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Abstract: In this work we recognize new strategies involving optical
wave-breaking for controlling the output pulse spectrum in nonlinear
fibers. To this end, first we obtain a constant of motion for nonlinear
pulse propagation in waveguides derived from the generalized nonlinear
Schrödinger equation. In a second phase, using the above conservation
law we theoretically analyze how to transfer in a simple manner the
group-velocity-dispersion curve of the waveguide to the output spectral
profile of pulsed light. Finally, the computation of several output spectra
corroborates our proposition.
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1. Introduction

Optical wave-breaking (OWB) is an effect produced by the interplay between nonlinear pro-
cesses (chiefly self-phase modulation, SPM) and the chromatic dispersion of optical fibers [1].
The nonmonotonic chirp induced by SPM gives rise to the overlapping between different fre-
quencies in the pulse tails at the normal dispersion regime [2]. This situation leads to nonlinear
frequency mixing through χ3 susceptibility. Indeed OWB can be understood in the spectral
domain as a four-wave mixing (FWM) process that produces two spectral sidelobes [3]. At the
same time, the interference of such frequencies results in some temporal ripples near the pulse
edges.

OWB has been traditionally avoided in practice due to its inherent strong temporal fluctua-
tions [4]. However, in the last years some works have pointed out divers benefits of this process
regarding spectral broadening [5, 6] and pulse compression [7]. Particularly, we emphasize
OWB as a mechanism for improving smoothness and coherence of supercontinuum spectra [6].
OWB has long been studied both experimentally and numerically [1, 8]. Nevertheless, solely
the propagation distance at which the process takes place has been analytically described [2, 5],
being other properties only qualitatively understood [3, 5].

In this paper, we address the study of the interaction between SPM and dispersion from a
novel analytical approach based on a constant of motion conserved throughout nonlinear prop-
agation of pulses in optical fibers. This procedure allows us to take advantage of some unex-
ploited features related to OWB. Ultimately, we numerically identify certain situations in which
we are able to transfer the group-velocity-dispersion (GVD) profile of highly nonlinear fibers
to the output pulse spectrum. In principle, our derivation holds for the nonlinear propagation of
pulses longer than the picosecond. However, we also discuss in heuristic terms why we expect
that the physical processes behind our analysis be at least partially preserved for shorter pulses.
So, we will numerically check the validity of our results spreading our simulations up to the
case of femtosecond pulses.

2. Nonlinear propagation in optical fibers: a constant of motion

Spectral control of pulsed light in nonlinear fibers requires a good understanding of the interplay
between dispersive and nonlinear phenomena. To this end, we tackle systems with an arbitrary
dispersion profile in which SPM is the most relevant nonlinear effect. These phenomena govern
ps-pulse propagation, being such evolution described by the generalized nonlinear Schrödinger
equation (GNLSE) [3],

∂
∂ z

A = i
∞

∑
k=2

ik
βk

k!
∂ k

∂ tk A+ iγ0|A|2A, (1)

where A is the complex envelope of the electric field, βk = ∂ kβ (ω)/∂ωk|ω=ω0 , being β (ω) the
propagation constant of the mode supported by the waveguide and ω0 the carrier frequency, and
γ0 represents the waveguide nonlinear coefficient. Within this framework, and without any addi-
tional assumption, in the appendix A we deduce a conservation law that generalizes a previous
expression derived by Zakharov and Shabat [9],

d
dz

(∫ ∞
−∞ γ0|A(z, t)|4dt

2
∫ ∞
−∞ |A(z, t)|2dt

+

∫ ∞
−∞ βp(ω)|Ã(z,ω −ω0)|2dω∫ +∞

−∞ |Ã(z,ω −ω0)|2dω

)
= 0, (2)
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where βp(ω) = β (ω)−β0 −β1(ω −ω0) and Ã is the Fourier transform of A.
In order to get physical insight into Eq. (2), on the one hand, it is worth mentioning that

the nonlinear coefficient γ0 appearing at the first fraction in the conservation law parameterizes
SPM in Eq. (1). In fact, the level of significance of this nonlinear process is conventionally
evaluated (assuming a nearly constant peak power of the pulse, P0, throughout the propagation)
by means of the parameter L−1

