SILVESTRE MORA i
ProOF. VicTOR TORRES COMPANY

Setembre 2014






Inverse nonlinear design in silicon waveguides
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Abstract

Silicon based platforms offer, among other advantages, great possibilities
to develop nonlinear applications. Particularly, the design of a silicon-on-
insulator (SOI) waveguide for supercontinuum (SC) generation pumping at
telecom wavelengths will be proposed in this thesis. In spite of this fact, this
work addresses the design of waveguides from a wider approach.

On the one hand, the generalized nonlinear Schrédinger equation is theo-
retically analyzed and an analytical model is proposed to study new frequency
generation by means of optical wave-breaking (OWB). This strategy allows to
calculate the higher-order dispersion required to optimize the spectral broad-
ening during OWB, as well as the frequencies of the radiated dispersive waves.
Although it is an approximate model, it becomes very useful to relate the pa-
rameters involved in realistic waveguides, often exclusively studied by means
of numerical simulations.

On the other hand, our second goal is to find a waveguide where the above
phenomenon takes place. Dispersion engineering becomes a time-consuming
task if several geometric degrees of freedom are available. Here, inverse dis-
persion engineering through an iterative procedure is applied. At each step,
new values for all the parameters providing dispersion profiles closer to the
target are determined based on an analytical expression for the derivatives of
the propagation constant. These homemade tools lead to a slot SOI wave-
guide with the suitable properties to induce a coherent near octave spanning
SC generation based on OWB pumping at telecom wavelengths.

Keywords: Silicon-on-insulator waveguides, supercontinuum generation, gen-
eralized nonlinear Schrédinger equation, optical wave-breaking, dispersive waves,
inverse dispersion engineering.
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“Say, Pop, I noticed something: When I pull the wagon the balls
rolls to the back of the wagon, and when I'm pulling it along and I
suddenly stop, the ball rolls to front of the wagon,” and I say, “why
is that?” And he said, “That nobody knows”, he said. “The general
principle is that things that are moving try to keep on moving and
things that are standing still tend to stand still unless you push
on them hard”. And he says, “This tendency is called inertia but
nobody knows why it’s true.” Now that’s a deep understanding—
he didn’t give me a name, he knew the difference between knowing
the name of something and knowing something.”

(Richard P. Feynman: The pleasure of finding things out, Perseus
Books Group, New York, 1999)






Summary (in Catalan)

La tecnologia fotonica basada en silici és objecte d’intensa investigacié tant
al moén academic com a la indudstria. Un dels seus principals atractius rau
en la seua elevada compatibilitat amb tecniques ja desenvolupades per a la
integracié de circuits electronics, cosa que podria reduir el seu cost. A més, el
silici ofereix una gran diversitat d’efectes no lineals que poden ser aprofitats per
processar senyals optics en xips compactes a velocitats superiors als dispositius
electronics actuals. En particular, I’objectiu d’aquesta tesi ha estat dissenyar
una guia integrada en una plataforma hibrida de silici i silice per generar
espectres supercontinus. Aquest projecte presentava diferents reptes que calia
superar. En primer lloc, la preséncia de mecanismes d’absorcié no lineals
inherents a l’estructura material del silici que limiten, en gran mesura, la
capacitat d’eixamplament espectral d’aquest tipus de guies. En segon lloc,
la preferencia per treballar en condicions que preserven, en qualsevol cas, la
robustesa del sistema front a fluctuacions del senyal d’entrada excloia 1'tis
de certs mecanismes d’alta eficiencia de generacié de noves freqiiencies. Per
altim, calia desenvolupar un procediment sistematic per determinar dissenys
realistes de seccions transversals de guia on tinguera lloc la fenomenologia
buscada. Malgrat que aquesta tesi no incorpora resultats experimentals, les
seues conseqiiéncies practiques sén paleses i en justifiquen el seu interés.

El plantejament aplicat per assolir aquestos objectius contenia dues vies
d’estudi. Per una banda, les simulacions numeriques basades en models ben
establerts foren clau per avaluar la viabilitat de les nostres propostes. Per altra
banda, tot model fisic es caracteritza per una série de parametres que descriuen
el sistema real ’evolucié del qual és analitzada. Logicament, la dinamica d’un
sistema no estd només determinada per 'estructura matematica del model
que el descriu, sind també per les seues caracteristiques fisiques. En aquest
sentit, part dels nostres esforcos foren destinats al desenvolupament d’eines
teoriques que proporcionen un coneixement quantitatiu de les caracteristiques
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que deuen mostrar els sistemes perque determinats processos hi esdevinguen.
Ja que aquest tipus d’analisi esta lligat a equacions generals, i no només a sis-
temes experimentals concrets, una part important de la introduccié d’aquesta
tesi ha estat dedicada a ’estudi detallat de les hipotesis en que se sustenten.
En particular, he remarcat les implicacions fisiques lligades a un tractament
pertorbatiu de la no linealitat d’un sistema (concretament, la propagacié unidi-
reccional i monomode de polsos de llum). A més, he modelitzat la no linealitat
fent s de 'anomenat senyal analitic del camp, cosa que ha permés identificar
interaccions no lineals addicionals (com la suma de tercer ordre de freqiiencies
o la radiacié ressonant negativa) que, habitualment, sén negligides. Aquest
desenvolupament ha proporcionat un enfoc més ampli al model de propagacié
no lineal que apliquem en aquesta tesi, a més d’oferir noves propostes per a
futurs treballs.

Aquestes idees constitueixen el marc on s’inscriu el nostre procediment de
disseny no lineal invers, des del punt de vista del qual, I’Article V, que inclou la
nostra proposta per assolir I’objectiu plantejat en aquesta tesi, és una aplicacio.
Els avancos teorics que requeri aquest treball final foren presentats a 1’Article
II, on el disseny no lineal és, propiament, abordat; i a I’Article IV, que com-
porta la implementacié d’un programa per al calcul de les seccions transversals
que satisfan les propietats fisiques desitjades. Aixi, presente a continuacié els
aspectes clau dels metodes que hem desenvolupat i que, finalment, han estat
aplicats amb exit per assolir els fins d’aquesta tesi.

La propagacié no lineal de polsos a guies pot ser descrita a través de
I’anomenada equacié no lineal d’Schrodinger generalitzada. Aquest model és
valid posat que la contribucié no lineal siga una pertorbacié de 'index efectiu
i que s’excite un unic mode de la guia. Des d’una perspectiva matematica, un
coneixement analitic de les solucions d’aquesta equacié és només possible sota
condicions sovint allunyades de les exigides perque es produesca un vast eixam-
plament espectral. Amb la motivacié d’extraure alguna mena d’informacié
quantitativa entorn d’aquesta fisica, a I’Article II considerarem una llei de
conservacio, generalment aplicada per a una dispersio de la velocitat de grup
(GVD) constant, per a guies amb una GVD arbitraria. Per completesa, he
incorporat a la introduccié d’aquesta tesi una versié més general que també in-
clou una dispersi6 arbitraria del coeficient no lineal de la guia. La interpretacié
fisica de les funcions involucrades que proposarem em permeté construir un
model analitic simplificat de la propagacié d’un pols que experimenta el procés
d’optical wave-breaking (OWB). Aquest tractament obrf les portes per calcular
quina deu ser la corba de dispersié d’una guia perque I’eixamplament espectral
induit per aquest procés siga realment eficient. ES, precisament, la disponi-
bilitat d’una expressié analitica que relaciona l'eficiéncia de la generacié de
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noves freqiiéncies durant el procés d’OWB amb les caracteristiques dispersives
de la guia, la que fa possible invertir el procés i deduir quin és el perfil de
la dispersié adient per reproduir 'anterior comportament. Aquests resultats
foren presentats a I’Article V.

Es evident que el plantejament que acabe d’exposar resulta incomplet si
no es proporciona una estructura que oferesca la dispersié deduida. Aquest és,
en realitat, un nou problema de disseny invers. En relacié a aquest tipus de
tasques, el nostre grup ja havia fet importants avangos durant els iltims anys.
Tanmateix, havien estat aplicats per a fibres de cristall fotonic (PCF). La
plataforma de silici i silice (silici sobre aillant o SOI) presenta un alt contrast
d’index, a diferencia de les PCF, tret que té incidencia als calculs involucrats
a les tasques de disseny invers. A 1'Article IV, es dedui una expressié, a
partir d’un resultat teoric previ del grup, que permet calcular les derivades
de la constant de propagacid respecte dels diferents parametres geometrics,
aplicable també per a guies d’alt contrast d’index. En aquest cas, pero, resulta
clau atendre a les condicions de contorn del camp electric. Aquests calculs
s'implementaren amb exit i feren possible I'obtencié de dissenys realistes amb
diferents tipus de perfils de la dispersié. En particular, dissenyarem una seccid
transversal on s’induia un eixamplament espectral molt significatiu a través
del mecanisme d’OWB. Cal dir, per completesa, que el perfil del pols d’entrada
té una especial relevancia en aquestes guies per poder inhibir 'impacte de les
perdues no lineals. Aquest tema fou investigat a I’Article I, on es posa de
manifest la millora de I’eixamplament espectral soferta per polsos asimetrics.

Pel que fa a I’Article III, fou una col-laboracié a un estudi numeric entorn
de la influencia del soroll a la generacié de pintes de freqiiéncia a anells mi-
croressonadors i la formacié de polsos. Aquest treball entroncava directament
amb el segon dels objectius abans indicats. A més a més, les eines de dis-
seny invers també poden ser aprofitades per determinar com deu ser la seccié
transversal d’aquests sistemes perque I'impacte del soroll es reduesca o millore
Iestabilitat dels polsos.

A tall de conclusié, caldria emfatitzar tres aspectes d’aquesta tesi. En
sintesi, he pogut calcular un disseny de guia on la produccié de fonts de llum
de banda ampla és possible, superant aixi les limitacions imposades pels pro-
cessos d’absorcié no lineals. Tanmateix, considere que les eines desenvolupades
per arribar a aquest resultat també tenen valor en si mateix. Per un costat, el
programa de disseny de seccions tranversals ofereix una gran versatilitat. De
fet, aquest algoritme converteix el disseny de guies d’interficies rectes i com-
postes de qualsevol tipus de materials en un procediment sistematic i eficient
per a cadascuna de les geometries que es consideren. Per un altre costat, he
comprovat que, almenys per a la dinamica d’interés d’aquesta tesi, és possible
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extraure informacié fisica a partir de ’analisi de ’evoluci6 de certes quantitats
integrades que caracteritzen el pols. Aquestes funcions, a més, no comporten
cap tipus de restriccié sobre les caracteristiques fisiques del sistema. Més enlla
de ’aplicacié particular d’aquest projecte, aquest enfoc obri noves possibilitats
per estudiar la propagacié no lineal de polsos.
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Chapter 1

Introduction

Before explaining the motivation and aim of this thesis, I would like to briefly
comment what is the spirit where it relies. Nowadays, new technologies are
increasingly solving human needs by taking advantage of complex physical
processes, such as nonlinear light-matter interactions, having the concomitant
impact on the social and economic spheres. Certainly, a detailed knowledge
of these systems requires intense experimental research in each area leading to
short-term applications and, subsequently, apparent benefits for the society.
Despite not containing experimental results, this thesis always keeps practical
purposes on mind, although, as any theoretical work, it could only produce
material benefits in the mid- or even long-term. Therefore, I consider that
theoretical research in engineering areas represents a necessary approach to
improve our understanding of physical systems and thus enhance their useful-
ness.

With this aim, we lead our effort in a two-fold direction. On the one hand,
numerical simulations of realistic systems will be always performed to check
the feasibility of our proposals. On the other hand, we try to determine the
conditions, i.e., the value of the physical parameters, where the phenomena
under study take place through theoretical analysis of the models. The equa-
tions will be both used as a means to simulate actual systems and also as
objects of study themselves. Therefore, the applicability conditions of our
conclusions will be defined by the approximations assumed in the derivation
of the equations. From my point of view, this fact justifies the importance of
understanding the hypothesis connected to the equations. Note that we do
not pursue to resign from numerical studies but use them in a more efficient
way.



2 Introduction

All issues addressed in this dissertation arise around nonlinear pulse prop-
agation in waveguides. In spite of the majority of our results being applied
to silicon-on-insulator (SOI) waveguides, due to its relevance among the in-
tegrated photonics technologies [1], they are not restricted to this platform.
The scope of our main conclusions corresponds to those systems governed by
the equations we handle. For that reason, I review the derivation of both the
eigenvector equation, corresponding to the electric and magnetic modes fields
of a translational-invariant system, and the generalized nonlinear Schrodinger
equation (GNLSE), commonly used to describe the nonlinear propagation of
pulses. I especially concentrate on the assumptions made to derive the prop-
agation equation. As many other theories, this equation can be only analyti-
cally solved for some specific cases. For example, its stationary states, the so-
called solitons, can be calculated through the inverse scattering method [2] and
the evolution of pulses until the so-called wave-breaking through a Madelung
transform and WKB method [3]. These mathematical procedures find com-
plete solutions of the propagation equation, namely, both the amplitude and
phase of the output pulse. In addition, perturbation theory can also be applied
when the pulse contains a nearly stationary solution [4,5]. Notwithstanding,
these methods always imply restrictions on the physical features of the wave-
guide. Particularly, this kind of complete solutions does not include arbitrary
dispersion profiles. Nevertheless, this is an important property of the wave-
guides whose description must be carefully done when supercontinuum (SC)
generation problems are addressed. Indeed, these systems are usually highly
sensitive to dispersive properties across the large spectral range involved in
such cases [6]. Accordingly, strategies including all dispersive orders would be
desirable. On the whole, solving this equation involves a fundamental challenge
from a mathematical point of view: how to treat simultaneously local terms in
both the time (nonlinearities) and frequency (dispersion) domains. Its inher-
ent complexity often demands numerical simulations for realistic systems [6].
In contrast to this full numerical strategy, where a complete knowledge of the
pulse is sought, we try to obtain physical information from some integrated
quantities of the pulse. These functions (that depend on z-coordinate) satisfy
a conservation law of the GNLSE, that will be demonstrated in the next chap-
ter. Their physical interpretation was proposed in Paper II, and they were
successfully applied to SC generation pumped at the normal dispersion regime
in Paper V.

Indeed, any practical study must relate to the physical properties (those
that define the system within the theoretical framework), the geometry and
the materials (properties that can be partially controlled during the fabrication
process). It is worth noticing that silicon-based waveguides allow dispersion



engineering due to its high index contrast, namely, the difference between the
refractive indices of the core and the cladding, that is 2 or 3 orders of magni-
tude higher than the index contrast of conventional fibers (we will return to
this point in Chapter 3). Consequently, tools enabling control of, for example,
the dispersion profile through a proper geometric design can be of great inter-
est for this technology. Nonetheless, vectorial effects have significant impact,
thus difficulting any analytical approach. In fact, trial and error procedures
are usually adopted to develop design tasks [7—10]. Commercially available
mode solvers allows to apply this strategy in a straightforward manner, al-
though it becomes time-consuming when several degrees of freedom must be
incorporated to obtain precise control of the dispersion. Here we take advan-
tage of a previous theoretical result of our group [11], that was applied to the
scalar case, and derive a closed expression that offers an excellent numerical
precision and notably reduces the computational effort even for full-vectorial
systems, such as SOI waveguides. We use this tool to find realistic designs of
SOI waveguides that show several dispersion profiles matching targets initially
fixed.

On the one hand, Fig. 1.1 schematically represents the perturbative treat-
ment commonly applied to study the nonlinear pulse propagation in wave-
guides. It assumes that the nonlinear polarization induced when a light pulse
propagates breaks the translational symmetry along the propagation direc-
tion by changing the constant of motion (eigenvalue) related to this symme-
try, while the electromagnetic field along the transverse plane is still well-
described by means of the unperturbed solutions (eigenmodes). Furthermore,
it allows to study the pulse propagation in two steps. In fact, this work pro-
vides tools to deal separately with these steps. On the other hand, Fig. 1.1
compares direct design procedures that always connect the pulse propagation
study to an specific waveguide cross-section, with the inverse design. The
starting point of design tasks is usually the material distribution according to
the cross-section geometry. This information is contained in the permittivity
distribution, e(x¢,w), that corresponds to the input to compute the wave-
guide physical properties from Maxwell’s equations. These features describe
the waveguide within the context of the pulse propagation or, in other words,
they are the input for the equation governing the pulse evolution. The output
pulse is calculated by solving the propagation equation. This method is the
direct design. However, the above starting point will be the ending point in the
inverse design. Our approach can be formulated in two stages (see Fig. 1.1).
At the inverse nonlinear design step, the problem could be stated as what are
the waveguide physical properties that produce a particular nonlinear behav-
ior? For example, we could discuss about the dispersion needed to optimize



4 Introduction

Direct and Inverse Approaches

Permittivity
distribution: &(x) <~ N
Eigenvalue Inverse\
equation . : \
P =0 Direct linear
iy linear design
Maxwell's design /
equations Waveguide physical < 7
properties:B,y >
PNL asa \
perturbation\a| Nonlinear pulse \
propagation Inverse |
Direct nonlir?ear
nonlinear design

design

/
Output pulse: A (z_ ,t) |r

Figure 1.1: Comparison between standard procedures, namely, direct design
strategies, and the inverse design. In the figure, 8 stands for the propagation
constant, and - is the nonlinear coefficient of the waveguide. Note that the
waveguide is defined by means of the permittivity distribution, &, within the
eigenvalue equation, and through 3 and -, that are defined as the waveguides
physical properties, within the nonlinear pulse propagation equation. The
dashed arrows indicates our objective.

the spectral broadening of a pulse. The answer to this question would provide
the target features of our inverse linear design step. So, at this second step,
we should address what is the geometry that generate the properties that are
the solution of the nonlinear step? If we were able to respond successfully to
both questions, we would find how to design a waveguide to obtain an output
pulse with the desired properties. Therefore, the main objectives of this thesis
are:

e The development of an analytical strategy to study nonlinear pulse prop-
agation with arbitrary dispersion curves (Papers II and V).

e The implementation of a program to calculate alterations of the disper-
sion curve of high-index-contrast waveguides due to geometrical changes
(Paper IV).



e The application of these tools to generate SC spectra in silicon wave-
guides (Papers I and V).

I will complete this introductory overview with three more technical chap-
ters. The Chapter 2 will be devoted to basic notions around the main nonlinear
processes studied in this work. These mechanisms will be studied through an
approximate time-frequency analysis based on the instantaneous frequency.
Although it constitutes a simplified picture of the pulse evolution, it results
a very useful tool to obtain a significant physical insight around the intricate
interplay between dispersion and nonlinearities. In Chapter 3, I will revisit the
derivation of the GNLSE from first principles, avoiding standard (but unnec-
essary) approximations, hence paving the way for future work. In Chapter 4,
I will raise some numerical issues regarding the numerical study of high-index-
contrast waveguides that have been considered when tackling SOI waveguides.
The appended papers are summarized in Chapter 5. Finally, the conclusions
are presented in Chapter 6.
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Chapter 2

Physical processes
governing nonlinear pulse
propagation

The study of light propagation in material media always requires molding the
macroscopic response of the matter. In our case, this information is provided
by the dielectric function or permittivity of the materials. For the purposes
of this chapter, vectorial considerations will be omitted, so the permittivity
will be directly related to the refractive index. From a macroscopic perspec-
tive, all the physical processes that affect light propagation appear as different
functional dependences of the refractive index. Furthermore, losses can also
be included by considering an imaginary part of the refractive index. It can
be understood based on classical models of the polarizability, where losses
are analyzed through a restoring force, that produces a complex refractive
index [12]. This work is mainly focused on the frequency dependence of the
refractive index, namely, the group-velocity dispersion (GVD), and the inten-
sity dependence of its real part, namely, the Kerr effect or self-phase modu-
lation (SPM), and its imaginary part, produced by the so-called two-photon
absorption (TPA). In addition, this process generates free carriers that produce
losses, namely, free-carrier absorption (FCA), and also alter the refractive in-
dex, namely, free-carrier dispersion (FCD). It means that we will only consider
materials where third-order nonlinearities dominate. Second-order nonlinear
materials are out of the scope of this work.

GVD and SPM are usually understood in standard textbooks by way of
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their effects on the light signal [13,14]. Let us consider a light signal described
in the time domain by A(t) = |A(t)| explie (t)], where |A(t)| indicates the in-
stantaneous amplitude and ¢ (¢) is the instantaneous phase. Analogously, this
signal can be represented in the spectral domain by A(w) = |A(w)|expli¢ (w)],
where |A(w)| stands for the spectral amplitude and ¢ (w) corresponds to the
spectral phase. Since the GVD only produces changes on ¢, it translates into
distortions on |A|, e.g., temporal pulse broadening, and also on ¢. Similarly,
SPM modifies ¢, keeping | A| unaltered. Consequently, both |A| and ¢ change,
inducing spectral broadening. Although this description allows to take advan-
tage of both processes, it does not explain these phenomena in physical terms.
In addition, it cannot provide complete information about their interplay. The
lack of time-frequency analysis providing analytical solutions to this problem
becomes an insurmountable obstacle. However, significant physical insight can
be obtained by considering the instantaneous frequency of the pulse. Roughly
speaking, it constitutes the most basic time-frequency tool. Although it needs
some assumptions to be applied and its relation with Fourier frequencies is
not direct [15-17], it allows to acquire physical intuition about some features
of the pulse propagation. Due to its importance in this work, its meaning will
be drawn in the following lines.

From the Fourier theory, usual time signals can be understood as a coherent
superposition of monochromatic waves, A(t) = 3, ay exp(—iwyt), where ay,
are complex coefficients. In other words, the instantaneous power of a signal
results from a sum of amplitudes of waves with different frequencies. Never-
theless, the main contribution to A(t) at each temporal instant can come from
one of these waves. In such a case, the frequency of that wave can thus be
associated to the instant where it dominates. Consequently, a time distribu-
tion of frequencies can be constructed from a signal [18]. Following the above
notation, the Fourier transform of a signal can be written in the following way:

- o0 . Tk+1 . . .
Aw) = / A(t)e™tdt = > / | A(Tg) [ (TR eiOre(m) (=) giwt gy
kE VTR

— 00

= Z |A(Tk)|eitp(7k)e—i6tsﬁ(7'k)m /Tk+1 ei(atq:(m)+w)tdt, (2.1)

k Tk

where it is assumed that the temporal variations of the instantaneous power are
slow compared to those of the instantaneous phase. Based on the stationary
phase method [12], the temporal intervals, labelled by 7, where —0;p(7,) = w
will mainly contribute to A(w). Within these intervals, i.e., locally, A(t) be-
haves like a monochromatic wave with frequency —d;(7), that corresponds



to the chirp of the pulse. Although the chirp fails as an approximate picture
of the temporal distribution of frequencies when the pulse experiences strong
temporal changes, it remains valid where only nonlinearities act because they
do not modify the temporal pulse profile.

