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On the quantum stress tensor for extreme 2D Reissner-Nordström black holes
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Contrary to previous claims, it is shown that the expectation values of the quantum stress tensor
for a massless scalar field propagating on a two-dimensional extreme Reissner-Nordström black hole
are indeed regular on the horizon.
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Extremal black holes play an important role in gravity
and string theories. They appear as soliton like objects
with intrinsic parameters saturating a Bogomol’ni bound
and have zero Hawking temperature [1].
It is quite disturbing that quantum field theory (QFT
hereafter) on these backgrounds seems to predict diver-
gences [2, 3] which, although being “mild” in some sense,
have no clear physical explanation. These divergences are
associated to “vacuum” expectation values of the stress
tensor operator evaluated on the horizon. Before enter-
ing this problem, a digression on the notion of vacuum
in this context is necessary [4].
In QFT in curved space-time quantization is achieved
as usual by expanding the field operator in annihilation

(ai) and creation (a†i ) operators according to a given set
of mode solutions of the field equation. The vacuum,
|0〉, is the state annihilated by the ai, i.e. ai|0〉 = 0.
However one of the most interesting outcome of this pro-
cedure, is that in the presence of a gravitational field (i.e.
in a curved space-time) the notion of vacuum state be-
comes rather vague. Unlike Minkowski QFT, there is no
a unique vacuum state. There are many (in principle in-
finite) “vacuum states”, no one sharing the central and
unique role the Minkowski vacuum has for inertial ob-
servers. The “vacuum states” one can construct in QFT
are not at all empty (at least everywhere). Furthemore,
their particle content is observer dependent. According
to our present understanding these different vacua sim-
ply represent different physical situations.
In black hole spacetimes one usually considers three “vac-
uum states”.
The first is the so called Boulware vacuum state |B〉
[5]. It is constructed with ingoing and outgoing modes
that are positive frequency with respect to the asymp-
totically Minkowskian time coordinate. At infinity these
modes reduce to usual plane waves and therefore there
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the Boulware vacuum reduces to the Minkowski vacuum
(|B〉 ∼ |0〉M ). If the behaviour of |B〉 at infinity seems
quite reasonable, the same cannot be said at the black
hole horizon. If the quantum field is in the Boulware
state an inertial observer falling across the horizon mea-
sures an infinite energy density and pressure [6]. From
the physical point of view |B〉 is supposed to describe
the vacuum polarization outside a static star. Being its
radius bigger than the horizon, the above divergence is
spurious.
A quantum state regular on the horizon, the so called
Hartle-Hawking state |H〉 [7], can be constructed using
incoming and outgoing modes that are positive frequency
with respect to the affine parameters along the future
and past horizons of the black hole respectively. These
“Kruskal modes” do not match at infinity the standard
Minkowski plane waves. At infinity |H〉 is not empty
(|H〉 6= |0〉M ). It describes equilibrium thermal radia-
tion at the Hawking temperature T = κ/2π (in units
~ = c = kB = 1), where κ is the surface gravity of the
horizon. |H〉 has the properties of being a thermal state
and is the only static state which is regular both on the
future and past horizons. It is supposed to describe the
thermal equilibrium of a black hole with its own quan-
tum radiation. Equilibrium is achieved by enclosing the
black hole in a reflecting box.
Finally, the Unruh state |U〉 [8] is constructed by ingo-
ing modes that are positive frequency with respect to
the asymptotic Minkowskian time whereas the outgoing
modes are positive frequency with respect to the affine
parameter on the past horizon. This hybrid construction
is from the physical point of view the most interesting,
since it describes the late-time behaviour of a quantum
field in the spacetime of a collapsing body forming a black
hole. From its definition one can show that in this state
one has no particles coming in from past infinity, whereas
there is a thermal flux of particles at the Hawking tem-
perature flowing out to future infinity. |U〉 is regular on
the future horizon, but on the past horizon it has the
same bad behaviour |B〉 had. However for a black hole
formed by gravitational collapse of matter the past hori-
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zon does not exist, being covered by the infalling matter
and therefore the related divergence is spurious.
All the features of the “vacuum states” we have presented
can be easily seen in a two-dimensional spacetime context
where the quantum field is a massless minimally coupled
scalar. For this case exact analytical results can be found.
The spacetime we shall consider is the 2D section of the
Reissner-Nordström one

ds2 = −f(r)dt2 +
dr2

f(r)
= −f(r)dudv , (1)

