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We study the regression to the origin of a walker driven by dynamically generated fractional Brownian
motion �FBM� and we prove that when the FBM scaling, i.e., the Hurst exponent H�1 /3, the emerging
inverse power law is characterized by a power index that is a compelling signature of the infinitely extended
memory of the system. Strong memory effects leads to the relation H=� /2 between the Hurst exponent and the
persistent exponent �, which is different from the widely used relation H=1−�. The latter is valid for 1 /3
�H�1 and is known to be compatible with the renewal assumption.
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Fractional Brownian motion �FBM� is a generalization of
ordinary Brownian motion that since the publication �1� has
been the subject of active research because the anomalous
scaling and the memory properties of many diffusion pro-
cesses are considered to be the attributes of FBM �2–8�.
There are two important parameters associated with FBM:
the Hurst exponent H and the persistent exponent �. The
former shows scaling of the mean-square displacement with
time

�x2�t�� � t2H, 0 � H � 1, �1�

and the latter characterizes the power-law tail of the distri-
bution function of time intervals � between two consecutive
returns to the origin x=0

�R��� � 1/�1+�, � → � . �2�

It turns out that these two exponents are related

H = 1 − � . �3�

There are several ways of deriving Eq. �3�. Ding and Yang
�9� obtained Eq. �3� using the fractal dimension of the tra-
jectory x�t�. In 2000 Rangarajan and Ding �10� revisited the
same issue by adopting dynamical rather than fractal-
dimension based theoretical arguments. Using computer cal-
culations they confirmed the relation �3�, which, on the other
hand, coincides with the earlier theoretical prediction of
Molchan �11�.

In 1996 Krug and Dobbs �12� and more recently, Failla
et al. �13� showed that Eq. �3� can be easily derived by
making the assumption that the origin recrossing is a re-
newal, i.e., memoryless, process. The derivation �12� based
on the renewal assumption was criticized by the authors of
Ref. �14� as conflicting with the infinitely extended FBM
memory, which is usually illustrated by the individual trajec-
tory correlator �x�t�x�−t��= �x2�t���1−22H−1�, which does not
vanish for H�1 /2.

The authors of Ref. �15� made the conjecture that the
origin recrossing may, nevertheless, be renewal in spite of
the infinitely extended memory of FBM. To verify this con-
jecture they generated a sequence of time distances �i be-
tween two consecutive axis recrossings. It was shown that
the binary correlation function of these time intervals is
�-correlated, i.e., ���i− �̄���k− �̄����ik. One more support of

the renewal assumption was obtained from the aging effect
generated by the intervals �i. The magnitude of aging coin-
cides �within the limits of numerical accuracy� with the re-
sults of renewal approach. Thus, the results obtained in Ref.
�15� suggest that the origin recrossings are renewal events.

However, in a recent publication �8� this conclusion was
criticized and numerical evidence of the correlations in the
zero-crossing events was given. The authors of Ref. �8� study
the statistics of so-called longest excursion up to time t. As-
ymptotical behavior of the probability Q�t� that the last �un-
finished� excursion of length A�t� is the longest of the inter-
vals �1 ,�2 , . . . ,�N ,A�t� affords a criterion to establish the
statistics of the intervals �i. When the return to the origin is a
renewal process, the limit Q�=Q�t→�� gets a well defined
analytical form, called Q�

R��� �7�. Any deviation of Q�t� at
t→� from the analytical result Q�

R��� is evidence of memory
of zero-crossing events. The main result reported in Ref. �8�
is that such deviations have been found numerically for all
values of H, but H=0.5. Would it be true to conclude now
that any FBM trajectory exhibits memory for the origin re-
crossing events? In this Rapid Communication we show that
the answer to this question depends on H and that Eq. �3� is
not always true and that within the interval 0�H�1 /3 it is
replaced by

H = �/2. �4�

Our calculations are based on the well-known formula
�16� for the first-passage time distribution density �x0

�t� for a
random walker to arrive �for the first time� at x0�0 at time t.
Let us consider a set of random walkers moving from x=0 at
t=0. Thus the probability distribution density p�x , t� fulfills
the condition p�x ,0�=��x�. The first-passage time t� is de-
fined as the interval between the departure from the origin at
time t− t� and the arrival at the final point x0�0 at time t,
regardless of the number of origin recrossing may occur
prior to the arrival. The density p�x0 , t� is obtained via inte-
gration over all possible t� �16�

p�x0,t� = �
0

t

p�0,t − t���x0
�t��dt�. �5�

The information about the possible memory of the origin
recrossings prior to the arrival is hidden in the diffusion pro-
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cess turning ��x� into p�x , t�. We apply Laplace transforma-

