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Memory effects in fractional Brownian motion with Hurst exponent H <1/3
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We study the regression to the origin of a walker driven by dynamically generated fractional Brownian
motion (FBM) and we prove that when the FBM scaling, i.e., the Hurst exponent H<1/3, the emerging
inverse power law is characterized by a power index that is a compelling signature of the infinitely extended
memory of the system. Strong memory effects leads to the relation H=6/2 between the Hurst exponent and the
persistent exponent 6, which is different from the widely used relation H=1-6. The latter is valid for 1/3
<H<1 and is known to be compatible with the renewal assumption.
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Fractional Brownian motion (FBM) is a generalization of
ordinary Brownian motion that since the publication [1] has
been the subject of active research because the anomalous
scaling and the memory properties of many diffusion pro-
cesses are considered to be the attributes of FBM [2-8].
There are two important parameters associated with FBM:
the Hurst exponent H and the persistent exponent 6. The
former shows scaling of the mean-square displacement with
time

(1)) o 21,

and the latter characterizes the power-law tail of the distri-
bution function of time intervals 7 between two consecutive
returns to the origin x=0

(1) o 1/71%0,

O0<H<I, (1)

T— o, (2)
It turns out that these two exponents are related
H=1-0. (3)

There are several ways of deriving Eq. (3). Ding and Yang
[9] obtained Eq. (3) using the fractal dimension of the tra-
jectory x(z). In 2000 Rangarajan and Ding [10] revisited the
same issue by adopting dynamical rather than fractal-
dimension based theoretical arguments. Using computer cal-
culations they confirmed the relation (3), which, on the other
hand, coincides with the earlier theoretical prediction of
Molchan [11].

In 1996 Krug and Dobbs [12] and more recently, Failla
et al. [13] showed that Eq. (3) can be easily derived by
making the assumption that the origin recrossing is a re-
newal, i.e., memoryless, process. The derivation [12] based
on the renewal assumption was criticized by the authors of
Ref. [14] as conflicting with the infinitely extended FBM
memory, which is usually illustrated by the individual trajec-
tory correlator (x(¢)x(=1))={x*(t))(1-2%#1), which does not
vanish for H# 1/2.

The authors of Ref. [15] made the conjecture that the
origin recrossing may, nevertheless, be renewal in spite of
the infinitely extended memory of FBM. To verify this con-
jecture they generated a sequence of time distances 7; be-
tween two consecutive axis recrossings. It was shown that
the binary correlation function of these time intervals is
S-correlated, i.e., {(7;—7)(7,— 7)) 8. One more support of

1539-3755/2010/82(2)/020102(4)

020102-1

PACS number(s): 05.40.Fb, 02.50.Ey, 05.60.Cd

the renewal assumption was obtained from the aging effect
generated by the intervals 7;. The magnitude of aging coin-
cides (within the limits of numerical accuracy) with the re-
sults of renewal approach. Thus, the results obtained in Ref.
[15] suggest that the origin recrossings are renewal events.

However, in a recent publication [8] this conclusion was
criticized and numerical evidence of the correlations in the
zero-crossing events was given. The authors of Ref. [8] study
the statistics of so-called longest excursion up to time 7. As-
ymptotical behavior of the probability Q(r) that the last (un-
finished) excursion of length A() is the longest of the inter-
vals 7,,7y,...,7y,A(t) affords a criterion to establish the
statistics of the intervals 7;. When the return to the origin is a
renewal process, the limit Q,,=Q(r— ) gets a well defined
analytical form, called Q%(6) [7]. Any deviation of Q(r) at
t— o from the analytical result Qﬁ(&) is evidence of memory
of zero-crossing events. The main result reported in Ref. [8]
is that such deviations have been found numerically for all
values of H, but H=0.5. Would it be true to conclude now
that any FBM trajectory exhibits memory for the origin re-
crossing events? In this Rapid Communication we show that
the answer to this question depends on H and that Eq. (3) is
not always true and that within the interval 0<<H<<1/3 it is
replaced by

H=0/2. (4)

Our calculations are based on the well-known formula
[16] for the first-passage time distribution density ¢x0(t) for a
random walker to arrive (for the first time) at x,# O at time ¢.
Let us consider a set of random walkers moving from x=0 at
t=0. Thus the probability distribution density p(x,7) fulfills
the condition p(x,0)=48(x). The first-passage time ¢’ is de-
fined as the interval between the departure from the origin at
time r—t" and the arrival at the final point x,# 0 at time 7,
regardless of the number of origin recrossing may occur
prior to the arrival. The density p(x,,?) is obtained via inte-
gration over all possible ¢’ [16]

m%ﬁ:fpmJ—mw4mmh (5)
0

The information about the possible memory of the origin
recrossings prior to the arrival is hidden in the diffusion pro-
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cess turning 8(x) into p(x,r). We apply Laplace transforma-
tion f(u)Eff;exp(—ut)f(t)dt to Eq. (5) and obtain

e, () = P o, )/ (O, u). (6)

