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Abstract

A search for events with one jet and at most one isolated lepton used data
taken at LEP-2 by the DELPHI detector. These data were accumulated at a
center-of-mass energy of 183 GeV and correspond to an integrated luminosity
of 47.7 pb−1. Production of single scalar and vector leptoquarks was searched
for. Limits at 95% confidence level were derived on the masses (ranging from
134 GeV/c2 to 171 GeV/c2 for electromagnetic type couplings) and couplings of
the leptoquark states. A search for top-charm flavour changing neutral currents
(e+e− → t̄c or charge conjugate) used the semileptonic decay channel. A limit
on the flavour changing cross-section via neutral currents was set at 0.55pb
(95% confidence level).
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41Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 2, IT-00185 Rome, Italy
42Inst. for High Energy Physics, Serpukov P.O. Box 35, Protvino, (Moscow Region), Russian Federation
43J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia and Department of Astroparticle Physics, School of

Environmental Sciences, Kostanjeviska 16a, Nova Gorica, SI-5000 Slovenia,
and Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

44Fysikum, Stockholm University, Box 6730, SE-113 85 Stockholm, Sweden
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1 Introduction

In e+e− colliders such as LEP searches for new physics can be made with high sensitiv-
ity in places where the expected Standard Model (SM) contributions are small. Events
where all or most particles are grouped in one direction in space, in a mono-jet type
topology, with one isolated lepton (charged or neutral), are a good example of such pro-
cesses. SM extensions related to leptoquark models or single top production via Flavour
Changing Neutral Currents can have such a signature. In this paper we report on a
topological search for events in these two channels.

Leptoquarks are coloured spin 0 or spin 1 particles with both baryon and lepton
quantum numbers. These particles are predicted by a variety of extensions of the SM,
including Grand Unified Theories [1], Technicolor [2] and composite models [3]. They
have electric charges of ±5/3, ±4/3, ±2/3 and ±1/3, and decay into a charged or neutral
lepton and a quark, Lq → l±q or Lq → νq. Two hypotheses are considered in this paper,
one where only the charged decay mode is possible (charged branching ratio B = 1.0), and
one, for leptoquark charges below 4/3, where both charged and neutral decay modes are
equally probable. If the leptoquark does not couple to the charged decay mode (B = 0)
then these leptoquarks can not be produced singly in e+e− collisions. Leptoquarks may
be produced singly or in pairs at e+e− colliders. For single production, leptoquark mass
limits can be set up to almost the kinematical limit. For this reason only single leptoquark
production is considered in this analysis. The largest contribution to the production
cross-section at LEP is predicted to come from processes involving hadrons coming from
resolved photons [4], radiated from the incoming beams, which are treated using the
Weizacker-Williams approximation. The corresponding Feynman diagram is shown in
figure 1 a. Decays of singly produced high mass leptoquarks to a charged lepton are
characterised by a high transverse momentum jet recoiling against a lepton. In the decay
to a neutrino only the jet is detected. The initial electron which scatters off the quasi real
photon is assumed to escape detection down the beam pipe. Below the TeV mass range
and for couplings of the order of the electromagnetic coupling, the leptoquarks should
not couple to diquarks in order to prevent proton decay. They should also couple chirally
to either left or right handed quarks but not to both, and mainly diagonally. This implies
that they should couple to a single leptonic generation and to a single quark generation
and hence this measurement searches only for decays to e and ν.

The properties of leptoquarks are indirectly constrained by experiments at lower energy
[5], by precision measurements of the Z width [6], and by direct searches at higher energies
[7,8,9,10]. The mass of scalar leptoquarks decaying to electron plus jet was constrained to
be above 225 GeV/c2 using Tevatron data [7]. Limits on leptoquark masses and couplings
were set at HERA using the e−p data [8], giving MLq > 216− 275 GeV/c2. An excess of
events was found in the e+p data. The H1 collaboration measured a jet-lepton invariant
mass of these events ranging from 187.5 GeV/c2 up to 212.5 GeV/c2. Rare processes,
which are forbidden in the SM, also provide strong bounds on the λ/mLq ratio [11], where
λ is the leptoquark-fermion Yukawa type coupling and mLq is the leptoquark mass.

In the SM, Flavour Changing Neutral Currents (FCNC) are absent at tree level. Neu-
tral currents such as e+e− → tc̄(tū) can be present at the one loop level, but the rates
are severely supressed [12].