NL = γ0P0. The first fraction in Eq. (2), having also dimensions of
inverse length, can be understood as a function that generalizes the classical quantity L−1

NL ,

L −1
NL (z) =

∫ ∞
−∞ γ0|A(z, t)|4dt

2
∫ ∞
−∞ |A(z, t)|2dt

, (3)

and accounts for the relevance of SPM at any distance z during the propagation. At this point it is
convenient to remind that the spectral broadening induced by SPM is related to the variations of
the temporal intensity of the pulse [10]. Although the classical parameter L−1

NL does not assess
this pulse-profile variation, we observe that L −1

NL (z) does, decreasing as the temporal pulse
intensity becomes flatter and flatter.

On the other hand, if we develop βp(ω) in Taylor series around ω0, the second fraction in
Eq. (2) can be rewritten as ∑∞

k=2 βkμk(z)/k!, where μk is the normalized kth moment of the pulse
spectrum at the baseband. This expression includes the βk coefficients, which account for the
dispersive effects in Eq. (1). For a fiber far from the zero-dispersion wavelength and assuming a
smooth pulse profile during the propagation, the quantity L−1

D = β2/T 2
0 (T0 denotes the temporal

width of the input pulse) traditionally estimates the impact of dispersion. Therefore, we also
define the function

L −1
D (z) =

∫ ∞
−∞ βp(ω)|Ã(z,ω −ω0)|2dω∫ +∞

−∞ |Ã(z,ω −ω0)|2dω
, (4)

that generalizes the standard amount L−1
D , and quantifies the action of the whole dispersive

processes at the propagation distance z.
Our physical reasoning becomes particularly meaningful when Eq. (2) is rewritten as

L −1
NL (z)+L −1

D (z) = L −1
NL (0)+L −1

D (0) =C, (5)

where the constant C can be calculated only taking into account the initial conditions. From
this point of view, nonlinear pulse propagation can be understood as a competition between the
activities of SPM and dispersion.

The above equation is going to be the key tool of our spectral control procedure in section
3. To this end, next we discuss some preliminary implications of the above conservation law
under certain conditions. We emphasize that our first goal is to achieve a smooth and broad
output spectrum. However, it is well-known that the spectral broadening induced by SPM is
accompanied by severe spectral oscillations [10]. For this reason, L −1

NL should become smaller
as the pulse propagates in order to obtain a smooth output spectrum. At the same time, this
requirement results in L −1

D increases with z according to Eq. (5). Assuming that β2μ2/2 is the
dominant contribution in L −1

D , the above condition (i.e., ∂zL
−1
D > 0) implies β2 > 0 since the

pulse spectrum broadens through propagation along the fiber (i.e., ∂zμ2 > 0). Therefore, as is
well known, it is crucial to pump at the normal dispersion regime to achieve a smooth output
spectrum in conventional fibers [5]. The above dynamics is illustrated in Fig. 1. The condi-
tions that give rise to this evolution, namely, high nonlinearity and normal dispersion regime,
become apparent in this figure through the inequalities L −1

NL (0)� L −1
D (0) and L −1

D (z) > 0,
respectively. It is interesting to note that, although L −1

NL is the main contribution to the constant
of motion at the beginning, L −1

D dominates after a long enough z distance (say, zout, the output
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Distance z (m) Distance z (m)

(a) (b)

Fig. 1. Plot of the evolution of the functions L −1
NL (dashed curve) and L −1

D (solid curve)
for a 5 ps Gaussian input pulse centered at 1550 nm (ω0 = 1215 rad ps−1) and 100 W peak
power, which propagates throughout two fibers with γ0 = 400 W−1km−1 and dispersion
behavior defined by: (a) β2 = 20 ps2km−1 and βk = 0 for k > 2, i.e., flat GVD profile; and
(b) β2 = 20 ps2km−1, β3 = 0, β4 = 1 ps4km−1, and βk = 0 for k > 4, i.e., parabolic GVD
profile.