It is now interesting to review SPM and GVD from the point of view
of the instantaneous frequency. Firstly, the time distribution of frequencies
can change along the propagation due to the different group velocity of these
(quasi-monochromatic) waves. This effect does not inherently involve any in-
teraction between the waves. Nonetheless, their interaction induced by other
processes will be affected by this feature. In this way, temporal changes in-
duced by the GVD can be interpreted in a more natural way. Secondly, based
on its own definition, the growth of the chirp produced during the pulse prop-
agation directly implies spectral broadening. So, SPM can be also partially
described by using the instantaneous frequency of the pulse. Even the spectral
oscillations related to SPM can be justified because each instantaneous fre-
quency possesses two different temporal contributions coherently superposed
when the spectrum is calculated [19].

As we will see in the next chapter, an intensity dependent refractive in-
dex is caused by a third-order susceptibility, ¥>. A fundamental interaction
controlled by this susceptibility is the so-called four wave-mixing (FWM). It
corresponds to wp 1 + wp 2 — ws + w;, where wy 1 and w2 indicate the pump
waves whose interaction produces a signal, wg, and idler, w;, waves. In these
processes, wp 1 + wp 2 = ws + wj, that refers to the energy conservation. Note
that this process also preserves the number of photons. If only one pump wave
is actually acting, the process is called degenerate FWM, being non degenerate
if two different pump waves interact. When this process is studied considering
the electric field as a sum of four (strictly) monochromatic waves, concepts as
phase matching or gain (related to the momentum conservation of the above
process) of new generated monochromatic waves appear [14,20]. Nevertheless,
these concepts do not appear when the pulse spectral broadening induced by
SPM is studied. Clearly, the analysis of SPM in terms of multiple FWM would
be cumbersome and probably less useful than the study of the pulse envelope
evolution. However, it does not mean that SPM and, in general, nonlinear
pulse propagation could be essentially different to FWM among several locally
monochromatic waves moving at different velocities [21,22].

After these general considerations, we restrict our attention to highly non-
linear systems under normal dispersion regime. It refers to a pulse propagation
initially dominated by SPM where red-shifted frequencies (negative chirps)
travel faster and blue-shifted frequencies (positive chirps) move slower than
those frequencies around the carrier (nearly zero chirps). We consider v > 0,
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which corresponds to the self-focusing Kerr effect [14]. Due to the intensity-
dependent refractive index, the chirp induced by SPM while it dominates goes
as —y0; P z, where P is the instantaneous power of the pulse that propagates
along the z-coordinate, see Fig. 2.1 (it can be easily checked from GNLSE,
that is derived Chapter 2). Therefore, red-shifted frequencies are located at
the leading pulse edge and blue-shifted frequencies at the trailing edge. Since
the inverse of the (group) velocity of quasi-monochromatic waves is given by
B1(w) = dB/dw [12], this regime takes place when (81(w > wg) > F1(wo) >
B1(w < wp). This fact implies 8y = d?/dw?|,, > 0 (consider that w belongs
to a neighborhood of wy).

Under normal dispersion conditions, a strong temporal overlapping among
locally quasi-monochromatic waves (according to the instantaneous frequency
definition) located at the pulse tails could be produced. If so, the nonlinear
interactions of these waves will be reinforced, giving rise to new frequency
generation, see Fig. 2.1. From a temporal picture, this phenomenon leads
to strong oscillations at the pulse tails (where the interaction is produced),
corresponding to the effect called optical wave-breaking (OWB) [23-25]. It
constitutes a clear example where the interplay between nonlinearities and
dispersion cannot be avoided. Some theoretical research was done regarding
the distance where the process takes place [26] or input profiles avoiding such
an effect [27]. Even assuming constant GVD, these works show the difficulties
that arise when complete information about the pulse is sought. New interest-
ing applications of OWB related to coherent SC generation [28,29] and pulse
compression [30] have been recently pointed out. Nevertheless, the available
theoretical tools remain the same. Particularly, there is a lack of studies of
OWB under nonconstant GVD. One of the main results of this dissertation
is the derivation of analytical expressions to describe the spectral broadening
induced by OWB under higher-order dispersion.

Most of the work around SC generation exploits soliton-related dynam-
ics [6]. A soliton is a kind of pulse that propagates without being distorted
(or that suffers periodic changes) due to a compensation between an anoma-
lous GVD, i.e., B2 < 0, and SPM effects [13]. The spectral broadening arises,
in different stages, from SPM reinforced by temporal compression, higher-
order soliton fission [31] and dispersive waves emitted by solitons perturbed
by higher-order dispersion [32-34] or affected by Raman induced soliton self-
frequency shift [35]. Since it requires pumping at the anomalous dispersion
regime, input noise can be amplified through the degenerate FWM process as-
sociated to the so-called modulation instability (MI). If this mechanism domi-
nates, SC generation becomes highly sensitive to input pulse fluctuations and
thus, unstable. Consequently, shorter pulses must be propagated in order to
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Figure 2.1: Instantaneous frequency, dw, and intensity profile, P, of a pulse
affected only by SPM. Note that red-shifted frequencies (red curve) are located
at the leading pulse edge (7 < 0) and blue-shifted frequencies (blue curve) and
the trailing edge (7 > 0). Subindex p, s, and ¢ indicate pump, signal and idler,
respectively.

SPM-induced new frequencies overlap with those amplified by MI. In this way,
the noise background has a minor impact [6]. With the aim of avoiding this
undesirable effect without any additional bound, we choose to investigate SC
generation pumping at the normal dispersion regime, where MI does not takes
place [6,13]. Clearly, enhancing the spectral broadening at this dispersion
regime is actually the challenge here. Our goal is to make really efficient the
new frequency production by OWB.

TPA is one of the main limiting factor for continuum generation in silicon
waveguides [36,37]. Similarly to SPM, this process manifests as an intensity
dependence of the imaginary part of the refractive index (as it has been men-
tioned, it takes into account losses). This feature leads to a different impact
of TPA along a pulse. This point will be studied in Paper I. Although it is a
x> process, the fundamental interaction differs from FWM because it is not
a parametric process. In this case, electrons in the valence band absorb two
photons that induce, assisted by phonons [38,39], a transition to the conduc-
tion band. It generates free carriers that induce additional nonlinear losses,
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namely, free-carrier absorption (FCA) and changes on the refractive index,
namely, free-carriers dispersion (FCD) [36]. The effects of these processes on
pulse propagation will be also studied in Paper I. Mechanisms of decay of
these free-carriers will not be studied here. Both SPM and TPA are related to
electronic response of media, taking place in a nearly instantaneous way [38].
Processes related to the nuclei response of media, such as Raman or Brillouin
effects are out of the scope of this work. Brillouin scattering turns out negli-
gible in silicon [38] and Raman response in silicon is about 3ps [38], so it can
be neglected at the short pulse regime (~ 0.1ps) [40,41].

All of the above interactions will be studied within the Maxwell’s equations
framework by means of GNSLE. At this point, we only need to indicate that
the nonlinear polarization (including all the above processes) is actually weak
enough to be considered as a perturbation. As other perturbative approaches,
the information derived from the unperturbed problem will be a key element.
In our case, it refers to some properties of the propagation constant, 3, and the
nonlinear coefficient, v, which correspond to the previously referred waveguide
physical properties (see Fig. 1.1). Indeed, these functions govern the nonlinear
pulse behavior. Both functions have a material and a geometric contributions,
being the last one particularly important for SOI waveguides.

We address this task through an inverse approach. So, in a first step, our
aim will be determine 8 and 7 leading to a specific nonlinear propagation to
accomplish an application. Here we are interested on SC generation based
on OWB in SOI waveguides. It corresponds to our inverse nonlinear design.
Once these functions are found, our second goal will be to achieve the geometric
parameters so that § and v match the targets obtained in our inverse nonlinear
design. It corresponds to our inverse linear design.

In spite of v being a waveguide property (i.e., it does not depend on the
pulse intensity), it depends on the assumptions made in the derivation of the
pulse propagation equation. Therefore, I consider a complete derivation of this
equation is required here. It will be done in the next chapter, as well as the
construction of the nonlinear polarization. Both mathematical developments
will be developed with care, avoiding unnecessary initial approximations to
point out their physical meaning.



Chapter 3

Nonlinear pulse
propagation equation

Our goal in this thesis is to generate SC based on OWB. We use silicon wave-
guides because they allow to engineer the dispersion and offer high nonlineari-
ties. Fine control of dispersion usually demands inhomogeneous cross-sections.
In addition, they must be considered full vectorial systems due to its high index
contrast (we will deal with this feature in the next chapter). For our purposes,
it is useful to classify the pulse propagation methods according to the treatment
of backward components and transverse effects. This work will keep within
the unidirectional pulse propagation approximation due to the backward wave
can be often neglected in nonlinear optical materials, even at intensities near
the damage threshold [42]. Mathematically, if the nonlinear polarization is
a perturbation, it is done by applying the so-called slowly-varying envelope
approximation (SVEA) [43]. This requirement will be properly defined at the
end of this section. Nevertheless, some new methods have been proposed to
describe the effects related to the backward propagating wave. On the one
hand, the second-order wave equation can be formally solved by means of a
modal approach, to deal with transverse effects, and the Green function, to
decompose the spectrum into its forward and backward components [44]. On
the other hand, the electric and magnetic field can be combined to reformulate
Maxwell’s equations in terms of new variables representing energy flows in the
forward and backward directions [45].

Transverse effects will be studied here through a modal method that leads
to a 1 + 1 dimensions equation. Other approaches based on 3 + 1 dimen-
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sions were derived for homogeneous media [46,47] and therefore, will not be
considered here. In addition, our starting point will be Maxwell’s equations
(not the second order-wave equation [48]). In this sense, our derivation will
be close to other previous works where the conjugated form of the reciprocity
theorem [49] was applied [50-53]. Although these works study unidirectional
pulse propagation, the perturbative treatment of the nonlinear polarization
and hence, the SVEA, is not explicitly shown [54]. Moreover, a similar deriva-
tion based on the unconjugated form of the reciprocity theorem could give
rise to a different propagation equation if the longitudinal component of the
nonlinear polarization were not neglected. These ambiguous facts are clarified
following our approach.

Lastly, the nonlinear polarization will be constructed without any restric-
tion about the bandwidth of the pulse, avoiding standard approximations re-
garding the coupling between negative and positive Fourier frequencies [55].
New phenomena has been recently observed [56] and interpreted based on these
considerations [57]. Furthermore, I will also do some remarks about the dis-
persion of nonlinearities, which is also being a topic of recent research [58-60]
and cannot be completely neglected for the waveguides that we will use in our
work. I want to emphasize that the main aim of the following procedure is to
clarify the range of applicability of the GNLSE and therefore, of the numerical
results included in Papers IT and V. Throughout the derivation, I will highlight
all the hypothesis and their physical consequences. In addition, this develop-
ment also allows to evaluate the effort that would be required to include new
phenomena in the theory.

3.1 Pulse propagation equation for a generic
nonlinear polarization

Let us consider Maxwell’s equations in presence of a nonlinear polarization in
a region with no charges and no currents [50, 52, 58]

V.-(e0¢E) = —V.-Pyr, (3.1)
V-H = 0, (3.2)
VxH = —iweeE —iwPyi, (3.3)
VXxE = iwuH, (3.4)

where E = F(E) = S5 Eexp(iwt)dt is the Fourier transform of the electric
field, E, H stands for the magnetic field, ¢ = e(xy,w) is the dielectric ten-
sor of an invariant system along the z-coordinate (note that it only depends
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on the transverse coordinates, x;, and it does not include nonlinear effects,
that are described by means of a nonlinear polarization, PNL)7 €o and po
represent the permittivity and permeability of the vacuum, respectively. In
a modal approach, the fields are described by means of an expansion of the
corresponding waveguide modes. Consequently, the components of this linear
superposition of modes do not depend on x;, or equivalently, they are a func-
tion of z and w. Our study restricts this expansion to one mode, although
the following procedure would enable to include multimode effects [48, 61].
Therefore, we assume single-mode propagation and introduce the next double
ansatz E = B,(z,w)e(xy,w) exp(ifz) and H = By, (z,w)h(x;,w) exp(iBz). In
this ansatz, e and h correspond to the electric and magnetic fields of a wave-
guide mode (we have included in Appendix A a complete derivation of the
equations satisfied by these modes and some of their properties) normalized
such that Eq. (A.21) is satisfied, i.e., are solutions of Egs. (3.3) and (3.4)
when Py, = 0. Be, n can still be considered the components of this monomode
expansion. Note that the electric and magnetic field do not share the same
envelope, which is the key difference with respect to [50-54]. Furthermore, we
have not evaluated the mode at any carrier frequency [52]. Consequently, this
ansatz does not imply other assumptions besides the single-mode condition.
It is worth noticing that the single-mode condition already implies some re-
strictions on B, j, due to Eqs. (3.1) and (3.2). Particularly, |0.By,| < |8Bu|.
We will return to this condition at the end of this section. If we introduce this
ansatz into Egs. (3.3) and (3.4), we derive the following two coupled equations

V x H =B,V x (he) +¢#72 x h 0. By,
= ¢'h* (_iwsoa eBj, + 7 x hath) = —e"*iwepe eB, — iwPx, (3.5)

V xE =B,V x (eewz) +eP%z x ed, B,
= ¢'h* (iw,uohBe 4+ 2 x e@zée> = " iwpghBy, (3.6)

where we have taken into account both h and e are the mode fields. The above
equations can be rearranged as follows:

Z X hath + 7:(4}505 G(Be — Bh) = —iwf’NLe_wz, (37)
7 x ed,B, +iwpoh(B, — B,) = 0. (3.8)
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Now we scalar-multiply Eq. (3.7) by e* and Eq. (3.8) by h* and integrate them
over S, the two-dimensional domain where the fields are defined,

—0.By, / (e* x h)-2dS + iw(B, — Bh)go/ e*-cedS (3.9)
S S
= fiw/ e* - Pyp dS e 2,
S
0.8, / (e x h*) - 2dS + iw(B, — Bh)uo/ h*-hdS = 0. (3.10)
S S

where we have used the vectorial identity a- (b x ¢c) = —b - (a x ¢). It is
worthwhile to note (e* x h) -z = (ef x h;) - 2. Since it is always possible
for nonabsorbing waveguides to choose the transverse components, e; and hy
(that can be understood as three dimensional vectors with a zero longitudinal
component), pure real and the longitudinal, e, and h., pure imaginary [49],
we can omit the complex conjugate on e; and hj. In this way, we can take
advantage of the biorthogonality relation expressed by Eq. (A.21) and set the
coefficients of both d,Bj, in Eq. (3.9) and 9.B. in Eq. (3.10) to 1. Clearly,
this result would also be obtained if we had scalar-multiplied Eq. (3.7) by
e and Eq. (3.8) by h. Nevertheless, the nonlinear term (and therefore, the
pulse propagation equation) could change if the longitudinal component of
the nonlinear polarization would not be neglected. Note that this question
would appear if the same envelope were considered for both the electric and
magnetic mode fields. Keeping two different envelopes, this question does
not arise. According to Eq. (A.24), it is convenient to scalar-multiply by the
complex conjugates because it gives rise to the same coupling coefficients of
the left-hand side of the above equations. Consequently, we can subtract both
equation to obtain

d.(B, + B.) = iwe—iBZ/ e* - Pyr, dS. (3.11)
s
Some points around this equation must be emphasized. It appears in a
natural way as the constraint imposed by Maxwell’s equations on By, and Be
under single-mode propagation assumption. If By, ~ B, = B is assumed, it is
obtained the nonlinear pulse propagation equation [50]:

9,B = %we—iﬂz/ e* - PynrdS. (3.12)
S

On the one hand, we point out that the above approximation actually corre-
sponds to the commonly used SVEA. If Eq. (3.4) is developed under the above
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assumption,
Vixe+Zixe (ﬁB + 823) = iwpoh, (3.13)

which means that this ansatz describes a physical solution as long as |9, B| <
|BB|. Tt implies that the nonlinear polarization [which controls 9, B, see
Eq. (3.12)] must be treated as a perturbation. It corresponds to the SVEA [38]
and allows to neglect the backward wave [42,43]. So, this approach suggests
that SVEA could also be related to differences between the electric and mag-
netic envelopes. We remind that the single-mode propagates can also exist
under this approximation, as we stated at the beginning of this section. It
points out that several physical effects are related to SVEA. We leave the
study of the impact of each effect for future research.

3.2 Third-order nonlinear polarization

The use of Eq. (3.12) to evaluate the propagation of a light pulse throughout
a waveguide requires to develop Py, in terms of the field envelopes. Firstly, a
generic third-order nonlinear polarization is written following the conventions
of [20] (except for the irrelevant fact regarding the convention of the sign of
the first frequency argument). The next expression

PO (t) = / R (T)E;(t — 70)E(t — m2) Ey(t — m3) &, (3.14)

corresponding to a generic form of a third-order polarization (note it is assumed
a local spatial response), where T = (71,72, 73) and d®r = drdmd7s. The
tensor Rgs,)vl is called the response function of the medium. It must be real
due to E(t) is a real-valued field. Moreover, it must also vanish when 7; < 0
to ensure the causality condition [20]. It can be rewritten in the frequency
domain as

x / h X (wos @) By (w1) B (w2) Ey(ws)d(w — we) dPw,  (3.15)

— 00

where XE?,)Cl(wo; w)=[%, RE?])CZ(T) exp(iw - T) d® T is the third-order suscep-
tibility, w = (w1, ws,ws3), d3w = dwidwedws, Wy = w1 + wo + w3, i.e., Wy
labels the sum of the three (last) arguments of the third-order susceptibility,
and [ dtexp(iwt) = 2m§(t) has been used.
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With the aim of removing the redundant information contained in the
negative Fourier frequencies of a real-valued signal, as the electric field, it is

interesting to introduce at this point the so-called analytic signal, &;, for the
electric field, following [54, 62]:

0 ifw<O,
Ei(w) = Eij(w) ifw=0, (3.16)
2F;(w) ifw >0,

that implies 2F;(w) = &(w) + gi*(—w). In addition, & (w) can be interpreted
as a physical wave with a physical frequency suggesting, in this way, the fun-
damental processes behind the different terms of the third-order polarization.

Attending to the intrinsic permutation symmetry, XE?I)CZ(LUU; w) is invariant
under the interchange of pairs (m,w,), being m = j k,l and n = 1,2,3,
the reality condition, [Xg’zcl(w,,;w)}* = ng?,)cl(w,,; —w) [20], and §(w) = §(—w),
Eq. (3.15) can be rewritten after some algebra as

. 11~ N . .
PO (w) = 5 [PTSFG(W) + Prwm(w) + Prgpe (—w) + Prwu(—w) | . (3.17)
Here the following functions have been introduced,

Prera.i(w) = eo(2m) 72272

></ XE?,)Cl(wU;wl,w27wS)gj(wl)gl(wg)gk(wg)é(w—wa)d?’w, (3.18)

Prwi(w) = eo(2m) 722723

x/ Xz(',?/)cl(wole—Wz,w:s)gj(wl) S (w2) € (w3)d(w — wo) dPw.  (3.19)

Now I want to emphasize two points around these functions. On the one hand,
there is no contribution of the electric field for negative negative frequencies
due to & (w < 0) = 0. On the other hand, it is worth to emphasize that the
analytic signal of P®)(w) is not Prsra(w) + Prwm(w) because Phyy(—w)
can be nonzero when w > 0. This fact suggests that P}WM(—w) does not
contain the same information of Prwum (w), unlike Prspa (w) and f’?}SFG(—w).
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Based on energy conservation (shown explicitly in the above equations),
each of those polarizations terms could describe the following physical pro-
cesses:

Prsrc(w) : wi + w2 +ws — w, (3.20)
Prwm(w) : w1 +ws — wa + w, (3.21)
Piym(—w) : wy — w1 4wz + w. (3.22)

In this work we will only focus on Ppyw(w), which actually describes the four
wave mixing process [14,20]. However, I want to point out that Prspa(w)
seems to be related to the third order sum-frequency generation (TSFG) [63]
and hence, in such a case it would include the third harmonic generation
(THG) process for the degenerate case w1 = wy = w3 [13]. Moreover, the
above scheme would indicate that Py (—w) does not represent any four
wave mixing process. It could be related to the recently observed negative
resonant radiation according to [56,57]. However, both processes are out of
the scope of this thesis and will be addressed in future work.

3.3 Generalized nonlinear Schrodinger equation

In this section, Egs. (3.12) and (3.19) will be developed in order to derive a

suitable propagation equation. Based on the previous reasoning, £(x,w) =
2B(z,w)e(xs,w) exp(if(w)z) and Eq. (3.12) can now be written as

20, B(z,0) = i(2m)? [ 60— wo) ()

— 00

X B(z,w1)eP@1)2 B (2, wy)e P @2)2 Bz, w3)eP @) 3w (3.23)

where w > 0, w, = wy — w2 + w3 and it is defined
3 * *
Y(w,w) = gweo/ nglll(w;wl, —wa,ws)e; (w)ej(wr)ey(wa)er(ws) dS.  (3.24)
S

As it will be apparent at the end of this section, it is now convenient to define
a new envelope A(z,w) = B(z,w)explif(w)z]exp[—i(Bo + f1(w — wp)z]. It
is worth to emphasize that, at this point, 5y, 81, and wy can be considered

free parameters without any particular physical meaning. By means of this
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transformation, Eq. (3.23) can be recast as

9. A(z,w) = i [B(w) — Bo — fi(w —wo)] A(z,w)

+i(2m) 72 / Y(w, w1, wa, w—wi4ws) Az, w1 ) A* (2, wa) A2, w—w1 +ws ) dw dws.

(3.25)

From a numerical point of view, solving this equation would become not af-
fordable due to the sampling required by . However, we will check in the
summary of Paper V that even in cases where the mode that supports the
propagation is quite dispersive, the approximation v(w,w;,ws,w —wy + wa) &
Y(w,w,w,w) = y(w) could work reasonably well. A discussion about physi-
cal situations where this approximation can be argued is found in [58]. Some
authors have even studied new nonlinear effects related to the full frequency
dependence of the nonlinear coefficient [59,60]. These multidispersion effects
will not be considered here. It is easy to check the huge numerical benefit
provided by this assumption:

(2m)~2 / h dwdws A(wy) A* (w2) A(w — wi + wo)

— 00

= (27)2 /Oo dws UOO dwr A(wr)A(w + wy — Wl):| A% (w2)

— 00 — 00

= (2n)7 ! /OO dt Uoo dwpA(wa)e ™2t | A% (t)e™" = F [|A(H)[PA()] -
(3.26)

Finally, the so-called generalized nonlinear Schrodinger equation is obtained
in its usual form [13]

0. A(z,w — woy) = 1By (W) A(z,w — wo) + iy(w)F [|A)PA()] - (3.27)

For numerical convenience, wy is identified with the carrier frequency of the
input pulse and both the envelope and § are centred at wg. Furthermore, it
is common to define 3,(w) = B(w) — Bo — B1(w —wo) = >y Br(w — wo)* /K,
where 8, = d*3/dw*|.,, and B has been developed in Taylor series around
wp. I consider it is worth mentioning how must the solution of Eq. (3.27) be
interpreted. On the one side, the electric field spectrum for positive frequencies
is given by

E(x,w —wy) = A(z,w — wp)e!Pothrlowo)2e(x, o — wp). (3.28)
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Note that |A(z,w —wp)|? only provides the spectrum of the electric field if the
mode dispersion can be neglected. On the other side, the temporal picture of
the output pulse is provided by

oo

E(x,7) = (271')_1 / fl(z,w — wo)ewoze_i(“’_“’O)Te(xt,w —wp)dw, (3.29)

— 00

where 7 = t — $1z is a temporal coordinate whose origin at each z-plane is
defined by the arrival time of a signal moving at the group velocity of the
pulse, 1/8; [13]. The introduction of the new envelope A(z,w) is, in this way,
justified also for numerical purposes. Therefore, the information provided by

00 B ) 2
‘/ dwA(z,w — wp)e Hw—wo)T (3.30)
—o0

is only directly related to experimental measurements when the mode is nearly
constant along the spectrum.