where f(r) = 1 − 2M/r + Q2/r2, M is the mass and
Q the charge of the black hole (M > |Q|). u and v
are respectively the retarded and advanced Eddington-
Finkelstein coordinates

u = t− r∗ , v = t+ r∗ (2)

where r∗ =
∫

dr/f(r). The horizon is located at r+ =

M +
√

M2 −Q2. The field equation for the scalar field
is

�ψ = 0 ⇔ ∂ū∂v̄ψ = 0 , (3)

where {ū, v̄} are null coordinates related to {u, v} by
a generic conformal coordinate transformation u →
ū , v → v̄. The normal modes of eq.(3) are simply plane
waves {e−iwū, e−iwv̄}. Expanding ψ in these modes one
constructs the |ū, v̄〉 vacuum state. The expectation val-
ues of the quantum stress tensor operator for the ψ field
in this state are [4]

〈ū, v̄|Tuu|ū, v̄〉 = −(12π)−1f
1
2 (f− 1

2 ),uu + ∆(u, ū),

〈ū, v̄|Tvv|ū, v̄〉 = −(12π)−1f
1
2 (f− 1

2 ),vv + ∆(v, v̄), (4)

〈T a
a 〉 = (24π)−1R = (6π)−1f−1(ln f),uv

where

−(12π)−1f
1
2 (f− 1

2 ),uu = −(12π)−1f
1
2 (f− 1

2 ),vv = (5)

≡ H(r) =

= (24π)−1

(

−
M

r3
+

3

2

M2 +Q2

r4
−

3MQ2

r5
+
Q4

r6

)

,

(6π)−1f−1(ln f),uv = (6π)−1

(

M

r3
−

3

2

Q2

r4

)

(6)

and

∆(u, ū) = (24π)−1

(

F ′′

F
−

1

2

F ′2

F 2

)

(7)

is the Schwarzian derivative associated to the transfor-
mation u → ū with F = du/dū and a prime means dif-
ferentiation with respect to u. Similarly for ∆(v, v̄) with
F replaced by G = dv/dv̄.
The last equation in (4) is the well known trace anomaly,
where R is the Ricci scalar. This expression holds in ev-
ery conformal vacuum state, and this explains the omis-
sion of the specification of the quantum state.

Now for the Boulware state |B〉 the modes are given by
u = ū, v = v̄, i.e. ∆B(u, ū) = 0 = ∆B(v, v̄) yielding

〈B|Tuu|B〉 = 〈B|Tvv|B〉 = H(r) . (8)

For the Hartle-Hawking state |H〉, ū = U, v̄ = V , where
{U, V } are the Kruskal coordinates

U = −
1

κ
e−κu , V =

1

κ
eκv . (9)

κ is the surface gravity at the horizon

κ =

√

M2 −Q2

r2+
. (10)

This gives

∆H(u, U) = ∆H(v, V ) = (48π)−1κ2 (11)

and

〈H |Tuu|H〉 = 〈H |Tvv|H〉 = 〈B|Tuu|B〉 + (48π)−1κ2 .
(12)

Finally for the Unruh state |U〉, ū = U , v̄ = v and

〈U |Tuu|U〉 = 〈H |Tuu|H〉 = 〈B|Tuu|B〉 + (48π)−1κ2 ,

〈U |Tvv|U〉 = 〈B|Tvv|B〉 . (13)

This form of the stress tensor is physically quite inter-
esting since it is obtained as the late-time behaviour in
the case of an arbitrary collapse in two dimensions. As
shown for example in Birrell and Davies [4] the effect of
the collapse is to increase the vacuum polarization part
(i.e. 〈B|Tab|B〉) with an outgoing (retarded) flux or ra-
diation that is constant along u rays and that asymptot-
ically approaches (48π)−1κ2.
From the previous expressions it is easy to see that the
expectation values in the three states differ just by con-
served traceless radiation at the Hawking temperature
TH = κ/2π. Now regularity of the stress tensor (in a reg-
ular frame) on the future horizon is achieved as r → r+
if [6]

f−2Tuu < ∞ ,

Tvv < ∞ , (14)

f−1Tuv < ∞.