distance). So, based in Eq. (5), in a first-order approximation we can write

L −1
D (zout)≈ L −1

NL (0)≈C. (6)

This behavior, characterized by high nonlinearity and normal dispersion, leads to a stage in
which L −1

D > L −1
NL . In such a situation, spectral broadening cannot be mainly produced by

SPM. However, as is well known, pulses that propagate at normal dispersion regime experience
OWB [2]. To check that the spectral broadening in this scenario is produced by OWB, we
approximately compute the distance zc for which the new nonlinear and dispersive functions of
z intersect each other. In this case we write 2L −1

D (zc) = 2(∑∞
k=2 βkμk(zc)/k!) =C. As SPM is

the dominant effect at the first phase of propagation, in order to calculate zc we estimate μk at
this distance using the SPM-induced chirp with an equivalent peak pulse power of P0/

√
2 since

2L −1
NL (zc) ≈ L −1

NL (0) and, according to Eq. (3), the square of the power widening needs to be
taken into account. If we consider a flat GVD curve, i.e., βk = 0 for k > 2, and a Gaussian input

pulse, we obtain zc ≈ 1.61
√

LDLNL = 1.61
√

T 2
0 /β2γ0P0. For the case corresponding to Fig. 1(a)

we get zc ≈ 9.0 m, which is in close agreement with the abscissa of the intersection point of the
curves in this figure. In addition, the above distance is greater than the OWB distance derived in
[2], 1.06

√
LDLNL, that takes into account the point at which OWB just begins. Our conclusion

is clear. We can consider zc as the OWB distance at which OWB is the dominant nonlinear
process at the second stage of the pulse propagation. Unlike the procedure for calculating the
OWB distance in [2], that is restricted to certain simple cases, our interpretation allows the
evaluation of zc for both any dispersion curve and any input pulse profile. In this way, following
our criterion, the OWB distance of the system corresponding to Fig. 1(b), with a non constant
dispersion, turns to be zc = 5.5 m.

3. Dispersion-to-spectrum mapping: direct spectral shaping through dispersion engi-
neering

Now, if we write Eq. (6) in its integral form,∫ +∞

−∞
(ω −ω0)

2
(

1
2!

β2 +
1
3!

β3(ω −ω0)+
1
4!

β4(ω −ω0)
2 + . . .

)∣∣Ã(zout,ω −ω0)
∣∣2 dω

≈ 1
2

∫ ∞

−∞
γ0 |A(0, t)|4 dt, (7)
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it can be noticed that, once γ0 and the input pulse profile are fixed, the left-hand side in Eq. (7)
must go to the same value regardless of the function βp(ω). It is apparent that the shape of the
output pulse spectrum is strongly correlated with the waveguide dispersion during the second
stage of pulse propagation (z> zc), when dispersion dominates dynamics and OWB is working.
With the aim of explaining this correlation, we study the spectral transfer of energy occuring
during pulse propagation, focusing our attention on the power flow from red-shifted (blue-
shifted) SPM-generated frequencies towards lower (higher) ones.

As we said before, OWB can be interpreted as a degenerate FWM between frequencies in
the pulse tails. However, even beyond zc we cannot ignore the nonlinear processes involving
instantaneous frequencies in the central region of the pulse. In other words, the pulse evolves in
the spectral domain through a set of intrapulse FWM processes [11] that involves frequencies
located at both the central part and the outer tails. We use this spectral picture to study the
power spreading. In order to define the waves that are nonlinearly mixed, it is convenient to
write the complex envelope of the field around a generic time tk as

A(t) = |A(tk)|eiϕ(tk)ei(∂ϕ(t)/∂ t|t=tk)(t−tk), (8)

where we consider both a linear approximation of the phase ϕ and a slow variation of the
envelope modulus |A| compared with the phase. Equation (8) defines locally monochromatic
waves with angular frequency δω = ω −ω0 = −∂tϕ|tk , power |A(tk)|2, and phase ϕ(tk). The
above statement is on the basis of the physical meaning of the instantaneous frequency [12].