3.4 Conservation laws

In this section, the theoretical tool that supports our inverse nonlinear de-
sign will be derived. This results corresponds to a conservation law of the
GNLSE. Several pulse invariants was already pointed out in the seminal work
by Zakharov and Shabat [2]. In that work, the authors apply the inverse scat-
tering method to find the stationary solutions for the nonlinear Schrodinger
equation (NLSE), i.e., for the Eq. (3.27) but keeping 2 and + constant. For
these purposes, a description of GVD in the time domain is required. Con-
sequently, the conservation laws shown in that work are also expressed in the
time domain. The effects of higher-order dispersive effects on these conserved
quantities have also been studied in the time domain [31,64]. These conser-
vation laws are naturally interpreted from a Hamiltonian formulation of the
GNLSE and have been applied to study the stability of solitons in presence of
higher-order dispersion [65,66]. Nevertheless, we do not follow this approach.
We will take advantage of these invariants in a similar way to [67,68]. In these
works, A. Picozzi and co-workers propose a thermodynamic formulation of SC
generation. These authors generalized the conservation law proposed by Za-
kharov and Shabat and analyze the effect of higher-order dispersion by means
of averaged quantities of the pulse that experiences such a spectral broadening.

Our inverse nonlinear design also propose to study some properties of the
SC generation without a complete knowledge of the pulse profile. We will
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exploit the averaged quantities involved in the generalized version of the above
conservation law to quantify the stress of the nonlinear and dispersive effects
at each propagation distance. This approach will be useful in Papers II and
V to study some consequences of OWB.

Let us consider the propagation equation for the spectrum. According to
Eq. (3.27),

0| A[2 = 2R(A0,4) = ~(w)2R (iix*g(m\?A)). (3.31)

Now, by integrating over w, it is derived

0, / dw~y Hw)|A(z,w) 2 = 2R (2/ dwfl*/ dt|A|2AeMt>
= 23%( / dt </ deeiwt> |A|2A) = 2R (m/ dt|A|4) =0

(3.32)

This conserved quantity was already shown in [60,67]. If Eq. (3.31) is multi-
plied by 8,(w), which is assumed to be real, and taking into account Eq. (3.27):

0.6 (@) A = 2% (iB,(w) Ay (@)F (1A 4) )
= 20 ([-0.4" + {ir@)F (AP} | [H@)F(1APA)])
— 2R (azAw(w)g(mFA)) . (3.33)

Similarly to the first pulse invariant, the following conservation law is derived

o. ([ ws o @liewP + 5 [ alacor) o, @

where v(w) is assumed to be real. This conserved quantity was already in-
cluded in [67] for a y(w) = 40 + 71 (w — wp), where v, = d¥vy(w)/dw*|,,-
Finally, I can define the next z-dependent functions

2o AW Bp(w)y ™ (W) Az, w)
I dwv (@) A(z,w)I?
2m [7_ dt|A(z, t)[*

Lyi(z) = 2T doy @A F (3.36)

, (3.35)
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to express the above constant of motion in a more suggesting way
L5'(2) + L1, (2) = £5"(0) + L51,(0)- (3.37)

This conservation law, written in this form, will be the key tool in our inverse
nonlinear design since it allows to analyze the pulse evolution from a simplified
picture keeping the main physical effects at work. Its application appear in
Papers IT and V.
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Chapter 4

Silicon-on-insulator
waveguides simulations

Despite SOI is the platform where we will perform our SC generation calcula-
tions, we will not focus on the plethora of applications based on these materi-
als [69,70]. Here we present our preliminary analysis to evaluate the numerical
accuracy of the simulations of SOI waveguides provided by our homemade soft-
ware. It is an iterative Fourier algorithm that provides all the components of
the electromagnetic field of the waveguide mode and the corresponding prop-
agation constant solving Eq. (A.13) [84]. Simulations of these waveguides are
demanding, compared to step-index or even photonic crystal fibers, due to
their high index contrast. The information included in this chapter completes
that included in Paper IV. Therefore, this chapter belongs to the inverse linear
design part.

4.1 Numerical issues

Let us consider a silicon cylinder surrounded by silica, see inset of Fig. 4.1(a).
Their modes satisfy an ordinary differential equation in its radial coordinate,
due to its rotational invariance, that can be analytically solved [12,13]. The
fundamental mode inside the core is found to be Jo(p/pcore), Wwhere Jy is the
Bessel function of order 0, and peore o A/ (2., —n2g)*/? [13]. In the cladding,
the fundamental mode is given by Ko(p/pciad), where Ky is the modified Bessel
function of order 0, and peaa o A/ (n2g —n2,4)*/? [13]. The decay of the mode
amplitude along the radial coordinate is then controlled by pcore and perad-
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Figure 4.1: (a) Convergence process of the difference between the effective in-
dex numerically computed and the analytical value, Aneg. The spatial window
size is fixed, ¢ = 1.2 ym, to find the resolution required for the cross-section
shown in the inset. Convergence is reached at N = 96. (b) Analogous process
keeping § = 12.5 um to evaluate what ¢ is needed. Convergence is reached at
¢=2pm (N = 160).

Since nelad < Neff < Neore and Ng; — Ngio, ~ 2 is the index contrast, while in
standard single-mode step-index fibers is around 0.003 [13], this decay is much
steeper in SOI waveguides. Accordingly, these waveguides usually require a
higher resolution and therefore, more computational resources and time.

We show in Fig. 4.1 one example of a preliminary study to obtain the
resolution, ¢, and spatial window size, ¢, to properly calculate the eigenvalues
(the propagation constants) and eigenvectors (modes fields) corresponding to
a waveguide. We directly plot the differences between the effective index and
its analytical value neg = 3.19237 for A = 1.9 um. Note that the absolute error
is less than 1073 for 6 < 12.5nm and ¢ > 2 um. Since the waveguide dispersion
will play an important role in our work, we can use the case of the cylinder
to estimate the error of the dispersion that is numerically calculated. We
conclude from Fig. 4.2 that the numerical accuracy achievable in our effective
index calculations produces an absolute error around 1073 on the dispersion
values. This must be kept in mind for the results shown Papers IV and V,
relative to SOI waveguides.

The high index contrast of SOI waveguides also increases the weight of the
geometrical contribution to the waveguide dispersion [71]. It allows to engi-
neer the dispersion by means of the waveguide cross-section design. However,
several geometrical degrees of freedom are often required. It enhances the com-
plexity of both the design and the fabrication techniques. In this thesis, we will
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Figure 4.2: (a) Analytically calculated effective index (solid curve) and its
difference with respect to the numerical value, —Aneg (dashed curve). (b)
Analogous to (a) but considering the dispersion Ss.

exploit the properties of a silicon strip waveguide on a silica substrate with air
as the cover, with a silica slot inserted in the silicon channel, see Fig. 4.3(a).
This kind of cross-section was firstly proposed by Zhang et al. [9]. Here we
will only address the numerical effects arisen when cross-sections with parallel
interfaces are analyzed. We will see what effects are produced by these rect-
angular structures and how do they generate undesired numerical artefacts.
This fact is particularly important for the cross-section used in this work.

In the above strip-slot waveguide the quasi-transverse magnetic (TM) fun-
damental mode is essentially polarized in the vertical direction, i.e., it is nor-
mal to the slot interfaces. As the wavelength increases, the strip mode also
enlarges. Nevertheless, the boundary condition of the normal electric field
component imposes that it must be n;/ngo, times higher just above the
lower slot interface (inside the silica layer) than just below (inside the silicon
layer) [72,73]. It induces a strong confinement of the electric field inside the
slot at longer wavelengths [9], see Fig 4.3(b). In other words, as the wave-
length increases, a transition between a strip and slot mode is produced [9].
Among other effects, this property makes the numerical sampling around the
lower slot interface critical. If the structure is parallel to the grid, the effective
index shows a high sensitivity to the position of the closest row of sampling
points to the interface. It difficults even more the numerical calculation of
derivatives with respect to the geometrical parameters of the effective index
and dispersion. This point is significant in Paper IV to check the accuracy of
our method to compute the gradient of the propagation constant. Certainly,
it corresponds to a numerical artefact that is detrimental to the convergence,
see Fig. 4.3(c). We solved this trouble by slightly rotating the cross-section an
angle around 6 /w, where w is the width of the waveguide, see Fig. 4.3(a), to
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Figure 4.3: (a) Cross-section of the waveguide. Here we consider w = 650 nim,
h =460nm, hy, = 50nm and ds = 115nm. (b) Component of the electric field
vertically polarized. (c¢) Comparison between the convergence, at a £ = 1 um,
of a cross-section parallel to the sampling grid (dashed curve) and the corre-
sponding to a slightly rotated (1.5°) structure (solid curve). (d) Convergence
of the rotated cross-section at § = 6.25nm. For (b—d), A = 1.9 um.

ensure a more representative sampling of the transition between media that
makes the convergence smoother, see Fig. 4.3(c). It is worthwhile to indicate
that we attend to the effective medium theory to take into account the tran-
sition of the refractive index around interfaces [78,79]. Based on our analysis
of the cylindrical waveguide, an accuracy below than 10~2 is achieved when
N = 160, corresponding to § = 6.25 nm, are considered. Finally, this accuracy
is kept when ¢ = 1.8 um is used, thus NV = 288 are required to numerically
describe this cross-section. The procedure presented here explains the reasons
of the numerical parameters, N and /¢, considered in Paper IV and V.
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4.2 Explicit expression for the nonlinear coef-
ficient

Since measurements of the material dispersion of nonlinearity with respect to
multiple frequencies lack, the third-order susceptibility corresponding to FWM
is often expressed as

4 C w
XS’;)CZ(W;M, ~wa,w3) = X(w)Oijp = §€ocn2(w) <n2(w) + ZﬂTPA“) Oijki,

w 2
(4.1)
where ny is the Kerr index, Brpa is the TPA coefficient and dispersive and
vectorial effects have been factorized. Both parameters can be experimentally
measured [74-76]. For silicon, according to [38],

WD

Oijit = 5(0i0k + 0ir0j1 + 6idjn) + (1 — p)oiji, (4.2)

where p /= 1.27, 9;; and d;;5; correspond to the Kronecker delta for two or four
indices. The first term is isotropic and therefore, it does not depend on the
coordinate system. Nevertheless, the second term is anisotropic and has been
written assuming a coordinate system parallel to the crystallographic axes of
silicon. This term will not considered in this work, as in [52]. For silica, p = 1.
For the sake of completeness, an explicit expression for Eq. (3.24) will be
derived here for any inhomogeneous cross-section composed by materials with
isotropic nonlinear responses. If the integrand of Eq. (3.24) is developed for a
homogeneous region assuming that the electric and magnetic fields with real
transverse components e; and h;, and pure imaginary longitudinal components
e, an h, [49], it leads to

X ereserer = x(w)E (2eteicien + (eier) ese;)

WD WD

= x(w)5 (2er - et + [e=)* + (er - e — [e[*)?)

2
— X('?’) (w)p ((et . et)2 + get ° et|€z|2 + |62|4) ) (43)



30 Silicon-on-insulator waveguides simulations

which was derived in [77]. Finally, if Eq. (3.24) is rewritten including explicitly
the fields normalization, it is obtained

(k) (k)
Yw) =) [an @) | ;Orpa(®@)

c 2
k

y ") [n®) (w)]2eo fsk [(et.et)2+ %et~et|ez\2 + ‘62‘4] as
2p0(fg(er x hy) - 2dS)? ’

(4.4)

where the subindex k£ denotes each homogeneous material of the cross-section.
It is useful to write the above equation here although it does not include any
novelty. It explicitly shows how to compute the nonlinear coefficient from the
experimental data, namely ny and Brpa, and the mode fields provided by any
software.

I complete this section presenting in Fig. 4.4 the numerical fits from exper-
imental measurements of the Kerr index, ns, and the TPA coefficient, Srpa of
silicon. All fits correspond to a Cauchy model of the form Zi:o ar /A%, which
parameters appear in Table 4.1. Silicon will be described in our simulations
in Paper V by the mean values of those provided by these fits. Note that the
measurements of [75,76] are significantly different (it justifies that there is no
need to include minor contributions like the silicon anisotropy in the present
study). Both the numerical analysis of the previous section and the data pro-
vided here contain the procedure required to compute the waveguide physical
properties. We stated in the introduction that these functions actually repre-
sent the waveguide when a pulse propagation is studied through the GNLSE.
Therefore, it completes the numerical studies shown in Papers IV and V to
support the conclusions presented in this thesis.

Table 4.1: Cauchy coefficients in units of Fig. 4.4 and A expressed in um.

Magnitude (units) ag(units) a; (units pum?) ay (units pm?)

na(m?W=1) [75]  —9.31422 x 10~ 1.78924 x 1017 —2.25824 x 10~ 17
Brea(mW—1) [75]  —8.03605 x 1072 5.07515 x 10711 —4.63796 x 10~ 1!
na(m?W=1) [76]  1.83568 x 10717 —3.49209 x 10~7  2.02215 x 10717
Brea(mW—1) [76] —9.18175 x 10712 6.22685 x 10~ —3.11114 x 10~
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Figure 4.4: Kerr index (a) and TPA coefficient (b) measurements from [75]
and the corresponding Cauchy fits (see Table 4.1). Analogously in (¢) and (d)
from data presented in [76].
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Chapter 5

Summary of Papers

The following summary contains the main conclusions of this thesis as well as
some unpublished results involving different points that were not addressed
when the papers were published. They appear in chronological order of pub-
lication, but their content must be organized as follows. Papers II and IV
present the most important theoretical and numerical findings of this thesis.
They enable our inverse design approach. Paper I studies how to reduce the
impact of nonlinear losses on the spectral broadening, particularly in silicon
waveguides. Paper V corresponds to an application of the results of Papers
II, IV and I to obtain a coherent mid-infrared near octave spanning SC gen-
eration in silicon waveguides pumping at telecom wavelengths. It corresponds
to an example of our inverse design procedure. Finally, Paper III describes
the coherence properties of Kerr combs in microring resonators by means of a
numerical study.

Paper I

In spite of the strong optical confinement and the large nonlinearity of silicon
waveguides, the semiconductor nature of this platform also produces some
detrimental effects on continuum light generation. Particularly, nonlinear pulse
propagation is notably affected by TPA at telecom wavelengths. Free carriers
arisen from this process also induce additional nonlinear losses, namely, free
carrier absorption (FCA). Unlike linear losses, these processes depend on the
intensity and consequently do not evenly affect all the light pulse. It suggests
that nonlinear losses should be sensitive to the input pulse shape and so,
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Figure 5.1: Comparison of the different contributions to the instantaneous
frequency for both the unmodulated and modulated pulses with 1kW peak
power.

their pernicious impact on spectral broadening could be reduced by means of
suitable pulse profiles.

Our goal in this work was to study the spectral broadening of asymmetric
input pulses produced by adding a cubic spectral phase n(w — wp)?, where
7 quantifies the so-called skewness, to Gaussian pulses. Our interest focused
on the interplay between SPM and free carrier dispersion (FCD), that pro-
duces new frequencies, and TPA and FCA, that inhibit such an effect. So,
we decided to consider ps-long pulses that propagate along 1 cm-long silicon
waveguide to safely neglect GVD [36]. For high (although realistic [37]) pow-
ers, where the generation of blue-shifted frequencies are mainly governed by
FCD, we numerically observed an improvement up to 40% on the bandwidth,
for both longer and shorter wavelengths when a pulse with a proper positive
skewness propagates. This asymmetry gives rise to a steeper leading edge of
the pulse. It produces an increased minimum chirp induced by SPM that al-
lows us to understand the additional broadening towards longer wavelengths.
Moreover, the generation of new frequencies concentrates for such pulses at
earlier time stages. Because the carriers accumulate at the trailing edge of
the pulse, the impact of FCA is also reduced and so, the broadening towards
shorter wavelengths enhances. Fig. 5.1 shows a calculation of the SPM and
FCD contributions of the instantaneous frequency, for both symmetric and the
optimum skewed pulse, that corroborates our reasoning.

Although this work focused on FCA, I complete it here by means of an ana-
lytical study of TPA when positive skewed pulses propagate based on Egs. (3)
and (4) of Paper I when FCA and linear losses are neglected. Fig. 5.2(a) illus-
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Figure 5.2: Normalized energy (a) and normalized minimum chirp, dwion™ =
(75¢ /Y™ dwmin (b) at different normalized propagation distances, ¢ = i Pz,
being ™ (v§°) the imaginary (real) part of 79 and P, the peak power of the
input pulse, as a function of the skewness of a Gaussian input pulse in units
of T§, where Ty denotes the temporal width of the input pulse. The lack of
symmetry in the input pulse profile increases the energy and the minimum

chirp of the output pulse compared to the symmetric case (n = 0).

trates how the impact of TPA on asymmetric profiles is reduced. In addition,
Fig. 5.2(b) shows that the spectral broadening (towards red-shifted frequen-
cies) can be optimized through a proper skewness. I will take advantage of
these calculations in Paper V.

As we mentioned in the introduction, our overall goals were related to
SC generation in silicon waveguides. Particularly, we worked on the normal
dispersion regime, where a strong spectral broadening by SPM was required
[80]. Despite the improvement on the spectral broadening based on pulse
shaping, it was not enough to generate SC based exclusively on SPM in silicon
waveguides. Although OWB solves this challenge, as I will demonstrate in
Paper V, asymmetric pulses play an important role to obtain SC based on this
scheme in presence of TPA.

Paper 11

Our goal in this paper was twofold. One the one hand, a conservation law for
pulse propagation governed by a nonlinear-Schrédinger-type equation, includ-
ing an arbitrary GVD curve, was presented. We want to state here that this
property had already been shown in [67]. This law can even be modified to
include the dispersion of the nonlinear coefficient, as it was demonstrated in
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Figure 5.3: Minus the inverse of the GVD for a) a linear GVD profile (i.e.,
considering third-order dispersion), and b) a parabolic GVD profile (i.e., con-
sidering fourth-order dispersion).

the introduction of this thesis. On the other hand, some features of the pulse
evolution were studied without needing a detailed description of the pulse.
To this end, I proposed two new functions that quantify the weight of SPM
and GVD at each z-distance. For highly nonlinear systems in all-normal dis-
persion regime, this conservation law implies that f_+:o° Bp(w)|A(z,w — wp)|?
approaches to a constant that depends on the input pulse. This fact points
out a strong correlation between the output pulse spectrum and the dispersive
properties of the waveguide. It suggested interesting applications related to
spectral shaping of pulses based on dispersion engineering.

This result was indeed derived from a mathematical analysis of the GNLSE.
I numerically confirmed that the pulse spectrum acquires the GVD curve shape
and OWB also took place along the propagation. With the aim of understand-
ing the connection between these two phenomena and so, improve our control
over them, I proposed an analytical approach of the pulse propagation under
conditions that allow OWB. According to this simplified model, I could study
the spectral changes produced by OWB based on the degenerate FWM pro-
cesses between waves previously generated by SPM. It led to assert that the
power flow from central frequencies to higher and lower ones is strongly con-
trolled by —1/82(w). In Fig. 5.3 we plot —1/85 as a function of dw, = wp, —wy
for both a linear dispersion profile, i.e., fa(w,) = Ba(wo)[l + mdw,], and a
parabolic dispersion profile, i.e., B2(w,) = Ba2(wo)[1 + 1/2a(5w]2)]. We use in
the plots m = (10/200) ps and a = (1/20) ps?, which corresponds to the values
used in our numerical simulations shown in the paper. These plots indicate
that the power flow around the central frequency (dw, = 0), 6P, (2), is quasi-
linear for a linear dispersion profile, and concave for a parabolic dispersion
profile. This qualitative claim is in agreement with our numerical results and



37

justified that the dispersion-to-spectrum mapping is produced by OWB.

Although this paper focuses on spectral shaping applications, it allowed us
to provide a new approach to study the OWB process. It is in the origin of
our inverse nonlinear design step that will be applied in Paper V.

Paper I11

Recently, comb generation in ring microresonators in a silicon nitride platform
was experimentally demonstrated [81]. Two physically different ways have
been also identified to produce them after pumping one of the microresonator
resonances. On the one hand, if the adjacent resonances are firstly filled by
degenerate FWM, then other lines will appear by nondegenerate FWM involv-
ing the lines initially generated. This is the so-called type I comb formation
and it was also experimentally demonstrated to keep good coherence [82]. On
the other hand, nonadjacent resonances can be initially formed by degener-
ate FWM. Furthermore, they can also generate new lines by themselves also
through degenerate FWM. Certainly, other lines will be produced by nonde-
generate FWM between all these frequencies in such a way that noise fluctu-
ations have a great impact over the comb coherence [82]. It corresponds to
the so-called type II comb formation. The generation of these Kerr combs can
be simulated by means of a nonlinear-Schrodinger-type equation including a
driving term and an additional periodic boundary condition to take into ac-
count that only a discrete set of frequencies can contribute to the field. We
used this approach to study the coherence properties of Kerr combs. The type
of formation can be chosen taking advantage of analytical expressions of the
MI gain. We numerically solved the above equation and confirmed the loss of
coherence only for type II combs. In addition, we also checked pulse formation
by properly ramping the detuning between the pump frequency and the closest
resonance line [83].

Despite this work mainly focuses on coherence, we underline that the dy-
namics of microring resonator is studied through a nonlinear Schédinger equa-
tion. It allows to apply the analytical and numerical tools presented in this the-
sis for such a systems. For example, the enhancement of coherence properties
or the pulse stabilization could be addressed following our inverse procedure,
presented Papers II, IV and V.
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Paper 1V

This paper contains the two main results around our inverse linear design,
including details to implement the corresponding numerical algorithm. It is,
in this sense, self-contained. Firstly, I explicitly derived a close expression to
compute the gradient of the propagation constant of a guiding structure by
using the fields of the corresponding mode. Its full-vectorial nature was consid-
ered. It means that Maxwell’s equations do not only provide the propagation
constant of a system with translational symmetry, but also its derivatives with
respect to all the geometrical parameters. Among other details, we highlight
two of them. On the one side, here we consider smooth transitions of the
dielectric tensor across the interfaces. In this way, we do not describe the
cross-section of the waveguide by means of step functions. The effective index
theory [79] provides us analytical forms to simulate the changes experienced
by the dielectric tensor in the neighbourhood of the interfaces. On the other
side, I computed those derivatives by means of the field components which
do not suffer sharp transitions at each interfaces, according to the boundary
conditions of the electromagnetic field.