Regularity on the past horizon is given by analogous re-
quirements with just u and v interchanged. Using these
relations it is easy to verify the statements made pre-
viously concerning the behaviour of the three quantum
states on the horizon.
Let us now consider in detail what happens for the ex-
treme Reissner-Nordström black hole, for which M =
|Q|, since things become now trickier. This kind of black
hole has zero surface gravity (see eq.(10)), hence zero
Hawking temperature. This is often stated to imply that
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the Boulware, Unruh and Hartle-Hawking states all coin-
cide; for κ = 0 there is no difference between the eqs.(8),
(12) and (13), namely

〈 |Tuu| 〉 = 〈 |Tvv| 〉 = −(24π)−1M

r3

(

1 −
M

r

)3

≡ Hextr(r) , (15)

〈T a
a 〉 = (24π)−1R = (6π)−1f−1(ln f),uv

= (6π)−1M

r3

(

1 −
3

2

M

r

)

(16)

for all three states. Given this, let us check the regularity
conditions on the horizon. It is rather disappointing to
see that the first condition in eqs.(14) is not satisfied since

lim
r→r+

f−2〈Tuu〉 = lim
r→M

(

1 −
M

r

)−4

Hextr(r)

= −(24π)−1M

r3

(

1 −
M

r

)−1

(17)

diverges. A similar divergence is found in the past hori-
zon. An observer crossing the horizon measures therefore
an unbounded energy density and pressure. It must be
noted, however, that this singularity is regarded to be
suficiently “mild” since it leads to finite tidal distortions
and finite curvature [2]. In any case, before reaching any
definitive conclusion one should take the extreme black
hole limit with care since the Kruskal coordinates trans-
formation given by eq.(9) makes no sense for κ = 0 and
hence the expression eq.(15), obtained by calculating the
Schwarzian derivative and taking the limit κ = 0 at the
end, becomes rather doubtful.
On the other hand, despite the mathematical inconsis-
tency of its derivation, the stress tensor whose compo-
nents are given by eq.(15) is the only conserved tensor
in the extreme 2d Reissner-Nordström spacetime with
the correct trace anomaly which is static (i.e. has the
time translation invariance of the underlying manifold)
and vanishes asymptotically as a zero temperature equi-
librium state should do. The solidity of this argument
seems to leave no way out concerning the singular be-
haviour at the horizon.
The critical point is whether the state whose stress ten-
sor is given by eq.(15) has any physical significance, i.e.
it can be realized by some physical process.
To examine this point, let us consider the formation of an
extremal black hole and the correspondingly stress tensor
for a massless scalar field propagating in this geometry.
For simplicity let us model the collapsing body forming
the black hole by an ingoing null shell. The space time is
depicted in Fig.1 An incoming null shell at v = v0 creates
an extreme Reissner-Nordström black hole whose metric
is given by:

ds2 = −

(

1 −
M

r

)2

dt2 +

(

1 −
M

r

)−2

dr2 (18)

= −

(

1 −
M

r

)2

dudv

i−

r=0

I −

I +

i 0

v0

i+

FIG. I: Penrose diagram describing the formation of an ex-
treme Reissner-Nordström black hole.

where as usual u = t− r∗, v = t+ r∗ but now:

r∗ =

∫

dr
(

1 − M
r

)2
= r + 2M ln

(

r

M
− 1

)

−
M2

(r −M)
.

(19)
In the past of the shell the spacetime is Minkowski, with
metric

ds2 = −dT 2 + dr2 = −dūdv̄ (20)

and

ū = T − r,

v̄ = T + r. (21)

Asymptotic flatness in the past (I− exists) implies v = v̄.
An incoming v̄ mode from past infinity is reflected from
the regular Minkowski origin r = 0 (i.e. ū = v̄) and
becomes an outgoing ū mode. Matching across the shell
at v = v̄ = v0 yields

u = ū− 4M

[

ln
(v0 − ū

2M
− 1

)

−
1

2
(

v0−ū
2M

− 1
)

]

. (22)

Being the horizon (r = M) located at ū = v0 − 2M , i.e.
u → +∞, it is easy to see that a positive frequency v̄
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mode on I− becomes at late advanced time (u → +∞)
a positive frequency U mode, where

u = −4M

[

ln

(

−
U

M

)

+
M

2U

]

(23)

and we have redefined ū → 2U − 2M + v0 so that the
horizon lies now at U = 0.
The relation (23) has been proposed by Liberati et al.
[9] as generalization of the Kruskal transformation to the
extreme Reissner-Nordström black hole. Gao [10] has
later shown that eq.(23) defines indeed a smooth exten-
sion across the horizon. To get this result, the presence
of the subleading (as U → 0) logarithmic term is critical.
One can now evaluate in the future of the shell the stress
tensor using the general expression of eq.(4). The late
time behaviour defines the Unruh state (ū = U, v̄ = v)
for the extreme Reissner-Nordström black hole

〈U |Tuu|U〉 = Hextr(r) + ∆(u, U),

〈U |Tvv|U〉 = Hextr(r), (24)

〈T a
a 〉 = (24π)−1R = (6π)−1f−1(ln f),uv.

