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Abstract: We study the differences in the gamma–ray spectra simulated by four Monte Carlo

event generator packages developed in particle physics. Two different versions of PYTHIA and two

of HERWIG are analyzed, namely PYTHIA 6.418 and HERWIG 6.5.10 in Fortran and PYTHIA 8.165 and

HERWIG 2.6.1 in C++. For all the studied channels, the intrinsic differences between them are shown

to be significative and may play an important role in misunderstanding dark matter signals.
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1 Introduction

In the last years, numerous evidences about the existence of a new kind of invisible matter have

appeared. Most of them rely on gravitational effects on galactic and extragalactic scales, such as the

rotation curves of spiral galaxies, spatial distribution of gravitational lensing signals and constraints

from cosmic microwave background, among others. In spite of them, a conclusive identification of

this dark component of matter has not yet been found. Although there are many plausible origins

for this component [1], dark matter (DM) is usually assumed to be in the form of thermal relics

that naturally freeze-out with the right abundance in many extensions of the Standard Model (SM)

of particles [2]. In order to confirm its nature, DM searches have followed different directions. On

the one hand, DM particles can be produced in laboratory experiments such as high-energy particle

colliders [3]. On the other hand, local DM can be detected in a direct or indirect way [4–9].

Direct detection experiments typically operate in deep underground laboratories, while the

indirect ones focus on astronomical and cosmological signal detection, with both ground based

Cerenkov detectors (such as CTA, HESS and MAGIC amongst others) and satellite experiments

(e.g. FERMI, PAMELA, PLANCK and WMAP). If DM particles annihilate or decay into SM par-

ticles, the signature of the final products of such processes may be detected up to some uncertainty

in the astrophysical background component. In order to set constraints on the diverse DM models

and get a better understanding of the astrophysical factor associated with the distribution of this

kind of matter, numerous signals detected in gamma–rays, neutrinos, positrons, antiprotons and

other particles have been studied in the available literature [10–18]. Most of these analysis make use

of Monte Carlo event generator packages, that allow to predict the spectra of final-state particles

generated by DM annihilation and decays into SM particles. The most used Monte Carlo generator

packages are PYTHIA and HERWIG, both with available versions written either in Fortran or C++.

In this paper we shall focus on the gamma–ray spectra generated by four softwares, showing

how the choice of the Monte Carlo code may affect the DM search. Thus, Section 2 is devoted

to illustrate the main differences between PYTHIA 6.418 (Fortran version), PYTHIA 8.165 (C++
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version), HERWIG Fortran version 6.5.10 and HERWIG C++ version 2.6.1. In Section 3 we determine

the differences between the four Monte Carlo codes when four illustrative annihilation channels are

studied. In Section 4 we then analyze the implications that these differences may have in the WIMPs

phenomenology and DM indirect searches. Finally Section 5 shall cover the main conclusions of

this communication.

2 Monte Carlo Parton Shower

The differential photon flux produced by Monte Carlo event generators software may be understood

as the outcome obtained from a particle shower schematization in three fundamentals parts: the

QCD Final-State Radiation, the hadronization model and the QED Final-State Radiation. Differ-

ences between available generators in the aforementioned parts, may help understanding the origin

of such differences. Therefore, let us study separately the technicalities of each part as follows (read

[19] for further details):

2.1 QCD Final-State Radiation

The QCD Final-State Radiation is described by the elementary probability to radiate either quarks

or gluons (partons). This probability is universal in the soft (low energy) and collinear (high energy)

approximation. In these two limits the branching probability is proportional to [20]:

αs(kT )

2π
∆s(Q

2
max, Q

2)Pi,jk(z)
dQ2

Q2
dz

dφ

2π
, (2.1)

where αs is the coupling constant of the strong interaction, Q2 is the evolution variable, Q2
max is its

maximum allowed value, z and (1- z) are the energy fraction of the two generated partons, and φ is

the azimuthal angle (z and φ are defined in the center of mass frame, but other definitions only differ

beyond the leading logarithmic order approximation). Pi,jk(z) is the Altarelli-Parisi [21] splitting

function describing the distribution of the fraction z of the emitted parton energy with respect to

its parents, where the suffixes i and jk stand for the incoming and final parton species. ∆s(Q
2
1, Q

2
2)

holds for the Sudakov form factor accounting for all the non-resolvable effects of the perturbative

theory (quantum loop and resonance among others) acting on the probability of transition between

Q1 and Q2 states. Q2
max is set by the hard-scattering, i.e., the head (initial) process of the parton

shower, and Q2
0 is the last process when the parton shower ends and the hadronization begins.