Next, we analyze the nonlinear pulse propagation as a process divided in the two sequential
steps advanced in section 2. At the first stage, z < zc, we consider that only SPM rules the
pulse evolution. In this way, we can use the SPM-induced chirp to define the frequency of
locally monocromatic waves at zc. Note that the instantaneous power and frequency of every
monochromatic wave can be worked out at zc. In particular, for a Gaussian input pulse the
power associated at a certain instantaneous frequency is given by

P(δω,zc) =
P0√

2
exp

[
1
2
Wl

(
−1

e
δω2

δωmax
2

)]
, (9)

where Wl is the Lambert function of order l [13] (l =−1 for the tails and l = 0 for the central
region of the pulse), and δωmax = γ0P0zc/T0

√
e is the maximum chirp achieved by the pulse at

zc [see Fig. 2].
At the second phase, z > zc, each locally monochromatic wave that is present at zc acts as the

pump in multiple degenerate FWM processes with the nearby waves such that 2ωp = ωs +ωi,
where the subscripts p, s and i refer to pump, signal, and idler, respectively. Note that the
above frequency mixing occurs at both the central part and the tails of the pulse. This panorama
is graphically sketched in Fig. 2. In order to simplify the analysis, we only take into acount
processes for which the pump power is much greater than the signal and idler powers (Pp �
Ps,Pi) and Pi(zc) = 0. In any such case, the production of idler photons for any input pulse shape
is given by [14]

Pi(z) = Ps(zc)γ2
0 P2

p (zc)
sin2(|g|z)

|g|2 , (10)

where |g|2 = Δβ [Δβ/4+ γ0Pp(zc)] is the squared modulus of the gain of a generic elementary
process and Δβ = β (ωs)+β (ωi)−2β (ωp) is the low power propagation mismatch. We point
out that the boundary values of the pump frequencies are given by the frequencies at which the
pulse chirp reaches its minimum or maximum at zc, as one can see in Fig. 2.

Equation (10) presents a strong oscillatory behavior with z. This fact is due to the high value
that the gain shows around zc, |g| ≈ L−1

NL. If we average Eq. (10) along z, we obtain the trend for
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Fig. 2. Sketch for the interpretation of the FWM processes considered here. We assume that
the schematic plots of the instantaneous frequency and instantaneous power correspond to
the distance zc. Thick lines denote instantaneous frequencies and their corresponding in-
stantaneous power at the pulse tails (blue and red regions). For two cases (in the central
region, tc, and in the trailing edge, tt ), we represent an arbitrary pump wave, δωp, interact-
ing with a signal wave, δωs, and producing a certain idler wave, δωi.

the power corresponding to the production of idler frequencies, i.e.,

〈Pi(z)〉 ≈ 1
2|g|2 Ps(zc)γ2

0 P2
p (zc). (11)

Finally the total flow from a pump frequency to the rest can be estimated by integrating for all
the possible values of ωs satisfying the above power requirements (i.e., Pp � Ps,Pi),

δPp(z)≈−2
∫

〈Pi(z)〉dωs ≈−
∫

Ps(zc)γ0Pp(zc)

Δβ
[
1+ Δβ

4γ0Pp(zc)

]dωs. (12)

The above expression seems to diverge when ωs ≈ ωp since Δβ ≈ 0. However the description
of those frequencies are, in fact, out of the model depicted by Eq. (10). In addition, it is easy
to check, bearing in mind [14], that the net flow between two neighboring frequencies goes to
zero as both frequencies approach each other. Going one step further, and according to [3], we
write Δβ ≈ (ωs −ωp)