tion f̂�u��	0
�exp�−ut�f�t�dt to Eq. �5� and obtain

�̂x0
�u� = p̂�x0,u�/p̂�0,u� . �6�

The main result of this paper is based on Eq. �6� which is
free from any assumption about memory. Unlike this, the
conventional derivation �16,17� for the distribution density
of the returns to the origin, �R�t�, rests on the tacit assump-
tion that they are renewal. We note that in this case,

p�0,t� = ��t� + �
0

t

p�0,t − t���R�t��dt�, �7�

with the time integration running over consecutive returns to
the origin. The Laplace transform of Eq. �7� yields

p̂�0,u� = �1 − �̂R�u��−1. �8�

For practical purposes it is convenient to discretize space and
time, introducing small intervals �x and �t. Then Eq. �7� is
replaced by the following relation �13,15�:

p�0,t��x = 

N=0

�

�R
�N��t��t . �9�

Here the probability density �R�t�� is converted into prob-
ability �R

�N��t� for the particle to return to the origin N times,
providing that the last return occurs exactly at time t. Similar
relation is valid for the Laplace transforms

p̂�0,u��x = 

N=0

�

�̂R
�N��u��t . �10�

It is easy to show that if the returns are renewal the following
relation holds �18�:

�̂R
�N��u� = ��̂R�u��N. �11�

We thus obtain from Eqs. �10� and �11�

p̂�0,u���x

�t
� = 


N=0

�

��̂R�u��N =
1

1 − �̂R�u�
, �12�

which, multiplicative factor apart, coincides with Eq. �8�. We
then conclude that Eq. �7� implies the renewal nature of the
process. For this reason we continue with Eqs. �5� and �6�.

To study the distribution function �x0
�t� we adopt a dy-

namical approach to FBM �15� which in the asymptotic limit
t→� coincides with the original FBM �1,2�. One of the rea-
sons of this choice is that the FBM algorithms create trajec-
tories that in one time step may overshoot the arrival point,
thereby creating technical problems that the theory �7�
wisely bypasses by focusing on the quantity A�t�, which is
well defined even when in a single time step the trajectory
x�t� overshoots the origin. In the dynamical approach the
FBM trajectories are obtained from the stochastic equation

ẋ 
 �x/�t = 	�t� , �13�

where 	�t� is not the white noise, as it is for the case of
Brownian diffusion. We assume that the binary correlation
function 
	�t� of 	�t� has a power-law tail


	�t� �
sgn�1 − ��

t� , �14�

with 0���2. It is straightforward to prove �15� that in this
case the Hurst exponent is related to �

H = 1 − �/2. �15�

For the well-developed stages of anomalous diffusion the
probability density p�x , t� is defined as follows

p�x,t� =
1

�2�Dt2H
exp�−

x2

2Dt2H� . �16�

This formula together with Eq. �6� will be used to calculate
the distribution of the first-passage time �x0

�t�. Although, the
analytical formula for the Laplace transform of Eq. �16� is
not known in general case, it is sufficient for us to study its
behavior for small values of the parameter u. Taking into
account that p̂�0,u�=��1−H�uH−1, after some algebra the
following expansion is obtained

�̂x0
�u� 
 1 + c1u1−H + c2u2H. �17�

Asymptotical behavior of ��t� at t→� is obtained from Eq.
�17� by taking its anti-Laplace transform

�x0
�t� =

C1

t2−H +
C2

t1+2H . �18�

Depending on the Hurst exponent, only one term survives in
Eq. �18� at t→�. For H
1 /3 it is the term �1 / t2−H, and for
H�1 /3 it is the term �1 / t1+2H.

The coefficients c1 ,c2 ,C1 ,C2 in Eqs. �17� and �18� can be
calculated for each value of H. For example, for H=3 /4 we
obtain the following asymptotics:

�̂x0
�u� 
 1 −

4��5/6�
��1/4�

� x0
2

2D
�1/6

u1/4,

�x0
�t� 


��5/6�
�2�

� x0
2

2D
�1/6 1

t5/4 . �19�

As a relevant example of H�1 /3, let us consider H=1 /4.

�̂x0
�u� 
 1 −

�2�1/4�
��2

x0
2�u

D
�1 −

8��

3��1/4�
� x0

2�u

2D
�1/2� ,

�x0
�t� 


�2�1/4�
��2�

x0
2

2Dt3/2�1 −
2�

�2�1/4�� x0
2

2D�t
�1/2� .

�20�

For this case we keep two terms in the power-law tail of
�x0

�t�. Although the principal contribution at t→� comes
from the term that decays as t−3/2, the next correction
��t−7/4� gives a considerable contribution for finite times.