The evolution variable Q2 represents the first difference between the Monte Carlo simulations:

In HERWIG and HERWIG++ Q2 ' E2(1−cosθ), where E is the energy of the parent parton and θ is the

emission angle. It was originally implemented in [22]. However, in PYTHIA 6.4 the evolution variable

Q2 corresponds to the virtuality of the emitted parton, i.e., its virtual mass, whereas in PYTHIA 8 is

given by kT , the transverse momentum of the emitted parton with respect to the emitting one. The

latter formulation allows to order the final-state showers with regard to kT through a sequence of

falling transverse-momentum values [23]. In most cases, the two variables used in the two versions

of PYTHIA are compatible, but HERWIG turns out to reproduce more accurately the color coherence

dependent data in the soft limit.

Finally, the Sudakov form factor for one parton is given by [5]:

∆S(Q2
max, Q

2) = exp

[
−
∫ Q2

max

Q2

dk2

k2

∫ zmax

zmin

dz
αs(z, k

2)

2π
Pi,jk(z)

]
. (2.2)

In multiparton processes, the previous equation needs to be integrated; the integration method

differs for each package. For instance, in PYTHIA zmin = Q2
0/Q

2, whereas in HERWIG zmin = Q0/Q.

With regard to zmax, it satisfies zmax = 1−zmin for all the codes. This definition leads to conclude
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that, for a given value for Q2, the evolution range in the z variable is larger in PYTHIA than in

HERWIG. When comparing the two simulations with LEP data, the strong coupling constant αs
takes also different values, being αs(MZ) ' 0.127 in PYTHIA and αs(MZ) ' 0.116 in HERWIG. This

fact depends on the implemented approximation. In the QCD shower, the soft gluons interference

effects lead to an ordering of subsequent emissions in terms of decreasing angles. This approximation

of coherence effects also depends on the Q2 definition. For the first mass-ordering version of PYTHIA,

in which Q2 ≈ m2 with m2 = E2 − k2 ≥ 0, it had to be implemented as additional requirement.

In the case of the kT -ordering version, with Q2 ≈ k2
T = z(1− z)m2, it leads directly to the proper

behavior. Finally, due to theoretical analysis, the scale choice αs = αs(k
2
T ) = αs(z(1 − z)m2)

is the default one in PYTHIA. On the other hand, HERWIG takes into account this effect via the

angular ordering of emissions in the parton shower by redefining the running constant. In this

case, αs = αs
(
z2(1− z2)q̃2

)
, where q̃ corresponds to the scale of the decaying parton. Moreover,

a two-loop approximation is reproduced in HERWIG by means of the Monte Carlo scheme with

αMC
s = αM̄S

s (1 + KαM̄S
s /2π), where αM̄S

s is defined in the usual modified minimal subtraction

(M̄S) scheme in QCD (read [24] for further details). In any case, we conclude that photon emission

is not affected by angular ordering [25].

2.2 Hadronization

When the evolution variable Q2 reaches the value Q2
0, the parton shower ends and the hadronization

begins. Two different models to describe hadronization are thus developed in the two aforemen-

tioned packages. PYTHIA relies on the String Model Hadronization [25, 26] whereas HERWIG does

on the Cluster Model Hadronization [27, 28]. In any case, both models take into account the

experimental data collected by the LEP for tuning their parameters. In particular, the standard

“tunes” use data at 100 GeV of center of energy. In the future, new tunes could also consider the

LHC data. In any case, the hadronization model does not seem to affect the gamma–ray spectra

in an appreciable way, except if the π0 production changes significantly. Finally, let us remember

that most of the hadrons formed during the hadronization process are unstable and will eventually

decay. The resultant final states, which are mainly leptons, lead the photon production involving

QED processes.

2.3 QED Final-State Radiation

The radiation emitted by quarks, W± bosons, and charged leptons (i.e. Bremsstrahlung radiation),

as well as the possibility of pair production, can be added to equation (2.1) introduced above. The

Bremsstrahlung component of the Final-State Radiation (FSR) represents the main contribution

in the case of gamma–rays produced by DM annihilating/decaying into e+e− and µ+µ− channels.

The high energy leptons come directly from the hard process in the first case and both from hard

processes and µ± decay in the second one. In any case, associated γ-photons are produced by

Bremsstrahlung effects in both cases. Bremsstrahlung FSR from hard processes is currently not

implemented in HERWIG++ version 2.6.1, being unable to produce gamma–ray spectra in the case

of e+e− and µ+µ− channels, while it is included in both HERWIG and PYTHIA (6.4 and 8). This

component clearly affects all the logarithmic part of gamma–ray spectra at high energy generated

with HERWIG++, as shall be shown in the following sections.