We implemented these issues to calculate, in a few minutes, the gradient
from the mode fields (that can be computed by any software). In a second
step, and following previous works by our group [11], we took advantage of
the above result to perform a linear optimization of high-index-contrast wave-
guides. Particularly, we concentrated on the dispersion curve. We defined
several profiles to be recovered through a suitable design of a slotted strip
waveguide on the SOI platform. We successfully applied this optimization
procedure and obtain all targets in less than ten iterations. In addition, our
algorithm allows us to add constraints on the parameters involved in the op-
timization, which could be of interest for future work related to the design of
the nonlinear coefficient.

Paper V

This work illustrates the application of our inverse design procedure, based
on Papers II and IV, for SC generation in silicon waveguides. To avoid the
coherence degradation, the input pulse is pumped at the normal dispersion
regime. Based on an analysis developed in terms of our generalized nonlinear
and dispersive length functions, I derived the third-order dispersion required
to optimize the spectral broadening owing to OWB. The effective nonlinear-
ity of the waveguide was enhanced by using a skewed input pulse, allowing
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Figure 5.4: Inverse effective area as a function of two angular frequencies for
w corresponding to A = 1900 nm.

OWB to occur. Moreover, nonlinear mixing related to OWB takes place at
the anomalous dispersion regime due to the third-order dispersion and conse-
quently, generation of new frequencies is produced under good phase matching
conditions. This step would correspond to our inverse nonlinear design.

During our inverse linear design step, I numerically found a realistic slotted
strip waveguide on a SOI platform based on the original design provided by
Zhang et al. [10], analogously to Paper IV, with a dispersion profile close to
the target. Note that, in this case, the target curve is not flattened due to the
presence of a third-order dispersion. Finally, the propagation of a short pulse
throughout this realistic waveguide was simulated and it was obtained a near
octave spanning SC generation, from telecom wavelengths, where the input
pulse was pumped, to mid-infrared, keeping good level of coherence along the
spectrum.

For the sake of completeness, I include here an additional calculation about
one of the assumptions of the GNLSE. I checked whether the dispersion of the
nonlinear coefficient can be reduced to only one frequency, as it is explained
in the introduction. Since the Kerr index for silicon is two order of magni-
tude higher than silica (see Fig. 4.4), the main contribution to the nonlinear
coeflicient comes from silicon region. So, the nonlinear coefficient can be ap-
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proximated in the following way
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where w3 = w — w1 + wo and the effective area, Aqg, has been included since
only one material is considered for our purposes here.

I plot in Fig. 5.4 the inverse of the effective area for the slotted strip
waveguide obtained through our inverse dispersion engineering in this paper.
It allows to evaluate the variations owing to the multiple dispersion effect, in a
similar way to [60]. Since it is nearly constant, we expect this approximation
works well even in this case, where the dispersion of the mode can not be
entirely neglected. I analyzed in more detail the description of this effects in
Chapter 2.



Chapter 6

Conclusions

As any other macroscopic electromagnetic phenomenon, SC generation in
waveguides can be analyzed by directly solving Maxwell’s equations. Nev-
ertheless, the nonlinear Schrédinger equation has been proved to be useful to
describe a plethora of nonlinear phenomena. This model allows to save com-
putational resources and makes easier to identify the key mechanisms involved
in each regime. Therefore, even its simplest version is fully justified, although
extended versions of this equation are required to achieve accurate descrip-
tions. Despite this fact, dealing with this equation is still challenging since
it contains local terms in both the temporal (nonlinearities) and frequency
(group velocity dispersion) domains. Consequently, SC in realistic waveguides
is often studied by means of pure numerical approaches to that equation. The
design of waveguides for nonlinear applications becomes arduous due to the
lack of analytical tools to find suitable cross-sections or select the region of the
space of the equation parameters.

This thesis has addressed these issues in a twofold manner. In a pulse prop-
agation equation, waveguides are described through two frequency-dependent
functions, namely, the propagation constant,  and the nonlinear coefficient,
~. Consequently, the nonlinear regime does not take place in a specific wave-
guide but a system defined by these functions. Based on this fact, we initially
considered the design of § and - and the nonlinear pulse propagation as dis-
connected problems. In this way, we developed tools to obtain the region of
values of the parameters 5 and v leading to some specific nonlinear behavior.
In addition, we also implemented a software to find in a systematic and effi-
cient way cross-sections that show nearly these properties. We call these steps
inverse nonlinear and linear design.
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Our inverse nonlinear design is based on a conservation law of the above
equation. Attending to this property, pulse propagation in highly nonlinear
systems at the normal dispersion regime can be analyzed in two-steps. In spite
of the pulse profile is not described in detail, this approach provides suitable
values of the third-order dispersion that lead to strong spectral broadening in
such a conditions. I emphasize it corresponds to a truly inverse design. In-
deed, given a specific waveguide with normal dispersion at some wavelength
and a zero dispersion wavelength, we could determine the input pulse pro-
file and propagation length where a supercontinuum generation would be ob-
served. It turns out interesting in order to experimentally demonstrate this
phenomenon. In future work, I expect this approach to be helpful in the study
of other dynamical regimes (e.g., solitonic propagation) and the experimental
measurement of higher-order dispersion.

Geometry possesses a significant impact on the dispersion of micrometric
waveguides, since their dimensions are comparable to light wavelengths. The
tight confinement of the mode fields in high-index-contrast waveguides makes
this impact even stronger. Consequently, SOI waveguides allow to be engi-
neered to obtain specific dispersion curves. In this work, we adapted a design
strategy successfully applied by our group in photonic crystal fibers, to high-
index-contrast waveguides. It required to derive a closed expression of the
derivatives of the propagation constant with respect the available geometric
parameters of the cross-section. In addition, the boundary conditions of fields
were carefully taken into account to improve the accuracy of our calculations.
This tool notably reduces the time needed to design the dispersion profile of
waveguides. In this way, we can look more efficiently for realistic waveguides
where phenomena, previously theoretically studied, can take place.

Finally, the realization of this thesis has been one of the most exciting
experiences that I lived until now. It provided me some knowledge about how
does light behave in waveguides. Well, in accordance to the title of my thesis,
I could say that these years provided me useful tools to find waveguides where
light behaves as we need... at least in some cases. Although the uncertainty
of future is high, I only expect to enjoy the next years as much as these ones.



Appendix A

Electromagnetism in
translation-invariant
systems

In this appendix the eigenvalues equation corresponding to the starting point
of Paper IV are derived. Moreover, the biorthogonality relation between the
waveguide modes, that is the key property enabling our inverse linear de-
sign (see [11,84,85]), is also revisited. Therefore, this appendix addresses the
unperturbed (or linear) problem (see Fig. 1.1), i.e, it does not involve the non-
linear polarization. On the other side, this property is also useful to derive the
GNSLE due to nonlinearities are considered in a perturbative approach (see
Chapter 2).

We begin with Maxwell’s equations in a system with a homogeneous and
isotropic permeability and where free charges and the electric current are ab-
sent. In the frequency domain, Maxwell’s equations are given, in MKS units,
by

V - (0eE) 0, (A1)
V-H 0, (A.2)

V xE iwpoH, (A.3)
VxH = —iweeE, (A.4)

where E = F(E) = S5 Eexp(iwt)dt is the Fourier transform of the electric
field, E, H stands for the magnetic field, ¢ = e(xy,w) is the dielectric tensor
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of an invariant system along the z-coordinate (note that it only depends on the
transverse coordinates, x;, and it does not include nonlinear effects), e¢ and po
represent the permittivity and permeability of the vacuum, respectively [12,49].
Our aim here is to derive eigenvalue equations for the transverse components
of the magnetic and electric fields corresponding to the modes of translation-
invariant systems along the z-direction characterized by the following dielectric

tensor
o Ett 0
€= ( 0 e ) , (A.5)

where €4 is a submatrix 2 x 2 that contains the transverse components of
the dielectric tensor and ¢, indicates the scalar related to its longitudinal
component. This permittivity describes usual nonhomogeneous cross-sections.
Particularly, it accounts for SOI waveguides even when the anisotropy induced
by the interfaces is considered [79]. Moreover, we will check that this matrix
leads to an eigenvalue equation for the transverse components of the mag-
netic and electric fields. Since Maxwell’s equation are linear and the system
considered is invariant along the z-coordinate, the following solutions with a
separated z-dependence, the so-called modes, exist [12],

(x4, w)eP @)% = [hy(x¢, w) 4 2 h (x4, w)] P @) (A.6)
(Xtaw)eiﬁ(w)z = [es(x¢,w) + 2 e, (x4,w)] Giﬁ(w)zv (A.7)

==t
Il
=

Il
o

where the subindex ¢ stands the transverse components of the fields. At this
point, it must be interpreted as a three dimensional vector with a zero longi-
tudinal component. In order to derive the equation satisfied by the transverse
components, let us decouple Egs. (A.3) and (A.4),

1 - W™ =~
V x (g V x H) -5, (A.8)
~ w2 ~
C

Note that these equations do not assume any restriction on &, thus keeping
vectorial effects [86]. Now, Eq. (A.8) can be developed using Eq. (A.6),

V x H=(V, +29,) x % (h, + zh,)
=eP*(Vy x hy + 2z x hyif + Vy x 2h.)
= eP#(3VInh;, — nhyiB +nVih.). (A.10)
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where the complete antisymmetric tensor in two dimensions

,7< N (1)) (A.11)

the gradient with respect to the transverse coordinates, V;, and its transpose,
VT have been introduced. This equation is not only useful by itself but it pro-
vides how does the rotational act onto an arbitrary vector whose z-dependence
is exp(ifz). According to this result and after some algebra, it is derived

v x (s*1v x H) = 2597y (e nhyif + e Vi)
— €P%iBn (—er " nhyiB + e 'V ih.) + €770V, (62, Vi nhy)
2
- %elﬂz (hy +2h.), (A.12)

Now, Eq. (A.1) implies V] ey e +¢,.i8e, = 0, and the full vectorial eigen-
value equation for the transverse components is obtained of the magnetic field:

2

Lh; = |:VtvtT +neun” ((22 - thfzzlvtTUﬂ h; = °h, (A.13)

firstly appeared in [84]. At this point, we look for the adjoint operator LT,
namely (F|LG) = (LTF|G), where F : § C R? — C? and (o|o) denotes the
usual inner product of square-integrable functions. Attending to the following

vectorial identity V - (aF) = VT (aF) = (Va) - F + aV'F and the Gauss
theorem, we compute the adjoints of each term of L:

/ F* .V, (VIG)ds = — / (VIRy*(VIG)ds = / (V.VIF)* .G, (A.14)
S S S

/F*~n£tt77TGdS:/Fi*mj(etmTG)de
S S
:[S(nﬁFi)*(attnTG)de: /S(neitnTF)*-GdS, (A.15)

where GL indicates the transpose and complex conjugated of €, and

. 1
/ F*. 775tt77T77Vt
S

1
- anGdS = /(nTVt;V;TnTnEImTF)* -G. (A.16)
2z S

zZz
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Since the inner product is a linear is each argument separately, the adjoint
of L is given by

w? 1
LT = vtVf + ’I’}E‘-trtﬁTf2 + thETVthztnT. (A17)

c zz

With this result in mind, and analogously to the above procedure, Eq. (A.9)
can be rewritten as follows

V xVxE=V xe? (—neif +nVie. +2V{ne;)

= (B%e; +iBVie. + 0V, Vine, +2ifV]e, — V] Vie,) 'f*
2
w o
= C—z(ettet + EZZ€ZZ>€ZBZ. (A.18)
Considering again Eq. (A.1), the eigenvalue equation for the transverse
g ag q g q
electric field is derived:

w? 1
antVtTn + C?Ettet + VtE—VtTett €e; = 526t (Alg)

zz

If £ is a symmetric tensor, it is straightforward to conclude
Line; = (6%)*ne;, (A.20)

and therefore, h, = ney, where h, is the so-called dual field of h,. This fact
implies a biorthonormality relation between the eigenvectors of L and LT, when
they are properly normalized [85],

(B )y = /(eg“ x h) . 2dS = §;;. (A.21)
S

We emphasize Egs, (A.13) and (A.19) do not require a symmetric €. However,
the biorthogonality between h; and nej is satisfied under this assumption.
This result will be key to develop our inverse linear design tools.

In addition, the nonlinear pulse propagation equation will also take advan-
tage of the following property:

1

,U,O/I:I*~I:IdV:pJ0/I:I*~_ V x EdV
v v WiHo

w

1 S T 1 ). B
:/ 7(V><H*)'EdV:/ —(—iwepeE)* - EAV
. NE

= / (e0cE)* - EdV = ¢ / E*-cEdV, (A.22)
% 1%
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where we have used Eqs. (A.3) and (A.4) and we have assumed ¢ = . Note
that this last condition is equivalent to e = 7, if lossless media are considered
as we will assume to derive the nonlinear propagation equation. It indicates
that the electric and magnetic field stores the same amount of energy [86].
Furthermore, if we consider Eq. (A.6) and (A.7) and introduce them on Eq.
(A.22), it is obtained

+oo
/ eih= [/ (poh* - h — gpe* - ce) dS} dz =0, (A.23)
s

—0o0
which implies

,uo/ h*-hdS = Eo/ e* - cedS. (A.24)
s s

We want to emphasize the most important results derived in this appendix.
Eq. (A.13) is the starting point of Paper IV. Equation (A.21) allows to ob-
tain the main result of Paper IV, i.e., a close expression for the derivatives
with respect any geometrical parameters of 5. In addition, we attend to this
equation together with Eq. (A.24) to derive the GNLSE in Chapter 2.
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Appendix B

List of acronyms

SOI : Silicon-on-insulator

GNLSE : Generalized nonlinear Schrédinger equation
SC : Supercontinuum

GVD : Group-velocity dispersion

SPM : Self-phase modulation

TPA : Two-photon absorption

FWM : Four-wave mixing

OWB : Optical wave-breaking

MI : Modulation instability

SVEA : Slowly-varying envelope approximation
TSFG : Third order sum-frequency generation
THG : Third harmonic generation

TM : Transverse magnetic

FCA : Free carrier absorption

FCD : Free carrier dispersion
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Spectral broadening in silicon waveguides is usually inhibited at telecom wavelengths due to some adverse effects
related to semiconductor dynamics, namely, two-photon and free-carrier absorption (FCA). In this Letter, our
numerical simulations show that it is possible to achieve a significant enhancement in spectral broadening when
we properly preshape the input pulse to reduce the impact of FCA on spectral broadening. Our analysis suggests that

the use of input pulses with the correct skewness and power level is crucial for this achievement.

Society of America
OCIS codes: 130.4310, 190.4360, 190.4390.

Nowadays, continuous advances in nanophotonics
technologies have spurred on interest in the study of
silicon-based optical materials [1]. Strong confinement
of light in nanoengineered silicon-on-insulator (SOI)
waveguides results in a huge effective nonlinearity and
the ability for dispersion engineering (see, e.g., [2,3]).
These achievements have opened up the possibility of
performing previously demonstrated signal processing
functionalities (mainly based in nonlinear kilometric fi-
bers) at chip scale with relatively low optical power
[4]. These Si-based components offer the benefits of
low cost (complementary metal-oxide-semiconductor—
compatible large-scale-fabrication processes) and low
power consumption.

However, at the relevant wavelength region around
1.5 um, Kerr-based spectral broadening or self-phase
modulation (SPM) is accompanied by an orchestra of
different nonlinear phenomena arising from the semicon-
ductor carrier dynamics [5-7]. Specifically we mention
the absorption and dispersion of free carriers produced
by two-photon absorption (TPA), which are not present
in conventional silica-based devices. The net effect
results in a depletion of the achievable spectral broaden-
ing for a Gaussian input pulse in comparison with the
case when only SPM is acting [8-10].

Additionally, the phenomenon under study is extre-
mely sensitive to the input pulse characteristics due to
the inherent nonlinear nature of the spectral broadening.
In fact, up to some extent, pulse shaping techniques have
demonstrated to be effective in controlling the nonlinear
broadening in photonic crystal fibers [11,12] and other
nonlinear materials [13-15], using both single-pass [15]
and self-learning adaptive configurations [11-14]. Be-
sides, these techniques offer valuable insight in under-
standing the pulse dynamics through propagation
[11,16]. In this Letter, we show that the proper manipula-
tion of the pulse phase enhances spectral broadening
even in the presence of TPA and free-carrier absorption
(FCA).

Let us remind the reader that the dynamics of an
optical pulse propagating in an SOI nanowaveguide
can be described in mathematical terms by [9]
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where A is the electric-field envelope, v, represents the
carrier frequency, 5 stands for the group velocity disper-
sion (GVD) parameter, n, is the Kerr coefficient, A is
the effective area of the waveguide, y, denotes the
nonlinear coefficient of the waveguide defined as
Y0 = No2mvy/CAe, 0 is the FCA coefficient, «; the linear
loss coefficient, N, corresponds to the carrier density,
Prpa is the TPA coefficient, 7, represents the carrier
lifetime, and the dimensionless parameters r = frpac/
4nnyvy and p account for the relative weight of TPA
and free-carrier dispersion (FCD), respectively. As in pre-
viously published results [9], we consider 4y = 1.65 ym,
a, corresponding to 1dB/cm, n,=6x 10718 m2/W,
Prea =5x102 m/W, 6=145x1021m? »=0.1,
u =175, and 7, = 1 ns. Likewise, in our numerical simu-
lations we choose A.4 ~ 1 yum?. Because we focus our
attention on the interplay between SPM and carrier ef-
fects, we consider quite long pulses for which the
GVD term in Eq. (1) shall be neglected in the following.

In order to analyze in a qualitative way the spectral
broadening, it is very useful to study the instantaneous
frequency of the propagated complex field. With this
aim, let us explicitly consider the phase of the complex
field envelope, A = |A| exp(i¢). By defining the effective
z-dependent loss coefficient and length, a.¢s = o + oN,
and 2 = [§ exp(- [§ apd?”)dz, respectively, the
following key equations are derived in an analogous
way to Eq. (60) in [6]:

_ _ 2, OH Prea 4_&
() = rdlap + G (oAl -TE). @)
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where A, = |A(0, ?)|.

Despite their complexity, it is possible to get some
valuable physical insight from the above equations. From
Eq. (3), we note that the evolution of the instantaneous
frequency is governed by two processes. The first term of
the right-hand side corresponds to SPM, whereas the sec-
ond one takes into account FCD. For low repetition-rate
pulses and if the input pulse width Ty < 7., the subterm
proportional to —-N, /7. can be neglected [9], and hence
the FCD term can be considered always positive. Accord-
ingly, FCD only produces blueshifted components; by
contrast SPM can give rise to both blueshifted and red-
shifted ones [9,10]. Finally, similarly to [6], we define the
threshold power Py = 8y0hy0A2ff /Toouprps, beyond
which the FCD contribution exceeds that of SPM.

Having in mind the above facts, we realize that an
asymmetric input pulse induces two concomitant effects.
On one hand, the longer wavelength production due to
SPM is improved by means of a skew input pulse with
positive sign due to the enhanced slope on the leading
edge of the pulse. On the other hand, if the peak power
Py > Py, the shorter wavelengths are generated earlier
in time, near to the peak power. According to Eq. (2), the
production of free carriers is a cumulative effect, and
hence, as one can see in Eq. (4), FCA highly affects
the trailing edge of the pulse. So, losses induced by
FCA could be partially compensated by generating blue-
shifted frequencies so fast that the free carriers did not
have time to accumulate. Moreover, a positive skewness
of the pulse profile would strengthen this beneficial
effect. Thus, both longer and shorter wavelength en-
hancement could be feasible using positive skew pulses.

To prove the above ideas, we solve the previous
equations considering two kinds of skew input pulses
produced by adding a certain spectral phase to a
Gaussian pulse (hence preserving its bandwidth and
energy). Both cases could be experimentally implemen-
ted in a feasible way by means of a pulse shaper with
good spectral resolution. First we consider a spectral
phase of the form #(w - w,)?, where 5 denotes the
strength of the skewness. The negative 5 sign guarantees
the right skewness of the temporal pulse profile.

We have solved numerically Egs. (1) and (2) and com-
puted the achieved spectral width at -20 dB for different
values of the  parameter. In this calculation, we consider
To=10ps and a 1 cm long silicon waveguide. The re-
sults are shown in Fig. 1 and support our explanation.
The maximum broadening is achieved at y = —125 ps®
for 100 W and 5 = -124 ps® for 1 kW (peak powers
are referred to the unmodulated Gaussian pulse in both
cases, unshaped and shaped). Only the SPM effect is
working at 10 W, and, therefore, no significant improve-
ment of the spectral broadening is observed. Note that, in
our numerical example, Py, is about 50 W. When we
increase the input power up to 100 W [see Fig. 2(a)], the
SPM production of low frequencies is intensified by the
pulse asymmetry. In addition, the upper part of the spec-
trum remains unaffected. Here the FCA changes induced

Spectral width at =20 dB (THz)

-200 -150 -100 =50 0 50 100
n (ps?)
Fig. 1. (Color online) Spectral output width at —20 dB as a
function of the strength 5 of the cubic-phase modulation for three
input peak powers: 10 W (short-dashed curve), 100 W (dotted—
dashed curve), and 1 kW (solid curve). The long-dashed curve
corresponds to the input spectral phase provided by the
Gerchberg—Saxton (GS) algorithm (see details in the text).

by pulse shaping do not provide an enhancement of high-
er frequencies because of the reduction on blueshifted
components produced by SPM due to the smooth tail
of the asymmetric pulse. At higher (but realistic; see [10])
powers, a notable enhancement appears at both sides of
the spectrum since FCA plays a less significant role
thanks to the pulse shape. The expected output spectrum
is depicted in Fig. 2(b). In this case, it is even up to 40%
broader with respect to the unshaped case (measured at
the —20 dB level).

Finally, we stress the connection between reducing
FCA and spectral broadening by computing N, at the in-
stant when the maximum of the output pulse occurs; see
Fig. 3(a). It is worth noting that the spectral width reduc-
tion shown by the curve corresponding to Py = 1 kW in

Spectral power (dB)
b
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Fig. 2. (Color online) Comparison of the output power
spectrum between the unmodulated Gaussian input pulse
(dashed curve) and the spectrally chirped version (solid curve)
for (8 P,=100W, n=-125ps’ and (b) P,=1KkW,
n = -124 ps’.
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Fig. 3. (Color online) (a) Density of carriers at the maximum
of the output pulse in terms of #; (b) input pulses; (c) output
pulses. In both plots (b) and (c), dashed curves correspond
to pulses resulting from the cubic-phase modulation and solid
curves refer to pulses resulting from the GS algorithm. In all
cases, n = -200 ps® and Py = 1 kW. (d) Secondary lobes of
the modulated pulses of (b) and (c).