The main result of this paper is based on Eq. (6) which is
free from any assumption about memory. Unlike this, the
conventional derivation [16,17] for the distribution density
of the returns to the origin, y(¢), rests on the tacit assump-
tion that they are renewal. We note that in this case,

p(O,t)=5(t)+f P01 =1")Yp(t")dt', (7
0

with the time integration running over consecutive returns to
the origin. The Laplace transform of Eq. (7) yields

PO,u) =[1 - ()] (8)

For practical purposes it is convenient to discretize space and
time, introducing small intervals Ax and Az. Then Eq. (7) is
replaced by the following relation [13,15]:

p(0.0Ax =2, YN (1A 9)
N=0

Here the probability density ix(¢') is converted into prob-
ability %N)(t) for the particle to return to the origin N times,
providing that the last return occurs exactly at time ¢. Similar
relation is valid for the Laplace transforms

p(0,u)Ax = E P (u)At. (10)

It is easy to show that if the returns are renewal the following
relation holds [18]:

) = [gr(0)]". (1)
We thus obtain from Eqgs. (10) and (11)
1
A, u)( v ) E (p)¥=—7—,  (12)
1- l/fR(u)

which, multiplicative factor apart, coincides with Eq. (8). We
then conclude that Eq. (7) implies the renewal nature of the
process. For this reason we continue with Egs. (5) and (6).
To study the distribution function z,bxo(t) we adopt a dy-
namical approach to FBM [15] which in the asymptotic limit
t— 0 coincides with the original FBM [1,2]. One of the rea-
sons of this choice is that the FBM algorithms create trajec-
tories that in one time step may overshoot the arrival point,
thereby creating technical problems that the theory [7]
wisely bypasses by focusing on the quantity A(¢), which is
well defined even when in a single time step the trajectory
x(t) overshoots the origin. In the dynamical approach the
FBM trajectories are obtained from the stochastic equation

x = Ax/At=&@1), (13)

where &(r) is not the white noise, as it is for the case of
Brownian diffusion. We assume that the binary correlation
function ®(#) of &(7) has a power-law tail
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with 0 < §<2. It is straightforward to prove [15] that in this
case the Hurst exponent is related to &

H=1-502. (15)

For the well-developed stages of anomalous diffusion the
probability density p(x,7) is defined as follows

2

X
Tl ) 09

plx,t) =

This formula together with Eq. (6) will be used to calculate
the distribution of the first-passage time ¢, (7). Although, the
analytical formula for the Laplace transform of Eq. (16) is
not known in general case, it is sufficient for us to study its
behavior for small values of the parameter u. Taking into
account that p(0,u)=0(1-H)u"""!, after some algebra the
following expansion is obtained

l,bx () =1+cu' ™+ cut. (17)
Asymptotical behavior of ¢(r) at 7— o is obtained from Egq.
(17) by taking its anti-Laplace transform

C C
(0= 2+ T (18)

Depending on the Hurst exponent, only one term survives in
Eq. (18) at t—cc. For H>1/3 it is the term ~1/#*7, and for
H<1/3 it is the term ~1/¢*?,

The coefficients ¢;,c,,C;,C, in Egs. (17) and (18) can be
calculated for each value of H. For example, for H=3/4 we
obtain the following asymptotics:

_ ., _A4r/0) © e
Jre () = 1= T(14) ( ) u't,
I'(5/6 e
(1) = 522( 20) A (19)

As a relevant example of H<<1/3, let us consider H=1/4.

8\“”7_7 (x% \’;)1/2
30(1/4)\ 2D ’
_ T2(1/4)  x3 | 2@ ( x5 )”2
w2 2DF? 2(1/4)\ 2D ’

For this case we keep two terms in the power-law tail of
(7). Although the principal contribution at 1—% comes
from the term that decays as r2, the next correction
(~t7""*) gives a considerable contribution for finite times.
Let us now study () without involving the renewal
assumption. We set the initial condition x=0. After the first

. T2(1/4) x2\u
i () = 1 - D%
0 m2 D

U, (1)

(20)
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FIG. 1. The dependence H vs 6. Note that 6 varies within the
interval [0,2/3].