With regards to the electroweak (EW) 2→ 2 processes of the FSR, where photons are produced

or annihilated, PYTHIA 8 accounts for all these processes, except the γγ →W+W−. As for HERWIG,

it contains the q → qγ processes, but not the process γ → ff̄ . These two last processes are indeed

contained in HERWIG++. However, we verified that different sets of such processes did not affect the

gamma–ray spectra in an appreciable way after modifying the codes.
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3 Gamma–ray spectra from dark matter annihilation/decay

In this Section we study the spectra of four relevant channels by using the four Monte Carlo

generators mentioned above. Namely, we have studied the on-shell channels: W+W−, bb̄, τ+τ−

and tt̄ since they are representative channels of the phenomenology of annihiliating/decaying DM.

The tt̄ channel was studied separately since it presents a particular phenomenology with respect to

the other quark channels.

The photon spectra is better described in terms of the dimensionless variable:

x ≡ 2
Eγ
ECM

, (3.1)

where Eγ and ECM correspond to the photon and center of mass (CM) energies, respectively. This

variable is simply reduced to x ≡ Eγ/MDM in the case of annihilating DM and therefore lies in the

range between 0 to 1. Large differences between spectra are usually present at extremes of x. For

this reason, we present the spectra in both linear and logarithmic scales for x. In the first (second)

case the behavior at high (low) x is more clearly shown. For each channel, we focused on two values

of DM particle mass: 100 GeV and 1 TeV. In the case of the tt̄ channel the masses under study

were 500 GeV and 1 TeV.

3.1 Gamma–ray spectra from DM annihilation: W+W− channel

The simulated gamma–ray spectra for DM particles annihilating into W+W− channel appear very

similar for x > 10−5 both for a DM mass of 100 GeV and 1 TeV. This behavior can be seen in

Figs. 1 and 2 respectively. It is clear from the figure the considerably lower fluxes generated by

HERWIG++ at high energies as compared to the rest of packages, probably because of the absence of

Bremsstrahlung from hard processes in the e+e− and µ+µ− cases commented before. On the other

hand, a slight difference is observed for energies between x = 0.3 − 0.7 with HERWIG providing in

both cases the highest values. Nonetheless, the main differences appear at lower energies as can be

seen in Figs. 1 and 2. In PYTHIA 8, we have generated each photon spectrum by using the resonant

process e+e− → φ∗, where φ∗ is a resonance with mass of ECM and a user-defined decay mode. This

procedure is very similar to the one we used for PYTHIA 6.4, except that channels were created by

using the subroutine PY2ENT. In HERWIG++, we used the scattering of photons as the initial process.

The photon spectra are then independent of the initial beams (e+e− or γγ) and solely depend

on the energy of the event, i.e. ECM = 2MDM. In PYTHIA 8, the cut-off at low energy strongly

depends upon this parameter pTminChgL (dubbed here pT ) and exactly corresponds to its set value,

with allowed range of 0.001 – 2.0 and a default value of 0.005. (FIG. 3 (Right-panel)) In HERWIG++,

QEDRadiationHandler is set off by default, so that the cut-off appears to higher energy with respect

to the other Monte Carlo generators. In the opposite case, when QEDRadiationHandler is enable

and the relevant parameter IFDipole:MinimumEnergyRest varies in values, the spectrum at low

energy changes drastically. Smaller values of such parameter enlarge the production of photons at

low energies (See Fig. 3, left–panel).

3.2 Gamma–ray spectra from DM annihilation: bb̄ channel

In the case of DM annihilation into bb̄ channel, the HERWIG++ spectrum appears lower for high

energy (x > 0.6) with respect to the other simulations, due to the lack of the Bremsstrahlung

photons generated by high energy leptons. Thus, both PYTHIA codes and HERWIG simulations look

very similar qualitatively for the two studied values of DM mass as seen in Figs. 4 and 5. On the

other hand, at very small energies
(
x < 10−4

)
HERWIG simulation returns higher values of the flux

with respect to the other packages. This fact can be seen in Figs. 4 and 5. The other codes for

these small energies agree very well in their predictions.
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Figure 1. (Left–panel) DM particles annihilating into W+W− channel with MDM = 100 GeV in logarith-

mic scale. The simulations are consistent down to x ' 10−4. At x ' 10−5 Fortran simulations are bigger

than the C++ ones by a factor ten. At x ' 10−6 no more photons are produced in HERWIG++ provided

that the QEDRadiationHandler is set off as default. In our simulation, QEDRadiationHandler is switched

on with a clear cut-off at energy of 10−10. Analogous cut-off appear at x ' 10−8 in PYTHIA 8, x ' 10−11 in

HERWIG and x ' 10−12 in PYTHIA 6.4 . The simulations are very different at these energy values and physical

validity has to be checked. Due to the fit of the Monte Carlo software with high energy colliders (such as