Fig. 1 is consistent with the increase of N, for lower
values of 5. Moreover, we link this feature with the oscil-
latory structure that appears near the leading edge of the
input pulse due to the cubic spectral phase used to obtain
skew input pulses in these cases; see Figs. 3(b)-3(d).
These secondary lobes generate additional carriers that
enhance FCA where the production of new frequencies is
concentrated.

Note that, for greater values of positive skewness, the
pulse shows bigger ripples before the main lobe. In order
to confirm this assumption, with the aid of the GS algo-
rithm [17], we search for spectral phases that preserve
the shape of the main lobe of the pulses shaped through
a cubic spectral phase. Accordingly, for the different
values of the 7 parameter considered previously, we take
n(w - wy)® as our seed phase (this choice accelerates
the convergence of the algorithm) and set our target
as the main lobe of the corresponding x-skew pulse
(i.e., the above referred oscillations of the preshaped
pulses are eliminated to construct the targets). Every
GS solution is labeled with the 5 value of the correspond-
ing seed phase. According to Figs. 3(c) and 3(d), the GS
technique provides a reduction of the satellite lobes but
not their total suppression. The resulting spectral beha-
vior shown in Fig. 1 confirms the pernicious effect of the
secondary lobes when input pulses present sufficient
skewness.

In summary, we have shown that the skewness intro-
duced on a Gaussian input pulse of high enough peak
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power leads to an spectral broadening enhancement
on SOI waveguides. The key point is to enhance longer
wavelength production due to SPM by increasing the
leading slope edge which simultaneously decreases
FCA effects on shorter wavelength production. Although
in this work we do not take into account dispersive phe-
nomena, our physical interpretation suggests that the
current achievements can also be extended to this case.
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Abstract: In this work we recognize new strategies involving optical
wave-breaking for controlling the output pulse spectrum in nonlinear
fibers. To this end, first we obtain a constant of motion for nonlinear
pulse propagation in waveguides derived from the generalized nonlinear
Schrodinger equation. In a second phase, using the above conservation
law we theoretically analyze how to transfer in a simple manner the
group-velocity-dispersion curve of the waveguide to the output spectral
profile of pulsed light. Finally, the computation of several output spectra
corroborates our proposition.
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1. Introduction

Optical wave-breaking (OWB) is an effect produced by the interplay between nonlinear pro-
cesses (chiefly self-phase modulation, SPM) and the chromatic dispersion of optical fibers[1].
The nonmonotonic chirp induced by SPM gives rise to the overlapping between different fre-
quenciesin the pulse tails at the normal dispersion regime [2]. This situation leads to nonlinear
frequency mixing through 3 susceptibility. Indeed OWB can be understood in the spectral
domain as a four-wave mixing (FWM) process that produces two spectral sidelobes [3]. At the
same time, the interference of such frequencies results in some temporal ripples near the pulse
edges.

OWB has been traditionally avoided in practice due to its inherent strong temporal fluctua-
tions [4]. However, in the last years some works have pointed out divers benefits of this process
regarding spectral broadening [5, 6] and pulse compression [7]. Particularly, we emphasize
OWB as amechanism for improving smoothness and coherence of supercontinuum spectra[6].
OWB has long been studied both experimentally and numericaly [1, 8]. Nevertheless, solely
the propagation distance at which the process takes place has been analytically described [2, 5],
being other properties only qualitatively understood [3, 5].

In this paper, we address the study of the interaction between SPM and dispersion from a
novel analytical approach based on a constant of motion conserved throughout nonlinear prop-
agation of pulsesin optical fibers. This procedure allows us to take advantage of some unex-
ploited featuresrelated to OWB. Ultimately, we numerically identify certain situationsin which
we are able to transfer the group-velocity-dispersion (GVD) profile of highly nonlinear fibers
to the output pul se spectrum. In principle, our derivation holds for the nonlinear propagation of
pulses longer than the picosecond. However, we also discuss in heuristic terms why we expect
that the physical processes behind our analysis be at least partially preserved for shorter pul ses.
So, we will numerically check the validity of our results spreading our simulations up to the
case of femtosecond pul ses.

2. Nonlinear propagation in optical fibers. a constant of motion

Spectral control of pulsed light in nonlinear fibers requiresagood understanding of theinterplay
between dispersive and nonlinear phenomena. To this end, we tackle systems with an arbitrary
dispersion profilein which SPM isthe most relevant nonlinear effect. These phenomenagovern
ps-pulse propagation, being such evolution described by the generalized nonlinear Schrodinger
equation (GNLSE) [3], )

d iy d .

azA—%;"ﬁ!katkA+n/oA|2A, €
where A isthe complex envelope of the electric field, B = 9%B(®) /I 08| y—ay, being B (o) the
propagation constant of the mode supported by the waveguide and ay the carrier frequency, and
o represents the waveguide nonlinear coefficient. Within thisframework, and without any addi-
tional assumption, in the appendix A we deduce a conservation law that generalizes a previous
expression derived by Zakharov and Shabat [9],

d ( S 0lAE )|t \/“mﬁp<w>|/i<z,wwo>|2dw) o

— = 2
dz \ 2/ |A(zt)|2dt [T21A(z, 0 — o) [2dw &
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where p(®) = B(®) — Bo — P1(w — wp) and Aisthe Fourier transform of A.

In order to get physical insight into Eq. (2), on the one hand, it is worth mentioning that
the nonlinear coefficient y, appearing at the first fraction in the conservation law parameterizes
SPM in Eq. (2). In fact, the level of significance of this nonlinear process is conventionally
evaluated (assuming a nearly constant peak power of the pulse, Py, throughout the propagation)
by means of the parameter LNLl = yP. Thefirst fraction in Eq. (2), having also dimensions of
inverse length, can be understood as a function that generalizes the classical quantity Ly,

-1 ficoc YO'A(th)|4dt
N Az P @
and accountsfor the relevance of SPM at any distance z during the propagation. At thispointitis
convenient to remind that the spectral broadening induced by SPM is related to the variations of
the temporal intensity of the pulse [10]. Although the classical parameter LNE does not assess
this pulse-profile variation, we observe that .,S/,\,’Ll(z) does, decreasing as the temporal pulse
intensity becomes flatter and flatter.

On the other hand, if we develop () in Taylor series around ap, the second fraction in
Eq. (2) canberewrittenas Y, Bk (z) /K!, where py isthe normalized kth moment of the pulse
spectrum at the baseband. This expression includes the Sy coefficients, which account for the
dispersive effectsin Eq. (1). For afiber far from the zero-dispersion wavelength and assuming a
smooth pulse profile during the propagation, the quantity L51 = B2/ TE (To denotes the temporal
width of the input pulse) traditionally estimates the impact of dispersion. Therefore, we also

define the function . ~ )
o Bo()Az 0 — o) Pdo
"2 |A(z o — ap)[2do

2452 @)
that generalizes the standard amount Lgl, and quantifies the action of the whole dispersive
processes at the propagation distance z

Our physical reasoning becomes particularly meaningful when Eg. (2) is rewritten as

LD+ L2 = [0+ £51(0) =C, ®)

where the constant C can be calculated only taking into account the initial conditions. From
this point of view, nonlinear pul se propagation can be understood as a competition between the
activities of SPM and dispersion.

The above eguation is going to be the key tool of our spectral control procedure in section
3. To this end, next we discuss some preliminary implications of the above conservation law
under certain conditions. We emphasize that our first goal is to achieve a smooth and broad
output spectrum. However, it is well-known that the spectral broadening induced by SPM is
accompanied by severe spectral oscillations [10]. For this reason, .iﬂ_l should become smaller
as the pulse propagates in order to obtain a smooth output spectrum. At the same time, this
requirement resultsin £y ! increases with z according to Eq. (5). Assuming that Bop/2 isthe
dominant contribution in £ 1, the above condition (i.e., 0245 1> 0) implies B, > 0 since the
pulse spectrum broadens through propagation aong the fiber (i.e., d;u» > 0). Therefore, asis
well known, it is crucial to pump at the normal dispersion regime to achieve a smooth output
spectrum in conventiona fibers [5]. The above dynamics is illustrated in Fig. 1. The condi-
tions that give rise to this evolution, namely, high nonlinearity and normal dispersion regime,
become apparent in this figure through the inequalities 3, (0) > #51(0) and #51(2) > 0,
respectively. It isinteresting to note that, although ,,S,”,\,’Ll isthe main contribution to the constant
of motion at the beginning, .25 ! dominates after along enough z distance (say, zout, the output
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Fig. 1. Plot of the evolution of the functions .,5,”,{,_1 (dashed curve) and £y 1 (solid curve)
for a5 ps Gaussian input pulse centered at 1550 nm (wp = 1215rad ps~1) and 100W peak
power, which propagates throughout two fibers with 75 = 400 W—'km~1 and dispersion
behavior defined by: (a) B, = 20 ps’km 1 and B, = O for k > 2, i.e,, flat GVD profile; and
(b) Bo = 20ps’km=1, B3 =0, B4 = 1 ps*km=1, and By = O for k > 4, i.e., parabolic GVD
profile.

distance). So, based in Eq. (5), in afirst-order approximation we can write
25N zom) = L2 (0) = C. (6)

This behavior, characterized by high nonlinearity and normal dispersion, leads to a stage in
which £y s 02”“,11. In such a situation, spectral broadening cannot be mainly produced by
SPM. However, asiswell known, pulsesthat propagate at normal dispersion regime experience
OWB [2]. To check that the spectral broadening in this scenario is produced by OWB, we
approximately compute the distance z. for which the new nonlinear and dispersive functions of
zintersect each other. In this case we write 2.7 1(z) = 2(35_, Betk(ze) /K!) = C. AsSPM s
the dominant effect at the first phase of propagation, in order to calculate z. we estimate iy at
this distance using the SPM-induced chirp with an equivalent peak pulse power of Py/+/2 since
221 (ze) ~ £ 1(0) and, according to Eq. (3), the square of the power widening needs to be
taken into account. If we consider aflat GVD curve, i.e., Bx = 0 for k > 2, and a Gaussian input

pulse, we obtain z; ~ 1.61/LpLn. = 1.61/ T/ B210Po. For the case corresponding to Fig. 1(a)
we get Z. =~ 9.0m, which isin close agreement with the abscissa of the intersection point of the
curvesin thisfigure. In addition, the above distance is greater than the OWB distance derived in
[2], 1.06+/LpLny, that takes into account the point at which OWB just begins. Our conclusion
is clear. We can consider z. as the OWB distance at which OWB is the dominant nonlinear
process at the second stage of the pulse propagation. Unlike the procedure for calculating the
OWB distance in [2], that is restricted to certain simple cases, our interpretation allows the
evaluation of z for both any dispersion curve and any input pulse profile. In thisway, following
our criterion, the OWB distance of the system corresponding to Fig. 1(b), with a non constant
dispersion, turnsto be z. = 5.5m.

3. Dispersion-to-spectrum mapping: direct spectral shaping through dispersion engi-
neering

Now, if we write Eq. (6) initsintegral form,

/+w(w— wp)? (21!B2+ 3—1!B3(a)— o) + 4—1![34((0— a)o)2+...> |A(Zout @ — o) | doo

—oo

1 1)
zé/ A0, @)
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it can be noticed that, once o and the input pulse profile are fixed, the left-hand side in Eq. (7)
must go to the same value regardless of the function Bp(w). It is apparent that the shape of the
output pulse spectrum is strongly correlated with the waveguide dispersion during the second
stage of pulse propagation (z > z:), when dispersion dominates dynamics and OWB isworking.
With the aim of explaining this correlation, we study the spectral transfer of energy occuring
during pulse propagation, focusing our attention on the power flow from red-shifted (blue-
shifted) SPM-generated frequencies towards lower (higher) ones.

As we said before, OWB can be interpreted as a degenerate FWM between frequencies in
the pulse tails. However, even beyond z. we cannot ignore the nonlinear processes involving
instantaneous frequencies in the central region of the pulse. In other words, the pulse evolvesin
the spectral domain through a set of intrapulse FWM processes [11] that involves frequencies
located at both the central part and the outer tails. We use this spectral picture to study the
power spreading. In order to define the waves that are nonlinearly mixed, it is convenient to
write the complex envelope of the field around a generic timety as

A(t) = [A(t) | €6 200/t (®)

where we consider both a linear approximation of the phase ¢ and a slow variation of the
envelope modulus |A| compared with the phase. Equation (8) defines locally monochromatic
waves with angular frequency §® = o — wp = —a @y, power |A(ty)|2, and phase (k). The
above statement is on the basis of the physical meaning of the instantaneous frequency [12].

Next, we analyze the nonlinear pulse propagation as a process divided in the two sequential
steps advanced in section 2. At the first stage, z < z, we consider that only SPM rules the
pulse evolution. In this way, we can use the SPM-induced chirp to define the frequency of
locally monocromatic waves at z.. Note that the instantaneous power and frequency of every
monochromatic wave can be worked out at z.. In particular, for a Gaussian input pulse the
power associated at a certain instantaneous frequency is given by

P [1 < 1 §0? >
Pow,z) = —=exp|=#|—-—=-—— ], 9
(60.2) =@ | 511 (550 ©)
where 7 is the Lambert function of order | [13] (I = —1 for the tailsand | = O for the central

region of the pulse), and 6 Wmax = YPoz:/Tor/€ is the maximum chirp achieved by the pulse at
Z [seeFig. 2].

At the second phase, z > 7., each locally monochromatic wave that is present at z. acts asthe
pump in multiple degenerate FWM processes with the nearby waves such that 2mp = ws+ o,
where the subscripts p, s and i refer to pump, signal, and idler, respectively. Note that the
above frequency mixing occurs at both the central part and the tails of the pulse. This panorama
is graphically sketched in Fig. 2. In order to simplify the analysis, we only take into acount
processes for which the pump power is much greater than the signal and idler powers (P, >
Ps, R) and P, (z;) = 0. In any such case, the production of idler photonsfor any input pul se shape
isgiven by [14]
sin’(gl2)

[+

where |g|2 = AB [AB/4+ Y0Py(z)] is the squared modulus of the gain of a generic elementary
process and A} = f3(ws) + B (i) — 2B (wp) isthe low power propagation mismatch. We point
out that the boundary values of the pump frequencies are given by the frequencies at which the
pulse chirp reaches its minimum or maximum at z;, as one can seein Fig. 2.

Equation (10) presents a strong oscillatory behavior with z. Thisfact is due to the high value
that the gain shows around z, |g| ~ L. If we average Eq. (10) along z, we obtain the trend for

R (2) = Ps(2) %P5 (z) (10)
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Instantaneous power: P(,z.) (a.u.)
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Time: ¢ (a.u.)

Fig. 2. Sketch for the interpretation of the FWM processes considered here. We assume that
the schematic plots of the instantaneous frequency and instantaneous power correspond to
the distance z;. Thick lines denote instantaneous frequencies and their corresponding in-
stantaneous power at the pulse tails (blue and red regions). For two cases (in the central
region, tc, and in the trailing edge, t;), we represent an arbitrary pump wave, d wp, interact-
ing with asignal wave, 8 ws, and producing a certain idler wave, 6 o.

the power corresponding to the production of idler frequencies, i.e.,

(R(2) ~ T;‘zps@c)aépazc). (11)

Finally the total flow from a pump frequency to the rest can be estimated by integrating for all
the possible values of ws satisfying the above power requirements (i.e., P, > Ps, R),

5Pp(2) ~ ~2 [ (R(2)) dos = —/wdw& (12)

28 1+

The above expression seems to diverge when ws ~ wp since AB ~ 0. However the description
of those frequencies are, in fact, out of the model depicted by Eq. (10). In addition, it is easy
to check, bearing in mind [14], that the net flow between two neighboring frequencies goes to
zero as both frequencies approach each other. Going one step further, and according to [3], we
write AB = (ws— wp)?B2(wp), in the lowest-order approximation. In this way, the integrand of
the right-hand side in Eq. (12), excluding B2(wp) and Py(z), shows asmall variation on ws and
wp Since it is far away from the poles. Actually, Eq. (9) can be used to verify this issue when
we deal with aGaussian input pulse. So, the above statements indi cate that the power spreading
rate roughly goes as the inverse of the group-velocity dispersion. This fact can be expressed in
mathematical terms as

0Py (2) o< —Po(zc) / B2(wp). (13
Thisconclusionisin agreement with the fact that supercontinuum spectrum becomes nearly flat
when fo(w) isconstant [15, 16]. Note that in this case the modulus of the power flow, |§P,(Z),
is higher in the regionsin which Py is greater. So, the power leakage shifts the spectrum power
from the high values to the low ones. In thisway, if zy is large enough, the rapid and nearly-
regular oscillations of the spectrum at the OWB distance [3] are mitigated and the output power
spectrum, S(®, Zo,t), becomes uniform.
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When 2(®) is not constant, the above process still operates locally, in such a way that
oscillations are also damped. However, the spectral power spreading is stronger when 1/ is
larger. So, now S(, zy) should adopt the (1/2)-profile around the carrier frequency. At this
point it isimportant to recognize that the variation of —1/B2(w) around the central frequency
of the pulse (6 wp = 0) approximately agrees with that of the function () itself, except by
a negative additive constant. This plausible conclusion is, in addition, consistent to Eq. (7) and
can be mathematically expressed as

S(0,Zout) ~ A (@, Zout) B2(@) + A (@, Zowt), (14)

where .# and .4 are in principle nearly flattened functions of @ and consequently they only
account for the fine detail of the spectral shape. Despite of the approximations considered in
the derivation of Eq. (14), it retains enough information about the physical processes governing
the nonlinear pulse propagation and predicts a clear spectral trend within the regime whereitis
derived (namely, high nonlinearity and normal dispersion), as it is verified numerically in the
next section.

4. Numerical results
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Fig. 3. Normalized output spectrum in dB for: (a) constant dispersion profile; (b) parabolic
one; and linear dispersion variation with (c) B3 > 0 and (d) B3 < 0. See input pulse details
and dispersion fiber values in the text. The small arrow corresponds to the location of the
carrier frequency.

Let us consider a highly nonlinear fiber characterized by 9 = 400W~tkm~1, and a 5ps
Gaussian input pulse with Py = 100W, centered at 1550 nm (wp = 1215rad ps1). Our calcu-
lations include four different normal GV D-profiles. The first two cases, illustrated in Figs. 3(a)
and 3(b), are that described in the caption of Fig. 1. The fiber length is zy,: = 25min Fig. 3(a)
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and zo,: = 20m in Fig. 3(b). The third and fourth situations correspond to linear dispersion
profiles with B, = 200ps’km~1 and B3 = +10pskm™2, respectively, and zo = 10m. We
evaluate the input pulse propagation throughout the above four fibers solving Eq. (1) by means
of aRunge-Kutta-type algorithm. From Fig. 3 the conclusion is evident. Around the central wo-
region, the output spectrum embraces the shape of the fiber B2(w)-profile, in good agreement
with Eq. (14). The effective spectral bandwidth covers around 90nm in Fig. 3(a) and about
30nm in the rest of cases. The dispersion-to-spectrum mapping is clearly achieved. It is worth
noticing that the logarithmic representation of spectra mantains grosso modo the behavior de-
scribed by Eq. (14) since logarithm is a soft and monotonic function.

700 8
c
N—
T 500 §
£ :.
Z a,
§* 300 =
Y b
Q
100 .-
m 1 1 1 1
0 5 10 15 20 1150 1200 1250 1300
Distance z (mm) Angular frequency o (rad/ps)

Fig. 4. (8 Plot of the evolution of the functions % (dashed curve) and %5 (solid
curve) for a FWHM 250fs Gaussian input pulse and parabolic 2(w)-fiber profile; and
(b) normalized output spectrum in dB. The rest of input pulse details and dispersion fiber
values are discussed in the text. The small arrow corresponds to the location of the carrier
frequency.

In order to enlarge the useful spectral bandwidth, it is worth noting at this point that we
achieve the above mapping by describing OWB as a combination of multiple degenerate FWM
processes, provided that % increases and %! decreases in a smooth and monotonic way
even though the sum of both quantities be not strictly constant. Based on this fact, we expect
that the above mapping be at least partialy preserved for femtosecond pulses. So, now we
consider a 250fs Gaussian input pulse with 5.3kW peak power and a fiber such that zyy =
20mm. Therest of fiber and pulse parameters are the same asin Fig. 3(b). In this case we have
included higher order effects as self-steepening and intrapul se Raman scattering in the GNLSE
for the computation of the nonlinear propagation of such a pulse. The evolution of the functions
BN Land f,\,‘,_l for this situation is shown in Fig. 4(a). The resulting output parabolic spectral
power shown in Fig. 4(b) confirms that we are able to achieve to a great extend the dispersion-
to-spectrum mapping with ultrashort pulses. Now the useful spectral interval length is about
190 nm.

5. Conclusions

We emphasize that the new functions . * and . ! are auseful generalization of the classical
parameters Lyl and Ly* described in [3]. Going one step further, it is really notable that under
certain quite usual conditions the addition of both mathematical quantities results in a constant
of motion for nonlinear pulse propagation in waveguides. It is worth mentioning that their
definition in terms of integrals of the pulse magnitudes leads to study the interplay between
dispersion and SPM without detailed information about the pulse itself.

In the second part of the work, the above conservation law at the normal dispersion regime
has been successfully applied to exploit some OWB features. Particularly, it allows to study
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the OWB-induced power flow that broadens the pulse spectrum and maps the GVD shape of
the fiber, B2(w), to the power spectrum profile of the output pulse, S(w), around the carrier
frequency. This result has been computationally checked even under conditions that overpass
theinitial input pulse requirements. We point out that this mapping permitsin avery simpleway
to manipulate the emerging spectrum by dispersion engineering of any nonlinear waveguide in
which pulse propagation is described by means of a GNL SE-type equation.