time step At we have x;=£&At, where velocity ¢ is randomly
selected from the Gaussian distribution 7(&). Each of these
x;’s is the initial value for infinitely many trajectories that
sooner or later will go back to x=0. In other words, we
divide the set of trajectories moving back to the origin into
infinitely many subsets of trajectories, each subset with the
origin at a given x;. For each of these subsets we can use the
theory that led us to ¢(r). We, thus, obtain

(1) = f (&), (1 - An)dE, 1)

where (ﬂxl(t) is the first-passage time distribution density for
the random walker to move from x;=£A to the origin x=0.
Note that we can use the earlier results by adopting for any &
a reference system with the origin in x; and xy=-x;. Since
the inverse power law in the long-time limit contains the
parameter x; as a factor, we conclude that the functions (z)
and wxo(t) have the same asymptotic behavior at — . Thus,
according to Eq. (18) the well-known relation (3) is replaced
by formula (4) for H<1/3.

This finding sheds light into [8]. In Fig. 1 we plot the
dependence H(6) given by Egs. (3) and (4). There are two
different values of the Hurst exponent for each value of 6.
They correspond to two terms in Eq. (18). It is commonly
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believed that for the recrossing events the exponent 6 takes
the values within the interval 0<<#<1. Now we conclude
that for the FBM the persistent exponent # cannot exceed
2/3, with a significant consequence on the results of Ref. [8],
where the departure of the quantity Q% — Q.. from 0 is a mea-
sure of the memory of the FBM generated origin recrossings.
Their numerical results yield for §=0.9 a deviation from the
renewal prediction only slightly larger than for =0.1. Now,
it is clear that the value of 6=0.9, which in Ref. [8] was
associated with the FBM with H=1-6=0.1, must be re-
placed by 6=2H=0.2. The renewal theory gives
0%(9=0.2)=0.87 and 0%(6=0.9)=0.18 [7]. The numerical
result extracted from the FBM with H=0.1 converges at
t— to Q,,~0.1. Since O%(6=0.2)-0..> 0%(#=0.9)-0.,,
the departure from the results of the renewal theory turns out
to be much stronger in the case of H=0.1 than in the case of
H=0.9, thereby leading us to reinforce the interesting results
Ref. [8] as follows: the memory effects in the sequence of
the recrossing events are much stronger for the trajectories of
FBM with 0<H<1/3 than for 1/3<H<1. The fact that
the relation H=1- 6 is compatible with the renewal assump-
tion and white-noise-like behavior of the correlator
{(7;=7)(7—7)) for H=1/3 reported in Ref. [15] also sup-
ports this conclusion. Using the algorithm proposed in Ref.
[19], we have numerically generated four ensembles of cor-
related sequences of stochastic kicks &(r) with correlated
function @, decaying according to Eq. (14) with §=1.1, 1.2,
1.5, and 1.8 (see the details in Ref. [15]). Each ensemble
consists of about 10° sequences, each of the length N~ 10*,
The corresponding FBM trajectories with H=0.45, 0.40,
0.25, and 0.10 were obtained from Eq. (13) and for each
ensemble of the trajectories the waiting time distribution
function x(¢) was calculated. In Figs. 2 and 3, we plot the
survival probability W(7)=[7ix(t)dt~ const/ 7%, which, be-
ing smoother than (7) behavior, is more convenient for the
evaluation of 6. The values of € obtained from Fig. 2 are in
excellent agreement with the standard relation H=1-6. For
the plots of Fig. 3, where H<1/3, the standard relation Eq.
(3) is not valid at all. Here the new relation H=6/2 is con-
firmed, although the agreement with the theoretical predic-
tion is not as good as for the case H>1/3. The reason is the
competition between the two terms of Eq. (18), generating
the transient period of Fig. 3, which makes the true asymp-
totical behavior with §=2H emerge only at very long times.
To get better agreement one should run the numerical experi-
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FIG. 2. (Color online) Log-log plot for the survival probability W(z) which has power-law asymptotics W (¢)1/¢? for the FBM
trajectories with (a) H=0.45, and (b) H=0.40. The extracted from the slope values of # are in agreement with Eq. (3).
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FIG. 3. (Color online) The same as in Fig. 2 but for (a) H=0.25 and (b) H=0.10. The extracted from the slope values of @ are in
agreement with Eq. (3) for the shorter times and with Eq. (4) for the longer times. The transient period is also clearly seen around 7=3.

ment for much longer times. This probably explains why this
regime has been never observed in previous numerical ex-
periments.

In conclusion, we predict analytically and confirm nu-
merically new regime of FBM which is characterized by
strong memory effects in the sequence of zero-crossing

events. This new regime affects the return to the origin of the
trajectories with H<<1/3.
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