LEP and LHC) that are poor of data at low energy, simulations at low energies might be unreliable. If

this is the case, it is expected that this effect affects all the simulated channels. (Right–panel) DM particles

annihilating into W+W− channel with MDM = 100 GeV in linear scale. Notice the lower flux for HERWIG++

at high energies when compared to the rest of packages
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Figure 2. (Left–panel) W+W− annihilation channel with MDM = 1 TeV in logarithmic scale. As in

Fig. 1, the simulations are consistent down to a value of x, that is 10−6 in the case of MDM = 1 TeV (a

factor ten lower in x with respect to the case with MDM = 100 GeV). Similar behaviors of the lower energy

cuts-off are also observed, with a general shift of x cut-off value of order 10−2. (Right–panel) W+W−

annihilation channel with MDM = 1 TeV in linear scale. All the simulations except for HERWIG++ exhibit

the same behavior as in Fig. 1, but within x ' 0.3 and x ' 0.7 and a maximum discrepancy at x ' 0.5.

The shift with respect to Fig. 1 can be simply explained by the increment of the WIMP mass.

3.3 Gamma–ray spectra from DM annihilation: τ+τ− channel

Differences in the gamma-spectra appear in the case of DM particles annihilating into leptonic

channels. Here we show the τ+τ− annihilation channel as an illustrative example. In this channel

and for the two studied DM masses, both HERWIG codes present an important suppression of the

spectrum for energies in the interval 0.8 < x < 1, while both versions of PYTHIA extend the
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Figure 3. Cut-off at low energy photons in C++ codes. High energy linear scale are not affected. (Left–

panel) W+W− annihilation channel with HERWIG++ at MDM = 1 TeV in logarithmic scale. Different cut-

off at low energy in logarithmic scale correspond to cuts in the QEDRadiationHandler of kT = 10−8 , 10−4 , 1.

(Right–panel) bb̄ annihilation channel with PYTHIA 8 at MDM = 1 TeV in logarithmic scale. Here the

cut-off are set as the minimum, medium and maximum value of the allowed range of value.
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Figure 4. (Left–panel) bb̄ annihilation channel with MDM = 100 GeV in logarithmic scale. Three of the

four simulations perfectly match down to x ' 10−6, where no more photons are produced. HERWIG Fortran

also match down to ' 10−5. Here, its simulated flux appears much bigger, with no photons counted at

energies smaller than x ' 10−11. (Right–panel) bb̄ annihilation channel with MDM = 100 GeV in linear

scale. Three of the four simulations are in agreement within the statistical error bars on the full x range,

while HERWIG++ gives lower flux above x ' 0.5.

photon spectra up to x = 1 with higher spectra. This fact can be observed in Figs. 6 and 7

and may be explained by the absence of Bremsstrahlung gamma–rays generated by high energy

leptons when HERWIG codes are used. As can be seen in the leptonic and muonic channel, HERWIG

Fortran accounts for an extrapolation with respect to the Bremsstrahlung photons related with hard

processes, but it does not provide an exact implementation of this EW process. This is the reason

why the gamma–ray spectra simulated with HERWIG Fortran for channels where the Bremsstrahlung

radiation contribution is subdominant are in agreement with PYTHIA 6.4 and 8 results, up to the

statistical errors. Moreover, a difference of one order of magnitude appears for energies x ≥ 0.8

among PYTHIA codes and HERWIG codes. At intermediate energies, x ≈ 10−3 − 0.2, all codes agree.

For small energies, PYTHIA packages agree in their spectra up to x = 10−7 but not for lower energies

where both PYTHIA 8 seems to be strongly suppressed for energies smaller than x = 10−7.
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Figure 5. (Left–panel) bb̄ annihilation channel with MDM = 1 TeV in logarithmic scale. PYTHIA 6.4

agrees with both HERWIG++ and PYTHIA 8 down to x ' 10−7, where the spectra of the latter two packages

stop. PYTHIA 6.4 stops providing gamma–rays at x ' 10−9. Once again, HERWIG generates larger gamma–

ray fluxes at low energy. The difference at high energy discussed in Fig. 2 is also apparent on the right

panel. (Right–panel) bb̄ annihilation channel with MDM = 1 TeV in linear scale. As in Fig. 4, HERWIG++

gives much lower flux above x ' 0.5. Although HERWIG agrees both with Pithia 6.4 and PYTHIA 8 within

statistical errors, PYTHIA 8 flux (with better statistics) appears two or three times bigger than PYTHIA 6.4

at x ' 0.6, 0.8.

HERWIG++ produces less photons for small energies x ≤ 10−3, although the QEDRadiationHandler

was enable. Concerning HERWIG, the spectrum can be extended down to x = 10−11 and it lies in

between the PYTHIA 6.4 and HERWIG++ simulations, for the two studied masses and for small ener-

gies. With regard to high energies close to x = 1, HERWIG spectrum is the most suppressed for this

channel.