The Schwarzian derivative ∆(u, U) calculated from
eq.(23) yields

∆(u, U) = (24π)−1 U3(U − 2M)

2M2(2U −M)4
, (25)

so that

〈U |Tuu|U〉 = −(24π)−1M

r3

(

1 −
M

r

)3

+

+(24π)−1 U3(U − 2M)

2M2(2U −M)4
, (26)

〈U |Tvv|U〉 = −(24π)−1M

r3

(

1 −
M

r

)3

,

〈T a
a 〉 = (6π)−1M

r3

(

1 −
3

2

M

r

)

,

which when compared with the expression obtained by
naively taking the limit κ = 0 (eq.(15)) shows a striking
difference in the Tuu component. Note that the tensor
of eq.(26) is conserved, has the correct trace but is not
time independent. So there is no contraddiction with our
previous remark on the unicity of the expression eq.(15).
The most remarkable feature of the stress tensor (26)
is that it is regular on the future event horizon. Using
U = −(r −M) one can easly check that

lim
r→M

f−2〈U |Tuu|U〉 =

= lim
r→M

−
1

24π

[

M

r3

(

1 −
M

r

)−1

−
1

f2
∆(u, U)

]

= − lim
r→M

1

24π

[

M

r2
1

r −M
−

1

M(r −M)
+ finite

]

= −
1

24π

(

3

2M2

)

<∞. (27)

The divergence in f−2〈U |Tuu|U〉 coming from the vac-
uum polarization part (i.e. Hextr(r)) is exactly canceled
by the divergent term f−2∆(u, U).
One should appreciate the fundamental role played by
the subleading logarithmic term in the relation between
u and U (eq.(23)). Omission of this term (which corre-
sponds to the extension proposed by Lake [11]) yields an
identically vanishing Schwarzian derivative and the re-
sulting stress tensor would reduce again to the static one
of eq.(15) with the associated divergence on the horizon.
However, as already stressed, the logarithmic term is nec-
essary to have a smooth extension across horizon and
this explains the regular behaviour of the stress tensor
(eq.(26)) on the horizon which emerges from our analysis.
This result is not a peculiar feature of the simple collapse
model (null shell) we have used. The asymptotic rela-
tion eq.(23) is completely general in two dimensions [12]
and its validity can be extended to the physical space-
time (i.e. four dimensions) because of the propagation
of outgoing rays near the horizon according to geometric
optics [10]. The late time radiation is indipendent of the
details of the collapse which affects the O(U4) term but
not the O(U3). The stress tensor of eq.(26) is explicitly
time dependent. Asymptotically (i.e. r → ∞) there is no
incoming radiation on I− whereas on I+ there is an out-
going flux given by ∆(u, U) vanishing at late advanced
time (U → 0,u → +∞). However, unlike the κ 6= 0
case one can not simply discard this radiation term to
get the late time behaviour since this procedure would
lead to the incorrect result of eq.(15). Also the vacuum
polarization part is vanishing for U → 0 and a careful
consideration of both terms is required as we have shown
to have regularity on the future horizon.
Finally, one can consider both the future and past ex-
tensions across the horizon, namely, introducing Kruskal
like coordinates (U, V ) [9],

u = −4M

[

ln
(

−
U

M

)

+
M

2U

]

, (28)

v = 4M

[

ln
( V

M

)

−
M

2V

]

,

and define a state which is regular both on the future
and past horizons

〈H |Tuu|H〉 = Hextr(r) + ∆(u, U) = 〈U |Tuu|U〉,

〈H |Tvv|H〉 = Hextr(r) + ∆(v, V ) = (29)

= 〈U |Tvv|U〉 + (24π)−1 V 3(V + 2M)

2M2(2V +M)
,

〈 |T a
a | 〉 = (24π)−1R = (6π)−1f−1(ln f),uv =

= (6π)−1M

r3

(

1 −
3

2

M

r

)

. (30)

This state is by no way unique. Any smooth extension
of the coordinates (U, V ) will lead to the same U3 (V 3)
behaviour in the Schwarzian derivative on the horizon
responsible for the divergence cancellation, the difference
being of order U4 (V 4).
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