Flavour changing vertices are present in many extensions of the SM like supersymmetry
[13], multi-Higgs doublet models [14] and anomalous t-quark production [15], which could
enhance the production of top quarks. For instance, in the SM the t → cZ branching
ratio is around 10−13 while in the context of a two Higgs doublet model without natural
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flavour conservation the rates can be higher by more than six orders of magnitude [14],
depending on the chosen parameters. At tree level, single top production is possible via
FCNC anomalous couplings (e+e− → tc̄) [15]. The corresponding Feynman diagram is
shown in figure 1 (b). The t → cZ and t → cγ vertices are described by two anomalous
coupling constants kZ and kγ respectively. Present constraints from LEP–2 data were set
[15] at (mt = 175 GeV/c2):

k2
γ < 0.176

k2
Z < 0.533

In single top production at LEP, the tc̄(tū), pair should be produced almost at rest as
the top mass is close to the centre-of-mass energy. The top quark decays subsequently
to a b quark and a W . Only leptonic decays of the W are searched for in this letter. It
is an almost background free signature characterised by one energetic mono-jet and one
isolated charged lepton.

2 The DELPHI Detector and Data Samples

A detailed description of the DELPHI detector, its performance, the triggering con-
ditions and the readout chain can be found in reference [16]. This analysis relies on the
charged particle detection provided by the tracking system and energy reconstruction
provided by the electromagnetic and hadronic calorimeters.

The main tracking detector of DELPHI is the Time Projection Chamber, which covers
the angular range 20◦ < θ < 160◦, where θ is the polar angle defined with respect to the
beam direction. Other detectors contributing to the track reconstruction are the Vertex
Detector (VD), the Inner and Outer Detectors and the Forward Chambers. The VD
consists of three cylindrical layers of silicon strip detectors, each layer covering the full
azimuthal angle.

Electromagnetic shower reconstruction is performed in DELPHI using the barrel and
the forward electromagnetic calorimeters, including the STIC (Small angle TIle Calorime-
ter), the DELPHI luminosity monitor.

The energy resolutions of the barrel and forward electromagnetic calorimeters are pa-
rameterized respectively as σ(E)/E = 0.043⊕0.32/

√
E and σ(E)/E = 0.03⊕0.12/

√
E⊕

0.11/E, where E is expressed in GeV and the symbol ‘⊕’ implies addition in quadrature.
The hadron calorimeter covers both the barrel and forward regions. It has an energy

resolution of σ(E)/E = 0.21 ⊕ 1.12/
√

E in the barrel.
The effects of experimental resolution, both on the signals and on backgrounds, were

studied by generating Monte Carlo events for the possible signals and for the SM pro-
cesses, and passing them through the full DELPHI simulation and reconstruction chain.

The leptoquark signal was generated for different mass values using the PYTHIA
generator [17]. The leptoquark production cross-section was taken from [18].

The tc̄(ū) signal was implemented in the PYTHIA generator [17] by producing a top
and c (u) quark pair and allowing the top quark to decay into a b quark and a W boson.
A singlet colour string was formed between the b and c(u) quarks.

Bhabha events were simulated with the Berends, Hollik and Kleiss generator [19].
PYTHIA was used to simulate e+e− → τ+τ−, e+e− → Zγ, e+e− → W+W−, e+e− →
W±e∓ν, e+e− → ZZ, and e+e− → Ze+e− events. In all four fermion channels, stud-
ies with the EXCALIBUR generator [20] were also performed. The two-photon (“γγ”)
physics events were simulated using the TWOGAM [21] generator for quark channels
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and the Berends, Daverveldt and Kleiss generator [22] for the electron, muon and tau
channels.

Data corresponding to an integrated luminosity of 47.7 pb−1 were collected at a centre-
of-mass energy

√
s of 183 GeV.

3 Event Selection

This analysis looks for events with one energetic mono-jet. Leptoquark decays to a
charged lepton and tc̄ decays also require an isolated charged lepton. The recoil electron
in figure 1 (a) is expected to pass undetected down the beam pipe while the products of
the recoil (X) in figure 1 (a) and the c-quark in figure 1 (b) are of low energy and are
absorbed into the mono-jet or lepton.

Charged particles were considered only if they had momentum greater than 0.1 GeV/c
and impact parameters in the transverse plane and in the beam direction below 4 cm and
10 cm respectively. Neutral clusters were defined as energy depositions in the calorimeters
unassociated with charged particle tracks. All electromagnetic (hadronic) neutrals of
energy above 100 MeV (1 GeV) were selected. In the present analysis the minimum
required charged multiplicity was six.