3.4 Gamma–ray spectra from DM annihilation: tt̄ channel

The most remarkable differences between the four simulations packages appear in the tt̄ channel. To

enable top decays in PYTHIA 6.4, the subroutine PYINIT() has to be executed. Alternatively, this

process can be implemented by its dominant SM decay, i.e. t→W+b (or equivalently t̄→W−b̄) [8].

In order to maintain any non-perturbative effect, the initial state was made of a four-particle state

composed by W+b coming from the t quark and W−b̄ from t̄ anti-quark. These choices conserve all

kinematics and color properties from the original pair and show the same results as the PYINIT()

case. Starting from this configuration, the authors forced decays and hadronization processes to

evolve as PYTHIA does. Therefore, the gamma–rays spectra corresponding to this channel have

also been included for PYTHIA 6.4 in our analysis using this procedure. For this channel we have

studied two DM masses 500 GeV and 1 TeV. The simulated spectra appear very similar in the

range 10−5 < x < 0.1. Nonetheless, at lower and higher energies the four are quite different. At

large energies, PYTHIA 8 gives the highest flux being able to acquire non-null flux for x ≈ 1. The

smallest flux is again for HERWIG++ whereas PYTHIA 6.4 and HERWIG lie in between the other two.

These facts can be seen in Figs. 8 and 9. The four spectra also differ at high energy due to the

(absence of) implementation of Bremsstrahlung effects. All the possibilities were summarized in

Table 1. At low energy the differences may be associated as in the τ+τ− both to the cut-off in the

lowest energy allowed for photons and to the presence or not of the QEDRadiationHandler in the

simulation.
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Figure 6. (Left–panel) τ+τ− annihilation channel with MDM = 100 GeV in logarithmic scale. The

simulations are inconsistent below x ' 10−2. PYTHIA codes are more consistent, generating the same

spectral form down to x ' 10−7, where PYTHIA 8 has its cut-off. PYTHIA 6.4 spectra attains smaller energies

to almost 10−10. HERWIG cut-off reaches almost x ' 10−11, but its flux is lower than the PYTHIA ones below

x = 10−3 and reaching the maximum inconsistence of almost a factor ten at x = 10−5. HERWIG++ appears

totally inconsistent with the other three packages, with a much lower flux that gets a maximum divergence

of 5 orders of magnitude at x ' 10−6 where its photons production stops. (Right–panel) τ+τ− annihilation

channel with MDM = 100 GeV in linear scale. For this leptonic channel, the spectral forms of the four

codes differ on the whole energy range. We can see that the spectral cut-off at high energy is similar for

both HERWIG codes and PYTHIA ones by pairs. In the interval x ' 0.6− 0.8, simulated gamma–ray flux from

PYTHIA 6.4 and HERWIG++ match. At x ' 0.7, PYTHIA 8 lies a factor 2-3 above HERWIG++ and PYTHIA whereas

HERWIG lies the same factor below. Therefore there exists a non negligible difference (almost a factor ten),

between PYTHIA 8 and HERWIG simulated spectra at this value of x.
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Figure 7. (Left–panel) τ+τ− annihilation channel with MDM = 1 TeV in logarithmic scale. Compared to

Fig. 6, all the lower cut-offs are shifted by a factor of ten to lower x’s, with the exception of PYTHIA 6.4 that

is shifted by a factor of a hundred, so that it never crossed HERWIG data as happened with MDM = 100GeV.

(Right–panel) τ+τ− annihilation channel with MDM = 1 TeV in linear scale. The behavior is analogous to

the one discussed in Fig. 6.

4 Implications to WIMPs phenomenology

Monte Carlo generators are essential tools for indirect searches of dark matter. The simulated

spectra generated by PYTHIA 6.4, PYTHIA 8, HERWIG and HERWIG++ allow to get predictions about

the signal coming from DM annihilation and/or decay. The choice of the Monte Carlo generator
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Figure 8. (Left–panel) tt̄ annihilation channel with MDM = 500 GeV in logarithmic scale. At low energy

the simulations are consistent down to x ' 10−5. HERWIG++ drops down at x ' 10−7 and PYTHIA 8 does

at 10−9, producing a higher number of photons 100 times bigger than HERWIG++ at x ≈ 10−7, and almost

10 times lower of PYTHIA 6.4 at the same value of x. PYTHIA 6.4 cuts-off at x ' 10−13 and HERWIG does at

x ' 10−12, where the two spectra match. For higher energies, HERWIG gamma–ray flux is higher than PYTHIA

6.4, with a maximum factor of ten at x ' 10−9. (Right–panel) tt̄ annihilation channel with MDM = 500