Let us now study �R�t� without involving the renewal
assumption. We set the initial condition x=0. After the first
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time step �t we have x1=	�t, where velocity 	 is randomly
selected from the Gaussian distribution ��	�. Each of these
x1’s is the initial value for infinitely many trajectories that
sooner or later will go back to x=0. In other words, we
divide the set of trajectories moving back to the origin into
infinitely many subsets of trajectories, each subset with the
origin at a given x1. For each of these subsets we can use the
theory that led us to ��t�. We, thus, obtain

�R�t� � �
−�

�

��	��x1
�t − �t�d	 , �21�

where �x1
�t� is the first-passage time distribution density for

the random walker to move from x1=	� to the origin x=0.
Note that we can use the earlier results by adopting for any 	
a reference system with the origin in x1 and x0=−x1. Since
the inverse power law in the long-time limit contains the
parameter x0 as a factor, we conclude that the functions �R�t�
and �x0

�t� have the same asymptotic behavior at t→�. Thus,
according to Eq. �18� the well-known relation �3� is replaced
by formula �4� for H�1 /3.

This finding sheds light into �8�. In Fig. 1 we plot the
dependence H��� given by Eqs. �3� and �4�. There are two
different values of the Hurst exponent for each value of �.
They correspond to two terms in Eq. �18�. It is commonly

believed that for the recrossing events the exponent � takes
the values within the interval 0���1. Now we conclude
that for the FBM the persistent exponent � cannot exceed
2/3, with a significant consequence on the results of Ref. �8�,
where the departure of the quantity Q�

R −Q� from 0 is a mea-
sure of the memory of the FBM generated origin recrossings.
Their numerical results yield for �=0.9 a deviation from the
renewal prediction only slightly larger than for �=0.1. Now,
it is clear that the value of �=0.9, which in Ref. �8� was
associated with the FBM with H=1−�=0.1, must be re-
placed by �=2H=0.2. The renewal theory gives
Q�

R��=0.2�
0.87 and Q�
R��=0.9�
0.18 �7�. The numerical

result extracted from the FBM with H=0.1 converges at
t→� to Q�
0.1. Since Q�

R��=0.2�−Q�
Q�
R��=0.9�−Q�,

the departure from the results of the renewal theory turns out
to be much stronger in the case of H=0.1 than in the case of
H=0.9, thereby leading us to reinforce the interesting results
Ref. �8� as follows: the memory effects in the sequence of
the recrossing events are much stronger for the trajectories of
FBM with 0�H�1 /3 than for 1 /3�H�1. The fact that
the relation H=1−� is compatible with the renewal assump-
tion and white-noise-like behavior of the correlator
���i− �̄���k− �̄�� for H�1 /3 reported in Ref. �15� also sup-
ports this conclusion. Using the algorithm proposed in Ref.
�19�, we have numerically generated four ensembles of cor-
related sequences of stochastic kicks 	�t� with correlated
function 
	 decaying according to Eq. �14� with �=1.1, 1.2,
1.5, and 1.8 �see the details in Ref. �15��. Each ensemble
consists of about 103 sequences, each of the length N�104.
The corresponding FBM trajectories with H=0.45, 0.40,
0.25, and 0.10 were obtained from Eq. �13� and for each
ensemble of the trajectories the waiting time distribution
function �R�t� was calculated. In Figs. 2 and 3, we plot the
survival probability ����=	�

��R�t�dt
const /��, which, be-
ing smoother than �R�t� behavior, is more convenient for the
evaluation of �. The values of � obtained from Fig. 2 are in
excellent agreement with the standard relation H=1−�. For
the plots of Fig. 3, where H�1 /3, the standard relation Eq.
�3� is not valid at all. Here the new relation H=� /2 is con-
firmed, although the agreement with the theoretical predic-
tion is not as good as for the case H
1 /3. The reason is the
competition between the two terms of Eq. �18�, generating
the transient period of Fig. 3, which makes the true asymp-
totical behavior with �=2H emerge only at very long times.
To get better agreement one should run the numerical experi-

H�1�Θ

H�
Θ

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4
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0.8

1.0

Θ

H

FIG. 1. The dependence H vs �. Note that � varies within the
interval �0,2/3�.

FIG. 2. �Color online� Log-log plot for the survival probability ��t� which has power-law asymptotics ��t��1 / t� for the FBM
trajectories with �a� H=0.45, and �b� H=0.40. The extracted from the slope values of � are in agreement with Eq. �3�.

MEMORY EFFECTS IN FRACTIONAL BROWNIAN MOTION… PHYSICAL REVIEW E 82, 020102�R� �2010�

RAPID COMMUNICATIONS

020102-3



ment for much longer times. This probably explains why this
regime has been never observed in previous numerical ex-
periments.

In conclusion, we predict analytically and confirm nu-
merically new regime of FBM which is characterized by
strong memory effects in the sequence of zero-crossing

events. This new regime affects the return to the origin of the
trajectories with H�1 /3.
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