Appendix: Derivation of the conservation law

Let uswrite EQ. (1) in the spectral domain,
J -~ ) ~ .
a—ZA(z, o — wo) = ifp(w)A(z, 0 — ) +inZ (|AZt) Az L)), (15)

where .7 (o) = [T dté(®~@)to, The propagation equation for the power spectrum is directly
derived from the above equation,

J %
a—Z\A|2 =2R [AinpZ (APA)], (16)

where R stands for the real part of a complex expression. Multiplying by By(w) both sides of
Eqg. (16) and taking into account Eq. (15), we obtain

& (Balw)AP) = 2% 17 (A7) 2.5 an

At thispoint, if we consider A* () = .7 (A*(—t)) and apply the convolution theorem of Fourier
theory, we achieve

oo

& (BololAP) =2 [0 ([T noramga o) | a9

Now, integrating over @ and taking into account [*="€(@-@)tdy = 278(t) to simplify the
right-hand side, where § is the Dirac delta function, we derive

J ([~ 1 - -
az< [ SBp(@)|APdo+ /_ w?|A|4dt> —o. (19)

Finally, EqQ. (2) is obtained considering the conservation energy of these systems. Note that in
the particular case Bp(w) = (® — wo)?B2, we recover one of the conservation laws derived in

[9].
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Abstract: Microresonator combs exploit parametric oscillation and
nonlinear mixing in an ultrahigh-Q cavity. This new comb generator
offers unique potential for chip integration and access to high repetition
rates. However, time-domain studies reveal an intricate spectral coherence
behavior in this type of platform. In particular, coherent, partially coherent
or incoherent combs have been observed using the same microresonator
under different pumping conditions. In this work, we provide a numerical
analysis of the coherence dynamics that supports the above experimental
findings and verify particular design rules to achieve spectrally coherent
microresonator combs. A particular emphasis is placed in understanding the
differences between so-called Type I and Type II combs.
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1. Introduction

An optical frequency comb is a laser source with a spectrum composed by a set of evenly
spaced components that maintain the phase coherence across the whole bandwidth. Thanks to
the self-referencing technique for femtosecond mode-locked lasers [1,2], it is now possible to
synthesize/measure absolute optical frequencies with a performance level that before was only
achievable by specialized laboratories [3]. This has led to a revolution in different fields, ranging
from optical clocks to precision spectroscopy [4]. These applications mainly use mode-locked
lasers, whose repetition rates are typically less than 10 GHz. There are other applications (such
as optical arbitrary waveform generation, coherent optical communications or radio-frequency
photonics) that do not require self-referencing but would benefit from higher repetition rates and
smaller sized combs [5]. Recently, a novel platform has emerged with the prospect to achieve
these two features simultaneously: the microresonator frequency comb [6].

In this new configuration, a continuous-wave (CW) laser pumps an ultrahigh-Q optical cavity.
When the power builds up in the cavity, new frequency components are generated and interact
by nonlinear mixing. The first demonstrations used whispering gallery mode resonators made of
different materials including silica [7], CaF, [8], or MgF, [9]. More recently, microresonators
were fabricated in planar geometries with high-index glass [10], silicon nitride [11] or AIN [12].
Here, the loaded Q factor of the cavities is lower (~ 10°—10° around 1.5 um) but the nonlinear
coefficients are sufficiently high to yield frequency combs, in some cases with thousands of
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Fig. 1. Modulation instability (MI) is the underlying phenomenon that leads to parametric
oscillation in microresonator frequency combs. In Type II combs, the MI sidebands gen-
erated by the CW pump lead to parametric growth of frequencies that are several FSRs
away. These frequency components grow in power and nonlinear mix with the pump. This
microresonator may lead to a spectrally partially coherent comb [29]. However, the comb
dynamics can be altered by actively manipulating the CW pump settings in the course
of comb formation. This may lead to the formation of stable combs [33, 39] and cavity
solitons [42]. We show that these solutions are indeed stable and spectrally coherent, but
they strongly depend on the particular initial conditions of the system. For Type I combs,
the first oscillating modes are beside the pump and display a spectrally coherent behavior.
These solutions are robust to the noise conditions.

modes and a bandwidth spanning tens of terahertz [13], similar to whispering-gallery-mode-
based combs [14]. The appeal of microresonator frequency combs is that the repetition rate is
governed by the free spectral range (FSR) of the cavity (and can thus be significantly higher
than femtosecond mode-locked lasers) and the gain bandwidth is “man-made”, in the sense that
it can be controlled via dispersion engineering [15-19] within the transparency window of the
cavity material [20-22]. In addition, the manufacturing process of microresonators with silicon
nitride and high-index material is compatible with CMOS fabrication standards [23] and thus
it is not difficult to envision embedding more subsystems onto the same chip with additional
engineering effort.

However, before realizing the full potential of this novel platform one must ensure that the
requirement of full coherence across the bandwidth is indeed satisfied. Strikingly, recent ex-
periments by Weiner and colleagues [24] and Papp and Diddams [25] revealed that this is not
always the case. They focused on getting transform-limited pulses from microresonator combs
by line-by-line pulse shaping [26]. Following the nomenclature of [24], there was a clear dis-
tinction between the noise performance exhibited by combs where the spectral distance between
the CW pump laser and the first oscillating frequencies in the comb corresponded to one (Type
1) or more (Type II) cavity’s FSRs (see Fig. 1) [24,27-29]. The former class allows for getting
transform-limited pulses after phase compensation: an indirect indication of spectrally coher-
ent behavior. For Type II combs and for certain pump setting conditions, it was not possible to
achieve transform-limited pulses. This led to a degradation in the peak to background ratio in
the measured autocorrelation trace when compared to the corresponding digitally compressed
one [24,25]. The explanation for this phenomenon was that the spectral phases of the microres-
onator comb were fluctuating randomly over a certain range (see supplementary information
from [24]). Different groups have reported similar observations. Recent multi-heterodyne ex-
periments showed that Type II combs operating in the partially coherent regime do not have a
spectrum formed by evenly spaced frequency components, leading to decreased noise perfor-
mance as inferred by the broadening of the RF beat note of the microresonator comb [29]. An
important conclusion is that neither the formation dynamics nor the noise behavior is exclusive
of a particular material or geometry [29]. In [25, 28], it was observed that when the RF beat
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note appears broadened, the comb light couldn’t be temporally compressed. This has a strong
implication in optical communications because this apparent lack of spectral coherence leads
to degradation in the bit error rate performance when the comb is used as a multiwavelength
transmitter [28].

One can find in the literature physical analyses that provide quantitative insight into the for-
mation of microresonator combs [30-39], including approximate analytical [30,32,36,40] and
numerical solutions [31], as well as stability studies [33,37-39]. It has been recognized that the
essential physics of the microresonator combs (excluding modal crossing and mechanical and
thermal effects) can be described by a master equation [32,34,35], mathematically isomorphic
to the one derived by Lugiato and Lefever in the framework of spatial solitons and pattern for-
mation in cavities [41]. Likewise, temporal cavity solitons have been observed and analyzed
in microresonator frequency combs [42] and fiber-based cavities (see e.g. [43]). Notwithstand-
ing, comparatively few efforts have been devoted towards a better theoretical understanding of
the noise formation in general (and the coherence properties in particular) in microresonator
frequency combs. This is a challenging task, since a thorough stochastic analysis requires com-
puting thousands of ensemble realizations upon propagation in an instantaneous nonlinear sys-
tem [44]. However, the random nature of light cannot be ignored since it is at the core of the
formation of the microresonator comb. The spontaneous generation of frequency components
in the cavity primarily arises by parametric amplification of vacuum fluctuations [30, 40], i.e.
modulation instability (MI).

Regarding coherence studies in microresonator combs, Erkintalo and Coen [45] have an-
alyzed numerically the first-order-degree of spectral coherence when the comb is operating
under different regimes, which are linked to the solutions of the Lugiato-Lefever equation [38].
They find that stable and coherent spectra can be obtained in Type II combs at either the onset
of modulation instability or when cavity solitons are formed [45]. Here, we complement this
study by analyzing the connection between spectral coherence and the dynamics of Type I ver-
sus Type II microresonator combs. In line with recent observations [24,25,27,28], we also find
that Type II combs are coherent as long as the oscillating modes remain incapable to provide
net MI gain by themselves. Otherwise, we observe a degradation of the coherence, but only in
particular regions of the spectrum. We also find that cavity solitons are stable and spectrally co-
herent but these solutions are susceptible to the vacuum fluctuations that drive the dynamics of
the comb. The most important observation of our work is that Type I combs emerge in a natural
manner and are indeed spectrally coherent, regardless of the initial seed conditions. This work
highlights the relevance of reporting stability, shot-to-shot fluctuations, spectral coherence and
repeatability in microresonator comb experiments.

2. Parametric oscillation revisited in the framework of the Lugiato-Lefever equation

The starting point of the next analysis is the Lugiato-Lefever equation (LLE) [41]. As men-
tioned in the introduction, this equation has been used previously to describe modulation in-
stability and soliton dynamics in CW-pumped fiber cavities [46—48] and microresonator combs
[32, 34, 35]. For the sake of completeness, we summarize here the physics of parametric os-
cillation that we find more relevant in determining the coherence properties of microresonator
combs. More extensive analyses can be found in [32,36-38,46].

The LLE reads as
JE(1,7) AN 2 :
Ry = |:_a_160+lL1§2k! (181) +iyL|E(t,T) | E(t,T) + VOE,. (1)

Here, E(¢,7) describes the complex field envelope inside the ring cavity, with the time
accounting for waveform variations within the roundtrip time g, whereas ¢ is a slow time vari-
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able related to the field evolution in succesive roundtrips. L is the cavity length; « the loss
per roundtrip, i.e. o« = (oL + 6)/2, with o; being the propagation loss per unit length, and
6 the transmission power coefficient in the cavity coupler; &y is the phase detuning of the CW
pump frequency, @,, with respect to the closest cavity resonance, @y, i.e. & = tr(@y — ,). The
dispersion coefficients are given by i, where 3, is the lowest-order one, describing the group
velocity dispersion, and the nonlinear coefficient is . Finally, E;, accounts for the complex field
of the CW pump. The cavity’s mean free spectral range is FSR = 1/zg. It is worth reminding
that for low propagation loss and under critical coupling condition, & = 8, the loaded quality
factor is related to the roundtrip loss by O = @y/(2aFSR).

Parametric oscillation in microresonators is analyzed by probing the LLE with the ansatz
E(t,7) = a(_yexp(—iQ1) +ap + a(;)exp(iQ7) [36,46], where a(_) and a() are much smaller
than ap, and this last term satisfies the optical bistability equation ag [t +i(8 — YLPy)] =
VOE;,, where Py = |a0|2. It is easy to show that in a first-order-dispersion approximation the
LLE presents exponentially growing solutions for a(_) and a(), proportional to exp[A(Q)7]
[46]. The gain coefficient is A(Q) = —a +/(YLRy)? — (Ax(Q))? and is maximum when the
phase-mismatch Ax(Q) = 8y — LB2Q?/2 — 2yLP, equals zero. This occurs at the angular fre-
quency [46]

2
Q="
At this frequency, the modes a(_) and a(y will experience net gain as long as Py > Py =
o/ (yL), which defines the required power threshold for parametric oscillation. Considering the
optical bistability condition, the above threshold for the intracavity power provides the CW
pump power needed to achieve parametric oscillation,

1
YL

(G0 —27LPy) - 2)

Pogn = [0+ (& — )] , 3)
where critical coupling is assumed. Parametric oscillation in microresonator combs has been
previously studied [30,40]. It is interesting to note that the 1/Q? dependence in the required
threshold pump power (see e.g. Eq. (10) in [30]) can alternatively be obtained in the framework
of the LLE. In particular, if we take Eq. (3) and consider 8y = 0, the pump power threshold
becomes P, 4, = 202 /(YL), in agreement with [49]. Note that this threshold is different from
the absolute parametric threshold, which is given for a fixed pump power when the detuning

satisfies [38]
S > ot —/PpyL— . “4)

As firstly observed in [24,27-29], microresonator combs whose first oscillating frequencies
appear one FSR away from the pump appear to be stable and admit compressibility to the
transform-limited duration [24]. Thus, it is important to assess the design rules that lead to this
type of microresonator comb (so-called Type I [24,27,28]). From Eq. (2), the Type I condition,
i.e. Qn = 27FSR, imposes the dispersion of the cavity to satisfy

(80 —27LFRy)
2LT2FSR?

This indicates that, depending on the cavity detuning, either normal or anomalous dispersion
may lead to Type I combs. For zero detuning and considering the intracavity power at threshold,
Po.n, we get B = —o/ (L%*FSR?) (in close agreement to what is found in [29]), which means
that anomalous dispersion is required. Equation (5) can be considered as a generalization for
the Type I design rule, where Py is not necessarily the intracavity power at threshold.

In the following sections, we shall verify that spectrally coherent combs are achievable for
Type I combs. For completeness, these results are benchmarked to the coherence properties of

B = )
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Type II combs whose detuning is just above the minimum defined by Eq. (4) [45], or temporal
cavity solitons.

3. Numerical results

The spectral coherence of microresonator combs is evaluated by means of the following figure
of merit [45]

[(E*(11,0)E(12,0))|
(|E@))
Here, the complex field £(t, ) is the Fourier transform of E(t,7) with respect to 7. The fre-
quency dependence of the two-time correlation function has been widely used to assess the
noise performance of different supercontinuum sources [50,51]. Different figures of merit, e.g.
the two-frequency correlation function [52] or higher-order correlations [53] can be studied too,

but this is a topic beyond the scope of this work.

The brackets above denote ensemble averaging. In practice, we solve Eq. (1) starting from an
empty ring. The waveform E(z, 7) is calculated within the temporal window —tg/2 < T <1/2,
and the steps taken in the variable ¢ correspond to a single cavity roundtrip time. Before every
step, we load the CW pump with statistically independent noise consisting of one photon per
spectral bin with random phase [50, 51]. We calculate the complex degree of coherence at a
fixed time difference #, — 1 and 1000 different instants #; of the evolution time. As demonstrated
in [45], for time differences shorter or in the order of the photon lifetime in the cavity, t,, =
tr/(201), the light source may display coherent behavior even in a regime where the comb is
inherently unstable. In order to avoid these artifacts, we choose t, —#; to be more than one order
of magnitude longer than #,,.

g (@:t1,1)] = (6)

3.1.  Example A: Type Il microresonator comb

In our first example, the microresonator is designed with FSR = 226 GHz, L = 2znr with
r=100um, o = 6 = 0.003, ¥ = 1000 (W-km)~!, B, = —48.5 ps?/km, B3 = 0.131 ps*/km and
Bs = 0.0025 ps*/km. These parameters could be realistically obtained with a silicon nitride mi-
croresonator and are similar to the ones reported in [13,35]. We consider a CW pump power of
1.5 W. From Eq. (4), the required detuning for parametric oscillation is &y > —0.028. In Fig. 2
we plot the dynamics of the microresonator comb at different detuning values satisfying the
above inequality. For values close to the threshold [see Fig. 2(a)], only a few discrete frequency
components are generated. In a first step, the pump generates two new frequencies through de-
generate four-wave mixing [6, 29], that is the fundamental interaction behind the modulation
instability process [54]. The position of these lines corresponds to the frequencies £, given
by Eq. (2) and are 27 x 6.7 THz in this case, much higher than the cavity’s FSR. In a second
step, these three frequencies interact through a nondenegerate and stimulated four-wave mixing
process. Consequently, new frequencies appear at +2Q,, and +3Q,, keeping in this way the
equidistance between lines [6,29]. We observe that the comb evolves towards a stable steady
state after several roundtrips. Pulses are formed as soon as the new frequencies emerge. Fig-
ure 2(b) displays the comb dynamics for the case in which the CW pump is closer to resonance.
Here there is an initial state similar to the case in Fig. 2(a), but the first oscillating modes acquire
sufficient power to stimulate the growth of frequency components located between them and
the pump through a degenerate four-wave-mixing process [27,29,55]. These new lines generate
more frequency components by non-degenerate and stimulated four-wave-mixing processes. In
the time domain, the mixing leads to strong intensity variations. Finally, in the case in which the
comb is initiated by pumping on resonance, Fig. 2(c), a broader microresonator comb is rapidly
obtained, and the spectrum fills quickly all the FSRs between the pump and the first oscillating
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Fig. 2. Dynamics of a Type II microresonator comb in spectral domain (top row) and time
domain (bottom row) for different detuning conditions. Corresponding average spectra,
shot-to-shot fluctuations and spectral coherence are displayed in Fig. 3.

modes. However, the waveform does not approach a steady state and there are strong spectral
and intensity variations from one roundtrip to the next.

We have calculated the spectral coherence for each example above as per Eq. (6) and the
results are presented in Fig. 3. For each detuning, the evolution of the waveform over the vari-
able ¢ is calculated over long time distances. As explained before, the coherence is calculated
for pairs of spectral waveforms separated 7, —#; > 107,,. In order to get conclusive statistics,
we compute 1000 consecutive pairs. The evolution of the field over time is shown on the left
column in Fig. 3. On the right column, the field realizations are superimposed and the average
spectrum corresponding to the comb envelope is calculated and shown in pink. For § = —0.014
in Fig. 3(a), the fluctuations appear only at the background level and the comb displays a spec-
trally coherent behavior. The MI lines remain highly coherent and stable upon evolution. For
detuning values closer to resonance, & = —0.007 in Fig. 3(b), the spectral regions around the
first oscillating modes remain coherent, however the new comb lines that arise in between are
partially coherent. One can indeed observe stronger amplitude fluctuations in these spectral re-
gions and conclude that the comb is spectrally partially coherent. Finally, right on resonance,
8 = 0 in Fig. 3(c), the spectral envelope of the combs is much smoother but there appear
large spectral fluctuations from shot to shot that lead to a degradation of the spectral coher-
ence across the whole bandwidth. These findings are in agreement with the analysis carried out
in [45] based on the stability of the LLE solutions.

3.2.  Example B: Type I microresonator comb

We now consider a slightly different microresonator, with design parameters FSR = 2.41 THz,
r=10um, =6 =0.001, y= 1100 (W-km) ! and B, = —623.4 ps’/km. These parameters are
chosen so that Eq. (5) is satisfied at resonance for a CW pump power of 0.2 W. The field evo-
lution is calculated in the same manner as before. Likewise, the complex degree of coherence
is computed for a fixed time difference greater than 10¢,,. The average spectral envelopes and
degrees of coherence are displayed in Figs. 4(a)—4(d) for different pump powers but keeping
6 =0.

The comb is always highly coherent in this case. The broadest comb envelope corresponds
to the case in which the MI gain peak matches the FSR of the cold cavity, as Fig. 4(e) indicates.
Under the spectral envelope figures, we plot the corresponding intensity profile (temporally
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Fig. 3. Spectral coherence and shot-to-shot fluctuations for the microresonator combs in
Fig. 2.

shifted for clarity) and compare it to the transform-limited case. For the optimum case in which
P, = 0.2W, the pulse is very close to the transform limit. For higher powers [Figs. 4(c) and
4(d)], the pulse deviates from the optimally compressed case, yet the degree of coherence is
1. This means that the spectral phase is not uniform but high-quality ultrashort pulses can be
achieved with the aid of a line-by-line pulse-shaping device [24].

It is interesting to investigate whether the system approaches the above steady state regard-
less of the input noise conditions. To answer this, we compute a slightly different degree of

coherence . .
[(Ef (1, 0)Ex (1, )) |

VUE @) |E@)P)

Here, the pair of waveforms Ej (¢, ) and E,(t,®) are calculated at a fixed instant time ¢ for
different random seeds. We note that this magnitude is conceptually closer to the one considered
when evaluating the coherence properties in supercontinuum fiber sources [50, 51], where the

|gs (w31)] = @)
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Type I microresonator comb at different pump power leves. () MI gain bandwith shift
for different power levels. At 0.2 W the maximum gain coincides with the FSR of the
microresonator cavity.

different realizations calculated for the ensemble average are evaluated for a fixed fiber length
and considering different random seeds. Our findings are summarized in Fig. 5 for the case
of Fig. 4(b). In order to make sure that the system has approached the steady state we are
considering t = 10000%,;,. As in the previous case, we compute 1000 random seeds to calculate
the average in Eq. (7). All the spectra are superposed (gray curves) and the average spectrum is
shown in pink solid line. We observe that the spectral envelope of the comb remains constant in
amplitude and is almost identical to the one calculated by averaging, for a single random seed,
over multiple roundtrip times [pink solid line in Fig. 4(b) here displayed as dashed yellow].
However the degree of coherence as defined by Eq. (7), shown in dashed blue curve under
the spectrum, indicates a highly incoherent behavior for all the frequency components except
for the pump. What occurs is that the pulses achieve the same temporal profile as in Fig. 4(b)
but appear randomly delayed within the cavity period for different random seeds. This leads
to identical spectra with a linear spectral phase ramp with random slope. When the delay is
compensated offline, we observe a substantial increase in the spectral coherence as defined by
Eq. (7) (blue solid line). This curve indeed matches the degree of coherence as calculated by
Eq. (6), which is displayed for completeness in red dashed line in Fig. 5.

The conclusion from the above findings is that, apart from an irrelevant arbitrary delay, Type
I combs approach a steady state coherent solution regardless of the input noise seed. As shall
be seen in the next section, this conclusion needs to be refined in the context of temporal cavity
solitons.
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Fig. 5. Analysis of the universality of the stable solutions for Type I coherent combs. (Top)
The different realizations calculated at a fixed instant time for different random seeds. (Bot-
tom) the degree of coherence calculated at fixed time t over multiple noise seeds (blue dash
curve) is however substantially different when compared to the one calculated at multiple
instant times for a fixed seed (red dash curve). After compensating for a linear spectral
phase ad hoc, the degree of coherence calculated at a fixed time for various noise seeds
(blue solid line) is identical to the degree of coherence calculated for a fixed seed and
various instant times.

4. Stability and coherence of temporal cavity solitons

In the examples in the previous section, we have considered the evolution of the system for a
fixed pump power and detuning. This is what in the literature is known as the soft excitation
regime [33,36]. Notwithstanding, Eq. (1) admits different mathematical solutions that are phys-
ically stable too. However, in order to gain access to these states, one must vary dynamically
either the pump power or the detuning in the course of comb formation. This is what is called
the hard excitation regime [33,36, 39]. Several groups have reported stable combs achieved in
this manner (see, e.g. [13,29,56]). One of the more impressive results of stable microresonator
combs in this regime corresponds to the case of temporal cavity solitons [42]. The transition
towards temporal cavity solitons (CSs) has been also studied numerically [38,42,55]. In [38],
it was evidenced that the comb evolves from an initial MI stage through a chaotic regime to
finally provide temporal CSs. This has been proved numerically by studying the evolution of
the comb by inducing abrupt detuning transitions [55]. By analyzing the LLE solutions in the
above-mentioned stages, it appears clear that the comb losses spectral coherence in the transi-
tion from MI to the chaotic regime, but it recovers the stability after entering the regime where
cavity solitons are formed [45].