GeV linear scale. The four simulations are manifestly inconsistent between them at high energy. HERWIG++

flux became lower from x ' 0.2 onwards and cuts off at x < 0.8. At x ' 0.4 PYTHIA 6.4 and HERWIG are

similar between the statistical errors up to x ≈ 0.8, where spectra and cuts-off become different. PYTHIA 8

starting from x ' 0.6 produces the highest flux with cut-off at x ' 1.
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Figure 9. (Left–panel) tt̄ annihilation channel with MDM = 1 TeV in logarithmic scale. At low energy

the simulations are consistent down to x ' 10−6. HERWIG++ drops down at x ' 10−7 and PYTHIA 8 does at

x ' 10−10, producing a higher number of photons that is 100 times higher than HERWIG++ at x ' 10−7, and

almost 10 times lower than PYTHIA 6.4 at the same value of x. PYTHIA 6.4 cuts-off at x ' 10−13 whereas

HERWIG does at x ' 10−12 where the two spectra match. For higher energies, HERWIG provides a higher

flux with a maximum factor of ten at x ' 10−8. (Right–panel) tt̄ annihilation channel with MDM = 1

TeV in linear scale. The four simulations are all manifestly inconsistent between them at very high energy.

HERWIG++ flux becomes lower from x ' 0.2 onwards and cuts-off at x < 0.8. At x ' 0.4, PYTHIA 6.4 splits

from HERWIG and PYTHIA 8 that remain with higher flux. PYTHIA 6.4 cuts-off before reaching x = 1, such as

HERWIG does, although with very different spectral form and a separation of a factor ten at x ' 0.8. Finally,

HERWIG also splits from PYTHIA 8 at x ' 0.6, producing the highest flux with cut-off at x = 1.

software may affect the predictions on both constraints and upper/lower limits to be imposed on

DM annihilation cross section, relic density, astrophysical factor and other relevant quantities. As
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Package Bremsstrahlung

PYTHIA 6.4 Implemented

PYTHIA 8 Implemented

HERWIG Partially implemented

HERWIG++ Not implemented

Table 1. Simulations are strongly affected by the inclusion of Bremsstrahlung radiation and consequently

the spectra turn out to look very different at high energy.

we discussed in the previous sections, the gamma–ray spectra appear more similar at the energy

corresponding to the peak of emission, but important differences appear at lower and higher ener-

gies. Lower energies are less important in the context of indirect searches, because of the dominance

of astrophysical background components. However, the spectra at high energies could be of some

interest. As an illustrative example, the next Cherenkov Telescope Array (CTA) is expected to

extend the accessible energy range from well below 100 GeV to above 100 TeV [17] and therefore

may cover a wide range of high gamma–ray energies and signatures of DM annihilation in a wider

range of masses than for instance FERMI-LAT satellite.

Since PYTHIA 8 includes both a good description of the t quark behavior and the QED radiation,

we use it to compare with the other generators. We present the Monte Carlo relative deviation

(∆MCi) with respect to PYTHIA 8 in Fig. 10, defined as

∆MCi =
MCi − PYTHIA 8

PYTHIA 8
, (4.1)

where MCi stands for PYTHIA 6.4, HERWIG and HERWIG++. For a DM mass of 1 TeV, the relative

deviations are always less than 20% up to x = 0.2. For the whole high energy range, PYTHIA

6.4 produces typically less photons with a maximum relative error of 50% with respect to PYTHIA

8, apart from the tt̄ channel for which the strong approximation leads to differences up to 100%.

HERWIG exhibits deviations lower than 50% for the W+W− channel up to x ' 0.6, similar deviations

are found for bb̄ up to x ' 0.5 and for almost all the high energy range (up to x = 0.8) for τ+τ−.

In the case of tt̄ channel, deviations below 50% are found just below x ' 0.3. HERWIG++ shows

differences up to 100% for all the annihilation channels when the energy increases beyond those

values.

On the other hand, the total number of photons produced by each event or multiplicity, also

affects the constraints both in the sense of annihilations cross section and astrophysical factor. In

indirect searches a typical significance of the signal between 2σ and 5σ with respect to the back-

ground is demanded. Apart from the specific characteristics of the detector, the flux of photons

depends upon the DM density and the distance and distribution of the sources. All these depen-

dences are taken into account by the astrophysical factor 〈J〉 and the boost factor b. Thus, two

simulations should give different number of photons for the same number of events, this situation

will affect the parameters 〈J〉 and b.