Charged particles were considered isolated if, in a double cone centred on their track
with internal and external half angles of 5◦ and 25◦, the total energy associated to charged
and neutral particles was below 1 GeV and 2 GeV respectively. The energy of the particle
was redefined as the sum of the energies of all the charged and neutral particles inside
the inner cone. This energy was required to be greater than 4 GeV. No other charged
particle was allowed inside the inner cone.

Energy clusters in the electromagnetic calorimeters were considered to be from photons
if there were no tracks pointing to the cluster, there were no hits inside a 2◦ cone in more
than one layer of the Vertex Detector and if at least 90% of any hadronic energy was
deposited in the first layer of the hadron calorimeter. Photons were considered to be
isolated if, in a double cone centred on the cluster and having internal and external half
angles of 5◦ and 15◦, the total energy deposited was less than 1 GeV. The energy of the
photon was redefined as the sum of the energies of all the particles inside the inner cone
and no charged particles above 250 MeV/c were allowed inside this cone.

All charged and neutral particles (excluding any isolated charged lepton, if present)
were forced into one jet using the Durham jet algorithm [23]. The jet was classified as
charged if it contained at least one charged particle.

A detailed description of the basic selection criteria can be found in reference [24].
Isolated charged particles were identified as electrons if there were no associated hits in the
muon chambers, if the ratio of the energy measured in the electromagnetic calorimeters,
E, to the momentum measured in the tracking chambers, p, was larger than 0.2 and if the
energy deposited in the electromagnetic calorimeters by the lepton candidate was at least
90% of the total energy deposited in both electromagnetic and hadronic calorimeters.

The following criteria were applied to the events (level 1):

• the total visible energy was required to be larger than 0.2
√

s;
• events with isolated photons were rejected;
• the momentum of the monojet was required to be larger than 10 GeV/c;
• in channels with one isolated charged particle its momentum had to be greater

than 10 GeV/c; for the leptoquark search exactly one isolated charged particle was
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required in the event; for the FCNC search at least one charged isolated particle was
required.

After this selection, more specific criteria were applied (level 2):

• Events were required to have only one jet with the Durham resolution variable (ycut)
[23] in the transition from one to two jets smaller than 0.09.

• The monojet polar angle had to be between 30◦ (20◦) and 150◦ (160◦) for the lepto-
quark search (for the FCNC search).

• The ratio between the monojet electromagnetic energy and its total energy had to
be smaller than 0.9. This removes most Bhabha events.

• The sum of the transverse momentum of the charged particles in the jet (relative
to the event thrust axis) normalized to the total visible momentum had to be lower
then 0.17. This cut reduces the contamination from semileptonic decays of WW
pairs.

In the case of the leptoquark neutral decays the ycut criterion is the most effective for
distinguishing signal from background. This is illustrated in Figure 2 (a) where the dots
show the data, the shaded region the SM simulation and the dark region the expected
signal behaviour. The same distributions are shown in Figure 2 (b) for the leptoquark
charged decays.

Additional criteria (level 3) were applied in order to reduce the contamination from
background events, mostly qq̄ and WW . These criteria were different for the different
channels:

- For the leptoquark charged decay mode it was required that:

(i) the lepton was identified as an electron and its polar angle had to be between 30◦

and 150◦;
(ii) the angle between the electron and the monojet had to be larger than 90◦.

- For the leptoquark neutral decay mode, where the contamination of qq̄ is higher,
all particles were also forced into two jets, and the following additional criteria were
applied:

(i) the angle between the two jets had to be smaller than 155◦;
(ii) the momentum of the second jet had to be smaller than 10 GeV/c, whenever the

angle between the two jets was larger than 60◦.

- For the single top production:

(i) the polar angle of the most energetic lepton had to be between 20◦ and 160◦, and
the angle between the lepton and the monojet had to be between 15◦ and 165◦;

(ii) events with a B hadron decay were selected by requiring the b-tag variable [25]
to be below 0.06;

(iii) the polar angle of the missing momentum had to be between 20◦ and 160◦.

In table 1 the number of events which survived the different levels of selection is shown,
together with the expected SM background. The WW and qq̄ events are the main source
of background. At level 3 the expected background contribution from WW and qq̄ events
is: for the leptoquark neutral decay mode, 0.12 ± 0.12 and 0.46 ± 0.33 respectively; for
the leptoquark charged decay mode 0.12±0.12 and 0.69±0.4 respectively; for the FCNC
0.49±0.25 and 0.23±0.23 respectively. Figure 2 (c) shows (at level 2), for the leptoquark
search, the ratio between the energy deposited in the electromagnetic calorimeters by the
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lepton candidate and the total energy deposited in both electromagnetic and hadronic
calorimeters, (d) the lepton polar angle and (e) the angle between the jet and the lepton.
The dots show the data and the shaded region shows the SM simulation. The dark region
is the expected signal behaviour for a 120GeV/c2 leptoquark mass. No upper bound was
imposed in the jet lepton angle to allow good signal efficiency up to threshold (where the
jet and the lepton are essentially back to back). However the selection on figure 2 (c)
removes almost all the SM background on figure 2 (e).