2β2(ωp), in the lowest-order approximation. In this way, the integrand of
the right-hand side in Eq. (12), excluding β2(ωp) and Pp(zc), shows a small variation on ωs and
ωp since it is far away from the poles. Actually, Eq. (9) can be used to verify this issue when
we deal with a Gaussian input pulse. So, the above statements indicate that the power spreading
rate roughly goes as the inverse of the group-velocity dispersion. This fact can be expressed in
mathematical terms as

δPp(z) ∝ −Pp(zc)/β2(ωp). (13)

This conclusion is in agreement with the fact that supercontinuum spectrum becomes nearly flat
when β2(ω) is constant [15, 16]. Note that in this case the modulus of the power flow, |δPp(z)|,
is higher in the regions in which Pp is greater. So, the power leakage shifts the spectrum power
from the high values to the low ones. In this way, if zout is large enough, the rapid and nearly-
regular oscillations of the spectrum at the OWB distance [3] are mitigated and the output power
spectrum, S(ω,zout), becomes uniform.
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When β2(ω) is not constant, the above process still operates locally, in such a way that
oscillations are also damped. However, the spectral power spreading is stronger when 1/β2 is
larger. So, now S(ω,zout) should adopt the (1/β2)-profile around the carrier frequency. At this
point it is important to recognize that the variation of −1/β2(ω) around the central frequency
of the pulse (δωp = 0) approximately agrees with that of the function β2(ωp) itself, except by
a negative additive constant. This plausible conclusion is, in addition, consistent to Eq. (7) and
can be mathematically expressed as

S(ω,zout)∼ M (ω,zout)β2(ω)+N (ω,zout), (14)

where M and N are in principle nearly flattened functions of ω and consequently they only
account for the fine detail of the spectral shape. Despite of the approximations considered in
the derivation of Eq. (14), it retains enough information about the physical processes governing
the nonlinear pulse propagation and predicts a clear spectral trend within the regime where it is
derived (namely, high nonlinearity and normal dispersion), as it is verified numerically in the
next section.

4. Numerical results
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Fig. 3. Normalized output spectrum in dB for: (a) constant dispersion profile; (b) parabolic
one; and linear dispersion variation with (c) β3 > 0 and (d) β3 < 0. See input pulse details
and dispersion fiber values in the text. The small arrow corresponds to the location of the
carrier frequency.

Let us consider a highly nonlinear fiber characterized by γ0 = 400 W−1km−1, and a 5 ps
Gaussian input pulse with P0 = 100 W, centered at 1550 nm (ω0 = 1215 rad ps−1). Our calcu-
lations include four different normal GVD-profiles. The first two cases, illustrated in Figs. 3(a)
and 3(b), are that described in the caption of Fig. 1. The fiber length is zout = 25 m in Fig. 3(a)
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and zout = 20 m in Fig. 3(b). The third and fourth situations correspond to linear dispersion
profiles with β2 = 200 ps2km−1 and β3 = ±10 ps3km−1, respectively, and zout = 10 m. We
evaluate the input pulse propagation throughout the above four fibers solving Eq. (1) by means
of a Runge-Kutta-type algorithm. From Fig. 3 the conclusion is evident. Around the central ω0-
region, the output spectrum embraces the shape of the fiber β2(ω)-profile, in good agreement
with Eq. (14). The effective spectral bandwidth covers around 90 nm in Fig. 3(a) and about
30 nm in the rest of cases. The dispersion-to-spectrum mapping is clearly achieved. It is worth
noticing that the logarithmic representation of spectra mantains grosso modo the behavior de-
scribed by Eq. (14) since logarithm is a soft and monotonic function.

Distance z (mm)

(a) (b)700
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Fig. 4. (a) Plot of the evolution of the functions L −1
NL (dashed curve) and L −1

D (solid
curve) for a FWHM 250 fs Gaussian input pulse and parabolic β2(ω)-fiber profile; and
(b) normalized output spectrum in dB. The rest of input pulse details and dispersion fiber
values are discussed in the text. The small arrow corresponds to the location of the carrier
frequency.