As we can see in Fig. 11, the multiplicity depends not only on the Monte Carlo event generator,

but also on the energy of the event and the annihilation channel. In this study, we set a lower

photon energy cut-off of xC = 10−5. It means that the energy cut-off increases with the DM

mass. This kind of DM mass depending cut-off allows to reject photons of lower energies, where

the simulations present important differences. However, the excluded range of the spectrum is

not relevant for gamma-ray observations. This cut-off is also compatible with typical gamma-ray

detectors energy thresholds. As an example, for a DM mass of 10 TeV, the corresponding energy

cut lies at 100 MeV. Detector energy thresholds are typically around 1− 10 GeV depending on the
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Figure 10. Relative deviations versus x at MDM = 1 TeV. The full horizontal line at zero represents

PYTHIA 8. The dashed blue line holds for PYTHIA 6.4 vs. PYTHIA 8, the dotted one is HERWIG Fortran vs.

PYTHIA 8 and the two-dotted one is HERWIG++ vs. PYTHIA 8.

particular experimental device [7]. In any case, we have checked that our results and conclusions

about the different multiplicities do not depend on the particular choice of this cut-off. Thus we

have tested the robustness of our analysis with xC = 10−3 and MC = 1 GeV. In most of the cases

PYTHIA 6.4 gives the multiplicity upper limit, except for the tt̄ annihilation channel – maybe due

to the approximation of such process [8] – and bb̄ channel at the range MDM > 200 GeV. On the

other hand, the lower limit is given by HERWIG++ in most of the cases, except for W+W− and bb̄

(the last one, up to MDM > 200 GeV) annihilation channel.

The multiplicity behavior is well approximated by the following power law relation with the

DM mass:
Nγ

Nχχ→SM
' a ·

(
M

1 GeV

)b
, (4.2)

where the a and b coefficients depend on both the Monte Carlo simulator and the annihilation

channel. When the SM particle is fixed, cosmological constraints obtained by means of the total

number of generated gamma photons might depend on the Monte Carlo simulation. As in the

previous analysis, in Table 2 we give the relations between the total number of photons generated

by PYTHIA 6.4, HERWIG and HERWIG++ with respect to PYTHIA 8.

Let us summarize the situation as follows:
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Figure 11. Multiplicity of the four Monte Carlo generators for each annihilation channel. W+W−

annihilation channel (upper left panel): Regardless the DM mass value, PYTHIA 6.4 provides the upper limit

to the number of generated photons, while HERWIG Fortran provides the lower limit with 23% difference

between them; bb̄ annihilation channel (upper right panel): At MDM ∼ 200 GeV, the multiplicity of the

two versions of PYTHIA is the same, as for the multiplicity of the HERWIG versions, but different between

them. For that value of the mass, the relative deviation on multiplicity between PYTHIA and HERWIG codes

almost attains 100%; τ+τ− annihilation channel (lower left panel): The maximum difference between the

four simulations multiplicities ranges between 20% at low energy up to 72% at higher energy; tt̄ annihilation

channel (lower right panel): Relative deviations run from 20% up to 30% depending on the energy of the

event.

• W+W− annihilation channel: Roughly speaking PYTHIA 6.4 generates one more photon

than PYTHIA 8 for each event, while HERWIG++ and HERWIG Fortran produce 3 and 5 photons

less, respectively. Above ' 200 GeV, this fact introduces a deviation on the multiplicity of

∼ 4% between PYTHIA 6.4 and PYTHIA 8, of ∼ 16% between HERWIG and PYTHIA 8 and of

∼ 10% between HERWIG++ and PYTHIA 8. Between PYTHIA 6.4 and HERWIG in Fortan and

HERWIG++ the deviation is ∼ 23% and ∼ 15% , respectively. Finally, the deviation between

HERWIG and HERWIG++ is ∼ 6%. For kinematic reasons, no photons are produced at energies

lower than the mass of the W boson, that is the reason of the cut around ' 80 GeV.

• bb̄ annihilation channel: At MDM ' 200 GeV, the deviation between the multiplicity of

the two versions of PYTHIA is the less than 1%, as for at 100 GeV and HERWIG versions, but

different between them. At 150 GeV, the number of photons produced by the Fortran versions
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Software/PYTHIA 8 W+W− bb̄ τ+τ− tt̄

PYTHIA 6.4
A = 1.04 A = 1.18 A = 0.96 A = 1.49

B = 0 B = −0.033 B = 0.020 B = −0.077

HERWIG
A = 0.84 A = 1.13 A = 1.00 A = 1.02

B = 0 B = −0.068 B = −0.029 B = −0.038

HERWIG++
A = 0.90 A = 0.93 A = 0.96 A = 0.93

B = 0 B = −0.025 B = −0.039 B = −0.031

PYTHIA 8
a = 28.9 a = 7.62 a = 2.29 a = 14.1

b = 0.001 b = 0.331 b = 0.042 b = 0.276

Table 2. Relative behaviors in the total number of photons produced by PYTHIA 6.4, HERWIG and HERWIG++

with respect to PYTHIA 8 in the range 15 GeV - 10 TeV. Here A = aMCi/aPYTHIA 8 and B = bMCi − bPYTHIA 8.