In this section we study the formation of CSs by solving the LLE. The microresonator pa-
rameters are the same as described in Sect. 3.1. For simplicity we keep only the first-order-
dispersion. Instead of forcing abrupt changes in detuning parameter, we ramp it in a continuous
manner. As in the previous sections, the CW pump and noise are added every roundtrip. This
procedure is closer to the experimental implementations, where the laser frequency is swept
continuously around the cavity resonance [42]. The programmed dynamic detuning is depicted
in Fig. 6(a). We first set § = —0.025 for a time duration corresponding to 120#,,. The comb
remains here in the stable MI stage [as indicated by Eq. (4)]. We then sweep linearly in time
the detuning for 120#,, more until it reaches 8y = 0.070. We note that this value lies within the
range 3(PinyLoc/4)1/3 < & < w?PayL/(8c), where CSs are expected to form [38]. This con-
tinuous ramping is different to the one evaluated in [55], but as Figs. 6(b) and 6(c) illustrate, we
reach the same conclusions: upon the initial MI stage, the comb enters into a chaotic regime,
with large spectral broadening but loss of temporal structure. Then, the comb moves towards
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Fig. 6. Temporal cavity soliton formation in microresonators. (a) Dynamic evolution of
detuning. Corresponding (b) spectral and (c) time domain evolutions. Note the difference
in time scales at different stages. The detuning is changed dynamically in the course of
the CS formation. In the first stage, it is kept constant. The points marked as A and C are
indicated by the dashed white lines in (b) and (c). Once the cavity soliton is formed, the
waveform appears stable and coherent (d). The average intensity indicates a pulse with
25 fs duration (e).

a stage where only a few pulses oscillate per period. After continuous detuning, these wave-
forms collapse into a stable pulse. In order to get sufficient statistics to calculate the spectral
coherence, once this pulse is formed, we let the waveform evolve further in time while keep-
ing the detuning constant. In order to compute Eq. (6), we store 1000 waveforms separated by
101, from each other. Snapshots in time and frequency at the relevant regimes are shown in
Fig. 7. Our analysis of the spectral coherence reveals that the cavity pulse is highly coherent
[Fig. 6(d)], confirming what has been recently found by analyzing the LLE solutions [45].
Next, we are interested in the robustness of this solution for different noise seeds, for which
we repeat the above simulation considering the same microresonator parameters, including
the sweep and pump power. The only difference now is the set of independent random noise
seeds accompanying the CW pump every roundtrip, which is otherwise inaccessible by any
experimental means. Interestingly, the system achieves a different steady state consisting of
two temporal cavity solitons. This waveform also has a high degree of spectral coherence.
Figure 7 compares the relevant waveforms in time and frequency domains obtained at particular
instant times for the two sets of noise considered. In the initial MI stage, the waveforms are
almost identical, simply shifted in time. However, the waveform achieved in the chaotic stage
[indicated as time B in Fig. 7] is different. When the system achieves the steady state, the exact
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Fig. 7. Analysis of cavity soliton formation under different noise conditions. The sweep and
other parameters are identical to those in Fig. 6. The points A-C are indicated in Fig. 6(a).

waveform depends on the set of noise seeds accompanying the pump every roundtrip. In the
case presented in Fig. 7(b) it shows two solitons but in other runs the system evolves towards
1, 2, 3, 4, 5 solitons or simply collapses into a continuous wave. We know that the conclusion
depends on the particular ramp programmed. Whether the system evolves to a single soliton
regardless the noise conditions for an optimal ramp choise is an open question.

Such a fine sensitivity of CSs to the particular noise conditions has been observed experi-
mentally [42] and discussed in [42,45]. An expression for the maximum number of stationary
(non interacting) CSs is provided in [42]. It is important to note [42] that the condition to get
a maximum number of solitons equal to 1 coincides with the design rule for Type I microres-
onators [29].

5. Conclusions and discussion

We have analyzed the spectral coherence of microring resonator combs. There is a strikingly
different behavior between Type I and Type II combs. In the soft excitation regime, Type II
combs are spectrally coherent just at the onset of parametric oscillation, where only the primary
lines oscillate and mix with the CW pump. The spectral coherence is severely degraded when
the spectral gap between these lines and the CW pump fills in.

This type of combs may however admit the formation of temporal cavity solitons. This re-
quires operating the microresonator in the hard excitation regime by, e.g., realizing a proper
detuning of the CW pump in the course of comb formation. We showed that CSs are spec-
trally coherent and stable, but their formation is very sensitive to vacuum fluctuations. On the
contrary, when the microresonator is designed to provide Type I combs, the system always ap-
proaches a steady state, stable, spectrally coherent solution regardless of the noise conditions.

‘We wish to emphasize that the above are not the only possibilities to achieve microresonator
combs operating in a high-coherence state. As recent experiments indicate, stable microres-
onator combs can be obtained by pumping with a waveform composed of multiple CW waves
(parametric seeding) [57], or by placing the microring in a fiber cavity [58]. Other observations
leading to low-noise states show features akin to injection locking between ensembles of comb
modes [59]. Further numerical and experimental work is needed to understand the spectral co-
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herence for these new mechanisms and provide general design rules for self-starting spectrally
coherent microresonator combs.
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We present a numerical tool that searches an optimal cross-section geometry of silicon-on-insulator waveguides
given a target dispersion profile. The approach is a gradient-based multidimensional method whose efficiency
resides on the simultaneous calculation of the propagation constant derivatives with respect to all geometrical
parameters of the structure by using the waveguide mode distribution. The algorithm is compatible with
regular mode solvers. As an illustrative example, using a silicon slot hybrid waveguide with 4 independent
degrees of freedom, our approach finds ultra-flattened (either normal or anomalous) dispersion over 350 nm

bandwidth in less than 10 iterations.

OCIS codes:

(130.2035) Integrated optics. Dispersion compensation devices; (130.3120) Integrated

optics. Integrated optics devices; (130.4310) Integrated optics. Nonlinear.

1. Introduction

Chromatic dispersion is one of the most important prop-
erties that controlls the physical behavior of waveguides
in both the linear and nonlinear regimes. Its design is
key to achieve high performance in applications such
as dispersion compensation [1], parametric amplification
[2], wavelength conversion [3, 4], or supercontinuum gen-
eration [5, 6]. The waveguide dispersion does not only
depend on its constituent materials, but also displays
a high sensitivity to changes in the geometry (see e.g.
[7]). This is specially true for silicon-on-insulator (SOI)
waveguides [2-6, 8]. Here, there is a high-index contrast
between materials and exists the possibility to engineer
the design at the nanometer scale. These characteris-
tics enable an unprecedented control on the waveguide’s
dispersion properties.

Algorithms allowing for the optimization of the de-
sign are tools of great interest. The most widely spread
techniques rely on commercially available software that
calculates the dispersion profile given a certain struc-
ture. This favors direct optimization methods by trial
and error. For example, the zero dispersion can be tuned
within the C-band by adjusting the height and width
of a strip waveguide [4, 5, 9]. Notwithstanding, there
are advanced configurations with multiple geometrical
degrees of freedom that allow for a much finer control
of the dispersion curve [10-12]. The multidimensional
optimization renders impractical the application of the
direct methods.

Gradient-based algorithms (GBAs) [13] speed up the
convergence process with estimations of the direction in

* david.castello-lurbe@uv.es

the parameter space (e.g. the cross-section geometries of
the waveguide) that lead to the largest improvement of
the magnitude to be optimized (e.g. dispersion). Topol-
ogy optimization is a particular GBA that defines some
feature (e.g. the refractive index) of all the sampling
points of the cross-section as free parameters. Hence it
can manage a great number of degrees of freedom [14].
It has been previously used in nanophotonics design [14]
and dispersion compensating fibers [15].

In [16], our group proposed an inverse dispersion en-
gineering approach based on a multi-dimensional gradi-
ent algorithm to calculate directly the derivatives of the
propagation constant with respect to all the structural
parameters of a waveguide in a full vectorial framework.
It is worth emphasizing that this result does not rely on
any particular technique for solving the wave equation.
Certainly, this approach circumvents one of the main
disadvantages of direct methods and, therefore, provides
results in just a few iterations. Previously, it was suc-
cesfully applied in the context of photonic crystal fibers
[16, 17]

In this work, we apply this technique to SOI waveg-
uides. Due to its intrinsic high index-contrast, we take
special care of the vectorial nature of the problem, since
the axial component in electric and magnetic fields can
be significant in these waveguides [18]. In the next
section, we explain our gradient-based algorithm, pay-
ing particular attention to the specific numerical issues
related to high-index-contrast waveguides. Section 3
is devoted to the numerical results computed through
our procedure, including optimizations under additional
constraints, and in section 4 we deal with an analysis of
the solutions achieved. Finally, the main conclusions are
drawn in section 5.



2. Gradient-based optimization algorithm
Gradient-based algorithms are the first choice in mul-
tidimensional optimization when the derivatives of the
fitness function are available [13]. So, with the aim of
tackling the dispersion engineering of waveguides, a pro-
cedure based in the evaluation of the derivatives of the
propagation constant, 3, with respect to the design pa-
rameters was proposed in [16]. In this section we present
a close expression for those derivatives well-functioning
even in the case of high-index-contrast waveguides and
include a detailed description of their implementation.

For dispersion engineering purposes, a simple defini-
tion for the merit function in the optimization procedure
is the mean squared of the difference between the group-
velocity dispersion (GVD), namely Bz(w) = d?8/dw?,
of a particular structure represented by p and a target
GVD,

1 e

X(p) = 37 D (Bapsen) = B W), (1)
“ k=1

where p = (p1,...,pn) is the set of parameters defining
the waveguide degrees of freedom. This expression cor-
responds to the variance of the dispersion with respect
to the target dispersion profile in the frequency range of
design, and the optimum configuration will correspond
to the minimum of x2.

In order to reach that minimum, we follow a sequen-
tial linear programming (SLP) strategy for producing
a series of quadratic problems to be minimized. To be
more precise, given a point in the parameter space, p(n),
we can obtain the linear approximation of Sa(p) around
it,

%m(p; UJ) = [ (p(m);w) +8pﬂ2 (p(m); w) . (pfp(m))v (2)
and, accordingly, a local (quadratic) approximation of
the actual merit function,

1 e

NP = 1 D (B (pion) = 55 @)™ (3)
“ k=1

Thus, if 8,82 is known, x2 . can be built, and its min-
imum, p(m41), can be easily determined with no addi-
tional computational effort. This new point is expected
to be closer to the target and can be used as the starting
point in a new iteration of the procedure.

In appendix A, we go one step further than [16] and
derive the following expression for the gradient of the
propagation constant in the parameter space,

e / (—et . (apett)et + (81,622)63) ds
_ fowW Js
0,8 = .
/ (e x hy) - 2dS
S

where integrals extend to all the transverse domain
where fields are defined, S, and involve components of
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Fig. 1. (a) Outline of the slot waveguide under study [11].
Comparison of the derivatives of the effective refractive index
(b) and the group-velocity-dispersion parameter (c) with re-
spect to the geometrical parameters h, w, hs and ds, shown
in (a), calculated numerically (dashed curves) and by the
Eq. (5) (crosses).

the electromagnetic field and derivatives of the dielec-
tric tensor. The subscript t indicates transverse com-
ponents, ¢ is the permittivity of the vacuum and w is
the light frequency. It is worth emphasizing a couple
of points around Eq. (4). On the one hand, (9y€,.)e?
is the explicit contribution of the vector nature of the
electromagnetic field and must be taken into account
for high-index-contrast waveguides [18]. On the other
hand, Eq. (4) enables the calculation of 9,8 by means
of the mode fields of the waveguide at only one param-
eter configuration. This means that there is no need to
know the propagation constant at any other point p+dp
of the multidimensional parameter space to compute its
derivatives.

If we focus on geometrical parameters defining waveg-
uides composed by homogeneous materials, a smoothed
effective dielectric tensor, €, should be used [19]. This
description of the material distribution allows us to eval-
uate these derivatives in an easy way, avoiding infinities
at the discontinuities, whereas derivatives are nonzero
only near interfaces. This tensor é must be defined at
each spatial sampling point, according to the effective-
medium theory [20], as explained in appendix B.



Accurate calculations for

waveguides

high-index-contrast

From the numerical point of view and taking into ac-
count the discretization of the integration domain, S,
the integral in the numerator of Eq. (4) can present a
considerable error in its evaluation owing to the strong
discontinuity around the interface of the normal compo-
nent of the electric field. That difficulty can be overcome
if we choose a local basis for the electric field defined by
the unit vectors (i, T,2): the normal and the tangent
to the interface in the transverse plane, n and 'i‘7 and
the propagation direction, z. In this basis, Eq. (4) can
be rewritten as

[ (@b
S
/ (e x hy) -2dS
S

o — (Operr)er + (Fpezz)el) dS

="y

)

()
where d,, is the component of the electric displacement
field normal to the interface and er is the component
of the electric field tangent to the interface in the trans-
verse plane. It is worth remembering that the dielectric
tensor is diagonal in the new local basis since the ef-
fective medium around the interface corresponds to a
uniaxial anisotropic medium [19], and its extraordinary
axis is normal to the interface (parallel to ). Therefore,
Eq. (5) extends the applicability of Eq. (4) to high-index-
constrast waveguides.

In order to check the numerical precision of Eq. (5), we
consider a silicon strip waveguide with a horizontal sil-
ica slot proposed in [11] by Zhang et al., which is shown
in Fig. 1(a). These waveguides present four geometri-
cal degrees of freedom, which we define as the width of
the waveguide (w), the height of the waveguide (h), the
height of the slot (hs) and the position of the slot center
with respect to the waveguide center (ds). This is a com-
putationally demanding structure owing to the narrow
low-index layer in the middle of a high-index strongly-
confining waveguide, near the maximum of field density.
Indeed, the light-guiding mechanism of the transverse
magnetic (TM) mode (vertically polarized) of this kind
of waveguide induces a strong change on the normal com-
ponent of the electric field at the slot lower interface [11].
Let us consider the following arbitrary configuration:
w = 650nm, h = 460 nm, hy = 50nm and ds = 115 nm.
We calculate the propagation constant and the fields of
the TM mode using an iterative two-dimensional proce-
dure [21] within a squared sampling window of 1.8 ym
long and a sampling distance of 6.25 nm. Furthermore,
if a sampling grid parallel to the structure were used, the
derivatives would then be highly sensitive to the position
of the sampling points around the slot horizontal inter-
faces. To deal with this numerical problem, we rotate
the structure slightly (1.5°) with respect to the sampling
grid. In Fig. 1(b), we compare results from Eq. (5) with
those computed numerically (in particular, solving the
wave equation also for neighbor configurations by chang-

Table 1. Geometrical parameters and merit function after
convergence for the five dispersion targets shown in Fig. 2.

(ps*m~?) iter. x (ps?m ") w(um) h(nm) h. (am) dy (nm)
(a) +0.0 4 0.018 788 504 42 110

) 8 0.011 634 547 42 114
(c) 8 0.012 840 599 40 108
(d) —0.8 6 0.052 665 537 51 129
(e) 9

target
By

0.042 887 518 39 93

ing the initial value of each parameter by £0.5nm and
+1.0 nm, fitting the results to a second order polinomial,
and calculating its derivative at the initial point). We
can observe that the analytical derivatives are in very
good agreement with the numerical calculations.

Equation (5) allows us to easily compute the first
derivatives of 8 and engineer magnitudes that depend al-
gebraically on 8. Nevertheless, there is no closed expres-
sion for calculating higher-order derivatives in a straigh-
forward manner [21]. Despite this, if we are interested
in optimizing the chromatic dependency of a derivative
of B, we just need to evaluate Eq. (5) for different fre-
quencies, fit those data as a function of w and perform
successive derivatives with respect to frequency. This
approach is fast and, as can be appreciated in Fig. 1(c),
keeps a high accuracy.

3. Numerical results

We illustrate our approach in Fig. 2, where we plot five
different examples of the optimization processes with
different flattened dispersion profiles over 350nm, in
the range 1.55um < A < 1.90um as target, namely,
Ba(w) = 0, 0.2 and £0.8 ps?m~!. For all five cases, we
start from the same waveguide configuration [11], hence
showing this choice is not particularly relevant. It corre-
sponds to the geometry used to test the accuracy of the
analytical derivatives in the previous section, whose dis-
persion is far from being flattened. In our simulations,
we describe the refractive index of silicon and silica using
the Sellmeier coefficients provided in [22]. In these ex-
amples, 6 wavelengths in the above range are considered
as the points used for evaluating the local approximation
of the merit function [Eq. (3)].

It is worth noting that the target curves are recov-
ered to different extent. In other words, the achiev-
able minimum of y? depends on the target curve and on
the waveguide’s degrees of freedom. In order to ensure
that the procedure converges properly, it is convenient to
moderate the speed of convergence. In Fig. 3, the evolu-
tion of the parameters at each step along the procedure
is shown, in which we have allowed variations up to 10 %
in each step and we consider the process has converged
when the difference of x between two successive steps
is smaller than 0.001 ps>m~'. The specific designs ob-
tained after convergence are indicated in Table 1. Note
that, for the B2 = 0 case, the slot parameters, which
are the most sensitive ones [see Fig. 1(c)], are in close
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Fig. 2. Five examples of optimization starting from the same geometry (dotted black curve, see details in the text) and with
five different flattened dispersion profiles as a goal (solid blue line), namely, low and anomalous (a), low and normal (b), high
and anomalous (c) and high and normal (d). Dispersion profiles between the first iteration (dotted-dashed green curve) and

the last one (dashed red line) are omitted.

agreement with those reported in [12], where s = 40 nm
and d; = 104 nm. We emphasize that curves close to the
target are found in a few steps (see Fig. 3). It illustrates
the efficiency of this approach compared to trial-and-
error methods.

Since Eq. (1) has been defined in this work for engi-
neering (32, other magnitudes can be altered during the
optimization process. In the cases shown in Fig. 2, for
instance, the effective refractive index grows as [y ap-
proaches its target and, therefore, modes become more
confined. The effective index behavior is associated to
the fact of being positive its derivatives with respect to
the height of the waveguide and this parameter has been
increased along the processes [see Figs. 1(a) and 3].

Inclusion of feasibility restrictions
The manufacturing of integrated waveguides is, of
course, constrained to the limitations of the fabrication
method. Therefore, any realistic design procedure must

include this kind of additional requirements. Our algo-
rithm also allows us to deal with these fabrication re-
strictions. They are implemented as constraints in the
variables of the local merit function, xjoc, i.e., limiting
the possible values of p or bounding them.

The dispersion profile is more sensitive to those pa-
rameters related to the slot [see Fig. 1(c)]. So, to illus-
trate the possibility of including some constraints in our
algorithm, we have imposed a lower boundary of 45nm
to the slot height in the optimization processes of Fig. 2.
The dispersion profiles obtained under such a condition
are shown in Fig. 4. Of course, the impact of this con-
straint depends on each case. In our examples, it affects
the two cases of normal dispersion in a greater extent
(see results in Fig. 4), since such cases show the narrow-
est slots in the unrestricted optimization (see Table 1).

4. Analysis of tolerances

In this work, we have engineered the dispersion profile
of SOI waveguides in an efficient way, implementing a
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powerful differential tool that allows us to evaluate, with
no additional computational effort, the gradient of the
propagation constant in the parameter space. We used a
kind of slot waveguide proposed by Zhang et al. [11, 12]
to illustrate our inverse dispersion engineering proposal.
Nonetheless, we cannot omit the practical interest of the
specific structures obtained applying our tool. For exam-
ple, the cross-section designs that provide the dispersion
curves of Figs. 2(a—c) could have applications for soliton
formation in optical microresonators [23] or coherent ul-
traflat supercontinuum generation [12, 17], whereas the
dispersion profiles shown in Figs. 2(d,e) could be used for
dispersion compesation of ultrashort pulses [1]. In this
sense, a crucial point to test the feasibility of any design
is to know how it performs facing inevitable changes with
respect to the optimized structure. To this end, and for
the sake of completeness, we characterize in this section
the sensitivity of the waveguides shown in Fig. 3 to fab-
rication tolerances. In addition, note that our approach

also allows to analytically evaluate the uncertainty of the
effective index or the dispersion due to the fabrication
tolerances by using the standard technique of propaga-
tion of errors (see e.g. [16]).

In Fig. 5 the effect of small perturbations of the geo-
metrical parameters on dispersion curves is represented.
We take the geometry obtained by means of the opti-
mization process shown in Fig. 2(b) as reference. Since
current integrated waveguides can be fabricated with
typical tolerances of a few nanometers [24], we have in-
creased and decreased by 2nm the parameters of that
structure. As expected from Fig. 1(c), the GVD is more
sensitive to changes that affect the slot compared to per-
turbations of the strip.

5. Summary

The physical properties of subwavelength waveguides are
highly dependent on its geometry due to their small di-
mensions and high index contrasts. This feature be-
comes an advantage as long as their cross section can be
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Fig. 4. The last four target (solid blue lines) and optimized
(dashed red curves) dispersion profiles shown in Fig. 2 to-
gether with those obtained under the restriction hs > 45nm
(dotted green curves).
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Fig. 5. Plot of the dispersion profiles corresponding to the
optimized geometry for the system described in Fig. 2(b)
(solid black curve, see details in the text); and the same
geometry with each one of the design parameters (h, w, hs
and ds) increased (red lines) or decreased (green lines) by
2nm.

suitably designed. Usually, optimum waveguide designs
are found by varying separately the geometrical degrees
of freedom in their transverse planes. Consequently, this
trial-and-error procedure becomes much more challeng-
ing when one considers advanced designs containing mul-
tiple degrees of freedom.

In this work, we overcome this issue by means of an
inverse dispersion engineering approach. Given a target
for the dispersion curve, we can simultaneously mod-
ify all geometrical parameters of the waveguide towards
new values where the structure shows dispersion profiles
closer to the target. In this way, in a few iterations we
find specific structures with dispersion curves matching,
as much as possible, the target. The key fact is the
possibility of computing the gradient of the propagation
constant with respect to all the geometrical parameters
by means of the information provided by the analysis of
only one geometry. In addition, our algorithm is com-
patible with any wave equation solver, since it only needs
the information of the mode fields.

Appendix A: Derivative of the propagation constant
Let us write the two-dimensional wave equation for the
transverse components of the magnetic field of a mode
in a waveguide [16],

W2
Lh, = {VtV;F + UéctTITC*Q —new Ve [EZJVtTﬂ} } hy
= 5*h,, (A1)

where the subscript t indicates transverse components,
the superscript T refers to the transpose of a matrix
or vector, € is the — effective — dielectric tensor [19],
and 7 represents the completely antisymmetric tensor
in two dimensions, [(0,+1),(—1,0)]. The above equa-
tion can be recognized as an eigenproblem and therefore
the Hellmann-Feynman theorem [25] could be used for
calculating derivatives of its eigenvalues. This strategy
has been applied in solving electromagnetic problems in
cavities, where eigenvalues are the resonant frequencies
[14, 26]. However, as the operator L defined by the left-
hand side of Eq. (A1) is non-self-adjoint (cf. [15], where
polarization effects are discarded, and L becomes self-
adjoint), a generalization based on biorthogonality [27]
must be used. The general expression for this mathe-
matical problem turns out to be [16]

() (hi/(@Dhy)
o () (42)

where p = (p1,...,pn) are the parameters defining the
waveguide, Iy is the eigenvector of the adjoint operator
of L whose eigenvalue is the complex conjugate of B2
li.e., Lthy = (B%)*hy] and therefore hy, = ne;, being
e; the transverse components of the electric field of the
considered waveguide mode [27]. (o|o) stands for the
standard scalar product for complex vector functions.
It is worth recalling that only the elements explicitly
dependent on any pj contribute to the derivation of L.