Figure 3 shows (at level 2), for the FCNC search, (a) the lepton polar angle, (b) the
jet-lepton angle, (c) the b-tag variable [25] and (d) the missing momentum polar angle.
The dots show the data and the shaded region shows the SM simulation. The dark region
is the expected signal behaviour. A good agreement is observed.

Leptoquark FCNC
ChargedDecay NeutralDecay ChargedDecay
Data (SM) Data (SM) Data (SM)

Level 1 537 (501±12) 3159 (2917±28) 572 (542±12)
Level 2 76 ( 64± 4) 4 ( 2.6±.7) 101 ( 96± 5)
Level 3 1 (1.1±.5) 1 ( 1.0±.4) 0 (1.1±.4)

Table 1: Number of selected data events and expected SM contributions for the charged
and neutral decay modes at different levels of selection criteria.

4 Results for Leptoquarks

Only first-generation leptoquarks were searched for in this analysis (Lq → e±q, Lq →
νeq). As discussed previously, the highest contribution to the production cross-section
relevant for this search comes from the resolved photon contribution. The Glück-Reya-
Vogt parameterization [26] of the parton distribution was used. Since the photon has
different u-quark and d-quark contents and the production cross-section is proportional
to (1 + q)2 (where q is the leptoquark charge), leptoquarks of charge q = −1/3 and
q = −5/3 (as well as leptoquarks of charge q = −2/3 and q = −4/3) have similar
production cross-sections [18]. The cross-sections used here were calculated within the
assumption above.

4.1 Charged Decay Mode

In this channel one event was found in the data at
√

s = 183 GeV and the expected
SM background was 1.1 ± 0.5.

The leptoquark invariant mass estimated from the energies and directions of the jet
and lepton is 89.9 GeV/c2. The mass resolution ranges from 15 GeV/c2 to 25 GeV/c2

for leptoquark masses from 100 GeV/c2 up to the kinematical limit.
Within the low statistics there is good agreement between data and SM predictions.
The efficiency was found to be between 22% and 30% for leptoquark masses in the

range from 100 GeV/c2 up to the kinematic limit.
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4.2 Neutral Decay Mode

In this channel one event was found and the expected SM background was 1.0 ± 0.4.
The leptoquark invariant mass estimated from the monojet transverse momentum is

72.1 GeV/c2. The mass resolution ranges from 20 GeV/c2 to 34 GeV/c2 for leptoquark
masses from 100 GeV/c2 up to the kinematical limit. Within the low statistics there is
good agreement between data and SM predictions.

The efficiency was found to be between 20% and 41% for leptoquark masses in the
range from 100 GeV/c2 up to the kinematic limit.

4.3 Leptoquark Mass and Coupling Limits

Limits were set on the leptoquark coupling parameter λ [4]. These limits, which depend
on the leptoquark mass, are shown in figure 4 for both scalar and vector leptoquarks of
different types and for charged decay branching ratios B = 1 and B = 0.5. For B = 1 the
invariant mass plot for the charged decay mode was used to set the limits. For B = 0.5
the invariant mass plots of the charged and the neutral decay modes were combined to set
the limits. Different values of the charged decay branching ratio B, although theoretically
not motivated, would imply similar limits.

The lower limits at 95% confidence level on the mass of a first generation leptoquark
for a coupling parameter λ =

√
4παem are given in table 2, where different leptoquark

types and branching ratios are considered [27]. These limits are expected to change at
the level of some percent depending on the different theoretical predictions for the total
production cross section [28].

B = 0.5 B = 1.0
|q|=1/3 |q| = 2/3 |q| = 1/3, 5/3 |q| = 2/3, 4/3

scalar 161 - 161 134
vector - 149 171 150

Table 2: Lower limits (in GeV/c2) at 95% confidence level on the the mass of a first
generation leptoquark for a coupling parameter of λ=

√
4παem.

5 Results for Top-Charm FCNC

In the present analysis no events were found while the expected SM background is
1.1 ± 0.4. The detection efficiency, including the W leptonic branching ratio, is (11.5 ±
2.0)%.