PYTHIA 8 multiplicity parameters are listed at the end of the Table.

of PYTHIA code is a 22% bigger than the HERWIG one. For masses below ∼ 200 GeV the upper

limit is given by PYTHIA 6.4 whereas the lower one is provided by HERWIG++. At 10 TeV

the deviation reach the maximum value of ∼ 13%, ∼ 40% and ∼ 26% between PYTHIA 6.4,

HERWIG, HERWIG++ and PYTHIA 8, respectively. On the other hand, at M > 200 GeV PYTHIA

8 gives the upper limit and HERWIG Fortran the lower one.

• τ+τ− annihilation channel: The number of photons per event produced by the four Monte

Carlo generators is very similar for this channel, but very low. This fact introduce a very

important difference in percent, that reach the maximum of ∼ 42% at 10 TeV between PYTHIA

6.4 and HERWIG++. PYTHIA 6.4 gives here the upper limit, followed by PYTHIA 8, HERWIG

Fortran and HERWIG++. At lower energies the difference between upper and lower limit is less

than 20%, and increase up to 72% at higher DM mass.

• tt̄ annihilation channel: As in the case of W+W− channel, no photons are produced at

energies lower than the mass of the top quark because of kinematic reason. Always PYTHIA

8 gives here the upper limit, followed by PYTHIA 6.4, HERWIG Fortran and HERWIG++. All the

multiplicities depend on the DM mass in a exponential way, but with different exponents. At

lower energies the deviation between upper and lower limits is about 20%, and around 30%

for events at higher energies.

5 Conclusions

We have analyzed the gamma–ray spectra produced by four Monte Carlo event generator software,

namely PYTHIA 6.4, PYTHIA 8, HERWIG Fortran and HERWIG++. These spectra have been largely used

in the framework of dark matter indirect searches and the differences between them may affect

the results for those investigations. Although gamma–ray spectra have been generated for dark

matter annihilating in all possible quark-antiquark, leptonic and bosons channels, we chose to show

a representative sample of them (bb̄ for the quark-antiquark case, τ+τ− for the leptonic one and

W+W− boson annihilation channels). We also included the particular case of the tt̄ and studied it

separately.

At the energy of maximum flux, where the simulations are well fitted to LEP or LHC data,

the differences between packages are less than 20%. This statement is always true in the range

0.01 < x < 0.2 with possible extension of the range depending on the annihilation channel and the

energy of the event (see the bulk of this communication for further details). On the one hand, at
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lower energy the spectra appear very different between them, depending strongly on the cut-off set

for the minimal allowed energy in the parton shower. On the other hand, differences also appear

at higher energy. For all the studied channels, the implementation absence of Bremsstrahlung

radiation generated by high energy leptons in HERWIG++ leads to a smaller number of high-energy

photons when compared to the other softwares. Moreover, in the case of the tt̄ annihilation channel,

there is an additional effect due to the fact that the top quark behavior phenomenology has been

improved in the codes released in the last years. Thus, whereas for PYTHIA 6.4 this channel was

approximated through the decay into W and b, higher order effects have been included in the

newest software generations. Due to the combination of these two factors, we conclude that the

most reliable Monte Carlo event generator software for gamma–ray spectra is PYTHIA 8. For this

reason we got estimations for the relative deviations for PYTHIA 6.4, HERWIG Fortran and HERWIG++

with respect to PYTHIA 8.

We conclude that further implementation is needed in HERWIG++ in order to improve its compet-

itiveness in the gamma–ray sector. For the other three Monte Carlo event generators under study

in this work, the gamma–ray spectra simulated show also important differences. Without taking

into account very low energies, the relative deviations can only be bounded by 50% for the hadronic

(bb̄) and electro-weak channels (W+W−). The situation for the tt̄ channel and the leptonic ones

(τ+τ−) is even worse. At high energies, the discrepancies can reach 100%. In fact, the photon

fluxes predicted by the different generators can differ in several orders of magnitude. On the other

hand, the situation for the total number of produced photons improves a little, and the maximum

difference is a factor 2 within the studied mass region.

These significative differences can play an important role in misunderstanding dark matter

signatures. For example, in a dark matter study, once the astrophysical factor is obtained by fitting

the dark matter gamma–ray spectra, these discrepancies may introduce a deviation on the boost

factor proportional to the difference on the multiplicity. This effect can be easily estimated with

the help of Eq. (4.2) and Table 2. However, we have shown that the simulated spectral shapes can

be very different and this fact may have a large impact in the analysis.
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