In order to derive Eq. (4) from Eq. (A2), first we ex-
plicitly write the numerator on the right-hand side in
Eq. (A2),

4 2
~ w
(h|(9,L)hy) :/ dS(c—ze;f(apen)nTht
S
— e/ (Opeee) Ve [ Vi nhe]

— el eV [(9p2 )V nhy] ) (A3)

Let us consider now the following Maxwell equations

VxH=—i |2YE, (A4)
Mo €

VxE=i /KYH, (A5)
€y C

V-D=0. (A6)

If we separate the transverse and longitudinal fields com-
ponents, E = (e; + e,z)exp(ifz) and H = (h; +



h. z)exp (i8z), we obtain

V;Fnht = —1 Eifﬁzzeza (AY)
V Ho ¢

Vier = —iy | ﬂgnhc +ife, (A8)
€y C

V;r(ettet) = —ife;.e., (A9)

from Eqs. (A4), (A5) and (AG), respectively. If we take
into account Egs. (A7) and (A8), we can simplify the
second term on the right-hand side in Eq. (A3),

— / ds e;r(ap&t)vt [ez_zlv?nhd

S
T w?
_ / dS e (9yexr) [fgnht+eowﬁet . (A10)
S

Next, by using Egs. (A7) and (A9) and integrate by
parts the third term on the right-hand side in Eq. (A3),
we find

— / dS ele Vs [(8PE;Z1)V;F7]ht}
S

:eowﬁ/sds (Opesz)e2.  (All)

Finally, Eq. (4) is directly derived using Eqgs. (A10) and
(A11).

Appendix B: Effective dielectric tensor

Permittivity is a space averaged magnitude involving mi-
croscopic parameters [28]. At the interface the averages
only change softly, ensuring smooth transitions between
media [20]. This description avoids unphysical disconti-
nuities that would otherwise be detrimental for the nu-
merical algorithms [19].

Following [19, 20], let us consider an interface between
two homogeneous media of permittivities €; and e;. On
the one hand, components of the dielectric tensor af-
fecting the electric field parallel to the interface must
be calculated as a weighted average of the permittiv-
ities, (¢) = fie1 + foea. Omn the other hand, compo-
nents of the dielectric tensor acting on the electric field
normal to the interface must be computed as the in-
verse of a weighted average of the inverse permittivities,
(1/€) = fi/e1 + f2/€ea. The weight functions f, at each
sampling point are evaluated in this work as the rela-
tive volume occupied by the ath material in a sphere of
radius equal to the sampling distance centered at each
sampling point. Finally, the effective dielectric tensor
can be written as [19]

. 1

é= (1/€>P+ (e)(I — P), (B1)
where [ is the identity matrix, and P is the projection
matrix onto the normal to the interface, n, i.e., P;; =
7;75. It is worth noting that, far from the interfaces, € is
a multiple of the identity, recovering the original values
for the permittivities, €; or es.
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Abstract: Dispersive waves generation from phase matched optical
wave-breaking is exploited to produce a coherent mid-infrared near-octave
spanning supercontinuum generation. Unlike soliton propagation, the
dispersive waves emitted under these conditions can lie in the same
dispersion regime of the wavelength where the input pulse is centered. The
phenomenon is produced in a dispersion-engineered silicon waveguide,
pumping the input pulse at 1.55 ptm, where two-photon absorption strongly
limits the spectral broadening. By means of a new analytical approach, we
derive the phase-matching conditions for such a process. Consequently,
this result could be extended to other systems governed by a nonlinear-
Schrodinger equation including higher-order dispersion.
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1. Introduction

Silicon-on-insulator (SOI) is a material platform of great interest for all-optical on-chip sig-
nal processing. Some of its main advantages are CMOS compatibility and strong third-order
nonlinear optical effects enhanced by a tight optical confinement due to its high-index con-
trast [1,2]. Among other functions, on-chip light generation can get particular benefit of this
last feature. However, it has been demonstrated both numerically and experimentally that si-



licon nonlinear losses limit significantly the spectral broadening ability of this platform when
pumping at telecom wavelengths [3-5]. Indeed silicon nonlinearities measurements indicate
that the relative weight of two-photon absorption (TPA) is still high compared to Kerr effect
around 1.55 um [6-8]. Moreover, for picosecond or longer pulses, free-carriers induced by
TPA produce additional effects, namely, free-carrier dispersion (FCD) and free-carrier absorp-
tion (FCA), that also affect new frequency generation [9].

Some works addressing these issues have been published. Most of them have exploited
higher-order soliton fission and radiative effects to induce the spectral broadening [10, 11],
being the input pulse pumped at telecom wavelengths. Recently, this approach has been ex-
perimentally demonstrated through a supercontinuum (SC) generation spanning from 1.2 um
to 1.7 um [12]. In [13, 14], the negative impact of TPA was directly reduced by centering the
input pulse at 1.81 pm. In this case, self-phase modulation (SPM) reinforced by a pulse com-
pression leads to the spectral broadening at the first stages. Furthermore an energy transfer to
high and low frequencies was observed at later stages. SC spectra have been obtained in these
works pumping in the anomalous dispersion regime, where the broadening mechanism can
be sensitive to input pulse noise [15, 16]. Here we adopt an entirely different strategy pump-
ing in the normal dispersion regime, where good stability, smoothness and coherence are ex-
pected [17]. Nevertheless, it could seem challenging since efficient new frequency production
requires anomalous dispersion [4].

Dispersive wave (DW) emission in the normal dispersion regime has been newly pointed
out [18] and related to the so-called optical wave breaking (OWB) [19]. Recently, our group
has studied this process by means of an analytical approach to justify a dispersion-to-spectrum
mapping achieved under all-normal dispersion regime [20]. Going one step further, in this work
we will firstly apply this new method to find a suitable dispersion profile leading to a resonant
OWB enabling the radiation of DW and a SC generation. Secondly, we will exploit this phe-
nomenon to mitigate the impact of nonlinear losses on SC generation pumping at 1.55 ymin a
realistic SOI waveguide obtained by inverse dispersion engineering.

2. Spectral broadening produced by optical wave breaking

Nonlinear pulse propagation in waveguides is usually described by means of the generalized
nonlinear Schrodinger equation,

%A(z, o — @) = ifp(W)A(z, 0 — 0n) + in.Z [JA(z,1)[A(z,1)] | (1
where A is the complex envelope of the electric field, @y is the carrier frequency,
Bp(w) = B(w)—Po—Pi(w— ay), being B(w) the propagation constant of the mode that
supports the pulse propagation and f; = J*B(®)/d® |y — a,» W represents the waveguide
nonlinear coefficient evaluated at @y and .7 (o) = [ dre(®~®) o is the Fourier transform.

Our group has recently introduced a generalized version of the length scales where SPM and
the group-velocity dispersion (GVD) act at each propagation distance z [20],

oA 1. By () Az, 0 — o) de
SOy CarTew TR Ay g Teprare

(@)

These functions satisfy the equality Z;' (z) + %' (z) = L (0) + 251 (0) [20-22]. In ad-
dition, if the inequalities %' (0) > %;'(0) > 0 hold, we can analyze the nonlinear pulse
propagation in two steps [20]. Since lel > 25 U at the first stage, §@ = —0;0(zows,!) ~
—Y0|A(0,1)>20ws/V/2, where S is the instantaneous frequency or pulse chirp, ¢ stands
for the phase of A, and £ "(zows) = .ZN_L] (zows) defines zows, that we consider the OWB



distance. At the second stage, while £ I EN’Ll, a temporal overlapping between waves
in the pulse tails is produced. Consequently, their nonlinear interactions through four wave
mixing (FWM) strengthen [17, 20, 23]. Moreover, the degenerate FWM could take place on
phase matching if the pump waves involved in such a processes lied in the anomalous disper-
sion regime [15], B2(®) < 0, keeping £ !'> 0. Particularly, we are interested in this work in
the spectral broadening towards longer wavelengths, so we will study the interaction between
waves in the leading pulse edge. Note that mixing between red-shifted (leading edge) and blue-
shifted (trailing edge) frequencies does not play a significant role under these conditions. It
allows to study separately the interactions in the leading and trailing edges.

The simplest dispersion curve that can lead to phase matching on red-shifted frequen-
cies is fo(®) = B + B3(w — ap) with B3 > 0 [15]. We will address this case here.
To determine the frequencies that will overlap we proceed as follows. Firstly, we write
Z5(z) = X3_, Bu(z) /k! where py is the kth normalized moment of the pulse spectrum
at the baseband. Attending to [24], i (z) = [T A*(z,1)(—id,)fA(z,0)dt/ [, |A(z,1)|?dt ~
[, 8wk (z,1)|A(z,1)[>dt/ [~ |A(z,t)|>dt, where we only retain the instantaneous frequency
contribution. According to our above reasoning, it leads to u3 = 0 if symmetric pulses are
considered. With the aim of dealing with B3 effects, we can consider —f3 for @ > @y due
to it does not alter red-shifted frequencies behavior. Equivalently, we can redefine py(z) =
fooo Sk (z,1)|A(z,1)|2dt/ [~ |A(z,1)|*dt.

The equation that defines zows can be expressed as 2.7 ! (zows) ~ 2 1 (0), and rewritten
under the above approximations and up to third-order dispersion as

1 LNL 2 ]LNL 3
—= 0280w — = — 3, 03%0ws = 1, 3)
V2@ 6Ly

where Lyt = 1/YPo, LY = T/ B, Cows = zows/Inv. 6 = 2 [°_(9:U)*Udx/ [ Udx, be-
ing U the normalized instantaneous input power. At this point, we concentrate on the degenerate
FWM where the frequency corresponding to the minimum chirp, 8 @iy, acts as pump wave and
oy (located at the leading pulse edge) acts as signal wave. Since .27} IS .ZI\?LI beyond zowp and
in accordance to [19,25], the nonlinear contribution of the phase mismatch, k, can be neglected,
K =AB+20P, ~ AR = B(w) + (@) —2B(wp) = 217 P (@p) (@5 — wp)Zk/(Zk)! =
B2 (@) (@5 — @,)? [15], where P indicates the power, p, s and i stands for pump, signal and
idler waves, respectively, and a linear dispersion curve has been considered. Now, if phase
matching is imposed on this process, Kk = 0, we derive from Eq. (3)

B2 = Q (G _9% —2p>
3 82 2 3¢ [);3 )

where the equation 8 Wyin = —€8ows /7o defines € and @ is the frequency of the idler wave
produced due to the interaction, i.e the dispersive wave. We want to emphasize some points
around Eq. (4). We assume that Ly, and LI()2 ) allow OWSRB, i.e. the temporal overlapping between
waves at the pulse tail [26]. Among the processes enabled by this overlapping, we impose phase
matching on the interaction that can lead to the longest wavelength. For a linear disperson
curve, it implies that the longest wavelength produced by SPM at zowsg, that is associated
to O Wiy, corresponds to the zero-dispersion wavelength (ZDW). Furthermore, this process is
favored due to the pump power is much higher than the signal power [20] and this choice agrees
with [17,23]. Note that this interaction is produced by the evolution experienced by the temporal
frequency distribution in the normal dispersion regime. This fact was already pointed out in [18]
to explain the overestimate of the resonant DW location when it is analyzed through a cascaded
FWM [25] in a regime that allows OWB. We will return to this point later. Therefore, we expect
efficient spectral broadening produced by OWB when such a dispersion is considered.
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Fig. 1. Output spectrum at the long pulse (a) and (b) short pulse regime pumping at 1.55 um
(open arrow) in the normal dispersion regime after propagation throughout an optical fiber
and integrated optical waveguide, respectively (see details in the text). Significant DW
emission (solid arrow) induced by optical wave-breaking is observed when B3 indicated
by Eq. (4) is used.

To check the validity of Eq. (4), we consider in Fig. 1 two systems with normal disper-
sion at the pumping wavelength, 49 = 1.55 um, and high nonlinearity (to ensure that OWB
takes place): one corresponding to an optical fiber, and the other to an integrated optical wave-
guide. On the one hand, the parameters corresponding to Fig. 1(a) are B, = 7.5ps*km™!,
% = 2.5W~'km~!, an hyperbolic secant input pulse with 0.6kW of peak power and 1 ps
of temporal width, that has been taken from Ref. [18] to ensure the temporal overlapping,
Bs = 0.5ps’km™!, and a propagation length of 35 m. On the other hand, in Fig. 1(b) we con-
sider B = 0.2ps’m~!, 1p = 4.0W'm~!, a Gaussian input pulse with 1kW of peak power
and 100 fs of temporal width, B3 = 0.001 ps>’m~!, and a propagation length of 11 mm. In both
cases, the conditions %' (0) > Z'(0) > 0 are satisfied and f3; is calculated by means of
Eq. (4). We can observe in Fig. 1 a strong spectral broadening towards longer wavelengths.

Equation (4) leads to A5 = 1.589 um for the case of Fig. 1(a), where the resonance is
observed at 1.58 um, and A.s = 2.311 um for the case of Fig. 1(b), where the resonance is
produced at 2.362 um. Despite of the approximations assumed in our two-step approach, the
analytical predictions about 83 and A are in good agreement with the numerical simulations
of Eq. (1). It is worth to emphasize the broadband nature of the resonances appeared in Fig. 1.
We want to stress here that OWB involves a temporal overlapping of frequencies belonging to
the interval [8 @mip,0]. Furthermore, the phase-matching does not significantly increase within
this range. This allows to estimate that the bandwidth of each resonance is 3,/f3, which is in
accordance with Fig. 1.

In the next section, we study SC generation in silicon waveguides using short pulses. So,
now it is interesting to examine the effects related to the input pulse duration at this regime.
Attending to Eq. (4), pulse duration does not affect to the optimum f3 and consequently, neither
the location of the resonant DW (provided, of course, that OWB is produced). That is confirmed
in Fig. 1(b), where the resonance peak appears nearly at the same wavelength regardless of the
input pulse duration. Notwithstanding, we emphasize that the temporal shift of frequencies is
not fully included in our analysis. In fact, Fig. 1(b) illustrates how the energy transfer to longer
wavelengths up to the resonance enhances when shorter pulses are injected.

3. Supercontinuum generation in silicon waveguides

For telecom applications, on-chip light sources pumped around 1.55 pm is the preferred choice
due to it corresponds to the amplification range of erbium doped fiber amplifiers (EDFAs) [27].
For SOI platform, it remains difficult because TPA highly reduce the effective nonlinearity of
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Fig. 2. (a) Output spectrum of a pulse propagated throughout a 1-cm-long waveguide in
presence of TPA pumped at 1.55 um (open arrow). The characteristic lobe generated by
resonant OWB is also observed (solid arrow). (b) Target dispersion (dashed line) and dis-
persion curve (solid line) of the waveguide design, which is shown at the inset, after op-
timization. (c) OWB phase mismatch corresponding to the target dispersion (dashed line)
and the dispersion of the design (solid line). See details in the text. (d) Nonlinear coefficient
of the waveguide of (b).

these systems [3, 5]. It becomes even challenging if pumped at the normal dispersion regime,
where SPM plays by itself a key role in the new frequency production [28]. In spite of TPA not
including in the previous section, it does not necessarily prevent the temporal overlapping re-
quired to produce OWB [29]. Therefore, this mechanism could be of great interest. On the one
side, the spectral broadening ability of SPM should not be strong enough to generate the whole
supercontinuum but induce OWB. On the other side, pump red-shifted waves involved in OWB
would be located far from telecom wavelengths and so, the impact of TPA on this additional
frequency generation would be smaller. Based on a previous work of us [33], SPM undergone
by a skewed input pulse throughout a SOI waveguide should be enough to induce OWB. More-
over, according to [33], for a Gaussian pulse chirped by a cubic spectral phase 1(® — ay)?,
we can estimate the optimum skewness as 1 ~ —0.1 T03. For such a pulse, and considering
1 =40+8i W~ !m~!, that is not particularly large for SOI waveguides [4, 9], the dispersion
coefficients of Fig. 1(b) are an excellent starting point to numerically find the dispersion profile
of a SOI waveguide where OWB takes place. We show in Fig. 2(a) the spectrum of a 100-fs-
long Gaussian input pulse of 1kW peak power, skewness 1 = —0.14 T03, B, = 0.24ps’m™!
and B3 = 0.0012 ps>m~"'. Note that this result corresponds to a simulation done by numerically
solving Eq. (1) with a complex Jp.

The results obtained confirm the possibility of generating SC spectra under significant TPA
losses (note we considered 3(79)/R (%) = 0.2 in accordance with [7, 8]). The physical pro-
cesses included in our previous analysis, namely, GVD, SPM, and TPA, possess a major im-
pact on short pulse propagation in silicon waveguides [4, 10]. Nevertheless, processes such as



higher-order dispersive effects, FCD, FCA or self-steepening must also be included in a realis-
tic description. So, this section will be devoted to find a realistic waveguide where the physical
behavior previously described takes place and perform a complete simulation of a pulse propa-
gation throughout it.

The dispersion profile that we found above defines a curve that can be used as a target in our
inverse dispersion engineering approach [34] to find a realistic SOI waveguide recovering this
dispersion profile. We choose a strip silicon waveguide with one horizontal silica slot to achieve
the above goal [13]. Our inverse design algorithm provides, after convergence, a structure with
w = 840nm, 7 = 524 nm, hy = 39 nm, and ds = 108 nm, where the parameters are defined in
the inset of Fig. 2(b). In addition, the dispersion curve of this design and the target profile are
also compared in Fig. 2(b). On the basis of our approach, this dispersion curve should induce a
phase matched OWB process, with the corresponding emission of dispersive waves. Figure 2(c)
shows phase matching around A = 1.86 tm, which, according to our reasoning, should produce
aresonance around A = 2.325 um. It is consistent to the numerical result in Fig. 2(a), where the
resonance peak is observed at A = 2.224 um. Furthermore, Fig. 2(c) confirms that the agree-
ment between both dispersion curves in Fig. 2(b) preserves the location of the phase matching
interval, which is actually the key fact. Unlike the output spectrum obtained after propagation
throughout a waveguide with the target dispersion profile, the DW lies at the normal disper-
sion regime for the realistic waveguide, see Fig. 2(b). Right after we will observe that this
fact does not prevent the DW emission, in contrast to DW radiated by solitons [25,35]. In a
DW emitted by a soliton-like pulse, the frequencies do not temporally disperse enough to dis-
tort the cascaded FWM identified by Erkintalo and co-workers as the underlying fundamental
process [18,25].

Since SOI waveguides have a high index contrast, the vectorial nature of the mode fields must
be considered [36]. Therefore, we use the following expression for the nonlinear coefficient
[37],

Y(w) =Y,

k
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where the subindex k denotes each homogeneous region of the cross-section, %%, e and h rep-
resent the electric and magnetic fields of the mode that supports the pulse propagation, the
subindex t accounts for the transverse components and z for the longitudinal ones, .7 is the
cross-section where the fields are defined, n, ny, and Brpa indicate the refractive index, Kerr
index, and TPA coefficient, respectively, and p ~ 1.27 for silicon and p = 1.0 for silica stands
for the anisotropy coefficient. In addition, following [36], we do not consider the anisotropic
contribution of nonlinearity in our waveguides. We calculated ny and Brpa for each frequency
as the mean value of Cauchy fits of the measurements in [7, 8]. Of course, we also consider the
dispersion of both the refractive index of materials [38] and of the mode fields. The nonlinear
coefficient of the optimized structure is plotted in Fig. 2(d). It clearly shows how TPA notably
affects at telecom wavelengths.

At this point we have properly characterized our waveguide to simulate a pulse propagation.
We use an extended version of the nonlinear Schrodinger equation to include free-carrier related
processes and higher-order dispersion [3,4]
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Fig. 3. (a) Output pulse spectra for input pulses of 50 fs at z =4 mm, 100 fs at z = 8 mm and
200 fs at z= 10 mm. All pulses are pumped at 1.55 um (open arrow). For 100-fs-long input
pulse a lobe centered at 2.379 um is observed (solid arrow). This resonance also appears
for 50-fs-long input pulse but not for the case of 200 fs. (b) Degree of coherence of the
pulse ensemble (see details in the text).

where ¢ = 1.45 x 107! m? is the FCA coefficient, 1 = 7.5 accounts for the relative weight of
FCD, 7. = 1 ns represents the carrier lifetime [9], o corresponding to 7dB cm™! is the linear
loss coefficient [14], and @y corresponds to 1.55 um. With these data, we evaluate the propa-
gation of a Gaussian input pulse with 1 kW of peak power and Ty = 100 fs throughout a 8-mm-
long waveguide. Furthermore, we numerically found the optimum skewness, 1 = —0.16 TO3,
to achieve the broadest spectrum at the output. Figure 3(a) shows the SC spectrum generated
spanning from 1.45 pum to 2.4 um (beyond 2/3 of an octave) at 45 dB. Moreover, the position
of the zero dispersion wavelength in Fig. 2(c) and the location of the resonance in Fig. 3(a) are
in agreement with our theoretical scheme based on OWB. Finally, as previously stated, OWB
has an additional advantage that is not always achieved by other mechanisms like higher-order
soliton fission [11]. Since the input pulse is pumped at the normal dispersion regime, the shot-
to-shot fluctuations will not affect the SC obtained, which turns out a key element to reach high
performance. This fact is confirmed in Fig. 3(b), where we computed the degree of coherence
for an ensemble of 1000 realizations with random input noise of one photon per mode [39].

Finally, we study the impact of input pulse duration on the SC generation in silicon wave-
guides. In addition to the dispersive effects commented at the end of the previous section, the
input pulse duration also affects TPA. Particularly, it gives rise to a shorter zows and hence,
TPA losses suffered by the pulse during the OWB diminishes. We also plot in Fig. 3(a) the
spectra after zowp for Gaussian pulses with 7o = 50fs and 7o = 200 fs chirped by means of
a cubic spectral phase with skewness = —0.16 TO3 (Tp corresponding to each pulse). For the
50-fs-long input pulse, a SC spanning from 1.35 um to 2.5 um (beyond 4/5 of an octave) at
30dB is produced. The position of the resonance is very close to the 100 fs case, while a more
efficient energy transfer to longer wavelengths is observed. As explained above, the resonant
DW is related to the ZDW, which has not been modified. Moreover, the reduction of nonlinear
losses can justify the higher spectral powers of the wavelength generated during OWB. For the
200-fs-long input pulse no so broad spectral broadening is observed. In this case, the spectral
broadening does not takes place at enough shorter lengths. Unlike the case of 200 fs of Fig. 1(b),
here TPA prevents the generation of new frequencies during OWB.

4. Conclusions

OWB has not been so far sufficiently exploited as a SC generation mechanism, at least com-
pared to other processes such as high-order soliton fission that provide, in principle, broader



spectra. However, it is well-known that pumping at the normal dispersion regime allows to re-
duce the input noise influence and so, achieve better performance. Here we present analytical
expressions to compute the third-order dispersion required to improve the spectral broadening
induced by OWB and the output spectral width. In a dispersion engineered SOI waveguide and
pumping at telecom wavelengths, where TPA is stronger, we obtain a near octave SC spectrum
at 30 dB keeping good coherence along all the bandwidth. We expect that this work opens new
possibilities to design on-chip light sources.
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