With the present luminosity of 47.7 pb−1, an upper limit on the e+e− → tc̄ Flavour
Changing Neutral Current total cross-section can be set at 0.55 pb (95% confidence level).

This value can be translated into a limit on the anomalous coupling constants kγ and
kZ , according to the parametrization described in reference [15]. It was assumed that
both channels e+e− → tc̄ and e+e− → tū contributed to the total cross-section. With a
luminosity of 47.7 pb−1 the 95% confidence level upper limit on kγ is 2, for a kZ value of
zero, and the corresponding upper limit on kZ is 1.5, for a kγ value of zero. The results
are not yet competitive with other experimental results [29].
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6 Conclusions

A search for first generation leptoquarks was performed using the data collected by
the DELPHI detector at

√
s = 183 GeV. Both neutral and charged decay modes of scalar

and vector leptoquarks were searched for. No evidence for a signal was found in the data.
Limits on leptoquark masses were set ranging from 134 GeV/c2 to 171 GeV/c2 at 95%
confidence level, assuming electromagnetic type couplings.

A search for tc̄ flavour changing neutral currents was also performed. No signal was
found in the data. A limit on the FCNC cross-section was set at 0.55 pb (95% confidence
level).
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T. Sjöstrand, Pythia 5.7 and Jetset 7.4, CERN-TH/7112-93.
[18] M. Doncheski and S. Godfrey, Phys. Lett. B393 (1997) 355.
[19] F.A.Berends, W. Hollik and R. Kleiss, Nucl. Phys. B304 (1998) 712.
[20] F.A. Berends, R. Pittau, R. Kleiss, Comp. Phys. Comm. 85 (1995) 437.
[21] S. Nova, A. Olchevski and T. Todorov, “TWOGAM, a Monte Carlo event generator

for two photon physics”, DELPHI Note 90-35 PROG 152.
[22] F.A.Berends, P.H.Daverveldt, R. Kleiss, Comp. Phys. Comm. 40 (1986) 271.
[23] S. Catani et al., Phys. Lett. B269 (1991) 432.
[24] DELPHI Coll., P. Abreu et al., Phys. Lett. B393 (1997) 245.
[25] G. Borisov, C. Mariotti, DELPHI 97-16 PHYS672; DELPHI Coll., P. Abreu et al.,

Nucl. Inst. Meth. A378 (1996) 57.
[26] M. Gluck et al., Phys. Rev. D46 (1992) 1973 and Phys. Rev. D45 (1992) 3986.
[27] J.L. Hewett and T.G. Rizzo, hep-ph/9703337.
[28] C. Papadopoulos, hep-ph/9703372.
[29] CDF Coll., Fermilab-Pub-97/270-E (1997).

http://arxiv.org/abs/hep-ex/9708017
http://arxiv.org/abs/hep-ex/9707033
http://arxiv.org/abs/hep-ex/9702012
http://arxiv.org/abs/hep-ph/9702015
http://arxiv.org/abs/hep-ph/9704244
http://arxiv.org/abs/hep-ph/9506243
http://arxiv.org/abs/hep-ph/9712394
http://arxiv.org/abs/hep-ph/9712394
http://arxiv.org/abs/hep-ph/9703337
http://arxiv.org/abs/hep-ph/9703372


9

Figure 1: (a) The resolved photon contribution for single leptoquark production and (b)
single top production via FCNC in e+e− collisions.
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Figure 2: Leptoquark search: (a) the ycut variable distribution for neutral decays (Level
1), (b) the ycut variable distribution for charged decays (Level 1), (c) the ratio between
the energy deposited in the electromagnetic calorimeters by the lepton candidate and the
total energy deposited in both electromagnetic and hadronic calorimeters (Level 2), (d)
the lepton polar angle (Level 2) and (e) the angle between the jet and the lepton (Level
2). The dots show the data and the shaded region shows the SM simulation. The dark
region is the expected signal behaviour for a leptoquark mass of 120 GeV/c2. The vertical
arrows show the cut used to select events. The accepted or rejected region is also shown.
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Figure 3: FCNC search: (a) the lepton polar angle, (b) the jet-lepton angle, (c) the
b-tag variable (see text) and (d) the missing momentum polar angle. The dots show the
data and the shaded region shows the SM simulation. The dark region is the expected
signal behaviour. The vertical arrows show the cut used to select events. The accepted
or rejected region is also shown.
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Figure 4: 95% confidence level upper limits on the coupling λ as a function of the lep-
toquark mass for (a) scalar and (b) vector leptoquarks (B is the branching ratio of the
leptoquark to charged leptons and q is the leptoquark charge).