In order to enlarge the useful spectral bandwidth, it is worth noting at this point that we
achieve the above mapping by describing OWB as a combination of multiple degenerate FWM
processes, provided that L −1

D increases and L −1
NL decreases in a smooth and monotonic way

even though the sum of both quantities be not strictly constant. Based on this fact, we expect
that the above mapping be at least partially preserved for femtosecond pulses. So, now we
consider a 250 fs Gaussian input pulse with 5.3 kW peak power and a fiber such that zout =
20 mm. The rest of fiber and pulse parameters are the same as in Fig. 3(b). In this case we have
included higher order effects as self-steepening and intrapulse Raman scattering in the GNLSE
for the computation of the nonlinear propagation of such a pulse. The evolution of the functions
L −1

D and L −1
NL for this situation is shown in Fig. 4(a). The resulting output parabolic spectral

power shown in Fig. 4(b) confirms that we are able to achieve to a great extend the dispersion-
to-spectrum mapping with ultrashort pulses. Now the useful spectral interval length is about
190 nm.

5. Conclusions

We emphasize that the new functions L −1
NL and L −1

D are a useful generalization of the classical
parameters L−1

NL and L−1
D described in [3]. Going one step further, it is really notable that under

certain quite usual conditions the addition of both mathematical quantities results in a constant
of motion for nonlinear pulse propagation in waveguides. It is worth mentioning that their
definition in terms of integrals of the pulse magnitudes leads to study the interplay between
dispersion and SPM without detailed information about the pulse itself.

In the second part of the work, the above conservation law at the normal dispersion regime
has been successfully applied to exploit some OWB features. Particularly, it allows to study
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the OWB-induced power flow that broadens the pulse spectrum and maps the GVD shape of
the fiber, β2(ω), to the power spectrum profile of the output pulse, S(ω), around the carrier
frequency. This result has been computationally checked even under conditions that overpass
the initial input pulse requirements. We point out that this mapping permits in a very simple way
to manipulate the emerging spectrum by dispersion engineering of any nonlinear waveguide in
which pulse propagation is described by means of a GNLSE-type equation.

Appendix: Derivation of the conservation law

Let us write Eq. (1) in the spectral domain,

∂
∂ z

Ã(z,ω −ω0) = iβp(ω)Ã(z,ω −ω0)+ iγ0F
(|A(z, t)|2A(z, t)

)
, (15)

where F (◦) = ∫ +∞
−∞ dt ei(ω−ω0)t ◦. The propagation equation for the power spectrum is directly

derived from the above equation,

∂
∂ z

|Ã|2 = 2ℜ
[
Ã∗iγ0F

(|A|2A
)]
, (16)

where ℜ stands for the real part of a complex expression. Multiplying by βp(ω) both sides of
Eq. (16) and taking into account Eq. (15), we obtain

∂
∂ z

(
βp(ω)|Ã|2)=−2ℜ

[
γ0F

(|A|2A
) ∂

∂ z
Ã∗

]
. (17)

At this point, if we consider Ã∗(ω) =F (A∗(−t)) and apply the convolution theorem of Fourier
theory, we achieve

∂
∂ z

(
βp(ω)|Ã|2)=−2ℜ

[
γ0F

(∫ ∞

−∞
|A(τ)|2A(τ)

∂
∂ z

A∗(t + τ)dτ
)]

. (18)

Now, integrating over ω and taking into account
∫ +∞
−∞ ei(ω−ω0)tdω = 2πδ (t) to simplify the

right-hand side, where δ is the Dirac delta function, we derive

∂
∂ z

(∫ ∞

−∞

1
2π

βp(ω)|Ã|2dω +
∫ ∞

−∞

γ0

2
|A|4dt

)
= 0. (19)

Finally, Eq. (2) is obtained considering the conservation energy of these systems. Note that in
the particular case βp(ω) = (ω −ω0)

2β2, we recover one of the conservation laws derived in
[9].
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